1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/LeakDetector.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/Support/ManagedStatic.h" 29 #include "llvm/Support/RWMutex.h" 30 #include "llvm/Support/StringPool.h" 31 #include "llvm/Support/Threading.h" 32 using namespace llvm; 33 34 // Explicit instantiations of SymbolTableListTraits since some of the methods 35 // are not in the public header file... 36 template class llvm::SymbolTableListTraits<Argument, Function>; 37 template class llvm::SymbolTableListTraits<BasicBlock, Function>; 38 39 //===----------------------------------------------------------------------===// 40 // Argument Implementation 41 //===----------------------------------------------------------------------===// 42 43 void Argument::anchor() { } 44 45 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 46 : Value(Ty, Value::ArgumentVal) { 47 Parent = nullptr; 48 49 // Make sure that we get added to a function 50 LeakDetector::addGarbageObject(this); 51 52 if (Par) 53 Par->getArgumentList().push_back(this); 54 setName(Name); 55 } 56 57 void Argument::setParent(Function *parent) { 58 if (getParent()) 59 LeakDetector::addGarbageObject(this); 60 Parent = parent; 61 if (getParent()) 62 LeakDetector::removeGarbageObject(this); 63 } 64 65 /// getArgNo - Return the index of this formal argument in its containing 66 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 67 unsigned Argument::getArgNo() const { 68 const Function *F = getParent(); 69 assert(F && "Argument is not in a function"); 70 71 Function::const_arg_iterator AI = F->arg_begin(); 72 unsigned ArgIdx = 0; 73 for (; &*AI != this; ++AI) 74 ++ArgIdx; 75 76 return ArgIdx; 77 } 78 79 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 80 /// it in its containing function. Also returns true if at least one byte is 81 /// known to be dereferenceable and the pointer is in addrspace(0). 82 bool Argument::hasNonNullAttr() const { 83 if (!getType()->isPointerTy()) return false; 84 if (getParent()->getAttributes(). 85 hasAttribute(getArgNo()+1, Attribute::NonNull)) 86 return true; 87 else if (getDereferenceableBytes() > 0 && 88 getType()->getPointerAddressSpace() == 0) 89 return true; 90 return false; 91 } 92 93 /// hasByValAttr - Return true if this argument has the byval attribute on it 94 /// in its containing function. 95 bool Argument::hasByValAttr() const { 96 if (!getType()->isPointerTy()) return false; 97 return getParent()->getAttributes(). 98 hasAttribute(getArgNo()+1, Attribute::ByVal); 99 } 100 101 /// \brief Return true if this argument has the inalloca attribute on it in 102 /// its containing function. 103 bool Argument::hasInAllocaAttr() const { 104 if (!getType()->isPointerTy()) return false; 105 return getParent()->getAttributes(). 106 hasAttribute(getArgNo()+1, Attribute::InAlloca); 107 } 108 109 bool Argument::hasByValOrInAllocaAttr() const { 110 if (!getType()->isPointerTy()) return false; 111 AttributeSet Attrs = getParent()->getAttributes(); 112 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 113 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 114 } 115 116 unsigned Argument::getParamAlignment() const { 117 assert(getType()->isPointerTy() && "Only pointers have alignments"); 118 return getParent()->getParamAlignment(getArgNo()+1); 119 120 } 121 122 uint64_t Argument::getDereferenceableBytes() const { 123 assert(getType()->isPointerTy() && 124 "Only pointers have dereferenceable bytes"); 125 return getParent()->getDereferenceableBytes(getArgNo()+1); 126 } 127 128 /// hasNestAttr - Return true if this argument has the nest attribute on 129 /// it in its containing function. 130 bool Argument::hasNestAttr() const { 131 if (!getType()->isPointerTy()) return false; 132 return getParent()->getAttributes(). 133 hasAttribute(getArgNo()+1, Attribute::Nest); 134 } 135 136 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 137 /// it in its containing function. 138 bool Argument::hasNoAliasAttr() const { 139 if (!getType()->isPointerTy()) return false; 140 return getParent()->getAttributes(). 141 hasAttribute(getArgNo()+1, Attribute::NoAlias); 142 } 143 144 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 145 /// on it in its containing function. 146 bool Argument::hasNoCaptureAttr() const { 147 if (!getType()->isPointerTy()) return false; 148 return getParent()->getAttributes(). 