1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/AbstractCallSite.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/IntrinsicsAArch64.h" 37 #include "llvm/IR/IntrinsicsAMDGPU.h" 38 #include "llvm/IR/IntrinsicsARM.h" 39 #include "llvm/IR/IntrinsicsBPF.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsVE.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/IntrinsicsXCore.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/SymbolTableListTraits.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstdint> 69 #include <cstring> 70 #include <string> 71 72 using namespace llvm; 73 using ProfileCount = Function::ProfileCount; 74 75 // Explicit instantiations of SymbolTableListTraits since some of the methods 76 // are not in the public header file... 77 template class llvm::SymbolTableListTraits<BasicBlock>; 78 79 //===----------------------------------------------------------------------===// 80 // Argument Implementation 81 //===----------------------------------------------------------------------===// 82 83 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 84 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 85 setName(Name); 86 } 87 88 void Argument::setParent(Function *parent) { 89 Parent = parent; 90 } 91 92 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 93 if (!getType()->isPointerTy()) return false; 94 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 95 (AllowUndefOrPoison || 96 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 97 return true; 98 else if (getDereferenceableBytes() > 0 && 99 !NullPointerIsDefined(getParent(), 100 getType()->getPointerAddressSpace())) 101 return true; 102 return false; 103 } 104 105 bool Argument::hasByValAttr() const { 106 if (!getType()->isPointerTy()) return false; 107 return hasAttribute(Attribute::ByVal); 108 } 109 110 bool Argument::hasByRefAttr() const { 111 if (!getType()->isPointerTy()) 112 return false; 113 return hasAttribute(Attribute::ByRef); 114 } 115 116 bool Argument::hasSwiftSelfAttr() const { 117 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 118 } 119 120 bool Argument::hasSwiftErrorAttr() const { 121 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 122 } 123 124 bool Argument::hasInAllocaAttr() const { 125 if (!getType()->isPointerTy()) return false; 126 return hasAttribute(Attribute::InAlloca); 127 } 128 129 bool Argument::hasPreallocatedAttr() const { 130 if (!getType()->isPointerTy()) 131 return false; 132 return hasAttribute(Attribute::Preallocated); 133 } 134 135 bool Argument::hasPassPointeeByValueCopyAttr() const { 136 if (!getType()->isPointerTy()) return false; 137 AttributeList Attrs = getParent()->getAttributes(); 138 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 139 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 140 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated); 141 } 142 143 bool Argument::hasPointeeInMemoryValueAttr() const { 144 if (!getType()->isPointerTy()) 145 return false; 146 AttributeList Attrs = getParent()->getAttributes(); 147 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 148 Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) || 149 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 150 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) || 151 Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef); 152 } 153 154 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 155 /// parameter type. 156 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) { 157 // FIXME: All the type carrying attributes are mutually exclusive, so there 158 // should be a single query to get the stored type that handles any of them. 159 if (Type *ByValTy = ParamAttrs.getByValType()) 160 return ByValTy; 161 if (Type *ByRefTy = ParamAttrs.getByRefType()) 162 return ByRefTy; 163 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 164 return PreAllocTy; 165 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 166 return InAllocaTy; 167 168 // FIXME: sret and inalloca always depends on pointee element type. It's also 169 // possible for byval to miss it. 170 if (ParamAttrs.hasAttribute(Attribute::InAlloca) || 171 ParamAttrs.hasAttribute(Attribute::ByVal) || 172 ParamAttrs.hasAttribute(Attribute::StructRet) || 173 ParamAttrs.hasAttribute(Attribute::Preallocated)) 174 return cast<PointerType>(ArgTy)->getElementType(); 175 176 return nullptr; 177 } 178 179 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 180 AttributeSet ParamAttrs = 181 getParent()->getAttributes().getParamAttributes(getArgNo()); 182 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType())) 183 return DL.getTypeAllocSize(MemTy); 184 return 0; 185 } 186 187 Type *Argument::getPointeeInMemoryValueType() const { 188 AttributeSet ParamAttrs = 189 getParent()->getAttributes().getParamAttributes(getArgNo()); 190 return getMemoryParamAllocType(ParamAttrs, getType()); 191 } 192 193 unsigned Argument::getParamAlignment() const { 194 assert(getType()->isPointerTy() && "Only pointers have alignments"); 195 return getParent()->getParamAlignment(getArgNo()); 196 } 197 198 MaybeAlign Argument::getParamAlign() const { 199 assert(getType()->isPointerTy() && "Only pointers have alignments"); 200 return getParent()->getParamAlign(getArgNo()); 201 } 202 203 MaybeAlign Argument::getParamStackAlign() const { 204 return getParent()->getParamStackAlign(getArgNo()); 205 } 206 207 Type *Argument::getParamByValType() const { 208 assert(getType()->isPointerTy() && "Only pointers have byval types"); 209 return getParent()->getParamByValType(getArgNo()); 210 } 211 212 Type *Argument::getParamStructRetType() const { 213 assert(getType()->isPointerTy() && "Only pointers have sret types"); 214 return getParent()->getParamStructRetType(getArgNo()); 215 } 216 217 Type *Argument::getParamByRefType() const { 218 assert(getType()->isPointerTy() && "Only pointers have byref types"); 219 return getParent()->getParamByRefType(getArgNo()); 220 } 221 222 Type *Argument::getParamInAllocaType() const { 223 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 224 return getParent()->getParamInAllocaType(getArgNo()); 225 } 226 227 uint64_t Argument::getDereferenceableBytes() const { 228 assert(getType()->isPointerTy() && 229 "Only pointers have dereferenceable bytes"); 230 return getParent()->getParamDereferenceableBytes(getArgNo()); 231 } 232 233 uint64_t Argument::getDereferenceableOrNullBytes() const { 234 assert(getType()->isPointerTy() && 235 "Only pointers have dereferenceable bytes"); 236 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 237 } 238 239 bool Argument::hasNestAttr() const { 240 if (!getType()->isPointerTy()) return false; 241 return hasAttribute(Attribute::Nest); 242 } 243 244 bool Argument::hasNoAliasAttr() const { 245 if (!getType()->isPointerTy()) return false; 246 return hasAttribute(Attribute::NoAlias); 247 } 248 249 bool Argument::hasNoCaptureAttr() const { 250 if (!getType()->isPointerTy()) return false; 251 return hasAttribute(Attribute::NoCapture); 252 } 253 254 bool Argument::hasNoFreeAttr() const { 255 if (!getType()->isPointerTy()) return false; 256 return hasAttribute(Attribute::NoFree); 257 } 258 259 bool Argument::hasStructRetAttr() const { 260 if (!getType()->isPointerTy()) return false; 261 return hasAttribute(Attribute::StructRet); 262 } 263 264 bool Argument::hasInRegAttr() const { 265 return hasAttribute(Attribute::InReg); 266 } 267 268 bool Argument::hasReturnedAttr() const { 269 return hasAttribute(Attribute::Returned); 270 } 271 272 bool Argument::hasZExtAttr() const { 273 return hasAttribute(Attribute::ZExt); 274 } 275 276 bool Argument::hasSExtAttr() const { 277 return hasAttribute(Attribute::SExt); 278 } 279 280 bool Argument::onlyReadsMemory() const { 281 AttributeList Attrs = getParent()->getAttributes(); 282 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 283 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 284 } 285 286 void Argument::addAttrs(AttrBuilder &B) { 287 AttributeList AL = getParent()->getAttributes(); 288 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 289 getParent()->setAttributes(AL); 290 } 291 292 void Argument::addAttr(Attribute::AttrKind Kind) { 293 getParent()->addParamAttr(getArgNo(), Kind); 294 } 295 296 void Argument::addAttr(Attribute Attr) { 297 getParent()->addParamAttr(getArgNo(), Attr); 298 } 299 300 void Argument::removeAttr(Attribute::AttrKind Kind) { 301 getParent()->removeParamAttr(getArgNo(), Kind); 302 } 303 304 void Argument::removeAttrs(const AttrBuilder &B) { 305 AttributeList AL = getParent()->getAttributes(); 306 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B); 307 getParent()->setAttributes(AL); 308 } 309 310 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 311 return getParent()->hasParamAttribute(getArgNo(), Kind); 312 } 313 314 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 315 return getParent()->getParamAttribute(getArgNo(), Kind); 316 } 317 318 //===----------------------------------------------------------------------===// 319 // Helper Methods in Function 320 //===----------------------------------------------------------------------===// 321 322 LLVMContext &Function::getContext() const { 323 return getType()->getContext(); 324 } 325 326 unsigned Function::getInstructionCount() const { 327 unsigned NumInstrs = 0; 328 for (const BasicBlock &BB : BasicBlocks) 329 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 330 BB.instructionsWithoutDebug().end()); 331 return NumInstrs; 332 } 333 334 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 335 const Twine &N, Module &M) { 336 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 337 } 338 339 Function *Function::createWithDefaultAttr(FunctionType *Ty, 340 LinkageTypes Linkage, 341 unsigned AddrSpace, const Twine &N, 342 Module *M) { 343 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 344 AttrBuilder B; 345 if (M->getUwtable()) 346 B.addAttribute(Attribute::UWTable); 347 switch (M->getFramePointer()) { 348 case FramePointerKind::None: 349 // 0 ("none") is the default. 350 break; 351 case FramePointerKind::NonLeaf: 352 B.addAttribute("frame-pointer", "non-leaf"); 353 break; 354 case FramePointerKind::All: 355 B.addAttribute("frame-pointer", "all"); 356 break; 357 } 358 F->addAttributes(AttributeList::FunctionIndex, B); 359 return F; 360 } 361 362 void Function::removeFromParent() { 363 getParent()->getFunctionList().remove(getIterator()); 364 } 365 366 void Function::eraseFromParent() { 367 getParent()->getFunctionList().erase(getIterator()); 368 } 369 370 //===----------------------------------------------------------------------===// 371 // Function Implementation 372 //===----------------------------------------------------------------------===// 373 374 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 375 // If AS == -1 and we are passed a valid module pointer we place the function 376 // in the program address space. Otherwise we default to AS0. 377 if (AddrSpace == static_cast<unsigned>(-1)) 378 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 379 return AddrSpace; 380 } 381 382 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 383 const Twine &name, Module *ParentModule) 384 : GlobalObject(Ty, Value::FunctionVal, 385 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 386 computeAddrSpace(AddrSpace, ParentModule)), 387 NumArgs(Ty->getNumParams()) { 388 assert(FunctionType::isValidReturnType(getReturnType()) && 389 "invalid return type"); 390 setGlobalObjectSubClassData(0); 391 392 // We only need a symbol table for a function if the context keeps value names 393 if (!getContext().shouldDiscardValueNames()) 394 SymTab = std::make_unique<ValueSymbolTable>(); 395 396 // If the function has arguments, mark them as lazily built. 397 if (Ty->getNumParams()) 398 setValueSubclassData(1); // Set the "has lazy arguments" bit. 399 400 if (ParentModule) 401 ParentModule->getFunctionList().push_back(this); 402 403 HasLLVMReservedName = getName().startswith("llvm."); 404 // Ensure intrinsics have the right parameter attributes. 405 // Note, the IntID field will have been set in Value::setName if this function 406 // name is a valid intrinsic ID. 407 if (IntID) 408 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 409 } 410 411 Function::~Function() { 412 dropAllReferences(); // After this it is safe to delete instructions. 413 414 // Delete all of the method arguments and unlink from symbol table... 415 if (Arguments) 416 clearArguments(); 417 418 // Remove the function from the on-the-side GC table. 419 clearGC(); 420 } 421 422 void Function::BuildLazyArguments() const { 423 // Create the arguments vector, all arguments start out unnamed. 424 auto *FT = getFunctionType(); 425 if (NumArgs > 0) { 426 Arguments = std::allocator<Argument>().allocate(NumArgs); 427 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 428 Type *ArgTy = FT->getParamType(i); 429 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 430 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 431 } 432 } 433 434 // Clear the lazy arguments bit. 435 unsigned SDC = getSubclassDataFromValue(); 436 SDC &= ~(1 << 0); 437 const_cast<Function*>(this)->setValueSubclassData(SDC); 438 assert(!hasLazyArguments()); 439 } 440 441 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 442 return MutableArrayRef<Argument>(Args, Count); 443 } 444 445 bool Function::isConstrainedFPIntrinsic() const { 446 switch (getIntrinsicID()) { 447 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 448 case Intrinsic::INTRINSIC: 449 #include "llvm/IR/ConstrainedOps.def" 450 return true; 451 #undef INSTRUCTION 452 default: 453 return false; 454 } 455 } 456 457 void Function::clearArguments() { 458 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 459 A.setName(""); 460 A.~Argument(); 461 } 462 std::allocator<Argument>().deallocate(Arguments, NumArgs); 463 Arguments = nullptr; 464 } 465 466 void Function::stealArgumentListFrom(Function &Src) { 467 assert(isDeclaration() && "Expected no references to current arguments"); 468 469 // Drop the current arguments, if any, and set the lazy argument bit. 470 if (!hasLazyArguments()) { 471 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 472 [](const Argument &A) { return A.use_empty(); }) && 473 "Expected arguments to be unused in declaration"); 474 clearArguments(); 475 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 476 } 477 478 // Nothing to steal if Src has lazy arguments. 479 if (Src.hasLazyArguments()) 480 return; 481 482 // Steal arguments from Src, and fix the lazy argument bits. 483 assert(arg_size() == Src.arg_size()); 484 Arguments = Src.Arguments; 485 Src.Arguments = nullptr; 486 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 487 // FIXME: This does the work of transferNodesFromList inefficiently. 488 SmallString<128> Name; 489 if (A.hasName()) 490 Name = A.getName(); 491 if (!Name.empty()) 492 A.setName(""); 493 A.setParent(this); 494 if (!Name.empty()) 495 A.setName(Name); 496 } 497 498 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 499 assert(!hasLazyArguments()); 500 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 501 } 502 503 // dropAllReferences() - This function causes all the subinstructions to "let 504 // go" of all references that they are maintaining. This allows one to 505 // 'delete' a whole class at a time, even though there may be circular 506 // references... first all references are dropped, and all use counts go to 507 // zero. Then everything is deleted for real. Note that no operations are 508 // valid on an object that has "dropped all references", except operator 509 // delete. 510 // 511 void Function::dropAllReferences() { 512 setIsMaterializable(false); 513 514 for (BasicBlock &BB : *this) 515 BB.dropAllReferences(); 516 517 // Delete all basic blocks. They are now unused, except possibly by 518 // blockaddresses, but BasicBlock's destructor takes care of those. 