1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/SymbolTableListTraits.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/IR/User.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/IR/ValueSymbolTable.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstddef> 51 #include <cstdint> 52 #include <cstring> 53 #include <string> 54 55 using namespace llvm; 56 using ProfileCount = Function::ProfileCount; 57 58 // Explicit instantiations of SymbolTableListTraits since some of the methods 59 // are not in the public header file... 60 template class llvm::SymbolTableListTraits<BasicBlock>; 61 62 //===----------------------------------------------------------------------===// 63 // Argument Implementation 64 //===----------------------------------------------------------------------===// 65 66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 67 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 68 setName(Name); 69 } 70 71 void Argument::setParent(Function *parent) { 72 Parent = parent; 73 } 74 75 bool Argument::hasNonNullAttr() const { 76 if (!getType()->isPointerTy()) return false; 77 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 78 return true; 79 else if (getDereferenceableBytes() > 0 && 80 !NullPointerIsDefined(getParent(), 81 getType()->getPointerAddressSpace())) 82 return true; 83 return false; 84 } 85 86 bool Argument::hasByValAttr() const { 87 if (!getType()->isPointerTy()) return false; 88 return hasAttribute(Attribute::ByVal); 89 } 90 91 bool Argument::hasSwiftSelfAttr() const { 92 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 93 } 94 95 bool Argument::hasSwiftErrorAttr() const { 96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 97 } 98 99 bool Argument::hasInAllocaAttr() const { 100 if (!getType()->isPointerTy()) return false; 101 return hasAttribute(Attribute::InAlloca); 102 } 103 104 bool Argument::hasByValOrInAllocaAttr() const { 105 if (!getType()->isPointerTy()) return false; 106 AttributeList Attrs = getParent()->getAttributes(); 107 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 108 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 109 } 110 111 unsigned Argument::getParamAlignment() const { 112 assert(getType()->isPointerTy() && "Only pointers have alignments"); 113 return getParent()->getParamAlignment(getArgNo()); 114 } 115 116 uint64_t Argument::getDereferenceableBytes() const { 117 assert(getType()->isPointerTy() && 118 "Only pointers have dereferenceable bytes"); 119 return getParent()->getParamDereferenceableBytes(getArgNo()); 120 } 121 122 uint64_t Argument::getDereferenceableOrNullBytes() const { 123 assert(getType()->isPointerTy() && 124 "Only pointers have dereferenceable bytes"); 125 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 126 } 127 128 bool Argument::hasNestAttr() const { 129 if (!getType()->isPointerTy()) return false; 130 return hasAttribute(Attribute::Nest); 131 } 132 133 bool Argument::hasNoAliasAttr() const { 134 if (!getType()->isPointerTy()) return false; 135 return hasAttribute(Attribute::NoAlias); 136 } 137 138 bool Argument::hasNoCaptureAttr() const { 139 if (!getType()->isPointerTy()) return false; 140 return hasAttribute(Attribute::NoCapture); 141 } 142 143 bool Argument::hasStructRetAttr() const { 144 if (!getType()->isPointerTy()) return false; 145 return hasAttribute(Attribute::StructRet); 146 } 147 148 bool Argument::hasInRegAttr() const { 149 return hasAttribute(Attribute::InReg); 150 } 151 152 bool Argument::hasReturnedAttr() const { 153 return hasAttribute(Attribute::Returned); 154 } 155 156 bool Argument::hasZExtAttr() const { 157 return hasAttribute(Attribute::ZExt); 158 } 159 160 bool Argument::hasSExtAttr() const { 161 return hasAttribute(Attribute::SExt); 162 } 163 164 bool Argument::onlyReadsMemory() const { 165 AttributeList Attrs = getParent()->getAttributes(); 166 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 167 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 168 } 169 170 void Argument::addAttrs(AttrBuilder &B) { 171 AttributeList AL = getParent()->getAttributes(); 172 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 173 getParent()->setAttributes(AL); 174 } 175 176 void Argument::addAttr(Attribute::AttrKind Kind) { 177 getParent()->addParamAttr(getArgNo(), Kind); 178 } 179 180 void Argument::addAttr(Attribute Attr) { 181 getParent()->addParamAttr(getArgNo(), Attr); 182 } 183 184 void Argument::removeAttr(Attribute::AttrKind Kind) { 185 getParent()->removeParamAttr(getArgNo(), Kind); 186 } 187 188 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 189 return getParent()->hasParamAttribute(getArgNo(), Kind); 190 } 191 192 //===----------------------------------------------------------------------===// 193 // Helper Methods in Function 194 //===----------------------------------------------------------------------===// 195 196 LLVMContext &Function::getContext() const { 197 return getType()->getContext(); 198 } 199 200 unsigned Function::getInstructionCount() const { 201 unsigned NumInstrs = 0; 202 for (const BasicBlock &BB : BasicBlocks) 203 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 204 BB.instructionsWithoutDebug().end()); 205 return NumInstrs; 206 } 207 208 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 209 const Twine &N, Module &M) { 210 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 211 } 212 213 void Function::removeFromParent() { 214 getParent()->getFunctionList().remove(getIterator()); 215 } 216 217 void Function::eraseFromParent() { 218 getParent()->getFunctionList().erase(getIterator()); 219 } 220 221 //===----------------------------------------------------------------------===// 222 // Function Implementation 223 //===----------------------------------------------------------------------===// 224 225 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 226 // If AS == -1 and we are passed a valid module pointer we place the function 227 // in the program address space. Otherwise we default to AS0. 