149 hasAttribute(getArgNo()+1, Attribute::NoCapture); 150 } 151 152 /// hasSRetAttr - Return true if this argument has the sret attribute on 153 /// it in its containing function. 154 bool Argument::hasStructRetAttr() const { 155 if (!getType()->isPointerTy()) return false; 156 if (this != getParent()->arg_begin()) 157 return false; // StructRet param must be first param 158 return getParent()->getAttributes(). 159 hasAttribute(1, Attribute::StructRet); 160 } 161 162 /// hasReturnedAttr - Return true if this argument has the returned attribute on 163 /// it in its containing function. 164 bool Argument::hasReturnedAttr() const { 165 return getParent()->getAttributes(). 166 hasAttribute(getArgNo()+1, Attribute::Returned); 167 } 168 169 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 170 /// its containing function. 171 bool Argument::hasZExtAttr() const { 172 return getParent()->getAttributes(). 173 hasAttribute(getArgNo()+1, Attribute::ZExt); 174 } 175 176 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 177 /// containing function. 178 bool Argument::hasSExtAttr() const { 179 return getParent()->getAttributes(). 180 hasAttribute(getArgNo()+1, Attribute::SExt); 181 } 182 183 /// Return true if this argument has the readonly or readnone attribute on it 184 /// in its containing function. 185 bool Argument::onlyReadsMemory() const { 186 return getParent()->getAttributes(). 187 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 188 getParent()->getAttributes(). 189 hasAttribute(getArgNo()+1, Attribute::ReadNone); 190 } 191 192 /// addAttr - Add attributes to an argument. 193 void Argument::addAttr(AttributeSet AS) { 194 assert(AS.getNumSlots() <= 1 && 195 "Trying to add more than one attribute set to an argument!"); 196 AttrBuilder B(AS, AS.getSlotIndex(0)); 197 getParent()->addAttributes(getArgNo() + 1, 198 AttributeSet::get(Parent->getContext(), 199 getArgNo() + 1, B)); 200 } 201 202 /// removeAttr - Remove attributes from an argument. 203 void Argument::removeAttr(AttributeSet AS) { 204 assert(AS.getNumSlots() <= 1 && 205 "Trying to remove more than one attribute set from an argument!"); 206 AttrBuilder B(AS, AS.getSlotIndex(0)); 207 getParent()->removeAttributes(getArgNo() + 1, 208 AttributeSet::get(Parent->getContext(), 209 getArgNo() + 1, B)); 210 } 211 212 //===----------------------------------------------------------------------===// 213 // Helper Methods in Function 214 //===----------------------------------------------------------------------===// 215 216 bool Function::isMaterializable() const { 217 return getGlobalObjectSubClassData(); 218 } 219 220 void Function::setIsMaterializable(bool V) { setGlobalObjectSubClassData(V); } 221 222 LLVMContext &Function::getContext() const { 223 return getType()->getContext(); 224 } 225 226 FunctionType *Function::getFunctionType() const { 227 return cast<FunctionType>(getType()->getElementType()); 228 } 229 230 bool Function::isVarArg() const { 231 return getFunctionType()->isVarArg(); 232 } 233 234 Type *Function::getReturnType() const { 235 return getFunctionType()->getReturnType(); 236 } 237 238 void Function::removeFromParent() { 239 getParent()->getFunctionList().remove(this); 240 } 241 242 void Function::eraseFromParent() { 243 getParent()->getFunctionList().erase(this); 244 } 245 246 //===----------------------------------------------------------------------===// 247 // Function Implementation 248 //===----------------------------------------------------------------------===// 249 250 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 251 Module *ParentModule) 252 : GlobalObject(PointerType::getUnqual(Ty), Value::FunctionVal, nullptr, 0, 253 Linkage, name) { 254 assert(FunctionType::isValidReturnType(getReturnType()) && 255 "invalid return type"); 256 setIsMaterializable(false); 257 SymTab = new ValueSymbolTable(); 258 259 // If the function has arguments, mark them as lazily built. 260 if (Ty->getNumParams()) 261 setValueSubclassData(1); // Set the "has lazy arguments" bit. 262 263 // Make sure that we get added to a function 264 LeakDetector::addGarbageObject(this); 265 266 if (ParentModule) 267 ParentModule->getFunctionList().push_back(this); 268 269 // Ensure intrinsics have the right parameter attributes. 270 if (unsigned IID = getIntrinsicID()) 271 setAttributes(Intrinsic::getAttributes(getContext(), Intrinsic::ID(IID))); 272 273 } 274 275 Function::~Function() { 276 dropAllReferences(); // After this it is safe to delete instructions. 