519 while (!BasicBlocks.empty()) 520 BasicBlocks.begin()->eraseFromParent(); 521 522 // Drop uses of any optional data (real or placeholder). 523 if (getNumOperands()) { 524 User::dropAllReferences(); 525 setNumHungOffUseOperands(0); 526 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 527 } 528 529 // Metadata is stored in a side-table. 530 clearMetadata(); 531 } 532 533 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 534 AttributeList PAL = getAttributes(); 535 PAL = PAL.addAttribute(getContext(), i, Kind); 536 setAttributes(PAL); 537 } 538 539 void Function::addAttribute(unsigned i, Attribute Attr) { 540 AttributeList PAL = getAttributes(); 541 PAL = PAL.addAttribute(getContext(), i, Attr); 542 setAttributes(PAL); 543 } 544 545 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 546 AttributeList PAL = getAttributes(); 547 PAL = PAL.addAttributes(getContext(), i, Attrs); 548 setAttributes(PAL); 549 } 550 551 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 552 AttributeList PAL = getAttributes(); 553 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 554 setAttributes(PAL); 555 } 556 557 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 558 AttributeList PAL = getAttributes(); 559 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 560 setAttributes(PAL); 561 } 562 563 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 564 AttributeList PAL = getAttributes(); 565 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 566 setAttributes(PAL); 567 } 568 569 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 570 AttributeList PAL = getAttributes(); 571 PAL = PAL.removeAttribute(getContext(), i, Kind); 572 setAttributes(PAL); 573 } 574 575 void Function::removeAttribute(unsigned i, StringRef Kind) { 576 AttributeList PAL = getAttributes(); 577 PAL = PAL.removeAttribute(getContext(), i, Kind); 578 setAttributes(PAL); 579 } 580 581 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 582 AttributeList PAL = getAttributes(); 583 PAL = PAL.removeAttributes(getContext(), i, Attrs); 584 setAttributes(PAL); 585 } 586 587 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 588 AttributeList PAL = getAttributes(); 589 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 590 setAttributes(PAL); 591 } 592 593 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 594 AttributeList PAL = getAttributes(); 595 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 596 setAttributes(PAL); 597 } 598 599 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 600 AttributeList PAL = getAttributes(); 601 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 602 setAttributes(PAL); 603 } 604 605 void Function::removeParamUndefImplyingAttrs(unsigned ArgNo) { 606 AttributeList PAL = getAttributes(); 607 PAL = PAL.removeParamUndefImplyingAttributes(getContext(), ArgNo); 608 setAttributes(PAL); 609 } 610 611 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 612 AttributeList PAL = getAttributes(); 613 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 614 setAttributes(PAL); 615 } 616 617 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 618 AttributeList PAL = getAttributes(); 619 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 620 setAttributes(PAL); 621 } 622 623 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 624 AttributeList PAL = getAttributes(); 625 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 626 setAttributes(PAL); 627 } 628 629 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 630 uint64_t Bytes) { 631 AttributeList PAL = getAttributes(); 632 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 633 setAttributes(PAL); 634 } 635 636 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 637 if (&FPType == &APFloat::IEEEsingle()) { 638 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 639 StringRef Val = Attr.getValueAsString(); 640 if (!Val.empty()) 641 return parseDenormalFPAttribute(Val); 642 643 // If the f32 variant of the attribute isn't specified, try to use the 644 // generic one. 645 } 646 647 Attribute Attr = getFnAttribute("denormal-fp-math"); 648 return parseDenormalFPAttribute(Attr.getValueAsString()); 649 } 650 651 const std::string &Function::getGC() const { 652 assert(hasGC() && "Function has no collector"); 653 return getContext().getGC(*this); 654 } 655 656 void Function::setGC(std::string Str) { 657 setValueSubclassDataBit(14, !Str.empty()); 658 getContext().setGC(*this, std::move(Str)); 659 } 660 661 void Function::clearGC() { 662 if (!hasGC()) 663 return; 664 getContext().deleteGC(*this); 665 setValueSubclassDataBit(14, false); 666 } 667 668 bool Function::hasStackProtectorFnAttr() const { 669 return hasFnAttribute(Attribute::StackProtect) || 670 hasFnAttribute(Attribute::StackProtectStrong) || 671 hasFnAttribute(Attribute::StackProtectReq); 672 } 673 674 /// Copy all additional attributes (those not needed to create a Function) from 675 /// the Function Src to this one. 676 void Function::copyAttributesFrom(const Function *Src) { 677 GlobalObject::copyAttributesFrom(Src); 678 setCallingConv(Src->getCallingConv()); 679 setAttributes(Src->getAttributes()); 680 if (Src->hasGC()) 681 setGC(Src->getGC()); 682 else 683 clearGC(); 684 if (Src->hasPersonalityFn()) 685 setPersonalityFn(Src->getPersonalityFn()); 686 if (Src->hasPrefixData()) 687 setPrefixData(Src->getPrefixData()); 688 if (Src->hasPrologueData()) 689 setPrologueData(Src->getPrologueData()); 690 } 691 692 /// Table of string intrinsic names indexed by enum value. 693 static const char * const IntrinsicNameTable[] = { 694 "not_intrinsic", 695 #define GET_INTRINSIC_NAME_TABLE 696 #include "llvm/IR/IntrinsicImpl.inc" 697 #undef GET_INTRINSIC_NAME_TABLE 698 }; 699 700 /// Table of per-target intrinsic name tables. 701 #define GET_INTRINSIC_TARGET_DATA 702 #include "llvm/IR/IntrinsicImpl.inc" 703 #undef GET_INTRINSIC_TARGET_DATA 704 705 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 706 return IID > TargetInfos[0].Count; 707 } 708 709 bool Function::isTargetIntrinsic() const { 710 return isTargetIntrinsic(IntID); 711 } 712 713 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 714 /// target as \c Name, or the generic table if \c Name is not target specific. 715 /// 716 /// Returns the relevant slice of \c IntrinsicNameTable 717 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 718 assert(Name.startswith("llvm.")); 719 720 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 721 // Drop "llvm." and take the first dotted component. That will be the target 722 // if this is target specific. 723 StringRef Target = Name.drop_front(5).split('.').first; 724 auto It = partition_point( 725 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 726 // We've either found the target or just fall back to the generic set, which 727 // is always first. 728 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 729 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 730 } 731 732 /// This does the actual lookup of an intrinsic ID which 733 /// matches the given function name. 734 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 735 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 736 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 737 if (Idx == -1) 738 return Intrinsic::not_intrinsic; 739 740 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 741 // an index into a sub-table. 742 int Adjust = NameTable.data() - IntrinsicNameTable; 743 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 744 745 // If the intrinsic is not overloaded, require an exact match. If it is 746 // overloaded, require either exact or prefix match. 