xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 56d028d9744b045974fd2a52c296318018c30f9f)
1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/ValueTypes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InstIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/MDBuilder.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/IR/Module.h"
29 using namespace llvm;
30 
31 // Explicit instantiations of SymbolTableListTraits since some of the methods
32 // are not in the public header file...
33 template class llvm::SymbolTableListTraits<BasicBlock>;
34 
35 //===----------------------------------------------------------------------===//
36 // Argument Implementation
37 //===----------------------------------------------------------------------===//
38 
39 void Argument::anchor() { }
40 
41 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
42     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
43   setName(Name);
44 }
45 
46 void Argument::setParent(Function *parent) {
47   Parent = parent;
48 }
49 
50 bool Argument::hasNonNullAttr() const {
51   if (!getType()->isPointerTy()) return false;
52   if (getParent()->getAttributes().
53         hasAttribute(getArgNo()+1, Attribute::NonNull))
54     return true;
55   else if (getDereferenceableBytes() > 0 &&
56            getType()->getPointerAddressSpace() == 0)
57     return true;
58   return false;
59 }
60 
61 bool Argument::hasByValAttr() const {
62   if (!getType()->isPointerTy()) return false;
63   return hasAttribute(Attribute::ByVal);
64 }
65 
66 bool Argument::hasSwiftSelfAttr() const {
67   return getParent()->getAttributes().
68     hasAttribute(getArgNo()+1, Attribute::SwiftSelf);
69 }
70 
71 bool Argument::hasSwiftErrorAttr() const {
72   return getParent()->getAttributes().
73     hasAttribute(getArgNo()+1, Attribute::SwiftError);
74 }
75 
76 bool Argument::hasInAllocaAttr() const {
77   if (!getType()->isPointerTy()) return false;
78   return hasAttribute(Attribute::InAlloca);
79 }
80 
81 bool Argument::hasByValOrInAllocaAttr() const {
82   if (!getType()->isPointerTy()) return false;
83   AttributeSet Attrs = getParent()->getAttributes();
84   return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
85          Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
86 }
87 
88 unsigned Argument::getParamAlignment() const {
89   assert(getType()->isPointerTy() && "Only pointers have alignments");
90   return getParent()->getParamAlignment(getArgNo()+1);
91 
92 }
93 
94 uint64_t Argument::getDereferenceableBytes() const {
95   assert(getType()->isPointerTy() &&
96          "Only pointers have dereferenceable bytes");
97   return getParent()->getDereferenceableBytes(getArgNo()+1);
98 }
99 
100 uint64_t Argument::getDereferenceableOrNullBytes() const {
101   assert(getType()->isPointerTy() &&
102          "Only pointers have dereferenceable bytes");
103   return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
104 }
105 
106 bool Argument::hasNestAttr() const {
107   if (!getType()->isPointerTy()) return false;
108   return hasAttribute(Attribute::Nest);
109 }
110 
111 bool Argument::hasNoAliasAttr() const {
112   if (!getType()->isPointerTy()) return false;
113   return hasAttribute(Attribute::NoAlias);
114 }
115 
116 bool Argument::hasNoCaptureAttr() const {
117   if (!getType()->isPointerTy()) return false;
118   return hasAttribute(Attribute::NoCapture);
119 }
120 
121 bool Argument::hasStructRetAttr() const {
122   if (!getType()->isPointerTy()) return false;
123   return hasAttribute(Attribute::StructRet);
124 }
125 
126 bool Argument::hasReturnedAttr() const {
127   return hasAttribute(Attribute::Returned);
128 }
129 
130 bool Argument::hasZExtAttr() const {
131   return hasAttribute(Attribute::ZExt);
132 }
133 
134 bool Argument::hasSExtAttr() const {
135   return hasAttribute(Attribute::SExt);
136 }
137 
138 bool Argument::onlyReadsMemory() const {
139   return getParent()->getAttributes().
140       hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
141       getParent()->getAttributes().
142       hasAttribute(getArgNo()+1, Attribute::ReadNone);
143 }
144 
145 void Argument::addAttr(AttributeSet AS) {
146   assert(AS.getNumSlots() <= 1 &&
147          "Trying to add more than one attribute set to an argument!");
148   AttrBuilder B(AS, AS.getSlotIndex(0));
149   getParent()->addAttributes(getArgNo() + 1,
150                              AttributeSet::get(Parent->getContext(),
151                                                getArgNo() + 1, B));
152 }
153 
154 void Argument::removeAttr(AttributeSet AS) {
155   assert(AS.getNumSlots() <= 1 &&
156          "Trying to remove more than one attribute set from an argument!");
157   AttrBuilder B(AS, AS.getSlotIndex(0));
158   getParent()->removeAttributes(getArgNo() + 1,
159                                 AttributeSet::get(Parent->getContext(),
160                                                   getArgNo() + 1, B));
161 }
162 
163 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
164   return getParent()->hasAttribute(getArgNo() + 1, Kind);
165 }
166 
167 //===----------------------------------------------------------------------===//
168 // Helper Methods in Function
169 //===----------------------------------------------------------------------===//
170 
171 LLVMContext &Function::getContext() const {
172   return getType()->getContext();
173 }
174 
175 void Function::removeFromParent() {
176   getParent()->getFunctionList().remove(getIterator());
177 }
178 
179 void Function::eraseFromParent() {
180   getParent()->getFunctionList().erase(getIterator());
181 }
182 
183 //===----------------------------------------------------------------------===//
184 // Function Implementation
185 //===----------------------------------------------------------------------===//
186 
187 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
188                    Module *ParentModule)
189     : GlobalObject(Ty, Value::FunctionVal,
190                    OperandTraits<Function>::op_begin(this), 0, Linkage, name),
191       Arguments(nullptr), NumArgs(Ty->getNumParams()) {
192   assert(FunctionType::isValidReturnType(getReturnType()) &&
193          "invalid return type");
194   setGlobalObjectSubClassData(0);
195 
196   // We only need a symbol table for a function if the context keeps value names
197   if (!getContext().shouldDiscardValueNames())
198     SymTab = make_unique<ValueSymbolTable>();
199 
200   // If the function has arguments, mark them as lazily built.