228 if (AddrSpace == static_cast<unsigned>(-1)) 229 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 230 return AddrSpace; 231 } 232 233 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 234 const Twine &name, Module *ParentModule) 235 : GlobalObject(Ty, Value::FunctionVal, 236 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 237 computeAddrSpace(AddrSpace, ParentModule)), 238 NumArgs(Ty->getNumParams()) { 239 assert(FunctionType::isValidReturnType(getReturnType()) && 240 "invalid return type"); 241 setGlobalObjectSubClassData(0); 242 243 // We only need a symbol table for a function if the context keeps value names 244 if (!getContext().shouldDiscardValueNames()) 245 SymTab = make_unique<ValueSymbolTable>(); 246 247 // If the function has arguments, mark them as lazily built. 248 if (Ty->getNumParams()) 249 setValueSubclassData(1); // Set the "has lazy arguments" bit. 250 251 if (ParentModule) 252 ParentModule->getFunctionList().push_back(this); 253 254 HasLLVMReservedName = getName().startswith("llvm."); 255 // Ensure intrinsics have the right parameter attributes. 256 // Note, the IntID field will have been set in Value::setName if this function 257 // name is a valid intrinsic ID. 258 if (IntID) 259 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 260 } 261 262 Function::~Function() { 263 dropAllReferences(); // After this it is safe to delete instructions. 264 265 // Delete all of the method arguments and unlink from symbol table... 266 if (Arguments) 267 clearArguments(); 268 269 // Remove the function from the on-the-side GC table. 270 clearGC(); 271 } 272 273 void Function::BuildLazyArguments() const { 274 // Create the arguments vector, all arguments start out unnamed. 275 auto *FT = getFunctionType(); 276 if (NumArgs > 0) { 277 Arguments = std::allocator<Argument>().allocate(NumArgs); 278 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 279 Type *ArgTy = FT->getParamType(i); 280 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 281 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 282 } 283 } 284 285 // Clear the lazy arguments bit. 286 unsigned SDC = getSubclassDataFromValue(); 287 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 288 assert(!hasLazyArguments()); 289 } 290 291 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 292 return MutableArrayRef<Argument>(Args, Count); 293 } 294 295 void Function::clearArguments() { 296 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 297 A.setName(""); 298 A.~Argument(); 299 } 300 std::allocator<Argument>().deallocate(Arguments, NumArgs); 301 Arguments = nullptr; 302 } 303 304 void Function::stealArgumentListFrom(Function &Src) { 305 assert(isDeclaration() && "Expected no references to current arguments"); 306 307 // Drop the current arguments, if any, and set the lazy argument bit. 308 if (!hasLazyArguments()) { 309 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 310 [](const Argument &A) { return A.use_empty(); }) && 311 "Expected arguments to be unused in declaration"); 312 clearArguments(); 313 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 314 } 315 316 // Nothing to steal if Src has lazy arguments. 317 if (Src.hasLazyArguments()) 318 return; 319 320 // Steal arguments from Src, and fix the lazy argument bits. 321 assert(arg_size() == Src.arg_size()); 322 Arguments = Src.Arguments; 323 Src.Arguments = nullptr; 324 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 325 // FIXME: This does the work of transferNodesFromList inefficiently. 326 SmallString<128> Name; 327 if (A.hasName()) 328 Name = A.getName(); 329 if (!Name.empty()) 330 A.setName(""); 331 A.setParent(this); 332 if (!Name.empty()) 333 A.setName(Name); 334 } 335 336 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 337 assert(!hasLazyArguments()); 338 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 339 } 340 341 // dropAllReferences() - This function causes all the subinstructions to "let 342 // go" of all references that they are maintaining. This allows one to 343 // 'delete' a whole class at a time, even though there may be circular 344 // references... first all references are dropped, and all use counts go to 345 // zero. Then everything is deleted for real. Note that no operations are 346 // valid on an object that has "dropped all references", except operator 347 // delete. 348 // 349 void Function::dropAllReferences() { 350 setIsMaterializable(false); 351 352 for (BasicBlock &BB : *this) 353 BB.dropAllReferences(); 354 355 // Delete all basic blocks. They are now unused, except possibly by 356 // blockaddresses, but BasicBlock's destructor takes care of those. 357 while (!BasicBlocks.empty()) 358 BasicBlocks.begin()->eraseFromParent(); 359 360 // Drop uses of any optional data (real or placeholder). 361 if (getNumOperands()) { 362 User::dropAllReferences(); 363 setNumHungOffUseOperands(0); 364 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 365 } 366 367 // Metadata is stored in a side-table. 368 clearMetadata(); 369 } 370 371 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 372 AttributeList PAL = getAttributes(); 373 PAL = PAL.addAttribute(getContext(), i, Kind); 374 setAttributes(PAL); 375 } 376 377 void Function::addAttribute(unsigned i, Attribute Attr) { 378 AttributeList PAL = getAttributes(); 379 PAL = PAL.addAttribute(getContext(), i, Attr); 380 setAttributes(PAL); 381 } 382 383 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 384 AttributeList PAL = getAttributes(); 385 PAL = PAL.addAttributes(getContext(), i, Attrs); 386 setAttributes(PAL); 387 } 388 389 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 390 AttributeList PAL = getAttributes(); 391 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 392 setAttributes(PAL); 393 } 394 395 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 396 AttributeList PAL = getAttributes(); 397 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 398 setAttributes(PAL); 399 } 400 401 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 402 AttributeList PAL = getAttributes(); 403 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 