1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/SymbolTableListTraits.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/IR/User.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/IR/ValueSymbolTable.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstddef> 51 #include <cstdint> 52 #include <cstring> 53 #include <string> 54 55 using namespace llvm; 56 using ProfileCount = Function::ProfileCount; 57 58 // Explicit instantiations of SymbolTableListTraits since some of the methods 59 // are not in the public header file... 60 template class llvm::SymbolTableListTraits<BasicBlock>; 61 62 //===----------------------------------------------------------------------===// 63 // Argument Implementation 64 //===----------------------------------------------------------------------===// 65 66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 67 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 68 setName(Name); 69 } 70 71 void Argument::setParent(Function *parent) { 72 Parent = parent; 73 } 74 75 bool Argument::hasNonNullAttr() const { 76 if (!getType()->isPointerTy()) return false; 77 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 78 return true; 79 else if (getDereferenceableBytes() > 0 && 80 !NullPointerIsDefined(getParent(), 81 getType()->getPointerAddressSpace())) 82 return true; 83 return false; 84 } 85 86 bool Argument::hasByValAttr() const { 87 if (!getType()->isPointerTy()) return false; 88 return hasAttribute(Attribute::ByVal); 89 } 90 91 bool Argument::hasSwiftSelfAttr() const { 92 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 93 } 94 95 bool Argument::hasSwiftErrorAttr() const { 96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 97 } 98 99 bool Argument::hasInAllocaAttr() const { 100 if (!getType()->isPointerTy()) return false; 101 return hasAttribute(Attribute::InAlloca); 102 } 103 104 bool Argument::hasByValOrInAllocaAttr() const { 105 if (!getType()->isPointerTy()) return false; 106 AttributeList Attrs = getParent()->getAttributes(); 107 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 108 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 109 } 110 111 unsigned Argument::getParamAlignment() const { 112 assert(getType()->isPointerTy() && "Only pointers have alignments"); 113 return getParent()->getParamAlignment(getArgNo()); 114 } 115 116 Type *Argument::getParamByValType() const { 117 assert(getType()->isPointerTy() && "Only pointers have byval types"); 118 return getParent()->getParamByValType(getArgNo()); 119 } 120 121 uint64_t Argument::getDereferenceableBytes() const { 122 assert(getType()->isPointerTy() && 123 "Only pointers have dereferenceable bytes"); 124 return getParent()->getParamDereferenceableBytes(getArgNo()); 125 } 126 127 uint64_t Argument::getDereferenceableOrNullBytes() const { 128 assert(getType()->isPointerTy() && 129 "Only pointers have dereferenceable bytes"); 130 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 131 } 132 133 bool Argument::hasNestAttr() const { 134 if (!getType()->isPointerTy()) return false; 135 return hasAttribute(Attribute::Nest); 136 } 137 138 bool Argument::hasNoAliasAttr() const { 139 if (!getType()->isPointerTy()) return false; 140 return hasAttribute(Attribute::NoAlias); 141 } 142 143 bool Argument::hasNoCaptureAttr() const { 144 if (!getType()->isPointerTy()) return false; 145 return hasAttribute(Attribute::NoCapture); 146 } 147 148 bool Argument::hasStructRetAttr() const { 149 if (!getType()->isPointerTy()) return false; 150 return hasAttribute(Attribute::StructRet); 151 } 152 153 bool Argument::hasInRegAttr() const { 154 return hasAttribute(Attribute::InReg); 155 } 156 157 bool Argument::hasReturnedAttr() const { 158 return hasAttribute(Attribute::Returned); 159 } 160 161 bool Argument::hasZExtAttr() const { 162 return hasAttribute(Attribute::ZExt); 163 } 164 165 bool Argument::hasSExtAttr() const { 166 return hasAttribute(Attribute::SExt); 167 } 168 169 bool Argument::onlyReadsMemory() const { 170 AttributeList Attrs = getParent()->getAttributes(); 171 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 172 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 173 } 174 175 void Argument::addAttrs(AttrBuilder &B) { 176 AttributeList AL = getParent()->getAttributes(); 177 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 178 getParent()->setAttributes(AL); 179 } 180 181 void Argument::addAttr(Attribute::AttrKind Kind) { 182 getParent()->addParamAttr(getArgNo(), Kind); 183 } 184 185 void Argument::addAttr(Attribute Attr) { 186 getParent()->addParamAttr(getArgNo(), Attr); 187 } 188 189 void Argument::removeAttr(Attribute::AttrKind Kind) { 190 