201   if (Ty->getNumParams())
202     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
203 
204   if (ParentModule)
205     ParentModule->getFunctionList().push_back(this);
206 
207   HasLLVMReservedName = getName().startswith("llvm.");
208   // Ensure intrinsics have the right parameter attributes.
209   // Note, the IntID field will have been set in Value::setName if this function
210   // name is a valid intrinsic ID.
211   if (IntID)
212     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
213 }
214 
215 Function::~Function() {
216   dropAllReferences();    // After this it is safe to delete instructions.
217 
218   // Delete all of the method arguments and unlink from symbol table...
219   if (Arguments)
220     clearArguments();
221 
222   // Remove the function from the on-the-side GC table.
223   clearGC();
224 }
225 
226 void Function::BuildLazyArguments() const {
227   // Create the arguments vector, all arguments start out unnamed.
228   auto *FT = getFunctionType();
229   if (NumArgs > 0) {
230     Arguments = std::allocator<Argument>().allocate(NumArgs);
231     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
232       Type *ArgTy = FT->getParamType(i);
233       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
234       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
235     }
236   }
237 
238   // Clear the lazy arguments bit.
239   unsigned SDC = getSubclassDataFromValue();
240   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
241   assert(!hasLazyArguments());
242 }
243 
244 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
245   return MutableArrayRef<Argument>(Args, Count);
246 }
247 
248 void Function::clearArguments() {
249   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
250     A.setName("");
251     A.~Argument();
252   }
253   std::allocator<Argument>().deallocate(Arguments, NumArgs);
254   Arguments = nullptr;
255 }
256 
257 void Function::stealArgumentListFrom(Function &Src) {
258   assert(isDeclaration() && "Expected no references to current arguments");
259 
260   // Drop the current arguments, if any, and set the lazy argument bit.
261   if (!hasLazyArguments()) {
262     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
263                         [](const Argument &A) { return A.use_empty(); }) &&
264            "Expected arguments to be unused in declaration");
265     clearArguments();
266     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
267   }
268 
269   // Nothing to steal if Src has lazy arguments.
270   if (Src.hasLazyArguments())
271     return;
272 
273   // Steal arguments from Src, and fix the lazy argument bits.
274   assert(arg_size() == Src.arg_size());
275   Arguments = Src.Arguments;
276   Src.Arguments = nullptr;
277   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
278     // FIXME: This does the work of transferNodesFromList inefficiently.
279     SmallString<128> Name;
280     if (A.hasName())
281       Name = A.getName();
282     if (!Name.empty())
283       A.setName("");
284     A.setParent(this);
285     if (!Name.empty())
286       A.setName(Name);
287   }
288 
289   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
290   assert(!hasLazyArguments());
291   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
292 }
293 
294 // dropAllReferences() - This function causes all the subinstructions to "let
295 // go" of all references that they are maintaining.  This allows one to
296 // 'delete' a whole class at a time, even though there may be circular
297 // references... first all references are dropped, and all use counts go to
298 // zero.  Then everything is deleted for real.  Note that no operations are
299 // valid on an object that has "dropped all references", except operator
300 // delete.
301 //
302 void Function::dropAllReferences() {
303   setIsMaterializable(false);
304 
305   for (BasicBlock &BB : *this)
306     BB.dropAllReferences();
307 
308   // Delete all basic blocks. They are now unused, except possibly by
309   // blockaddresses, but BasicBlock's destructor takes care of those.
310   while (!BasicBlocks.empty())
311     BasicBlocks.begin()->eraseFromParent();
312 
313   // Drop uses of any optional data (real or placeholder).
314   if (getNumOperands()) {
315     User::dropAllReferences();
316     setNumHungOffUseOperands(0);
317     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
318   }
319 
320   // Metadata is stored in a side-table.