277 278 // Delete all of the method arguments and unlink from symbol table... 279 ArgumentList.clear(); 280 delete SymTab; 281 282 // Remove the function from the on-the-side GC table. 283 clearGC(); 284 285 // Remove the intrinsicID from the Cache. 286 if (getValueName() && isIntrinsic()) 287 getContext().pImpl->IntrinsicIDCache.erase(this); 288 } 289 290 void Function::BuildLazyArguments() const { 291 // Create the arguments vector, all arguments start out unnamed. 292 FunctionType *FT = getFunctionType(); 293 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 294 assert(!FT->getParamType(i)->isVoidTy() && 295 "Cannot have void typed arguments!"); 296 ArgumentList.push_back(new Argument(FT->getParamType(i))); 297 } 298 299 // Clear the lazy arguments bit. 300 unsigned SDC = getSubclassDataFromValue(); 301 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 302 } 303 304 size_t Function::arg_size() const { 305 return getFunctionType()->getNumParams(); 306 } 307 bool Function::arg_empty() const { 308 return getFunctionType()->getNumParams() == 0; 309 } 310 311 void Function::setParent(Module *parent) { 312 if (getParent()) 313 LeakDetector::addGarbageObject(this); 314 Parent = parent; 315 if (getParent()) 316 LeakDetector::removeGarbageObject(this); 317 } 318 319 // dropAllReferences() - This function causes all the subinstructions to "let 320 // go" of all references that they are maintaining. This allows one to 321 // 'delete' a whole class at a time, even though there may be circular 322 // references... first all references are dropped, and all use counts go to 323 // zero. Then everything is deleted for real. Note that no operations are 324 // valid on an object that has "dropped all references", except operator 325 // delete. 326 // 327 void Function::dropAllReferences() { 328 setIsMaterializable(false); 329 330 for (iterator I = begin(), E = end(); I != E; ++I) 331 I->dropAllReferences(); 332 333 // Delete all basic blocks. They are now unused, except possibly by 334 // blockaddresses, but BasicBlock's destructor takes care of those. 335 while (!BasicBlocks.empty()) 336 BasicBlocks.begin()->eraseFromParent(); 337 338 // Prefix and prologue data are stored in a side table. 339 setPrefixData(nullptr); 340 setPrologueData(nullptr); 341 } 342 343 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 344 AttributeSet PAL = getAttributes(); 345 PAL = PAL.addAttribute(getContext(), i, attr); 346 setAttributes(PAL); 347 } 348 349 void Function::addAttributes(unsigned i, AttributeSet attrs) { 350 AttributeSet PAL = getAttributes(); 351 PAL = PAL.addAttributes(getContext(), i, attrs); 352 setAttributes(PAL); 353 } 354 355 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 356 AttributeSet PAL = getAttributes(); 357 PAL = PAL.removeAttributes(getContext(), i, attrs); 358 setAttributes(PAL); 359 } 360 361 // Maintain the GC name for each function in an on-the-side table. This saves 362 // allocating an additional word in Function for programs which do not use GC 363 // (i.e., most programs) at the cost of increased overhead for clients which do 364 // use GC. 365 static DenseMap<const Function*,PooledStringPtr> *GCNames; 366 static StringPool *GCNamePool; 367 static ManagedStatic<sys::SmartRWMutex<true> > GCLock; 368 369 bool Function::hasGC() const { 370 sys::SmartScopedReader<true> Reader(*GCLock); 371 return GCNames && GCNames->count(this); 372 } 373 374 const char *Function::getGC() const { 375 assert(hasGC() && "Function has no collector"); 376 sys::SmartScopedReader<true> Reader(*GCLock); 377 return *(*GCNames)[this]; 378 } 379 380 void Function::setGC(const char *Str) { 381 sys::SmartScopedWriter<true> Writer(*GCLock); 382 if (!GCNamePool) 383 GCNamePool = new StringPool(); 384 if (!GCNames) 385 GCNames = new DenseMap<const Function*,PooledStringPtr>(); 386 (*GCNames)[this] = GCNamePool->intern(Str); 387 } 388 389 void Function::clearGC() { 390 sys::SmartScopedWriter<true> Writer(*GCLock); 391 if (GCNames) { 392 GCNames->erase(this); 393 if (GCNames->empty()) { 394 delete GCNames; 395 GCNames = nullptr; 396 if (GCNamePool->empty()) { 397 delete GCNamePool; 398 GCNamePool = nullptr; 399 } 400 } 401 } 402 } 403 404 /// copyAttributesFrom - copy all additional attributes (those not needed to 