747 const auto MatchSize = strlen(NameTable[Idx]); 748 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 749 bool IsExactMatch = Name.size() == MatchSize; 750 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 751 : Intrinsic::not_intrinsic; 752 } 753 754 void Function::recalculateIntrinsicID() { 755 StringRef Name = getName(); 756 if (!Name.startswith("llvm.")) { 757 HasLLVMReservedName = false; 758 IntID = Intrinsic::not_intrinsic; 759 return; 760 } 761 HasLLVMReservedName = true; 762 IntID = lookupIntrinsicID(Name); 763 } 764 765 /// Returns a stable mangling for the type specified for use in the name 766 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 767 /// of named types is simply their name. Manglings for unnamed types consist 768 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 769 /// combined with the mangling of their component types. A vararg function 770 /// type will have a suffix of 'vararg'. Since function types can contain 771 /// other function types, we close a function type mangling with suffix 'f' 772 /// which can't be confused with it's prefix. This ensures we don't have 773 /// collisions between two unrelated function types. Otherwise, you might 774 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 775 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 776 /// indicating that extra care must be taken to ensure a unique name. 777 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 778 std::string Result; 779 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 780 Result += "p" + utostr(PTyp->getAddressSpace()) + 781 getMangledTypeStr(PTyp->getElementType(), HasUnnamedType); 782 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 783 Result += "a" + utostr(ATyp->getNumElements()) + 784 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 785 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 786 if (!STyp->isLiteral()) { 787 Result += "s_"; 788 if (STyp->hasName()) 789 Result += STyp->getName(); 790 else 791 HasUnnamedType = true; 792 } else { 793 Result += "sl_"; 794 for (auto Elem : STyp->elements()) 795 Result += getMangledTypeStr(Elem, HasUnnamedType); 796 } 797 // Ensure nested structs are distinguishable. 798 Result += "s"; 799 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 800 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 801 for (size_t i = 0; i < FT->getNumParams(); i++) 802 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 803 if (FT->isVarArg()) 804 Result += "vararg"; 805 // Ensure nested function types are distinguishable. 806 Result += "f"; 807 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 808 ElementCount EC = VTy->getElementCount(); 809 if (EC.isScalable()) 810 Result += "nx"; 811 Result += "v" + utostr(EC.getKnownMinValue()) + 812 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 813 } else if (Ty) { 814 switch (Ty->getTypeID()) { 815 default: llvm_unreachable("Unhandled type"); 816 case Type::VoidTyID: Result += "isVoid"; break; 817 case Type::MetadataTyID: Result += "Metadata"; break; 818 case Type::HalfTyID: Result += "f16"; break; 819 case Type::BFloatTyID: Result += "bf16"; break; 820 case Type::FloatTyID: Result += "f32"; break; 821 case Type::DoubleTyID: Result += "f64"; break; 822 case Type::X86_FP80TyID: Result += "f80"; break; 823 case Type::FP128TyID: Result += "f128"; break; 824 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 825 case Type::X86_MMXTyID: Result += "x86mmx"; break; 826 case Type::X86_AMXTyID: Result += "x86amx"; break; 827 case Type::IntegerTyID: 828 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 829 break; 830 } 831 } 832 return Result; 833 } 834 835 StringRef Intrinsic::getName(ID id) { 836 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 837 assert(!Intrinsic::isOverloaded(id) && 838 "This version of getName does not support overloading"); 839 return IntrinsicNameTable[id]; 840 } 841 842 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 843 FunctionType *FT) { 844 assert(Id < num_intrinsics && "Invalid intrinsic ID!"); 845 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 846 "This version of getName is for overloaded intrinsics only"); 847 bool HasUnnamedType = false; 848 std::string Result(IntrinsicNameTable[Id]); 849 for (Type *Ty : Tys) { 850 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 851 } 852 assert((M || !HasUnnamedType) && "unnamed types need a module"); 853 if (M && HasUnnamedType) { 854 if (!FT) 855 FT = getType(M->getContext(), Id, Tys); 856 else 857 assert((FT == getType(M->getContext(), Id, Tys)) && 858 "Provided FunctionType must match arguments"); 859 return M->getUniqueIntrinsicName(Result, Id, FT); 860 } 861 return Result; 862 } 863 864 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys) { 865 return getName(Id, Tys, nullptr, nullptr); 866 } 867 868 /// IIT_Info - These are enumerators that describe the entries returned by the 869 /// getIntrinsicInfoTableEntries function. 870 /// 871 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 872 enum IIT_Info { 873 // Common values should be encoded with 0-15. 874 IIT_Done = 0, 875 IIT_I1 = 1, 876 IIT_I8 = 2, 877 IIT_I16 = 3, 878 IIT_I32 = 4, 879 IIT_I64 = 5, 880 IIT_F16 = 6, 881 IIT_F32 = 7, 882 IIT_F64 = 8, 883 IIT_V2 = 9, 884 IIT_V4 = 10, 885 IIT_V8 = 11, 886 IIT_V16 = 12, 887 IIT_V32 = 13, 888 IIT_PTR = 14, 889 IIT_ARG = 15, 890 891 // Values from 16+ are only encodable with the inefficient encoding. 892 IIT_V64 = 16, 893 IIT_MMX = 17, 894 IIT_TOKEN = 18, 895 IIT_METADATA = 19, 896 IIT_EMPTYSTRUCT = 20, 897 IIT_STRUCT2 = 21, 898 IIT_STRUCT3 = 22, 899 IIT_STRUCT4 = 23, 900 IIT_STRUCT5 = 24, 901 IIT_EXTEND_ARG = 25, 902 IIT_TRUNC_ARG = 26, 903 IIT_ANYPTR = 27, 904 IIT_V1 = 28, 905 IIT_VARARG = 29, 906 IIT_HALF_VEC_ARG = 30, 907 IIT_SAME_VEC_WIDTH_ARG = 31, 908 IIT_PTR_TO_ARG = 32, 909 IIT_PTR_TO_ELT = 33, 910 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 911 IIT_I128 = 35, 912 IIT_V512 = 36, 913 IIT_V1024 = 37, 914 IIT_STRUCT6 = 38, 915 IIT_STRUCT7 = 39, 916 IIT_STRUCT8 = 40, 917 IIT_F128 = 41, 918 IIT_VEC_ELEMENT = 42, 919 IIT_SCALABLE_VEC = 43, 920 IIT_SUBDIVIDE2_ARG = 44, 921 IIT_SUBDIVIDE4_ARG = 45, 922 IIT_VEC_OF_BITCASTS_TO_INT = 46, 923 IIT_V128 = 47, 924 IIT_BF16 = 48, 925 IIT_STRUCT9 = 49, 926 IIT_V256 = 50, 927 IIT_AMX = 51 928 }; 929 930 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 931 IIT_Info LastInfo, 932 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 933 using namespace Intrinsic; 934 935 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 936 937 IIT_Info Info = IIT_Info(Infos[NextElt++]); 938 unsigned StructElts = 2; 939 940 switch (Info) { 941 case IIT_Done: 942 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 943 return; 944 case IIT_VARARG: 945 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 946 return; 947 case IIT_MMX: 948 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 949 return; 950 case IIT_AMX: 951 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 952 return; 953 case IIT_TOKEN: 954 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 955 return; 956 case IIT_METADATA: 957 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 958 return; 959 case IIT_F16: 960 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 961 return; 962 case IIT_BF16: 963 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 964 return; 965 case IIT_F32: 966 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 967 return; 968 case IIT_F64: 969 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 970 return; 971 case IIT_F128: 972 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 973 return; 974 case IIT_I1: 975 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 976 return; 977 case IIT_I8: 978 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 979 return; 980 case IIT_I16: 981 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 982 return; 983 case IIT_I32: 984 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 985 return; 986 case IIT_I64: 987 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 988 return; 989 case IIT_I128: 990 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 991 return; 992 case IIT_V1: 993 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 