321   clearMetadata();
322 }
323 
324 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
325   AttributeSet PAL = getAttributes();
326   PAL = PAL.addAttribute(getContext(), i, Kind);
327   setAttributes(PAL);
328 }
329 
330 void Function::addAttribute(unsigned i, Attribute Attr) {
331   AttributeSet PAL = getAttributes();
332   PAL = PAL.addAttribute(getContext(), i, Attr);
333   setAttributes(PAL);
334 }
335 
336 void Function::addAttributes(unsigned i, AttributeSet Attrs) {
337   AttributeSet PAL = getAttributes();
338   PAL = PAL.addAttributes(getContext(), i, Attrs);
339   setAttributes(PAL);
340 }
341 
342 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
343   AttributeSet PAL = getAttributes();
344   PAL = PAL.removeAttribute(getContext(), i, Kind);
345   setAttributes(PAL);
346 }
347 
348 void Function::removeAttribute(unsigned i, StringRef Kind) {
349   AttributeSet PAL = getAttributes();
350   PAL = PAL.removeAttribute(getContext(), i, Kind);
351   setAttributes(PAL);
352 }
353 
354 void Function::removeAttributes(unsigned i, AttributeSet Attrs) {
355   AttributeSet PAL = getAttributes();
356   PAL = PAL.removeAttributes(getContext(), i, Attrs);
357   setAttributes(PAL);
358 }
359 
360 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
361   AttributeSet PAL = getAttributes();
362   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
363   setAttributes(PAL);
364 }
365 
366 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
367   AttributeSet PAL = getAttributes();
368   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
369   setAttributes(PAL);
370 }
371 
372 const std::string &Function::getGC() const {
373   assert(hasGC() && "Function has no collector");
374   return getContext().getGC(*this);
375 }
376 
377 void Function::setGC(std::string Str) {
378   setValueSubclassDataBit(14, !Str.empty());
379   getContext().setGC(*this, std::move(Str));
380 }
381 
382 void Function::clearGC() {
383   if (!hasGC())
384     return;
385   getContext().deleteGC(*this);
386   setValueSubclassDataBit(14, false);
387 }
388 
389 /// Copy all additional attributes (those not needed to create a Function) from
390 /// the Function Src to this one.
391 void Function::copyAttributesFrom(const GlobalValue *Src) {
392   GlobalObject::copyAttributesFrom(Src);
393   const Function *SrcF = dyn_cast<Function>(Src);
394   if (!SrcF)
395     return;
396 
397   setCallingConv(SrcF->getCallingConv());
398   setAttributes(SrcF->getAttributes());
399   if (SrcF->hasGC())
400     setGC(SrcF->getGC());
401   else
402     clearGC();
403   if (SrcF->hasPersonalityFn())
404     setPersonalityFn(SrcF->getPersonalityFn());
405   if (SrcF->hasPrefixData())
406     setPrefixData(SrcF->getPrefixData());
407   if (SrcF->hasPrologueData())
408     setPrologueData(SrcF->getPrologueData());
409 }
410 
411 /// Table of string intrinsic names indexed by enum value.
412 static const char * const IntrinsicNameTable[] = {
413   "not_intrinsic",
414 #define GET_INTRINSIC_NAME_TABLE
415 #include "llvm/IR/Intrinsics.gen"
416 #undef GET_INTRINSIC_NAME_TABLE
417 };
418 
419 /// Table of per-target intrinsic name tables.
420 #define GET_INTRINSIC_TARGET_DATA
421 #include "llvm/IR/Intrinsics.gen"
422 #undef GET_INTRINSIC_TARGET_DATA
423 
424 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
425 /// target as \c Name, or the generic table if \c Name is not target specific.
426 ///
427 /// Returns the relevant slice of \c IntrinsicNameTable
428 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
429   assert(Name.startswith("llvm."));
430 
431   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
432   // Drop "llvm." and take the first dotted component. That will be the target
433   // if this is target specific.
434   StringRef Target = Name.drop_front(5).split('.').first;
435   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
436                              [](const IntrinsicTargetInfo &TI,
437                                 StringRef Target) { return TI.Name < Target; });
438   // We've either found the target or just fall back to the generic set, which
439   // is always first.
440   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
441   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
442 }
443 
444 /// \brief This does the actual lookup of an intrinsic ID which
445 /// matches the given function name.
446 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
447   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
448   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
449   if (Idx == -1)
450     return Intrinsic::not_intrinsic;
451 
452   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
453   // an index into a sub-table.
454   int Adjust = NameTable.data() - IntrinsicNameTable;
455   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
456 
457   // If the intrinsic is not overloaded, require an exact match. If it is
458   // overloaded, require a prefix match.
459   bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]);
460   return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
461 }
462 
463 void Function::recalculateIntrinsicID() {
464   StringRef Name = getName();
465   if (!Name.startswith("llvm.")) {
466     HasLLVMReservedName = false;
467     IntID = Intrinsic::not_intrinsic;
468     return;
469   }
470   HasLLVMReservedName = true;
471   IntID = lookupIntrinsicID(Name);
472 }
473 
474 /// Returns a stable mangling for the type specified for use in the name
475 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
476 /// of named types is simply their name.  Manglings for unnamed types consist
477 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
478 /// combined with the mangling of their component types.  A vararg function
479 /// type will have a suffix of 'vararg'.  Since function types can contain
480 /// other function types, we close a function type mangling with suffix 'f'
481 /// which can't be confused with it's prefix.  This ensures we don't have
482 /// collisions between two unrelated function types. Otherwise, you might
483 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
484 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
485 /// cases) fall back to the MVT codepath, where they could be mangled to
486 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
487 /// everything.