getParent()->removeParamAttr(getArgNo(), Kind); 191 } 192 193 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 194 return getParent()->hasParamAttribute(getArgNo(), Kind); 195 } 196 197 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 198 return getParent()->getParamAttribute(getArgNo(), Kind); 199 } 200 201 //===----------------------------------------------------------------------===// 202 // Helper Methods in Function 203 //===----------------------------------------------------------------------===// 204 205 LLVMContext &Function::getContext() const { 206 return getType()->getContext(); 207 } 208 209 unsigned Function::getInstructionCount() const { 210 unsigned NumInstrs = 0; 211 for (const BasicBlock &BB : BasicBlocks) 212 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 213 BB.instructionsWithoutDebug().end()); 214 return NumInstrs; 215 } 216 217 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 218 const Twine &N, Module &M) { 219 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 220 } 221 222 void Function::removeFromParent() { 223 getParent()->getFunctionList().remove(getIterator()); 224 } 225 226 void Function::eraseFromParent() { 227 getParent()->getFunctionList().erase(getIterator()); 228 } 229 230 //===----------------------------------------------------------------------===// 231 // Function Implementation 232 //===----------------------------------------------------------------------===// 233 234 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 235 // If AS == -1 and we are passed a valid module pointer we place the function 236 // in the program address space. Otherwise we default to AS0. 237 if (AddrSpace == static_cast<unsigned>(-1)) 238 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 239 return AddrSpace; 240 } 241 242 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 243 const Twine &name, Module *ParentModule) 244 : GlobalObject(Ty, Value::FunctionVal, 245 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 246 computeAddrSpace(AddrSpace, ParentModule)), 247 NumArgs(Ty->getNumParams()) { 248 assert(FunctionType::isValidReturnType(getReturnType()) && 249 "invalid return type"); 250 setGlobalObjectSubClassData(0); 251 252 // We only need a symbol table for a function if the context keeps value names 253 if (!getContext().shouldDiscardValueNames()) 254 SymTab = make_unique<ValueSymbolTable>(); 255 256 // If the function has arguments, mark them as lazily built. 257 if (Ty->getNumParams()) 258 setValueSubclassData(1); // Set the "has lazy arguments" bit. 259 260 if (ParentModule) 261 ParentModule->getFunctionList().push_back(this); 262 263 HasLLVMReservedName = getName().startswith("llvm."); 264 // Ensure intrinsics have the right parameter attributes. 265 // Note, the IntID field will have been set in Value::setName if this function 266 // name is a valid intrinsic ID. 267 if (IntID) 268 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 269 } 270 271 Function::~Function() { 272 dropAllReferences(); // After this it is safe to delete instructions. 273 274 // Delete all of the method arguments and unlink from symbol table... 275 if (Arguments) 276 clearArguments(); 277 278 // Remove the function from the on-the-side GC table. 279 clearGC(); 280 } 281 282 void Function::BuildLazyArguments() const { 283 // Create the arguments vector, all arguments start out unnamed. 284 auto *FT = getFunctionType(); 285 if (NumArgs > 0) { 286 Arguments = std::allocator<Argument>().allocate(NumArgs); 287 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 288 Type *ArgTy = FT->getParamType(i); 289 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 290 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 291 } 292 } 293 294 // Clear the lazy arguments bit. 295 unsigned SDC = getSubclassDataFromValue(); 296 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 297 assert(!hasLazyArguments()); 298 } 299 300 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 301 return MutableArrayRef<Argument>(Args, Count); 302 } 303 304 void Function::clearArguments() { 305 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 306 A.setName(""); 307 A.~Argument(); 308 } 309 std::allocator<Argument>().deallocate(Arguments, NumArgs); 310 Arguments = nullptr; 311 } 312 313 void Function::stealArgumentListFrom(Function &Src) { 314 assert(isDeclaration() && "Expected no references to current arguments"); 315 316 // Drop the current arguments, if any, and set the lazy argument bit. 317 if (!hasLazyArguments()) { 318 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 319 [](const Argument &A) { return A.use_empty(); }) && 320 "Expected arguments to be unused in declaration"); 321 clearArguments(); 322 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 323 } 324 325 // Nothing to steal if Src has lazy arguments. 