404 setAttributes(PAL); 405 } 406 407 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 408 AttributeList PAL = getAttributes(); 409 PAL = PAL.removeAttribute(getContext(), i, Kind); 410 setAttributes(PAL); 411 } 412 413 void Function::removeAttribute(unsigned i, StringRef Kind) { 414 AttributeList PAL = getAttributes(); 415 PAL = PAL.removeAttribute(getContext(), i, Kind); 416 setAttributes(PAL); 417 } 418 419 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 420 AttributeList PAL = getAttributes(); 421 PAL = PAL.removeAttributes(getContext(), i, Attrs); 422 setAttributes(PAL); 423 } 424 425 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 426 AttributeList PAL = getAttributes(); 427 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 428 setAttributes(PAL); 429 } 430 431 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 432 AttributeList PAL = getAttributes(); 433 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 434 setAttributes(PAL); 435 } 436 437 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 438 AttributeList PAL = getAttributes(); 439 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 440 setAttributes(PAL); 441 } 442 443 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 444 AttributeList PAL = getAttributes(); 445 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 446 setAttributes(PAL); 447 } 448 449 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 450 AttributeList PAL = getAttributes(); 451 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 452 setAttributes(PAL); 453 } 454 455 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 456 AttributeList PAL = getAttributes(); 457 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 458 setAttributes(PAL); 459 } 460 461 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 462 uint64_t Bytes) { 463 AttributeList PAL = getAttributes(); 464 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 465 setAttributes(PAL); 466 } 467 468 const std::string &Function::getGC() const { 469 assert(hasGC() && "Function has no collector"); 470 return getContext().getGC(*this); 471 } 472 473 void Function::setGC(std::string Str) { 474 setValueSubclassDataBit(14, !Str.empty()); 475 getContext().setGC(*this, std::move(Str)); 476 } 477 478 void Function::clearGC() { 479 if (!hasGC()) 480 return; 481 getContext().deleteGC(*this); 482 setValueSubclassDataBit(14, false); 483 } 484 485 /// Copy all additional attributes (those not needed to create a Function) from 486 /// the Function Src to this one. 487 void Function::copyAttributesFrom(const Function *Src) { 488 GlobalObject::copyAttributesFrom(Src); 489 setCallingConv(Src->getCallingConv()); 490 setAttributes(Src->getAttributes()); 491 if (Src->hasGC()) 492 setGC(Src->getGC()); 493 else 494 clearGC(); 495 if (Src->hasPersonalityFn()) 496 setPersonalityFn(Src->getPersonalityFn()); 497 if (Src->hasPrefixData()) 498 setPrefixData(Src->getPrefixData()); 499 if (Src->hasPrologueData()) 500 setPrologueData(Src->getPrologueData()); 501 } 502 503 /// Table of string intrinsic names indexed by enum value. 504 static const char * const IntrinsicNameTable[] = { 505 "not_intrinsic", 506 #define GET_INTRINSIC_NAME_TABLE 507 #include "llvm/IR/IntrinsicImpl.inc" 508 #undef GET_INTRINSIC_NAME_TABLE 509 }; 510 511 /// Table of per-target intrinsic name tables. 512 #define GET_INTRINSIC_TARGET_DATA 513 #include "llvm/IR/IntrinsicImpl.inc" 514 #undef GET_INTRINSIC_TARGET_DATA 515 516 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 517 /// target as \c Name, or the generic table if \c Name is not target specific. 518 /// 519 /// Returns the relevant slice of \c IntrinsicNameTable 520 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 521 assert(Name.startswith("llvm.")); 522 523 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 524 // Drop "llvm." and take the first dotted component. That will be the target 525 // if this is target specific. 526 StringRef Target = Name.drop_front(5).split('.').first; 527 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 528 [](const IntrinsicTargetInfo &TI, 529 StringRef Target) { return TI.Name < Target; }); 530 // We've either found the target or just fall back to the generic set, which 531 // is always first. 532 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 533 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 534 } 535 536 /// This does the actual lookup of an intrinsic ID which 537 /// matches the given function name. 538 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 539 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 540 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 541 if (Idx == -1) 542 return Intrinsic::not_intrinsic; 543 544 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 545 // an index into a sub-table. 546 int Adjust = NameTable.data() - IntrinsicNameTable; 547 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 548 549 // If the intrinsic is not overloaded, require an exact match. If it is 550 // overloaded, require either exact or prefix match. 551 const auto MatchSize = strlen(NameTable[Idx]); 552 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 553 bool IsExactMatch = Name.size() == MatchSize; 554 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 555 } 556 557 void Function::recalculateIntrinsicID() { 558 StringRef Name = getName(); 559 if (!Name.startswith("llvm.")) { 560 HasLLVMReservedName = false; 561 IntID = Intrinsic::not_intrinsic; 562 return; 563 } 564 HasLLVMReservedName = true; 565 IntID = lookupIntrinsicID(Name); 566 } 567 568 /// Returns a stable mangling for the type specified for use in the name 569 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 570 /// of named types is simply their name. Manglings for unnamed types consist 571 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 572 /// combined with the mangling of their component types. A vararg function 573 /// type will have a suffix of 'vararg'. Since function types can contain 574 /// other