488 static std::string getMangledTypeStr(Type* Ty) {
489   std::string Result;
490   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
491     Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
492       getMangledTypeStr(PTyp->getElementType());
493   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
494     Result += "a" + llvm::utostr(ATyp->getNumElements()) +
495       getMangledTypeStr(ATyp->getElementType());
496   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
497     if (!STyp->isLiteral()) {
498       Result += "s_";
499       Result += STyp->getName();
500     } else {
501       Result += "sl_";
502       for (auto Elem : STyp->elements())
503         Result += getMangledTypeStr(Elem);
504     }
505     // Ensure nested structs are distinguishable.
506     Result += "s";
507   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
508     Result += "f_" + getMangledTypeStr(FT->getReturnType());
509     for (size_t i = 0; i < FT->getNumParams(); i++)
510       Result += getMangledTypeStr(FT->getParamType(i));
511     if (FT->isVarArg())
512       Result += "vararg";
513     // Ensure nested function types are distinguishable.
514     Result += "f";
515   } else if (isa<VectorType>(Ty))
516     Result += "v" + utostr(Ty->getVectorNumElements()) +
517       getMangledTypeStr(Ty->getVectorElementType());
518   else if (Ty)
519     Result += EVT::getEVT(Ty).getEVTString();
520   return Result;
521 }
522 
523 StringRef Intrinsic::getName(ID id) {
524   assert(id < num_intrinsics && "Invalid intrinsic ID!");
525   assert(!isOverloaded(id) &&
526          "This version of getName does not support overloading");
527   return IntrinsicNameTable[id];
528 }
529 
530 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
531   assert(id < num_intrinsics && "Invalid intrinsic ID!");
532   std::string Result(IntrinsicNameTable[id]);
533   for (Type *Ty : Tys) {
534     Result += "." + getMangledTypeStr(Ty);
535   }
536   return Result;
537 }
538 
539 
540 /// IIT_Info - These are enumerators that describe the entries returned by the
541 /// getIntrinsicInfoTableEntries function.
542 ///
543 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
544 enum IIT_Info {
545   // Common values should be encoded with 0-15.
546   IIT_Done = 0,
547   IIT_I1   = 1,
548   IIT_I8   = 2,
549   IIT_I16  = 3,
550   IIT_I32  = 4,
551   IIT_I64  = 5,
552   IIT_F16  = 6,
553   IIT_F32  = 7,
554   IIT_F64  = 8,
555   IIT_V2   = 9,
556   IIT_V4   = 10,
557   IIT_V8   = 11,
558   IIT_V16  = 12,
559   IIT_V32  = 13,
560   IIT_PTR  = 14,
561   IIT_ARG  = 15,
562 
563   // Values from 16+ are only encodable with the inefficient encoding.
564   IIT_V64  = 16,
565   IIT_MMX  = 17,
566   IIT_TOKEN = 18,
567   IIT_METADATA = 19,
568   IIT_EMPTYSTRUCT = 20,
569   IIT_STRUCT2 = 21,
570   IIT_STRUCT3 = 22,
571   IIT_STRUCT4 = 23,
572   IIT_STRUCT5 = 24,
573   IIT_EXTEND_ARG = 25,
574   IIT_TRUNC_ARG = 26,
575   IIT_ANYPTR = 27,
576   IIT_V1   = 28,
577   IIT_VARARG = 29,
578   IIT_HALF_VEC_ARG = 30,
579   IIT_SAME_VEC_WIDTH_ARG = 31,
580   IIT_PTR_TO_ARG = 32,
581   IIT_PTR_TO_ELT = 33,
582   IIT_VEC_OF_PTRS_TO_ELT = 34,
583   IIT_I128 = 35,
584   IIT_V512 = 36,
585   IIT_V1024 = 37
586 };
587 
588 
589 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
590                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
591   IIT_Info Info = IIT_Info(Infos[NextElt++]);
592   unsigned StructElts = 2;
593   using namespace Intrinsic;
594 
595   switch (Info) {
596   case IIT_Done:
597     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
598     return;
599   case IIT_VARARG:
600     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
601     return;
602   case IIT_MMX:
603     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
604     return;
605   case IIT_TOKEN:
606     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
607     return;
608   case IIT_METADATA:
609     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
610     return;
611   case IIT_F16:
612     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
613     return;
614   case IIT_F32:
615     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
616     return;
617   case IIT_F64:
618     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
619     return;
620   case IIT_I1:
621     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
622     return;
623   case IIT_I8:
624     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
625     return;
626   case IIT_I16:
627     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
628     return;
629   case IIT_I32:
630     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
631     return;
632   case IIT_I64:
633     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
634     return;
635   case IIT_I128:
636     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
637     return;
638   case IIT_V1:
639     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
640     DecodeIITType(NextElt, Infos, OutputTable);
641     return;
642   case IIT_V2:
643     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
644     DecodeIITType(NextElt, Infos, OutputTable);
645     return;
646   case IIT_V4:
647     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
648     DecodeIITType(NextElt, Infos, OutputTable);
649     return;
650   case IIT_V8:
651     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
652     DecodeIITType(NextElt, Infos, OutputTable);
653     return;
654   case IIT_V16:
655     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
656     DecodeIITType(NextElt, Infos, OutputTable);
657     return;
658   case IIT_V32:
659     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
660     DecodeIITType(NextElt, Infos, OutputTable);
661     return;
662   case IIT_V64:
663     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
664     DecodeIITType(NextElt, Infos, OutputTable);
665     return;
666   case IIT_V512:
667     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
668     DecodeIITType(NextElt, Infos, OutputTable);
669     return;
670   case IIT_V1024:
671     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
672     DecodeIITType(NextElt, Infos, OutputTable);
673     return;
674   case IIT_PTR:
675     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
676     DecodeIITType(NextElt, Infos, OutputTable);
677     return;
678   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
679     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
680                                              Infos[NextElt++]));
681     DecodeIITType(NextElt, Infos, OutputTable);
682     return;
683   }
684   case IIT_ARG: {
685     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
686     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
687     return;
688   }
689   case IIT_EXTEND_ARG: {
690     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
691     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
692                                              ArgInfo));
693     return;
694   }
695   case IIT_TRUNC_ARG: {
696     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
697     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
698                                              ArgInfo));
699     return;
700   }
701   case IIT_HALF_VEC_ARG: {
702     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
703     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
704                                              ArgInfo));
705     return;
706   }
707   case IIT_SAME_VEC_WIDTH_ARG: {
708     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
709     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
710                                              ArgInfo));
711     return;
712   }
713   case IIT_PTR_TO_ARG: {
714     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
715     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
716                                              ArgInfo));
717     return;
718   }
719   case IIT_PTR_TO_ELT: {
720     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
721     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
722     return;
723   }
724   case IIT_VEC_OF_PTRS_TO_ELT: {
725     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
726     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
727                                              ArgInfo));
728     return;
729   }
730   case IIT_EMPTYSTRUCT:
731     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
732     return;
733   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
734   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
735   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
736   case IIT_STRUCT2: {
737     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
738 
739     for (unsigned i = 0; i != StructElts; ++i)
740       DecodeIITType(NextElt, Infos, OutputTable);
741     return;
742   }
743   }
744   llvm_unreachable("unhandled");
745 }
746 
747 
748 #define GET_INTRINSIC_GENERATOR_GLOBAL
749 #include "llvm/IR/Intrinsics.gen"
750 #undef GET_INTRINSIC_GENERATOR_GLOBAL
751 
752 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
753                                              SmallVectorImpl<IITDescriptor> &T){
754   // Check to see if the intrinsic's type was expressible by the table.
755   unsigned TableVal = IIT_Table[id-1];
756 
757   // Decode the TableVal into an array of IITValues.
758   SmallVector<unsigned char, 8> IITValues;
759   ArrayRef<unsigned char> IITEntries;
760   unsigned NextElt = 0;
761   if ((TableVal >> 31) != 0) {
762     // This is an offset into the IIT_LongEncodingTable.
763     IITEntries = IIT_LongEncodingTable;
764 
765     // Strip sentinel bit.
766     NextElt = (TableVal << 1) >> 1;
767   } else {
768     // Decode the TableVal into an array of IITValues.  If the entry was encoded
769     // into a single word in the table itself, decode it now.
770     do {
771       IITValues.push_back(TableVal & 0xF);
772       TableVal >>= 4;
773     } while (TableVal);
774 
775     IITEntries = IITValues;
776     NextElt = 0;
777   }
778 
779   // Okay, decode the table into the output vector of IITDescriptors.
780   DecodeIITType(NextElt, IITEntries, T);
781   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
782     DecodeIITType(NextElt, IITEntries, T);
783 }
784 
785 
786 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
787                              ArrayRef<Type*> Tys, LLVMContext &Context) {
788   using namespace Intrinsic;
789   IITDescriptor D = Infos.front();
790   Infos = Infos.slice(1);
791 
792   switch (D.Kind) {
793   case IITDescriptor::Void: return Type::getVoidTy(Context);
794   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
795   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
796   case IITDescriptor::Token: return Type::getTokenTy(Context);
797   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
798   case IITDescriptor::Half: return Type::getHalfTy(Context);
799   case IITDescriptor::Float: return Type::getFloatTy(Context);
800   case IITDescriptor::Double: return Type::getDoubleTy(Context);
801 
802   case IITDescriptor::Integer:
803     return IntegerType::get(Context, D.Integer_Width);
804   case IITDescriptor::Vector:
805     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
806   case IITDescriptor::Pointer:
807     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
808                             D.Pointer_AddressSpace);
809   case IITDescriptor::Struct: {
810     Type *Elts[5];
811     assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
812     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
813       Elts[i] = DecodeFixedType(Infos, Tys, Context);
814     return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
815   }
816 
817   case IITDescriptor::Argument:
818     return Tys[D.getArgumentNumber()];
819   case IITDescriptor::ExtendArgument: {
820     Type *Ty = Tys[D.getArgumentNumber()];
821     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
822       return VectorType::getExtendedElementVectorType(VTy);
823 
824     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
825   }