326 if (Src.hasLazyArguments()) 327 return; 328 329 // Steal arguments from Src, and fix the lazy argument bits. 330 assert(arg_size() == Src.arg_size()); 331 Arguments = Src.Arguments; 332 Src.Arguments = nullptr; 333 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 334 // FIXME: This does the work of transferNodesFromList inefficiently. 335 SmallString<128> Name; 336 if (A.hasName()) 337 Name = A.getName(); 338 if (!Name.empty()) 339 A.setName(""); 340 A.setParent(this); 341 if (!Name.empty()) 342 A.setName(Name); 343 } 344 345 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 346 assert(!hasLazyArguments()); 347 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 348 } 349 350 // dropAllReferences() - This function causes all the subinstructions to "let 351 // go" of all references that they are maintaining. This allows one to 352 // 'delete' a whole class at a time, even though there may be circular 353 // references... first all references are dropped, and all use counts go to 354 // zero. Then everything is deleted for real. Note that no operations are 355 // valid on an object that has "dropped all references", except operator 356 // delete. 357 // 358 void Function::dropAllReferences() { 359 setIsMaterializable(false); 360 361 for (BasicBlock &BB : *this) 362 BB.dropAllReferences(); 363 364 // Delete all basic blocks. They are now unused, except possibly by 365 // blockaddresses, but BasicBlock's destructor takes care of those. 366 while (!BasicBlocks.empty()) 367 BasicBlocks.begin()->eraseFromParent(); 368 369 // Drop uses of any optional data (real or placeholder). 370 if (getNumOperands()) { 371 User::dropAllReferences(); 372 setNumHungOffUseOperands(0); 373 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 374 } 375 376 // Metadata is stored in a side-table. 377 clearMetadata(); 378 } 379 380 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 381 AttributeList PAL = getAttributes(); 382 PAL = PAL.addAttribute(getContext(), i, Kind); 383 setAttributes(PAL); 384 } 385 386 void Function::addAttribute(unsigned i, Attribute Attr) { 387 AttributeList PAL = getAttributes(); 388 PAL = PAL.addAttribute(getContext(), i, Attr); 389 setAttributes(PAL); 390 } 391 392 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 393 AttributeList PAL = getAttributes(); 394 PAL = PAL.addAttributes(getContext(), i, Attrs); 395 setAttributes(PAL); 396 } 397 398 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 399 AttributeList PAL = getAttributes(); 400 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 401 setAttributes(PAL); 402 } 403 404 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 405 AttributeList PAL = getAttributes(); 406 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 407 setAttributes(PAL); 408 } 409 410 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 411 AttributeList PAL = getAttributes(); 412 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 413 setAttributes(PAL); 414 } 415 416 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 417 AttributeList PAL = getAttributes(); 418 PAL = PAL.removeAttribute(getContext(), i, Kind); 419 setAttributes(PAL); 420 } 421 422 void Function::removeAttribute(unsigned i, StringRef Kind) { 423 AttributeList PAL = getAttributes(); 424 PAL = PAL.removeAttribute(getContext(), i, Kind); 425 setAttributes(PAL); 426 } 427 428 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 429 AttributeList PAL = getAttributes(); 430 PAL = PAL.removeAttributes(getContext(), i, Attrs); 431 setAttributes(PAL); 432 } 433 434 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 435 AttributeList PAL = getAttributes(); 436 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 437 setAttributes(PAL); 438 } 439 440 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 441 AttributeList PAL = getAttributes(); 442 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 443 setAttributes(PAL); 444 } 445 446 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 447 AttributeList PAL = getAttributes(); 448 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 449 setAttributes(PAL); 450 } 451 452 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 453 AttributeList PAL = getAttributes(); 454 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 455 setAttributes(PAL); 456 } 457 458 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 459 AttributeList PAL = getAttributes(); 460 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 461 setAttributes(PAL); 462 } 463 464 