function types, we close a function type mangling with suffix 'f' 575 /// which can't be confused with it's prefix. This ensures we don't have 576 /// collisions between two unrelated function types. Otherwise, you might 577 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 578 /// 579 static std::string getMangledTypeStr(Type* Ty) { 580 std::string Result; 581 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 582 Result += "p" + utostr(PTyp->getAddressSpace()) + 583 getMangledTypeStr(PTyp->getElementType()); 584 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 585 Result += "a" + utostr(ATyp->getNumElements()) + 586 getMangledTypeStr(ATyp->getElementType()); 587 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 588 if (!STyp->isLiteral()) { 589 Result += "s_"; 590 Result += STyp->getName(); 591 } else { 592 Result += "sl_"; 593 for (auto Elem : STyp->elements()) 594 Result += getMangledTypeStr(Elem); 595 } 596 // Ensure nested structs are distinguishable. 597 Result += "s"; 598 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 599 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 600 for (size_t i = 0; i < FT->getNumParams(); i++) 601 Result += getMangledTypeStr(FT->getParamType(i)); 602 if (FT->isVarArg()) 603 Result += "vararg"; 604 // Ensure nested function types are distinguishable. 605 Result += "f"; 606 } else if (isa<VectorType>(Ty)) { 607 Result += "v" + utostr(Ty->getVectorNumElements()) + 608 getMangledTypeStr(Ty->getVectorElementType()); 609 } else if (Ty) { 610 switch (Ty->getTypeID()) { 611 default: llvm_unreachable("Unhandled type"); 612 case Type::VoidTyID: Result += "isVoid"; break; 613 case Type::MetadataTyID: Result += "Metadata"; break; 614 case Type::HalfTyID: Result += "f16"; break; 615 case Type::FloatTyID: Result += "f32"; break; 616 case Type::DoubleTyID: Result += "f64"; break; 617 case Type::X86_FP80TyID: Result += "f80"; break; 618 case Type::FP128TyID: Result += "f128"; break; 619 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 620 case Type::X86_MMXTyID: Result += "x86mmx"; break; 621 case Type::IntegerTyID: 622 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 623 break; 624 } 625 } 626 return Result; 627 } 628 629 StringRef Intrinsic::getName(ID id) { 630 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 631 assert(!isOverloaded(id) && 632 "This version of getName does not support overloading"); 633 return IntrinsicNameTable[id]; 634 } 635 636 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 637 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 638 std::string Result(IntrinsicNameTable[id]); 639 for (Type *Ty : Tys) { 640 Result += "." + getMangledTypeStr(Ty); 641 } 642 return Result; 643 } 644 645 /// IIT_Info - These are enumerators that describe the entries returned by the 646 /// getIntrinsicInfoTableEntries function. 647 /// 648 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 649 enum IIT_Info { 650 // Common values should be encoded with 0-15. 651 IIT_Done = 0, 652 IIT_I1 = 1, 653 IIT_I8 = 2, 654 IIT_I16 = 3, 655 IIT_I32 = 4, 656 IIT_I64 = 5, 657 IIT_F16 = 6, 658 IIT_F32 = 7, 659 IIT_F64 = 8, 660 IIT_V2 = 9, 661 IIT_V4 = 10, 662 IIT_V8 = 11, 663 IIT_V16 = 12, 664 IIT_V32 = 13, 665 IIT_PTR = 14, 666 IIT_ARG = 15, 667 668 // Values from 16+ are only encodable with the inefficient encoding. 669 IIT_V64 = 16, 670 IIT_MMX = 17, 671 IIT_TOKEN = 18, 672 IIT_METADATA = 19, 673 IIT_EMPTYSTRUCT = 20, 674 IIT_STRUCT2 = 21, 675 IIT_STRUCT3 = 22, 676 IIT_STRUCT4 = 23, 677 IIT_STRUCT5 = 24, 678 IIT_EXTEND_ARG = 25, 679 IIT_TRUNC_ARG = 26, 680 IIT_ANYPTR = 27, 681 IIT_V1 = 28, 682 IIT_VARARG = 29, 683 IIT_HALF_VEC_ARG = 30, 684 IIT_SAME_VEC_WIDTH_ARG = 31, 685 IIT_PTR_TO_ARG = 32, 686 IIT_PTR_TO_ELT = 33, 687 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 688 IIT_I128 = 35, 689 IIT_V512 = 36, 690 IIT_V1024 = 37, 691 IIT_STRUCT6 = 38, 692 IIT_STRUCT7 = 39, 693 IIT_STRUCT8 = 40, 694 IIT_F128 = 41 695 }; 696 697 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 698 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 699 using namespace Intrinsic; 700 701 IIT_Info Info = IIT_Info(Infos[NextElt++]); 702 unsigned StructElts = 2; 703 704 switch (Info) { 705 case IIT_Done: 706 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 707 return; 708 case IIT_VARARG: 709 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 710 return; 711 case IIT_MMX: 712 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 713 return; 714 case IIT_TOKEN: 715 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 716 return; 717 case IIT_METADATA: 718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 719 return; 720 case IIT_F16: 721 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 722 return; 723 case IIT_F32: 724 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 725 return; 726 case IIT_F64: 727 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 728 return; 729 case IIT_F128: 730 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 731 return; 732 case IIT_I1: 733 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 734 return; 735 case IIT_I8: 736 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 737 return; 738 case IIT_I16: 739 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 740 return; 741 case IIT_I32: 742 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 743 return; 744 case IIT_I64: 745 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 746 return; 747 case IIT_I128: 748 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 749 return; 750 case IIT_V1: 751 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 752 DecodeIITType(NextElt, Infos, OutputTable); 753 return; 754 case IIT_V2: 755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 756 DecodeIITType(NextElt, Infos, OutputTable); 757 return; 758 case IIT_V4: 759 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 760 DecodeIITType(NextElt, Infos, OutputTable); 761 return; 762 case IIT_V8: 763 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 764 