826   case IITDescriptor::TruncArgument: {
827     Type *Ty = Tys[D.getArgumentNumber()];
828     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
829       return VectorType::getTruncatedElementVectorType(VTy);
830 
831     IntegerType *ITy = cast<IntegerType>(Ty);
832     assert(ITy->getBitWidth() % 2 == 0);
833     return IntegerType::get(Context, ITy->getBitWidth() / 2);
834   }
835   case IITDescriptor::HalfVecArgument:
836     return VectorType::getHalfElementsVectorType(cast<VectorType>(
837                                                   Tys[D.getArgumentNumber()]));
838   case IITDescriptor::SameVecWidthArgument: {
839     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
840     Type *Ty = Tys[D.getArgumentNumber()];
841     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
842       return VectorType::get(EltTy, VTy->getNumElements());
843     }
844     llvm_unreachable("unhandled");
845   }
846   case IITDescriptor::PtrToArgument: {
847     Type *Ty = Tys[D.getArgumentNumber()];
848     return PointerType::getUnqual(Ty);
849   }
850   case IITDescriptor::PtrToElt: {
851     Type *Ty = Tys[D.getArgumentNumber()];
852     VectorType *VTy = dyn_cast<VectorType>(Ty);
853     if (!VTy)
854       llvm_unreachable("Expected an argument of Vector Type");
855     Type *EltTy = VTy->getVectorElementType();
856     return PointerType::getUnqual(EltTy);
857   }
858   case IITDescriptor::VecOfPtrsToElt: {
859     Type *Ty = Tys[D.getArgumentNumber()];
860     VectorType *VTy = dyn_cast<VectorType>(Ty);
861     if (!VTy)
862       llvm_unreachable("Expected an argument of Vector Type");
863     Type *EltTy = VTy->getVectorElementType();
864     return VectorType::get(PointerType::getUnqual(EltTy),
865                            VTy->getNumElements());
866   }
867  }
868   llvm_unreachable("unhandled");
869 }
870 
871 
872 
873 FunctionType *Intrinsic::getType(LLVMContext &Context,
874                                  ID id, ArrayRef<Type*> Tys) {
875   SmallVector<IITDescriptor, 8> Table;
876   getIntrinsicInfoTableEntries(id, Table);
877 
878   ArrayRef<IITDescriptor> TableRef = Table;
879   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
880 
881   SmallVector<Type*, 8> ArgTys;
882   while (!TableRef.empty())
883     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
884 
885   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
886   // If we see void type as the type of the last argument, it is vararg intrinsic
887   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
888     ArgTys.pop_back();
889     return FunctionType::get(ResultTy, ArgTys, true);
890   }
891   return FunctionType::get(ResultTy, ArgTys, false);
892 }
893 
894 bool Intrinsic::isOverloaded(ID id) {
895 #define GET_INTRINSIC_OVERLOAD_TABLE
896 #include "llvm/IR/Intrinsics.gen"
897 #undef GET_INTRINSIC_OVERLOAD_TABLE
898 }
899 
900 bool Intrinsic::isLeaf(ID id) {
901   switch (id) {
902   default:
903     return true;
904 
905   case Intrinsic::experimental_gc_statepoint:
906   case Intrinsic::experimental_patchpoint_void:
907   case Intrinsic::experimental_patchpoint_i64:
908     return false;
909   }
910 }
911 
912 /// This defines the "Intrinsic::getAttributes(ID id)" method.
913 #define GET_INTRINSIC_ATTRIBUTES
914 #include "llvm/IR/Intrinsics.gen"
915 #undef GET_INTRINSIC_ATTRIBUTES
916 
917 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
918   // There can never be multiple globals with the same name of different types,
919   // because intrinsics must be a specific type.
920   return
921     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
922                                           getType(M->getContext(), id, Tys)));
923 }
924 
925 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
926 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
927 #include "llvm/IR/Intrinsics.gen"
928 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
929 
930 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
931 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
932 #include "llvm/IR/Intrinsics.gen"
933 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
934 
935 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
936                                    SmallVectorImpl<Type*> &ArgTys) {
937   using namespace Intrinsic;
938 
939   // If we ran out of descriptors, there are too many arguments.
940   if (Infos.empty()) return true;
941   IITDescriptor D = Infos.front();
942   Infos = Infos.slice(1);
943 
944   switch (D.Kind) {
945     case IITDescriptor::Void: return !Ty->isVoidTy();
946     case IITDescriptor::VarArg: return true;
947     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
948     case IITDescriptor::Token: return !Ty->isTokenTy();
949     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
950     case IITDescriptor::Half: return !Ty->isHalfTy();
951     case IITDescriptor::Float: return !Ty->isFloatTy();
952     case IITDescriptor::Double: return !Ty->isDoubleTy();
953     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
954     case IITDescriptor::Vector: {
955       VectorType *VT = dyn_cast<VectorType>(Ty);
956       return !VT || VT->getNumElements() != D.Vector_Width ||
957              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
958     }
959     case IITDescriptor::Pointer: {
960       PointerType *PT = dyn_cast<PointerType>(Ty);
961       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
962              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
963     }
964 
965     case IITDescriptor::Struct: {
966       StructType *ST = dyn_cast<StructType>(Ty);
967       if (!ST || ST->getNumElements() != D.Struct_NumElements)
968         return true;
969 
970       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
971         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
972           return true;
973       return false;
974     }
975 
976     case IITDescriptor::Argument:
977       // Two cases here - If this is the second occurrence of an argument, verify
978       // that the later instance matches the previous instance.