994 DecodeIITType(NextElt, Infos, Info, OutputTable); 995 return; 996 case IIT_V2: 997 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 998 DecodeIITType(NextElt, Infos, Info, OutputTable); 999 return; 1000 case IIT_V4: 1001 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1002 DecodeIITType(NextElt, Infos, Info, OutputTable); 1003 return; 1004 case IIT_V8: 1005 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1006 DecodeIITType(NextElt, Infos, Info, OutputTable); 1007 return; 1008 case IIT_V16: 1009 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1010 DecodeIITType(NextElt, Infos, Info, OutputTable); 1011 return; 1012 case IIT_V32: 1013 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1014 DecodeIITType(NextElt, Infos, Info, OutputTable); 1015 return; 1016 case IIT_V64: 1017 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1018 DecodeIITType(NextElt, Infos, Info, OutputTable); 1019 return; 1020 case IIT_V128: 1021 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1022 DecodeIITType(NextElt, Infos, Info, OutputTable); 1023 return; 1024 case IIT_V256: 1025 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1026 DecodeIITType(NextElt, Infos, Info, OutputTable); 1027 return; 1028 case IIT_V512: 1029 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1030 DecodeIITType(NextElt, Infos, Info, OutputTable); 1031 return; 1032 case IIT_V1024: 1033 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1034 DecodeIITType(NextElt, Infos, Info, OutputTable); 1035 return; 1036 case IIT_PTR: 1037 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1038 DecodeIITType(NextElt, Infos, Info, OutputTable); 1039 return; 1040 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1041 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1042 Infos[NextElt++])); 1043 DecodeIITType(NextElt, Infos, Info, OutputTable); 1044 return; 1045 } 1046 case IIT_ARG: { 1047 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1048 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1049 return; 1050 } 1051 case IIT_EXTEND_ARG: { 1052 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1053 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1054 ArgInfo)); 1055 return; 1056 } 1057 case IIT_TRUNC_ARG: { 1058 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1059 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1060 ArgInfo)); 1061 return; 1062 } 1063 case IIT_HALF_VEC_ARG: { 1064 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1065 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1066 ArgInfo)); 1067 return; 1068 } 1069 case IIT_SAME_VEC_WIDTH_ARG: { 1070 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1071 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1072 ArgInfo)); 1073 return; 1074 } 1075 case IIT_PTR_TO_ARG: { 1076 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1077 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1078 ArgInfo)); 1079 return; 1080 } 1081 case IIT_PTR_TO_ELT: { 1082 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1083 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1084 return; 1085 } 1086 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1087 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1088 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1089 OutputTable.push_back( 1090 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1091 return; 1092 } 1093 case IIT_EMPTYSTRUCT: 1094 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1095 return; 1096 case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH; 1097 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 1098 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 1099 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 1100 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 1101 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 1102 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 1103 case IIT_STRUCT2: { 1104 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1105 1106 for (unsigned i = 0; i != StructElts; ++i) 1107 DecodeIITType(NextElt, Infos, Info, OutputTable); 1108 return; 1109 } 1110 case IIT_SUBDIVIDE2_ARG: { 1111 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1112 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1113 ArgInfo)); 1114 return; 1115 } 1116 case IIT_SUBDIVIDE4_ARG: { 1117 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1118 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1119 ArgInfo)); 1120 return; 1121 } 1122 case IIT_VEC_ELEMENT: { 1123 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1124 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1125 ArgInfo)); 1126 return; 1127 } 1128 case IIT_SCALABLE_VEC: { 1129 DecodeIITType(NextElt, Infos, Info, OutputTable); 1130 return; 1131 } 1132 case IIT_VEC_OF_BITCASTS_TO_INT: { 1133 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1134 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1135 ArgInfo)); 1136 return; 1137 } 1138 } 1139 llvm_unreachable("unhandled"); 1140 } 1141 1142 #define GET_INTRINSIC_GENERATOR_GLOBAL 1143 #include "llvm/IR/IntrinsicImpl.inc" 1144 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1145 1146 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1147 SmallVectorImpl<IITDescriptor> &T){ 1148 // Check to see if the intrinsic's type was expressible by the table. 1149 unsigned TableVal = IIT_Table[id-1]; 1150 1151 // Decode the TableVal into an array of IITValues. 1152 SmallVector<unsigned char, 8> IITValues; 1153 ArrayRef<unsigned char> IITEntries; 1154 unsigned NextElt = 0; 1155 if ((TableVal >> 31) != 0) { 1156 // This is an offset into the IIT_LongEncodingTable. 1157 IITEntries = IIT_LongEncodingTable; 1158 1159 // Strip sentinel bit. 1160 NextElt = (TableVal << 1) >> 1; 1161 } else { 1162 // Decode the TableVal into an array of IITValues. If the entry was encoded 1163 // into a single word in the table itself, decode it now. 1164 do { 1165 IITValues.push_back(TableVal & 0xF); 1166 TableVal >>= 4; 1167 } while (TableVal); 1168 1169 IITEntries = IITValues; 1170 NextElt = 0; 1171 } 1172 1173 // Okay, decode the table into the output vector of IITDescriptors. 1174 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1175 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1176 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1177 } 1178 1179 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1180 ArrayRef<Type*> Tys, LLVMContext &Context) { 1181 using namespace Intrinsic; 1182 1183 IITDescriptor D = Infos.front(); 1184 Infos = Infos.slice(1); 1185 1186 switch (D.Kind) { 1187 case IITDescriptor::Void: return Type::getVoidTy(Context); 1188 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1189 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1190 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1191 case IITDescriptor::Token: return Type::getTokenTy(Context); 1192 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1193 case IITDescriptor::Half: return Type::getHalfTy(Context); 1194 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1195 case IITDescriptor::Float: return Type::getFloatTy(Context); 1196 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1197 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1198 1199 case IITDescriptor::Integer: 1200 return IntegerType::get(Context, D.Integer_Width); 1201 case IITDescriptor::Vector: 1202 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1203 D.Vector_Width); 1204 case IITDescriptor::Pointer: 1205 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1206 D.Pointer_AddressSpace); 1207 case IITDescriptor::Struct: { 1208 SmallVector<Type *, 8> Elts; 1209 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1210 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1211 return StructType::get(Context, Elts); 1212 } 1213 case IITDescriptor::Argument: 1214 return Tys[D.getArgumentNumber()]; 1215 case