DecodeIITType(NextElt, Infos, OutputTable); 765 return; 766 case IIT_V16: 767 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 768 DecodeIITType(NextElt, Infos, OutputTable); 769 return; 770 case IIT_V32: 771 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 772 DecodeIITType(NextElt, Infos, OutputTable); 773 return; 774 case IIT_V64: 775 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 776 DecodeIITType(NextElt, Infos, OutputTable); 777 return; 778 case IIT_V512: 779 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 780 DecodeIITType(NextElt, Infos, OutputTable); 781 return; 782 case IIT_V1024: 783 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 784 DecodeIITType(NextElt, Infos, OutputTable); 785 return; 786 case IIT_PTR: 787 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 788 DecodeIITType(NextElt, Infos, OutputTable); 789 return; 790 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 791 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 792 Infos[NextElt++])); 793 DecodeIITType(NextElt, Infos, OutputTable); 794 return; 795 } 796 case IIT_ARG: { 797 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 798 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 799 return; 800 } 801 case IIT_EXTEND_ARG: { 802 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 803 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 804 ArgInfo)); 805 return; 806 } 807 case IIT_TRUNC_ARG: { 808 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 809 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 810 ArgInfo)); 811 return; 812 } 813 case IIT_HALF_VEC_ARG: { 814 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 815 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 816 ArgInfo)); 817 return; 818 } 819 case IIT_SAME_VEC_WIDTH_ARG: { 820 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 821 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 822 ArgInfo)); 823 return; 824 } 825 case IIT_PTR_TO_ARG: { 826 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 827 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 828 ArgInfo)); 829 return; 830 } 831 case IIT_PTR_TO_ELT: { 832 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 833 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 834 return; 835 } 836 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 837 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 838 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 839 OutputTable.push_back( 840 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 841 return; 842 } 843 case IIT_EMPTYSTRUCT: 844 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 845 return; 846 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 847 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 848 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 849 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 850 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 851 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 852 case IIT_STRUCT2: { 853 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 854 855 for (unsigned i = 0; i != StructElts; ++i) 856 DecodeIITType(NextElt, Infos, OutputTable); 857 return; 858 } 859 } 860 llvm_unreachable("unhandled"); 861 } 862 863 #define GET_INTRINSIC_GENERATOR_GLOBAL 864 #include "llvm/IR/IntrinsicImpl.inc" 865 #undef GET_INTRINSIC_GENERATOR_GLOBAL 866 867 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 868 SmallVectorImpl<IITDescriptor> &T){ 869 // Check to see if the intrinsic's type was expressible by the table. 870 unsigned TableVal = IIT_Table[id-1]; 871 872 // Decode the TableVal into an array of IITValues. 873 SmallVector<unsigned char, 8> IITValues; 874 ArrayRef<unsigned char> IITEntries; 875 unsigned NextElt = 0; 876 if ((TableVal >> 31) != 0) { 877 // This is an offset into the IIT_LongEncodingTable. 878 IITEntries = IIT_LongEncodingTable; 879 880 // Strip sentinel bit. 881 NextElt = (TableVal << 1) >> 1; 882 } else { 883 // Decode the TableVal into an array of IITValues. If the entry was encoded 884 // into a single word in the table itself, decode it now. 885 do { 886 IITValues.push_back(TableVal & 0xF); 887 TableVal >>= 4; 888 } while (TableVal); 889 890 IITEntries = IITValues; 891 NextElt = 0; 892 } 893 894 // Okay, decode the table into the output vector of IITDescriptors. 895 DecodeIITType(NextElt, IITEntries, T); 896 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 897 DecodeIITType(NextElt, IITEntries, T); 898 } 899 900 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 901 ArrayRef<Type*> Tys, LLVMContext &Context) { 902 using namespace Intrinsic; 903 904 IITDescriptor D = Infos.front(); 905 Infos = Infos.slice(1); 906 907 switch (D.Kind) { 908 case IITDescriptor::Void: return Type::getVoidTy(Context); 909 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 910 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 911 case IITDescriptor::Token: return Type::getTokenTy(Context); 912 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 913 case IITDescriptor::Half: return Type::getHalfTy(Context); 914 case IITDescriptor::Float: return Type::getFloatTy(Context); 915 case IITDescriptor::Double: return Type::getDoubleTy(Context); 916 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 917 918 case IITDescriptor::Integer: 919 return IntegerType::get(Context, D.Integer_Width); 920 case IITDescriptor::Vector: 921 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 922 case IITDescriptor::Pointer: 923 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 924 D.Pointer_AddressSpace); 925 case IITDescriptor::Struct: { 926 SmallVector<Type *, 8> Elts; 927 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 928 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 929 return StructType::get(Context, Elts); 930 } 931 case IITDescriptor::Argument: 932 return Tys[D.getArgumentNumber()]; 933 case IITDescriptor::ExtendArgument: { 934 Type *Ty = Tys[D.getArgumentNumber()]; 935 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 936 return