405 /// create a Function) from the Function Src to this one. 406 void Function::copyAttributesFrom(const GlobalValue *Src) { 407 assert(isa<Function>(Src) && "Expected a Function!"); 408 GlobalObject::copyAttributesFrom(Src); 409 const Function *SrcF = cast<Function>(Src); 410 setCallingConv(SrcF->getCallingConv()); 411 setAttributes(SrcF->getAttributes()); 412 if (SrcF->hasGC()) 413 setGC(SrcF->getGC()); 414 else 415 clearGC(); 416 if (SrcF->hasPrefixData()) 417 setPrefixData(SrcF->getPrefixData()); 418 else 419 setPrefixData(nullptr); 420 if (SrcF->hasPrologueData()) 421 setPrologueData(SrcF->getPrologueData()); 422 else 423 setPrologueData(nullptr); 424 } 425 426 /// getIntrinsicID - This method returns the ID number of the specified 427 /// function, or Intrinsic::not_intrinsic if the function is not an 428 /// intrinsic, or if the pointer is null. This value is always defined to be 429 /// zero to allow easy checking for whether a function is intrinsic or not. The 430 /// particular intrinsic functions which correspond to this value are defined in 431 /// llvm/Intrinsics.h. Results are cached in the LLVM context, subsequent 432 /// requests for the same ID return results much faster from the cache. 433 /// 434 unsigned Function::getIntrinsicID() const { 435 const ValueName *ValName = this->getValueName(); 436 if (!ValName || !isIntrinsic()) 437 return 0; 438 439 LLVMContextImpl::IntrinsicIDCacheTy &IntrinsicIDCache = 440 getContext().pImpl->IntrinsicIDCache; 441 if (!IntrinsicIDCache.count(this)) { 442 unsigned Id = lookupIntrinsicID(); 443 IntrinsicIDCache[this]=Id; 444 return Id; 445 } 446 return IntrinsicIDCache[this]; 447 } 448 449 /// This private method does the actual lookup of an intrinsic ID when the query 450 /// could not be answered from the cache. 451 unsigned Function::lookupIntrinsicID() const { 452 const ValueName *ValName = this->getValueName(); 453 unsigned Len = ValName->getKeyLength(); 454 const char *Name = ValName->getKeyData(); 455 456 #define GET_FUNCTION_RECOGNIZER 457 #include "llvm/IR/Intrinsics.gen" 458 #undef GET_FUNCTION_RECOGNIZER 459 460 return 0; 461 } 462 463 /// Returns a stable mangling for the type specified for use in the name 464 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 465 /// of named types is simply their name. Manglings for unnamed types consist 466 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 467 /// combined with the mangling of their component types. A vararg function 468 /// type will have a suffix of 'vararg'. Since function types can contain 469 /// other function types, we close a function type mangling with suffix 'f' 470 /// which can't be confused with it's prefix. This ensures we don't have 471 /// collisions between two unrelated function types. Otherwise, you might 472 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 473 static std::string getMangledTypeStr(Type* Ty) { 474 std::string Result; 475 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 476 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 477 getMangledTypeStr(PTyp->getElementType()); 478 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 479 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 480 getMangledTypeStr(ATyp->getElementType()); 481 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 482 if (!STyp->isLiteral()) 483 Result += STyp->getName(); 484 else 485 llvm_unreachable("TODO: implement literal types"); 486 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 487 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 488 for (size_t i = 0; i < FT->getNumParams(); i++) 489 Result += getMangledTypeStr(FT->getParamType(i)); 490 if (FT->isVarArg()) 491 Result += "vararg"; 492 // Ensure nested function types are distinguishable. 493 Result += "f"; 494 } else if (Ty) 495 Result += EVT::getEVT(Ty).getEVTString(); 496 return Result; 497 } 498 499 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 500 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 501 static const char * const Table[] = { 502 "not_intrinsic", 503 #define GET_INTRINSIC_NAME_TABLE 504 #include "llvm/IR/Intrinsics.gen" 505 #undef GET_INTRINSIC_NAME_TABLE 506 }; 507 if (Tys.empty()) 508 return Table[id]; 509 std::string Result(Table[id]); 510 for (unsigned i = 0; i < Tys.size(); ++i) { 511 Result += "." + getMangledTypeStr(Tys[i]); 512 } 513 return Result; 514 } 515 516 517 /// IIT_Info - These are enumerators that describe the entries returned by the 518 /// getIntrinsicInfoTableEntries function. 