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 465 AttributeList PAL = getAttributes(); 466 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 467 setAttributes(PAL); 468 } 469 470 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 471 uint64_t Bytes) { 472 AttributeList PAL = getAttributes(); 473 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 474 setAttributes(PAL); 475 } 476 477 const std::string &Function::getGC() const { 478 assert(hasGC() && "Function has no collector"); 479 return getContext().getGC(*this); 480 } 481 482 void Function::setGC(std::string Str) { 483 setValueSubclassDataBit(14, !Str.empty()); 484 getContext().setGC(*this, std::move(Str)); 485 } 486 487 void Function::clearGC() { 488 if (!hasGC()) 489 return; 490 getContext().deleteGC(*this); 491 setValueSubclassDataBit(14, false); 492 } 493 494 /// Copy all additional attributes (those not needed to create a Function) from 495 /// the Function Src to this one. 496 void Function::copyAttributesFrom(const Function *Src) { 497 GlobalObject::copyAttributesFrom(Src); 498 setCallingConv(Src->getCallingConv()); 499 setAttributes(Src->getAttributes()); 500 if (Src->hasGC()) 501 setGC(Src->getGC()); 502 else 503 clearGC(); 504 if (Src->hasPersonalityFn()) 505 setPersonalityFn(Src->getPersonalityFn()); 506 if (Src->hasPrefixData()) 507 setPrefixData(Src->getPrefixData()); 508 if (Src->hasPrologueData()) 509 setPrologueData(Src->getPrologueData()); 510 } 511 512 /// Table of string intrinsic names indexed by enum value. 513 static const char * const IntrinsicNameTable[] = { 514 "not_intrinsic", 515 #define GET_INTRINSIC_NAME_TABLE 516 #include "llvm/IR/IntrinsicImpl.inc" 517 #undef GET_INTRINSIC_NAME_TABLE 518 }; 519 520 /// Table of per-target intrinsic name tables. 521 #define GET_INTRINSIC_TARGET_DATA 522 #include "llvm/IR/IntrinsicImpl.inc" 523 #undef GET_INTRINSIC_TARGET_DATA 524 525 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 526 /// target as \c Name, or the generic table if \c Name is not target specific. 527 /// 528 /// Returns the relevant slice of \c IntrinsicNameTable 529 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 530 assert(Name.startswith("llvm.")); 531 532 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 533 // Drop "llvm." and take the first dotted component. That will be the target 534 // if this is target specific. 535 StringRef Target = Name.drop_front(5).split('.').first; 536 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 537 [](const IntrinsicTargetInfo &TI, 538 StringRef Target) { return TI.Name < Target; }); 539 // We've either found the target or just fall back to the generic set, which 540 // is always first. 541 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 542 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 543 } 544 545 /// This does the actual lookup of an intrinsic ID which 546 /// matches the given function name. 547 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 548 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 549 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 550 if (Idx == -1) 551 return Intrinsic::not_intrinsic; 552 553 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 554 // an index into a sub-table. 555 int Adjust = NameTable.data() - IntrinsicNameTable; 556 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 557 558 // If the intrinsic is not overloaded, require an exact match. If it is 559 // overloaded, require either exact or prefix match. 560 const auto MatchSize = strlen(NameTable[Idx]); 561 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 562 bool IsExactMatch = Name.size() == MatchSize; 563 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 564 } 565 566 void Function::recalculateIntrinsicID() { 567 StringRef Name = getName(); 568 if (!Name.startswith("llvm.")) { 569 HasLLVMReservedName = false; 570 IntID = Intrinsic::not_intrinsic; 571 return; 572 } 573 HasLLVMReservedName = true; 574 IntID = lookupIntrinsicID(Name); 575 } 576 577 /// Returns a stable mangling for the type specified for use in the name 578 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 579 /// of named types is simply their name. Manglings for unnamed types consist 580 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 581 /// combined with the mangling of their component types. A vararg function 582 /// type will have a suffix of 'vararg'. Since function types can contain 583 /// other function types, we close a function type mangling with suffix 'f' 584 /// which can't be confused with it's prefix. This ensures we don't have 585 /// collisions between two unrelated function types. Otherwise, you