VectorType::getExtendedElementVectorType(VTy); 937 938 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 939 } 940 case IITDescriptor::TruncArgument: { 941 Type *Ty = Tys[D.getArgumentNumber()]; 942 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 943 return VectorType::getTruncatedElementVectorType(VTy); 944 945 IntegerType *ITy = cast<IntegerType>(Ty); 946 assert(ITy->getBitWidth() % 2 == 0); 947 return IntegerType::get(Context, ITy->getBitWidth() / 2); 948 } 949 case IITDescriptor::HalfVecArgument: 950 return VectorType::getHalfElementsVectorType(cast<VectorType>( 951 Tys[D.getArgumentNumber()])); 952 case IITDescriptor::SameVecWidthArgument: { 953 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 954 Type *Ty = Tys[D.getArgumentNumber()]; 955 if (auto *VTy = dyn_cast<VectorType>(Ty)) 956 return VectorType::get(EltTy, VTy->getNumElements()); 957 return EltTy; 958 } 959 case IITDescriptor::PtrToArgument: { 960 Type *Ty = Tys[D.getArgumentNumber()]; 961 return PointerType::getUnqual(Ty); 962 } 963 case IITDescriptor::PtrToElt: { 964 Type *Ty = Tys[D.getArgumentNumber()]; 965 VectorType *VTy = dyn_cast<VectorType>(Ty); 966 if (!VTy) 967 llvm_unreachable("Expected an argument of Vector Type"); 968 Type *EltTy = VTy->getVectorElementType(); 969 return PointerType::getUnqual(EltTy); 970 } 971 case IITDescriptor::VecOfAnyPtrsToElt: 972 // Return the overloaded type (which determines the pointers address space) 973 return Tys[D.getOverloadArgNumber()]; 974 } 975 llvm_unreachable("unhandled"); 976 } 977 978 FunctionType *Intrinsic::getType(LLVMContext &Context, 979 ID id, ArrayRef<Type*> Tys) { 980 SmallVector<IITDescriptor, 8> Table; 981 getIntrinsicInfoTableEntries(id, Table); 982 983 ArrayRef<IITDescriptor> TableRef = Table; 984 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 985 986 SmallVector<Type*, 8> ArgTys; 987 while (!TableRef.empty()) 988 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 989 990 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 991 // If we see void type as the type of the last argument, it is vararg intrinsic 992 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 993 ArgTys.pop_back(); 994 return FunctionType::get(ResultTy, ArgTys, true); 995 } 996 return FunctionType::get(ResultTy, ArgTys, false); 997 } 998 999 bool Intrinsic::isOverloaded(ID id) { 1000 #define GET_INTRINSIC_OVERLOAD_TABLE 1001 #include "llvm/IR/IntrinsicImpl.inc" 1002 #undef GET_INTRINSIC_OVERLOAD_TABLE 1003 } 1004 1005 bool Intrinsic::isLeaf(ID id) { 1006 switch (id) { 1007 default: 1008 return true; 1009 1010 case Intrinsic::experimental_gc_statepoint: 1011 case Intrinsic::experimental_patchpoint_void: 1012 case Intrinsic::experimental_patchpoint_i64: 1013 return false; 1014 } 1015 } 1016 1017 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1018 #define GET_INTRINSIC_ATTRIBUTES 1019 #include "llvm/IR/IntrinsicImpl.inc" 1020 #undef GET_INTRINSIC_ATTRIBUTES 1021 1022 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1023 // There can never be multiple globals with the same name of different types, 1024 // because intrinsics must be a specific type. 1025 return cast<Function>( 1026 M->getOrInsertFunction(getName(id, Tys), 1027 getType(M->getContext(), id, Tys)) 1028 .getCallee()); 1029 } 1030 1031 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1032 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1033 #include "llvm/IR/IntrinsicImpl.inc" 1034 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1035 1036 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1037 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1038 #include "llvm/IR/IntrinsicImpl.inc" 1039 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1040 1041 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1042 SmallVectorImpl<Type*> &ArgTys) { 1043 using namespace Intrinsic; 1044 1045 // If we ran out of descriptors, there are too many arguments. 1046 if (Infos.empty()) return true; 1047 IITDescriptor D = Infos.front(); 1048 Infos = Infos.slice(1); 1049 1050 switch (D.Kind) { 1051 case IITDescriptor::Void: return !Ty->isVoidTy(); 1052 case IITDescriptor::VarArg: return true; 1053 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1054 case IITDescriptor::Token: return !Ty->isTokenTy(); 1055 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1056 case IITDescriptor::Half: return !Ty->isHalfTy(); 1057 case IITDescriptor::Float: return !Ty->isFloatTy(); 1058 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1059 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1060 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1061 case IITDescriptor::Vector: { 1062 VectorType *VT = dyn_cast<VectorType>(Ty); 1063 return !VT || VT->getNumElements() != D.Vector_Width || 1064 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 1065 } 1066 case IITDescriptor::Pointer: { 1067 PointerType *PT = dyn_cast<PointerType>(Ty); 1068 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1069 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 1070 } 1071 1072 case IITDescriptor::Struct: { 1073 StructType *ST = dyn_cast<StructType>(Ty); 1074 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1075 return true; 1076 1077 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1078 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 1079 return true; 1080 return false; 1081 } 1082 1083 case IITDescriptor::Argument: 1084 // Two cases here - If this is the second occurrence of an argument, verify 1085 // that the later instance matches the previous instance. 1086 if (D.getArgumentNumber() < ArgTys.size()) 1087 return Ty != ArgTys[D.getArgumentNumber()]; 1088 1089 // Otherwise, if this is the first instance of an argument, record it and 1090 // verify the "Any" kind. 1091 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1092 ArgTys.push_back(Ty); 1093 1094 switch (D.getArgumentKind()) { 1095 case IITDescriptor::AK_Any: return false; // Success 1096 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1097 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1098 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1099 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1100 } 1101 llvm_unreachable("all argument kinds not covered"); 1102 1103 case IITDescriptor::ExtendArgument: { 1104 // This may only be used when referring to a previous vector argument. 