979       if (D.getArgumentNumber() < ArgTys.size())
980         return Ty != ArgTys[D.getArgumentNumber()];
981 
982           // Otherwise, if this is the first instance of an argument, record it and
983           // verify the "Any" kind.
984           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
985           ArgTys.push_back(Ty);
986 
987           switch (D.getArgumentKind()) {
988             case IITDescriptor::AK_Any:        return false; // Success
989             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
990             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
991             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
992             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
993           }
994           llvm_unreachable("all argument kinds not covered");
995 
996     case IITDescriptor::ExtendArgument: {
997       // This may only be used when referring to a previous vector argument.
998       if (D.getArgumentNumber() >= ArgTys.size())
999         return true;
1000 
1001       Type *NewTy = ArgTys[D.getArgumentNumber()];
1002       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1003         NewTy = VectorType::getExtendedElementVectorType(VTy);
1004       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1005         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1006       else
1007         return true;
1008 
1009       return Ty != NewTy;
1010     }
1011     case IITDescriptor::TruncArgument: {
1012       // This may only be used when referring to a previous vector argument.
1013       if (D.getArgumentNumber() >= ArgTys.size())
1014         return true;
1015 
1016       Type *NewTy = ArgTys[D.getArgumentNumber()];
1017       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1018         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1019       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1020         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1021       else
1022         return true;
1023 
1024       return Ty != NewTy;
1025     }
1026     case IITDescriptor::HalfVecArgument:
1027       // This may only be used when referring to a previous vector argument.
1028       return D.getArgumentNumber() >= ArgTys.size() ||
1029              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1030              VectorType::getHalfElementsVectorType(
1031                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1032     case IITDescriptor::SameVecWidthArgument: {
1033       if (D.getArgumentNumber() >= ArgTys.size())
1034         return true;
1035       VectorType * ReferenceType =
1036         dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1037       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1038       if (!ThisArgType || !ReferenceType ||
1039           (ReferenceType->getVectorNumElements() !=
1040            ThisArgType->getVectorNumElements()))
1041         return true;
1042       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1043                                 Infos, ArgTys);
1044     }
1045     case IITDescriptor::PtrToArgument: {
1046       if (D.getArgumentNumber() >= ArgTys.size())
1047         return true;
1048       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1049       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1050       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1051     }
1052     case IITDescriptor::PtrToElt: {
1053       if (D.getArgumentNumber() >= ArgTys.size())
1054         return true;
1055       VectorType * ReferenceType =
1056         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1057       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1058 
1059       return (!ThisArgType || !ReferenceType ||
1060               ThisArgType->getElementType() != ReferenceType->getElementType());
1061     }
1062     case IITDescriptor::VecOfPtrsToElt: {
1063       if (D.getArgumentNumber() >= ArgTys.size())
1064         return true;
1065       VectorType * ReferenceType =
1066               dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1067       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1068       if (!ThisArgVecTy || !ReferenceType ||
1069           (ReferenceType->getVectorNumElements() !=
1070            ThisArgVecTy->getVectorNumElements()))
1071         return true;
1072       PointerType *ThisArgEltTy =
1073               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1074       if (!ThisArgEltTy)
1075         return true;
1076       return ThisArgEltTy->getElementType() !=
1077              ReferenceType->getVectorElementType();
1078     }
1079   }
1080   llvm_unreachable("unhandled");
1081 }
1082 
1083 bool
1084 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1085                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1086   // If there are no descriptors left, then it can't be a vararg.
1087   if (Infos.empty())
1088     return isVarArg;
1089 
1090   // There should be only one descriptor remaining at this point.
1091   if (Infos.size() != 1)
1092     return true;
1093 
1094   // Check and verify the descriptor.
1095   IITDescriptor D = Infos.front();
1096   Infos = Infos.slice(1);
1097   if (D.Kind == IITDescriptor::VarArg)
1098     return !isVarArg;
1099 
1100   return true;
1101 }
1102 
1103 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1104   Intrinsic::ID ID = F->getIntrinsicID();
1105   if (!ID)
1106     return None;
1107 
1108   FunctionType *FTy = F->getFunctionType();
1109   // Accumulate an array of overloaded types for the given intrinsic
1110   SmallVector<Type *, 4> ArgTys;
1111   {
1112     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1113     getIntrinsicInfoTableEntries(ID, Table);
1114     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1115 
1116     // If we encounter any problems matching the signature with the descriptor
1117     // just give up remangling. It's up to verifier to report the discrepancy.
1118     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1119       return None;
1120     for (auto Ty : FTy->params())
1121       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1122         return None;
1123     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1124       return None;
1125   }
1126 
1127   StringRef Name = F->getName();
1128   if (Name == Intrinsic::getName(ID, ArgTys))
1129     return None;
1130 
1131   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1132   NewDecl->setCallingConv(F->getCallingConv());
1133   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1134   return NewDecl;
1135 }
1136 
1137 /// hasAddressTaken - returns true if there are any uses of this function
1138 /// other than direct calls or invokes to it.