519 /// 520 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 521 enum IIT_Info { 522 // Common values should be encoded with 0-15. 523 IIT_Done = 0, 524 IIT_I1 = 1, 525 IIT_I8 = 2, 526 IIT_I16 = 3, 527 IIT_I32 = 4, 528 IIT_I64 = 5, 529 IIT_F16 = 6, 530 IIT_F32 = 7, 531 IIT_F64 = 8, 532 IIT_V2 = 9, 533 IIT_V4 = 10, 534 IIT_V8 = 11, 535 IIT_V16 = 12, 536 IIT_V32 = 13, 537 IIT_PTR = 14, 538 IIT_ARG = 15, 539 540 // Values from 16+ are only encodable with the inefficient encoding. 541 IIT_V64 = 16, 542 IIT_MMX = 17, 543 IIT_METADATA = 18, 544 IIT_EMPTYSTRUCT = 19, 545 IIT_STRUCT2 = 20, 546 IIT_STRUCT3 = 21, 547 IIT_STRUCT4 = 22, 548 IIT_STRUCT5 = 23, 549 IIT_EXTEND_ARG = 24, 550 IIT_TRUNC_ARG = 25, 551 IIT_ANYPTR = 26, 552 IIT_V1 = 27, 553 IIT_VARARG = 28, 554 IIT_HALF_VEC_ARG = 29 555 }; 556 557 558 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 559 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 560 IIT_Info Info = IIT_Info(Infos[NextElt++]); 561 unsigned StructElts = 2; 562 using namespace Intrinsic; 563 564 switch (Info) { 565 case IIT_Done: 566 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 567 return; 568 case IIT_VARARG: 569 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 570 return; 571 case IIT_MMX: 572 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 573 return; 574 case IIT_METADATA: 575 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 576 return; 577 case IIT_F16: 578 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 579 return; 580 case IIT_F32: 581 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 582 return; 583 case IIT_F64: 584 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 585 return; 586 case IIT_I1: 587 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 588 return; 589 case IIT_I8: 590 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 591 return; 592 case IIT_I16: 593 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 594 return; 595 case IIT_I32: 596 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 597 return; 598 case IIT_I64: 599 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 600 return; 601 case IIT_V1: 602 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 603 DecodeIITType(NextElt, Infos, OutputTable); 604 return; 605 case IIT_V2: 606 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 607 DecodeIITType(NextElt, Infos, OutputTable); 608 return; 609 case IIT_V4: 610 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 611 DecodeIITType(NextElt, Infos, OutputTable); 612 return; 613 case IIT_V8: 614 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 615 DecodeIITType(NextElt, Infos, OutputTable); 616 return; 617 case IIT_V16: 618 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 619 DecodeIITType(NextElt, Infos, OutputTable); 620 return; 621 case IIT_V32: 622 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 623 DecodeIITType(NextElt, Infos, OutputTable); 624 return; 625 case IIT_V64: 626 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 627 DecodeIITType(NextElt, Infos, OutputTable); 628 return; 629 case IIT_PTR: 630 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 631 DecodeIITType(NextElt, Infos, OutputTable); 632 return; 633 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 634 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 635 Infos[NextElt++])); 636 DecodeIITType(NextElt, Infos, OutputTable); 637 return; 638 } 639 case IIT_ARG: { 640 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 642 return; 643 } 644 case IIT_EXTEND_ARG: { 645 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 646 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 647 ArgInfo)); 648 return; 649 } 650 case IIT_TRUNC_ARG: { 651 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 652 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 653 ArgInfo)); 654 return; 655 } 656 case IIT_HALF_VEC_ARG: { 657 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 658 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 659 ArgInfo)); 660 return; 661 } 662 case IIT_EMPTYSTRUCT: 663 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 664 return; 665 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 666 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 667 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 668 case IIT_STRUCT2: { 669 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 670 671 for (unsigned i = 0; i != StructElts; ++i) 672 DecodeIITType(NextElt, Infos, OutputTable); 673 return; 674 } 675 } 676 llvm_unreachable("unhandled"); 677 } 678 679 680 #define GET_INTRINSIC_GENERATOR_GLOBAL 681 #include "llvm/IR/Intrinsics.gen" 682 #undef GET_INTRINSIC_GENERATOR_GLOBAL 683 684 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 685 SmallVectorImpl<IITDescriptor> &T){ 686 // Check to see if the intrinsic's type was expressible by the table. 