IITDescriptor::ExtendArgument: { 1216 Type *Ty = Tys[D.getArgumentNumber()]; 1217 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1218 return VectorType::getExtendedElementVectorType(VTy); 1219 1220 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1221 } 1222 case IITDescriptor::TruncArgument: { 1223 Type *Ty = Tys[D.getArgumentNumber()]; 1224 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1225 return VectorType::getTruncatedElementVectorType(VTy); 1226 1227 IntegerType *ITy = cast<IntegerType>(Ty); 1228 assert(ITy->getBitWidth() % 2 == 0); 1229 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1230 } 1231 case IITDescriptor::Subdivide2Argument: 1232 case IITDescriptor::Subdivide4Argument: { 1233 Type *Ty = Tys[D.getArgumentNumber()]; 1234 VectorType *VTy = dyn_cast<VectorType>(Ty); 1235 assert(VTy && "Expected an argument of Vector Type"); 1236 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1237 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1238 } 1239 case IITDescriptor::HalfVecArgument: 1240 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1241 Tys[D.getArgumentNumber()])); 1242 case IITDescriptor::SameVecWidthArgument: { 1243 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1244 Type *Ty = Tys[D.getArgumentNumber()]; 1245 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1246 return VectorType::get(EltTy, VTy->getElementCount()); 1247 return EltTy; 1248 } 1249 case IITDescriptor::PtrToArgument: { 1250 Type *Ty = Tys[D.getArgumentNumber()]; 1251 return PointerType::getUnqual(Ty); 1252 } 1253 case IITDescriptor::PtrToElt: { 1254 Type *Ty = Tys[D.getArgumentNumber()]; 1255 VectorType *VTy = dyn_cast<VectorType>(Ty); 1256 if (!VTy) 1257 llvm_unreachable("Expected an argument of Vector Type"); 1258 Type *EltTy = VTy->getElementType(); 1259 return PointerType::getUnqual(EltTy); 1260 } 1261 case IITDescriptor::VecElementArgument: { 1262 Type *Ty = Tys[D.getArgumentNumber()]; 1263 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1264 return VTy->getElementType(); 1265 llvm_unreachable("Expected an argument of Vector Type"); 1266 } 1267 case IITDescriptor::VecOfBitcastsToInt: { 1268 Type *Ty = Tys[D.getArgumentNumber()]; 1269 VectorType *VTy = dyn_cast<VectorType>(Ty); 1270 assert(VTy && "Expected an argument of Vector Type"); 1271 return VectorType::getInteger(VTy); 1272 } 1273 case IITDescriptor::VecOfAnyPtrsToElt: 1274 // Return the overloaded type (which determines the pointers address space) 1275 return Tys[D.getOverloadArgNumber()]; 1276 } 1277 llvm_unreachable("unhandled"); 1278 } 1279 1280 FunctionType *Intrinsic::getType(LLVMContext &Context, 1281 ID id, ArrayRef<Type*> Tys) { 1282 SmallVector<IITDescriptor, 8> Table; 1283 getIntrinsicInfoTableEntries(id, Table); 1284 1285 ArrayRef<IITDescriptor> TableRef = Table; 1286 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1287 1288 SmallVector<Type*, 8> ArgTys; 1289 while (!TableRef.empty()) 1290 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1291 1292 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1293 // If we see void type as the type of the last argument, it is vararg intrinsic 1294 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1295 ArgTys.pop_back(); 1296 return FunctionType::get(ResultTy, ArgTys, true); 1297 } 1298 return FunctionType::get(ResultTy, ArgTys, false); 1299 } 1300 1301 bool Intrinsic::isOverloaded(ID id) { 1302 #define GET_INTRINSIC_OVERLOAD_TABLE 1303 #include "llvm/IR/IntrinsicImpl.inc" 1304 #undef GET_INTRINSIC_OVERLOAD_TABLE 1305 } 1306 1307 bool Intrinsic::isLeaf(ID id) { 1308 switch (id) { 1309 default: 1310 return true; 1311 1312 case Intrinsic::experimental_gc_statepoint: 1313 case Intrinsic::experimental_patchpoint_void: 1314 case Intrinsic::experimental_patchpoint_i64: 1315 return false; 1316 } 1317 } 1318 1319 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1320 #define GET_INTRINSIC_ATTRIBUTES 1321 #include "llvm/IR/IntrinsicImpl.inc" 1322 #undef GET_INTRINSIC_ATTRIBUTES 1323 1324 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1325 // There can never be multiple globals with the same name of different types, 1326 // because intrinsics must be a specific type. 1327 auto *FT = getType(M->getContext(), id, Tys); 1328 return cast<Function>( 1329 M->getOrInsertFunction(Tys.empty() ? getName(id) 1330 : getName(id, Tys, M, FT), 1331 getType(M->getContext(), id, Tys)) 1332 .getCallee()); 1333 } 1334 1335 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1336 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1337 #include "llvm/IR/IntrinsicImpl.inc" 1338 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1339 1340 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1341 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1342 #include "llvm/IR/IntrinsicImpl.inc" 1343 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1344 1345 using DeferredIntrinsicMatchPair = 1346 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1347 1348 static bool matchIntrinsicType( 1349 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1350 SmallVectorImpl<Type *> &ArgTys, 1351 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1352 bool IsDeferredCheck) { 1353 using namespace Intrinsic; 1354 1355 // If we ran out of descriptors, there are too many arguments. 1356 if (Infos.empty()) return true; 1357 1358 // Do this before slicing off the 'front' part 1359 auto InfosRef = Infos; 1360 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1361 DeferredChecks.emplace_back(T, InfosRef); 1362 return false; 1363 }; 1364 1365 IITDescriptor D = Infos.front(); 1366 Infos = Infos.slice(1); 1367 1368 switch (D.Kind) { 1369 case IITDescriptor::Void: return !Ty->isVoidTy(); 1370 case IITDescriptor::VarArg: return true; 1371 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1372 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1373 case IITDescriptor::Token: return !Ty->isTokenTy(); 1374 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1375 case IITDescriptor::Half: return !Ty->isHalfTy(); 1376 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1377 case IITDescriptor::Float: return !Ty->isFloatTy(); 1378 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1379 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1380 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1381 case IITDescriptor::Vector: { 1382 VectorType *VT = dyn_cast<VectorType>(Ty); 1383 return !VT || VT->getElementCount() != D.Vector_Width || 1384 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1385 DeferredChecks, IsDeferredCheck); 1386 } 1387 case IITDescriptor::Pointer: { 1388 PointerType *PT = dyn_cast<PointerType>(Ty); 1389 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1390 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1391 DeferredChecks, IsDeferredCheck); 1392 } 1393 1394 case IITDescriptor::Struct: { 1395 StructType *ST = dyn_cast<StructType>(Ty); 1396 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1397 return true; 1398 1399 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1400 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1401 DeferredChecks, IsDeferredCheck)) 1402 return true; 1403 return false; 1404 } 1405 1406 case IITDescriptor::Argument: 1407 // If this is the second occurrence of an argument, 1408 // verify that the later instance matches the previous instance. 1409 if (D.getArgumentNumber() < ArgTys.size()) 1410 return Ty != ArgTys[D.getArgumentNumber()]; 1411 1412 if (D.getArgumentNumber() > ArgTys.size() || 1413 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1414 return IsDeferredCheck || DeferCheck(Ty); 1415 1416 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1417 "Table consistency error"); 1418 ArgTys.push_back(Ty); 1419 1420 switch (D.getArgumentKind()) { 1421 case IITDescriptor::AK_Any: return false; // Success 1422 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1423 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1424 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1425 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1426 default: break; 1427 } 1428 llvm_unreachable("all argument kinds not covered"); 1429 1430 case IITDescriptor::ExtendArgument: { 1431 // If this is a forward reference, defer the check for later. 