1139 bool Function::hasAddressTaken(const User* *PutOffender) const {
1140   for (const Use &U : uses()) {
1141     const User *FU = U.getUser();
1142     if (isa<BlockAddress>(FU))
1143       continue;
1144     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1145       if (PutOffender)
1146         *PutOffender = FU;
1147       return true;
1148     }
1149     ImmutableCallSite CS(cast<Instruction>(FU));
1150     if (!CS.isCallee(&U)) {
1151       if (PutOffender)
1152         *PutOffender = FU;
1153       return true;
1154     }
1155   }
1156   return false;
1157 }
1158 
1159 bool Function::isDefTriviallyDead() const {
1160   // Check the linkage
1161   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1162       !hasAvailableExternallyLinkage())
1163     return false;
1164 
1165   // Check if the function is used by anything other than a blockaddress.
1166   for (const User *U : users())
1167     if (!isa<BlockAddress>(U))
1168       return false;
1169 
1170   return true;
1171 }
1172 
1173 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1174 /// setjmp or other function that gcc recognizes as "returning twice".
1175 bool Function::callsFunctionThatReturnsTwice() const {
1176   for (const_inst_iterator
1177          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1178     ImmutableCallSite CS(&*I);
1179     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1180       return true;
1181   }
1182 
1183   return false;
1184 }
1185 
1186 Constant *Function::getPersonalityFn() const {
1187   assert(hasPersonalityFn() && getNumOperands());
1188   return cast<Constant>(Op<0>());
1189 }
1190 
1191 void Function::setPersonalityFn(Constant *Fn) {
1192   setHungoffOperand<0>(Fn);
1193   setValueSubclassDataBit(3, Fn != nullptr);
1194 }
1195 
1196 Constant *Function::getPrefixData() const {
1197   assert(hasPrefixData() && getNumOperands());
1198   return cast<Constant>(Op<1>());
1199 }
1200 
1201 void Function::setPrefixData(Constant *PrefixData) {
1202   setHungoffOperand<1>(PrefixData);
1203   setValueSubclassDataBit(1, PrefixData != nullptr);
1204 }
1205 
1206 Constant *Function::getPrologueData() const {
1207   assert(hasPrologueData() && getNumOperands());
1208   return cast<Constant>(Op<2>());
1209 }
1210 
1211 void Function::setPrologueData(Constant *PrologueData) {
1212   setHungoffOperand<2>(PrologueData);
1213   setValueSubclassDataBit(2, PrologueData != nullptr);
1214 }
1215 
1216 void Function::allocHungoffUselist() {
1217   // If we've already allocated a uselist, stop here.
1218   if (getNumOperands())
1219     return;
1220 
1221   allocHungoffUses(3, /*IsPhi=*/ false);
1222   setNumHungOffUseOperands(3);
1223 
1224   // Initialize the uselist with placeholder operands to allow traversal.
1225   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1226   Op<0>().set(CPN);
1227   Op<1>().set(CPN);
1228   Op<2>().set(CPN);
1229 }
1230 
1231 template <int Idx>
1232 void Function::setHungoffOperand(Constant *C) {
1233   if (C) {
1234     allocHungoffUselist();
1235     Op<Idx>().set(C);
1236   } else if (getNumOperands()) {
1237     Op<Idx>().set(
1238         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1239   }
1240 }
1241 
1242 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1243   assert(Bit < 16 && "SubclassData contains only 16 bits");
1244   if (On)
1245     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1246   else
1247     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1248 }
1249 
1250 void Function::setEntryCount(uint64_t Count,
1251                              const DenseSet<GlobalValue::GUID> *S) {
1252   MDBuilder MDB(getContext());
1253   setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count, S));
1254 }
1255 
1256 Optional<uint64_t> Function::getEntryCount() const {
1257   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1258   if (MD && MD->getOperand(0))
1259     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1260       if (MDS->getString().equals("function_entry_count")) {
1261         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1262         uint64_t Count = CI->getValue().getZExtValue();
1263         if (Count == 0)
1264           return None;
1265         return Count;
1266       }
1267   return None;
1268 }
1269 
1270 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1271   DenseSet<GlobalValue::GUID> R;
1272   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1273     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1274       if (MDS->getString().equals("function_entry_count"))
1275         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1276           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1277                        ->getValue()
1278                        .getZExtValue());
1279   return R;
1280 }
1281 
1282 void Function::setSectionPrefix(StringRef Prefix) {
1283   MDBuilder MDB(getContext());
1284   setMetadata(LLVMContext::MD_section_prefix,
1285               MDB.createFunctionSectionPrefix(Prefix));
1286 }
1287 
1288 Optional<StringRef> Function::getSectionPrefix() const {
1289   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1290     assert(dyn_cast<MDString>(MD->getOperand(0))
1291                ->getString()
1292                .equals("function_section_prefix") &&
1293            "Metadata not match");
1294     return dyn_cast<MDString>(MD->getOperand(1))->getString();
1295   }
1296   return None;
1297 }
1298