687 unsigned TableVal = IIT_Table[id-1]; 688 689 // Decode the TableVal into an array of IITValues. 690 SmallVector<unsigned char, 8> IITValues; 691 ArrayRef<unsigned char> IITEntries; 692 unsigned NextElt = 0; 693 if ((TableVal >> 31) != 0) { 694 // This is an offset into the IIT_LongEncodingTable. 695 IITEntries = IIT_LongEncodingTable; 696 697 // Strip sentinel bit. 698 NextElt = (TableVal << 1) >> 1; 699 } else { 700 // Decode the TableVal into an array of IITValues. If the entry was encoded 701 // into a single word in the table itself, decode it now. 702 do { 703 IITValues.push_back(TableVal & 0xF); 704 TableVal >>= 4; 705 } while (TableVal); 706 707 IITEntries = IITValues; 708 NextElt = 0; 709 } 710 711 // Okay, decode the table into the output vector of IITDescriptors. 712 DecodeIITType(NextElt, IITEntries, T); 713 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 714 DecodeIITType(NextElt, IITEntries, T); 715 } 716 717 718 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 719 ArrayRef<Type*> Tys, LLVMContext &Context) { 720 using namespace Intrinsic; 721 IITDescriptor D = Infos.front(); 722 Infos = Infos.slice(1); 723 724 switch (D.Kind) { 725 case IITDescriptor::Void: return Type::getVoidTy(Context); 726 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 727 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 728 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 729 case IITDescriptor::Half: return Type::getHalfTy(Context); 730 case IITDescriptor::Float: return Type::getFloatTy(Context); 731 case IITDescriptor::Double: return Type::getDoubleTy(Context); 732 733 case IITDescriptor::Integer: 734 return IntegerType::get(Context, D.Integer_Width); 735 case IITDescriptor::Vector: 736 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 737 case IITDescriptor::Pointer: 738 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 739 D.Pointer_AddressSpace); 740 case IITDescriptor::Struct: { 741 Type *Elts[5]; 742 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 743 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 744 Elts[i] = DecodeFixedType(Infos, Tys, Context); 745 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 746 } 747 748 case IITDescriptor::Argument: 749 return Tys[D.getArgumentNumber()]; 750 case IITDescriptor::ExtendArgument: { 751 Type *Ty = Tys[D.getArgumentNumber()]; 752 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 753 return VectorType::getExtendedElementVectorType(VTy); 754 755 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 756 } 757 case IITDescriptor::TruncArgument: { 758 Type *Ty = Tys[D.getArgumentNumber()]; 759 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 760 return VectorType::getTruncatedElementVectorType(VTy); 761 762 IntegerType *ITy = cast<IntegerType>(Ty); 763 assert(ITy->getBitWidth() % 2 == 0); 764 return IntegerType::get(Context, ITy->getBitWidth() / 2); 765 } 766 case IITDescriptor::HalfVecArgument: 767 return VectorType::getHalfElementsVectorType(cast<VectorType>( 768 Tys[D.getArgumentNumber()])); 769 } 770 llvm_unreachable("unhandled"); 771 } 772 773 774 775 FunctionType *Intrinsic::getType(LLVMContext &Context, 776 ID id, ArrayRef<Type*> Tys) { 777 SmallVector<IITDescriptor, 8> Table; 778 getIntrinsicInfoTableEntries(id, Table); 779 780 ArrayRef<IITDescriptor> TableRef = Table; 781 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 782 783 SmallVector<Type*, 8> ArgTys; 784 while (!TableRef.empty()) 785 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 786 787 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 788 // If we see void type as the type of the last argument, it is vararg intrinsic 789 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 790 ArgTys.pop_back(); 791 return FunctionType::get(ResultTy, ArgTys, true); 792 } 793 return FunctionType::get(ResultTy, ArgTys, false); 794 } 795 796 bool Intrinsic::isOverloaded(ID id) { 797 #define GET_INTRINSIC_OVERLOAD_TABLE 798 #include "llvm/IR/Intrinsics.gen" 799 #undef GET_INTRINSIC_OVERLOAD_TABLE 800 } 801 802 /// This defines the "Intrinsic::getAttributes(ID id)" method. 