1432 if (D.getArgumentNumber() >= ArgTys.size()) 1433 return IsDeferredCheck || DeferCheck(Ty); 1434 1435 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1436 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1437 NewTy = VectorType::getExtendedElementVectorType(VTy); 1438 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1439 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1440 else 1441 return true; 1442 1443 return Ty != NewTy; 1444 } 1445 case IITDescriptor::TruncArgument: { 1446 // If this is a forward reference, defer the check for later. 1447 if (D.getArgumentNumber() >= ArgTys.size()) 1448 return IsDeferredCheck || DeferCheck(Ty); 1449 1450 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1451 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1452 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1453 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1454 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1455 else 1456 return true; 1457 1458 return Ty != NewTy; 1459 } 1460 case IITDescriptor::HalfVecArgument: 1461 // If this is a forward reference, defer the check for later. 1462 if (D.getArgumentNumber() >= ArgTys.size()) 1463 return IsDeferredCheck || DeferCheck(Ty); 1464 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1465 VectorType::getHalfElementsVectorType( 1466 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1467 case IITDescriptor::SameVecWidthArgument: { 1468 if (D.getArgumentNumber() >= ArgTys.size()) { 1469 // Defer check and subsequent check for the vector element type. 1470 Infos = Infos.slice(1); 1471 return IsDeferredCheck || DeferCheck(Ty); 1472 } 1473 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1474 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1475 // Both must be vectors of the same number of elements or neither. 1476 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1477 return true; 1478 Type *EltTy = Ty; 1479 if (ThisArgType) { 1480 if (ReferenceType->getElementCount() != 1481 ThisArgType->getElementCount()) 1482 return true; 1483 EltTy = ThisArgType->getElementType(); 1484 } 1485 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1486 IsDeferredCheck); 1487 } 1488 case IITDescriptor::PtrToArgument: { 1489 if (D.getArgumentNumber() >= ArgTys.size()) 1490 return IsDeferredCheck || DeferCheck(Ty); 1491 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1492 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1493 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1494 } 1495 case IITDescriptor::PtrToElt: { 1496 if (D.getArgumentNumber() >= ArgTys.size()) 1497 return IsDeferredCheck || DeferCheck(Ty); 1498 VectorType * ReferenceType = 1499 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1500 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1501 1502 return (!ThisArgType || !ReferenceType || 1503 ThisArgType->getElementType() != ReferenceType->getElementType()); 1504 } 1505 case IITDescriptor::VecOfAnyPtrsToElt: { 1506 unsigned RefArgNumber = D.getRefArgNumber(); 1507 if (RefArgNumber >= ArgTys.size()) { 1508 if (IsDeferredCheck) 1509 return true; 1510 // If forward referencing, already add the pointer-vector type and 1511 // defer the checks for later. 1512 ArgTys.push_back(Ty); 1513 return DeferCheck(Ty); 1514 } 1515 1516 if (!IsDeferredCheck){ 1517 assert(D.getOverloadArgNumber() == ArgTys.size() && 1518 "Table consistency error"); 1519 ArgTys.push_back(Ty); 1520 } 1521 1522 // Verify the overloaded type "matches" the Ref type. 1523 // i.e. Ty is a vector with the same width as Ref. 1524 // Composed of pointers to the same element type as Ref. 1525 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1526 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1527 if (!ThisArgVecTy || !ReferenceType || 1528 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1529 return true; 1530 PointerType *ThisArgEltTy = 1531 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1532 if (!ThisArgEltTy) 1533 return true; 1534 return ThisArgEltTy->getElementType() != ReferenceType->getElementType(); 1535 } 1536 case IITDescriptor::VecElementArgument: { 1537 if (D.getArgumentNumber() >= ArgTys.size()) 1538 return IsDeferredCheck ? true : DeferCheck(Ty); 1539 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1540 return !ReferenceType || Ty != ReferenceType->getElementType(); 1541 } 1542 case IITDescriptor::Subdivide2Argument: 1543 case IITDescriptor::Subdivide4Argument: { 1544 // If this is a forward reference, defer the check for later. 1545 if (D.getArgumentNumber() >= ArgTys.size()) 1546 return IsDeferredCheck || DeferCheck(Ty); 1547 1548 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1549 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1550 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1551 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1552 return Ty != NewTy; 1553 } 1554 return true; 1555 } 1556 case IITDescriptor::VecOfBitcastsToInt: { 1557 if (D.getArgumentNumber() >= ArgTys.size()) 1558 return IsDeferredCheck || DeferCheck(Ty); 1559 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1560 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1561 if (!ThisArgVecTy || !ReferenceType) 1562 return true; 1563 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1564 } 1565 } 1566 llvm_unreachable("unhandled"); 1567 } 1568 1569 Intrinsic::MatchIntrinsicTypesResult 1570 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1571 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1572 SmallVectorImpl<Type *> &ArgTys) { 1573 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1574 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1575 false)) 1576 return MatchIntrinsicTypes_NoMatchRet; 1577 1578 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1579 1580 for (auto Ty : FTy->params()) 1581 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1582 return MatchIntrinsicTypes_NoMatchArg; 1583 1584 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1585 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1586 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1587 true)) 1588 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1589 : MatchIntrinsicTypes_NoMatchArg; 1590 } 1591 1592 return MatchIntrinsicTypes_Match; 1593 } 1594 1595 bool 1596 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1597 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1598 // If there are no descriptors left, then it can't be a vararg. 1599 if (Infos.empty()) 1600 return isVarArg; 1601 1602 // There should be only one descriptor remaining at this point. 1603 if (Infos.size() != 1) 1604 return true; 1605 1606 // Check and verify the descriptor. 1607 IITDescriptor D = Infos.front(); 1608 Infos = Infos.slice(1); 1609 if (D.Kind == IITDescriptor::VarArg) 1610 return !isVarArg; 1611 1612 return true; 1613 } 1614 1615 bool Intrinsic::getIntrinsicSignature(Function *F, 1616 SmallVectorImpl<Type *> &ArgTys) { 1617 Intrinsic::ID ID = F->getIntrinsicID(); 1618 if (!ID) 1619 return false; 1620 1621 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1622 getIntrinsicInfoTableEntries(ID, Table); 1623 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1624 1625 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1626 ArgTys) != 1627 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1628 return false; 1629 } 1630 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1631 TableRef)) 1632 return false; 1633 return true; 1634 } 1635 1636 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1637 SmallVector<Type *, 4> ArgTys; 1638 if (!getIntrinsicSignature(F, ArgTys)) 1639 return None; 1640 1641 Intrinsic::ID ID = F->getIntrinsicID(); 1642 StringRef Name = F->getName(); 1643 if (Name == 1644 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType())) 1645 return None; 1646 1647 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1648 NewDecl->setCallingConv(F->getCallingConv()); 1649 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1650 "Shouldn't change the signature"); 1651 return NewDecl; 1652 } 1653 1654 /// hasAddressTaken - returns true if there are any uses of this function 1655 /// other than direct calls or invokes to it. Optionally ignores callback 1656 /// uses, assume like pointer annotation calls, and references in llvm.used 1657 /// and llvm.compiler.used variables. 