1105 if (D.getArgumentNumber() >= ArgTys.size()) 1106 return true; 1107 1108 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1109 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1110 NewTy = VectorType::getExtendedElementVectorType(VTy); 1111 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1112 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1113 else 1114 return true; 1115 1116 return Ty != NewTy; 1117 } 1118 case IITDescriptor::TruncArgument: { 1119 // This may only be used when referring to a previous vector argument. 1120 if (D.getArgumentNumber() >= ArgTys.size()) 1121 return true; 1122 1123 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1124 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1125 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1126 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1127 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1128 else 1129 return true; 1130 1131 return Ty != NewTy; 1132 } 1133 case IITDescriptor::HalfVecArgument: 1134 // This may only be used when referring to a previous vector argument. 1135 return D.getArgumentNumber() >= ArgTys.size() || 1136 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1137 VectorType::getHalfElementsVectorType( 1138 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1139 case IITDescriptor::SameVecWidthArgument: { 1140 if (D.getArgumentNumber() >= ArgTys.size()) 1141 return true; 1142 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1143 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1144 // Both must be vectors of the same number of elements or neither. 1145 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1146 return true; 1147 Type *EltTy = Ty; 1148 if (ThisArgType) { 1149 if (ReferenceType->getVectorNumElements() != 1150 ThisArgType->getVectorNumElements()) 1151 return true; 1152 EltTy = ThisArgType->getVectorElementType(); 1153 } 1154 return matchIntrinsicType(EltTy, Infos, ArgTys); 1155 } 1156 case IITDescriptor::PtrToArgument: { 1157 if (D.getArgumentNumber() >= ArgTys.size()) 1158 return true; 1159 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1160 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1161 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1162 } 1163 case IITDescriptor::PtrToElt: { 1164 if (D.getArgumentNumber() >= ArgTys.size()) 1165 return true; 1166 VectorType * ReferenceType = 1167 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1168 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1169 1170 return (!ThisArgType || !ReferenceType || 1171 ThisArgType->getElementType() != ReferenceType->getElementType()); 1172 } 1173 case IITDescriptor::VecOfAnyPtrsToElt: { 1174 unsigned RefArgNumber = D.getRefArgNumber(); 1175 1176 // This may only be used when referring to a previous argument. 1177 if (RefArgNumber >= ArgTys.size()) 1178 return true; 1179 1180 // Record the overloaded type 1181 assert(D.getOverloadArgNumber() == ArgTys.size() && 1182 "Table consistency error"); 1183 ArgTys.push_back(Ty); 1184 1185 // Verify the overloaded type "matches" the Ref type. 1186 // i.e. Ty is a vector with the same width as Ref. 1187 // Composed of pointers to the same element type as Ref. 1188 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1189 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1190 if (!ThisArgVecTy || !ReferenceType || 1191 (ReferenceType->getVectorNumElements() != 1192 ThisArgVecTy->getVectorNumElements())) 1193 return true; 1194 PointerType *ThisArgEltTy = 1195 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1196 if (!ThisArgEltTy) 1197 return true; 1198 return ThisArgEltTy->getElementType() != 1199 ReferenceType->getVectorElementType(); 1200 } 1201 } 1202 llvm_unreachable("unhandled"); 1203 } 1204 1205 bool 1206 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1207 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1208 // If there are no descriptors left, then it can't be a vararg. 1209 if (Infos.empty()) 1210 return isVarArg; 1211 1212 // There should be only one descriptor remaining at this point. 1213 if (Infos.size() != 1) 1214 return true; 1215 1216 // Check and verify the descriptor. 1217 IITDescriptor D = Infos.front(); 1218 Infos = Infos.slice(1); 1219 if (D.Kind == IITDescriptor::VarArg) 1220 return !isVarArg; 1221 1222 return true; 1223 } 1224 1225 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1226 Intrinsic::ID ID = F->getIntrinsicID(); 1227 if (!ID) 1228 return None; 1229 1230 FunctionType *FTy = F->getFunctionType(); 1231 // Accumulate an array of overloaded types for the given intrinsic 1232 SmallVector<Type *, 4> ArgTys; 1233 { 1234 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1235 getIntrinsicInfoTableEntries(ID, Table); 1236 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1237 1238 // If we encounter any problems matching the signature with the descriptor 1239 // just give up remangling. It's up to verifier to report the discrepancy. 1240 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1241 return None; 1242 for (auto Ty : FTy->params()) 1243 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1244 return None; 1245 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1246 return None; 1247 } 1248 1249 StringRef Name = F->getName(); 1250 if (Name == Intrinsic::getName(ID, ArgTys)) 1251 return None; 1252 1253 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1254 NewDecl->setCallingConv(F->getCallingConv()); 1255 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1256 return NewDecl; 1257 } 1258 1259 /// hasAddressTaken - returns true if there are any uses of this function 1260 /// other than direct calls or invokes to it. 1261 bool Function::hasAddressTaken(const User* *PutOffender) const { 1262 for (const Use &U : uses()) { 1263 const User *FU = U.getUser(); 1264 if (isa<BlockAddress>(FU)) 1265 continue; 1266 const auto *Call = dyn_cast<CallBase>(FU); 1267 if (!Call) { 1268 if (PutOffender) 1269 *PutOffender = FU; 1270 return true; 1271 } 1272 if (!Call->isCallee(&U)) { 1273 if (PutOffender) 1274 *PutOffender = FU; 1275 return true; 1276 } 1277 } 1278 return false; 1279 } 1280 1281 bool Function::isDefTriviallyDead() const { 1282 // Check the linkage 1283 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1284 !hasAvailableExternallyLinkage()) 1285 return false; 1286 1287 // Check if the function is used by anything other than a blockaddress. 