803 #define GET_INTRINSIC_ATTRIBUTES 804 #include "llvm/IR/Intrinsics.gen" 805 #undef GET_INTRINSIC_ATTRIBUTES 806 807 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 808 // There can never be multiple globals with the same name of different types, 809 // because intrinsics must be a specific type. 810 return 811 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 812 getType(M->getContext(), id, Tys))); 813 } 814 815 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 816 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 817 #include "llvm/IR/Intrinsics.gen" 818 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 819 820 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 821 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 822 #include "llvm/IR/Intrinsics.gen" 823 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 824 825 /// hasAddressTaken - returns true if there are any uses of this function 826 /// other than direct calls or invokes to it. 827 bool Function::hasAddressTaken(const User* *PutOffender) const { 828 for (const Use &U : uses()) { 829 const User *FU = U.getUser(); 830 if (isa<BlockAddress>(FU)) 831 continue; 832 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) 833 return PutOffender ? (*PutOffender = FU, true) : true; 834 ImmutableCallSite CS(cast<Instruction>(FU)); 835 if (!CS.isCallee(&U)) 836 return PutOffender ? (*PutOffender = FU, true) : true; 837 } 838 return false; 839 } 840 841 bool Function::isDefTriviallyDead() const { 842 // Check the linkage 843 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 844 !hasAvailableExternallyLinkage()) 845 return false; 846 847 // Check if the function is used by anything other than a blockaddress. 848 for (const User *U : users()) 849 if (!isa<BlockAddress>(U)) 850 return false; 851 852 return true; 853 } 854 855 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 856 /// setjmp or other function that gcc recognizes as "returning twice". 857 bool Function::callsFunctionThatReturnsTwice() const { 858 for (const_inst_iterator 859 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 860 ImmutableCallSite CS(&*I); 861 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 862 return true; 863 } 864 865 return false; 866 } 867 868 Constant *Function::getPrefixData() const { 869 assert(hasPrefixData()); 870 const LLVMContextImpl::PrefixDataMapTy &PDMap = 871 getContext().pImpl->PrefixDataMap; 872 assert(PDMap.find(this) != PDMap.end()); 873 return cast<Constant>(PDMap.find(this)->second->getReturnValue()); 874 } 875 876 void Function::setPrefixData(Constant *PrefixData) { 877 if (!PrefixData && !hasPrefixData()) 878 return; 879 880 unsigned SCData = getSubclassDataFromValue(); 881 LLVMContextImpl::PrefixDataMapTy &PDMap = getContext().pImpl->PrefixDataMap; 882 ReturnInst *&PDHolder = PDMap[this]; 883 if (PrefixData) { 884 if (PDHolder) 885 PDHolder->setOperand(0, PrefixData); 886 else 887 PDHolder = ReturnInst::Create(getContext(), PrefixData); 888 SCData |= (1<<1); 889 } else { 890 delete PDHolder; 891 PDMap.erase(this); 892 SCData &= ~(1<<1); 893 } 894 setValueSubclassData(SCData); 895 } 896 897 Constant *Function::getPrologueData() const { 898 assert(hasPrologueData()); 899 const LLVMContextImpl::PrologueDataMapTy &SOMap = 900 getContext().pImpl->PrologueDataMap; 901 assert(SOMap.find(this) != SOMap.end()); 902 return cast<Constant>(SOMap.find(this)->second->getReturnValue()); 903 } 904 905 void Function::setPrologueData(Constant *PrologueData) { 906 if (!PrologueData && !hasPrologueData()) 907 return; 908 909 unsigned PDData = getSubclassDataFromValue(); 910 LLVMContextImpl::PrologueDataMapTy &PDMap = getContext().pImpl->PrologueDataMap; 911 ReturnInst *&PDHolder = PDMap[this]; 912 if (PrologueData) { 913 if (PDHolder) 914 PDHolder->setOperand(0, PrologueData); 915 else 916 PDHolder = ReturnInst::Create(getContext(), PrologueData); 917 PDData |= (1<<2); 918 } else { 919 delete PDHolder; 920 PDMap.erase(this); 921 PDData &= ~(1<<2); 922 } 923 setValueSubclassData(PDData); 924 } 925