1658 bool Function::hasAddressTaken(const User **PutOffender, 1659 bool IgnoreCallbackUses, 1660 bool IgnoreAssumeLikeCalls, 1661 bool IgnoreLLVMUsed) const { 1662 for (const Use &U : uses()) { 1663 const User *FU = U.getUser(); 1664 if (isa<BlockAddress>(FU)) 1665 continue; 1666 1667 if (IgnoreCallbackUses) { 1668 AbstractCallSite ACS(&U); 1669 if (ACS && ACS.isCallbackCall()) 1670 continue; 1671 } 1672 1673 const auto *Call = dyn_cast<CallBase>(FU); 1674 if (!Call) { 1675 if (IgnoreAssumeLikeCalls) { 1676 if (const auto *FI = dyn_cast<Instruction>(FU)) { 1677 if (FI->isCast() && !FI->user_empty() && 1678 llvm::all_of(FU->users(), [](const User *U) { 1679 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1680 return I->isAssumeLikeIntrinsic(); 1681 return false; 1682 })) 1683 continue; 1684 } 1685 } 1686 if (IgnoreLLVMUsed && !FU->user_empty()) { 1687 const User *FUU = FU; 1688 if (isa<BitCastOperator>(FU) && FU->hasOneUse() && 1689 !FU->user_begin()->user_empty()) 1690 FUU = *FU->user_begin(); 1691 if (llvm::all_of(FUU->users(), [](const User *U) { 1692 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1693 return GV->hasName() && 1694 (GV->getName().equals("llvm.compiler.used") || 1695 GV->getName().equals("llvm.used")); 1696 return false; 1697 })) 1698 continue; 1699 } 1700 if (PutOffender) 1701 *PutOffender = FU; 1702 return true; 1703 } 1704 if (!Call->isCallee(&U)) { 1705 if (PutOffender) 1706 *PutOffender = FU; 1707 return true; 1708 } 1709 } 1710 return false; 1711 } 1712 1713 bool Function::isDefTriviallyDead() const { 1714 // Check the linkage 1715 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1716 !hasAvailableExternallyLinkage()) 1717 return false; 1718 1719 // Check if the function is used by anything other than a blockaddress. 1720 for (const User *U : users()) 1721 if (!isa<BlockAddress>(U)) 1722 return false; 1723 1724 return true; 1725 } 1726 1727 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1728 /// setjmp or other function that gcc recognizes as "returning twice". 1729 bool Function::callsFunctionThatReturnsTwice() const { 1730 for (const Instruction &I : instructions(this)) 1731 if (const auto *Call = dyn_cast<CallBase>(&I)) 1732 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1733 return true; 1734 1735 return false; 1736 } 1737 1738 Constant *Function::getPersonalityFn() const { 1739 assert(hasPersonalityFn() && getNumOperands()); 1740 return cast<Constant>(Op<0>()); 1741 } 1742 1743 void Function::setPersonalityFn(Constant *Fn) { 1744 setHungoffOperand<0>(Fn); 1745 setValueSubclassDataBit(3, Fn != nullptr); 1746 } 1747 1748 Constant *Function::getPrefixData() const { 1749 assert(hasPrefixData() && getNumOperands()); 1750 return cast<Constant>(Op<1>()); 1751 } 1752 1753 void Function::setPrefixData(Constant *PrefixData) { 1754 setHungoffOperand<1>(PrefixData); 1755 setValueSubclassDataBit(1, PrefixData != nullptr); 1756 } 1757 1758 Constant *Function::getPrologueData() const { 1759 assert(hasPrologueData() && getNumOperands()); 1760 return cast<Constant>(Op<2>()); 1761 } 1762 1763 void Function::setPrologueData(Constant *PrologueData) { 1764 setHungoffOperand<2>(PrologueData); 1765 setValueSubclassDataBit(2, PrologueData != nullptr); 1766 } 1767 1768 void Function::allocHungoffUselist() { 1769 // If we've already allocated a uselist, stop here. 1770 if (getNumOperands()) 1771 return; 1772 1773 allocHungoffUses(3, /*IsPhi=*/ false); 1774 setNumHungOffUseOperands(3); 1775 1776 // Initialize the uselist with placeholder operands to allow traversal. 1777 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1778 Op<0>().set(CPN); 1779 Op<1>().set(CPN); 1780 Op<2>().set(CPN); 1781 } 1782 1783 template <int Idx> 1784 void Function::setHungoffOperand(Constant *C) { 1785 if (C) { 1786 allocHungoffUselist(); 1787 Op<Idx>().set(C); 1788 } else if (getNumOperands()) { 1789 Op<Idx>().set( 1790 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1791 } 1792 } 1793 1794 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1795 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1796 if (On) 1797 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1798 else 1799 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1800 } 1801 1802 void Function::setEntryCount(ProfileCount Count, 1803 const DenseSet<GlobalValue::GUID> *S) { 1804 assert(Count.hasValue()); 1805 #if !defined(NDEBUG) 1806 auto PrevCount = getEntryCount(); 1807 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1808 #endif 1809 1810 auto ImportGUIDs = getImportGUIDs(); 1811 if (S == nullptr && ImportGUIDs.size()) 1812 S = &ImportGUIDs; 1813 1814 MDBuilder MDB(getContext()); 1815 setMetadata( 1816 LLVMContext::MD_prof, 1817 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1818 } 1819 1820 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1821 const DenseSet<GlobalValue::GUID> *Imports) { 1822 setEntryCount(ProfileCount(Count, Type), Imports); 1823 } 1824 1825 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1826 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1827 if (MD && MD->getOperand(0)) 1828 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1829 if (MDS->getString().equals("function_entry_count")) { 1830 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1831 uint64_t Count = CI->getValue().getZExtValue(); 1832 // A value of -1 is used for SamplePGO when there were no samples. 1833 // Treat this the same as unknown. 1834 if (Count == (uint64_t)-1) 1835 return ProfileCount::getInvalid(); 1836 return ProfileCount(Count, PCT_Real); 1837 } else if (AllowSynthetic && 1838 MDS->getString().equals("synthetic_function_entry_count")) { 1839 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1840 uint64_t Count = CI->getValue().getZExtValue(); 1841 return ProfileCount(Count, PCT_Synthetic); 1842 } 1843 } 1844 return ProfileCount::getInvalid(); 1845 } 1846 1847 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1848 DenseSet<GlobalValue::GUID> R; 1849 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1850 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1851 if (MDS->getString().equals("function_entry_count")) 1852 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1853 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1854 ->getValue() 1855 .getZExtValue()); 1856 return R; 1857 } 1858 1859 void Function::setSectionPrefix(StringRef Prefix) { 1860 MDBuilder MDB(getContext()); 1861 setMetadata(LLVMContext::MD_section_prefix, 1862 MDB.createFunctionSectionPrefix(Prefix)); 1863 } 1864 1865 Optional<StringRef> Function::getSectionPrefix() const { 1866 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1867 assert(cast<MDString>(MD->getOperand(0)) 1868 ->getString() 1869 .equals("function_section_prefix") && 1870 "Metadata not match"); 1871 return cast<MDString>(MD->getOperand(1))->getString(); 1872 } 1873 return None; 1874 } 1875 1876 bool Function::nullPointerIsDefined() const { 1877 return hasFnAttribute(Attribute::NullPointerIsValid); 1878 } 1879 1880 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1881 if (F && F->nullPointerIsDefined()) 1882 return true; 1883 1884 if (AS != 0) 1885 return true; 1886 1887 return false; 1888 } 1889