1288 for (const User *U : users()) 1289 if (!isa<BlockAddress>(U)) 1290 return false; 1291 1292 return true; 1293 } 1294 1295 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1296 /// setjmp or other function that gcc recognizes as "returning twice". 1297 bool Function::callsFunctionThatReturnsTwice() const { 1298 for (const Instruction &I : instructions(this)) 1299 if (const auto *Call = dyn_cast<CallBase>(&I)) 1300 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1301 return true; 1302 1303 return false; 1304 } 1305 1306 Constant *Function::getPersonalityFn() const { 1307 assert(hasPersonalityFn() && getNumOperands()); 1308 return cast<Constant>(Op<0>()); 1309 } 1310 1311 void Function::setPersonalityFn(Constant *Fn) { 1312 setHungoffOperand<0>(Fn); 1313 setValueSubclassDataBit(3, Fn != nullptr); 1314 } 1315 1316 Constant *Function::getPrefixData() const { 1317 assert(hasPrefixData() && getNumOperands()); 1318 return cast<Constant>(Op<1>()); 1319 } 1320 1321 void Function::setPrefixData(Constant *PrefixData) { 1322 setHungoffOperand<1>(PrefixData); 1323 setValueSubclassDataBit(1, PrefixData != nullptr); 1324 } 1325 1326 Constant *Function::getPrologueData() const { 1327 assert(hasPrologueData() && getNumOperands()); 1328 return cast<Constant>(Op<2>()); 1329 } 1330 1331 void Function::setPrologueData(Constant *PrologueData) { 1332 setHungoffOperand<2>(PrologueData); 1333 setValueSubclassDataBit(2, PrologueData != nullptr); 1334 } 1335 1336 void Function::allocHungoffUselist() { 1337 // If we've already allocated a uselist, stop here. 1338 if (getNumOperands()) 1339 return; 1340 1341 allocHungoffUses(3, /*IsPhi=*/ false); 1342 setNumHungOffUseOperands(3); 1343 1344 // Initialize the uselist with placeholder operands to allow traversal. 1345 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1346 Op<0>().set(CPN); 1347 Op<1>().set(CPN); 1348 Op<2>().set(CPN); 1349 } 1350 1351 template <int Idx> 1352 void Function::setHungoffOperand(Constant *C) { 1353 if (C) { 1354 allocHungoffUselist(); 1355 Op<Idx>().set(C); 1356 } else if (getNumOperands()) { 1357 Op<Idx>().set( 1358 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1359 } 1360 } 1361 1362 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1363 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1364 if (On) 1365 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1366 else 1367 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1368 } 1369 1370 void Function::setEntryCount(ProfileCount Count, 1371 const DenseSet<GlobalValue::GUID> *S) { 1372 assert(Count.hasValue()); 1373 #if !defined(NDEBUG) 1374 auto PrevCount = getEntryCount(); 1375 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1376 #endif 1377 MDBuilder MDB(getContext()); 1378 setMetadata( 1379 LLVMContext::MD_prof, 1380 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1381 } 1382 1383 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1384 const DenseSet<GlobalValue::GUID> *Imports) { 1385 setEntryCount(ProfileCount(Count, Type), Imports); 1386 } 1387 1388 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1389 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1390 if (MD && MD->getOperand(0)) 1391 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1392 if (MDS->getString().equals("function_entry_count")) { 1393 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1394 uint64_t Count = CI->getValue().getZExtValue(); 1395 // A value of -1 is used for SamplePGO when there were no samples. 1396 // Treat this the same as unknown. 1397 if (Count == (uint64_t)-1) 1398 return ProfileCount::getInvalid(); 1399 return ProfileCount(Count, PCT_Real); 1400 } else if (AllowSynthetic && 1401 MDS->getString().equals("synthetic_function_entry_count")) { 1402 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1403 uint64_t Count = CI->getValue().getZExtValue(); 1404 return ProfileCount(Count, PCT_Synthetic); 1405 } 1406 } 1407 return ProfileCount::getInvalid(); 1408 } 1409 1410 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1411 DenseSet<GlobalValue::GUID> R; 1412 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1413 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1414 if (MDS->getString().equals("function_entry_count")) 1415 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1416 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1417 ->getValue() 1418 .getZExtValue()); 1419 return R; 1420 } 1421 1422 void Function::setSectionPrefix(StringRef Prefix) { 1423 MDBuilder MDB(getContext()); 1424 setMetadata(LLVMContext::MD_section_prefix, 1425 MDB.createFunctionSectionPrefix(Prefix)); 1426 } 1427 1428 Optional<StringRef> Function::getSectionPrefix() const { 1429 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1430 assert(cast<MDString>(MD->getOperand(0)) 1431 ->getString() 1432 .equals("function_section_prefix") && 1433 "Metadata not match"); 1434 return cast<MDString>(MD->getOperand(1))->getString(); 1435 } 1436 return None; 1437 } 1438 1439 bool Function::nullPointerIsDefined() const { 1440 return getFnAttribute("null-pointer-is-valid") 1441 .getValueAsString() 1442 .equals("true"); 1443 } 1444 1445 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1446 if (F && F->nullPointerIsDefined()) 1447 return true; 1448 1449 if (AS != 0) 1450 return true; 1451 1452 return false; 1453 } 1454