might 586 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 587 /// 588 static std::string getMangledTypeStr(Type* Ty) { 589 std::string Result; 590 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 591 Result += "p" + utostr(PTyp->getAddressSpace()) + 592 getMangledTypeStr(PTyp->getElementType()); 593 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 594 Result += "a" + utostr(ATyp->getNumElements()) + 595 getMangledTypeStr(ATyp->getElementType()); 596 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 597 if (!STyp->isLiteral()) { 598 Result += "s_"; 599 Result += STyp->getName(); 600 } else { 601 Result += "sl_"; 602 for (auto Elem : STyp->elements()) 603 Result += getMangledTypeStr(Elem); 604 } 605 // Ensure nested structs are distinguishable. 606 Result += "s"; 607 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 608 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 609 for (size_t i = 0; i < FT->getNumParams(); i++) 610 Result += getMangledTypeStr(FT->getParamType(i)); 611 if (FT->isVarArg()) 612 Result += "vararg"; 613 // Ensure nested function types are distinguishable. 614 Result += "f"; 615 } else if (isa<VectorType>(Ty)) { 616 Result += "v" + utostr(Ty->getVectorNumElements()) + 617 getMangledTypeStr(Ty->getVectorElementType()); 618 } else if (Ty) { 619 switch (Ty->getTypeID()) { 620 default: llvm_unreachable("Unhandled type"); 621 case Type::VoidTyID: Result += "isVoid"; break; 622 case Type::MetadataTyID: Result += "Metadata"; break; 623 case Type::HalfTyID: Result += "f16"; break; 624 case Type::FloatTyID: Result += "f32"; break; 625 case Type::DoubleTyID: Result += "f64"; break; 626 case Type::X86_FP80TyID: Result += "f80"; break; 627 case Type::FP128TyID: Result += "f128"; break; 628 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 629 case Type::X86_MMXTyID: Result += "x86mmx"; break; 630 case Type::IntegerTyID: 631 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 632 break; 633 } 634 } 635 return Result; 636 } 637 638 StringRef Intrinsic::getName(ID id) { 639 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 640 assert(!isOverloaded(id) && 641 "This version of getName does not support overloading"); 642 return IntrinsicNameTable[id]; 643 } 644 645 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 646 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 647 std::string Result(IntrinsicNameTable[id]); 648 for (Type *Ty : Tys) { 649 Result += "." + getMangledTypeStr(Ty); 650 } 651 return Result; 652 } 653 654 /// IIT_Info - These are enumerators that describe the entries returned by the 655 /// getIntrinsicInfoTableEntries function. 656 /// 657 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 658 enum IIT_Info { 659 // Common values should be encoded with 0-15. 660 IIT_Done = 0, 661 IIT_I1 = 1, 662 IIT_I8 = 2, 663 IIT_I16 = 3, 664 IIT_I32 = 4, 665 IIT_I64 = 5, 666 IIT_F16 = 6, 667 IIT_F32 = 7, 668 IIT_F64 = 8, 669 IIT_V2 = 9, 670 IIT_V4 = 10, 671 IIT_V8 = 11, 672 IIT_V16 = 12, 673 IIT_V32 = 13, 674 IIT_PTR = 14, 675 IIT_ARG = 15, 676 677 // Values from 16+ are only encodable with the inefficient encoding. 678 IIT_V64 = 16, 679 IIT_MMX = 17, 680 IIT_TOKEN = 18, 681 IIT_METADATA = 19, 682 IIT_EMPTYSTRUCT = 20, 683 IIT_STRUCT2 = 21, 684 IIT_STRUCT3 = 22, 685 IIT_STRUCT4 = 23, 686 IIT_STRUCT5 = 24, 687 IIT_EXTEND_ARG = 25, 688 IIT_TRUNC_ARG = 26, 689 IIT_ANYPTR = 27, 690 IIT_V1 = 28, 691 IIT_VARARG = 29, 692 IIT_HALF_VEC_ARG = 30, 693 IIT_SAME_VEC_WIDTH_ARG = 31, 694 IIT_PTR_TO_ARG = 32, 695 IIT_PTR_TO_ELT = 33, 696 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 697 IIT_I128 = 35, 698 IIT_V512 = 36, 699 IIT_V1024 = 37, 700 IIT_STRUCT6 = 38, 701 IIT_STRUCT7 = 39, 702 IIT_STRUCT8 = 40, 703 IIT_F128 = 41, 704 IIT_VEC_ELEMENT = 42 705 }; 706 707 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 708 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 709 using namespace Intrinsic; 710 711 IIT_Info Info = IIT_Info(Infos[NextElt++]); 712 unsigned StructElts = 2; 713 714 switch (Info) { 715 case IIT_Done: 716 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 717 return; 718 case IIT_VARARG: 719 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 720 return; 721 case IIT_MMX: 722 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 723 return; 724 case IIT_TOKEN: 725 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 726 return; 727 case IIT_METADATA: 728 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 729 return; 730 case IIT_F16: 731 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 732 return; 733 case IIT_F32: 734 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 735 return; 736 case IIT_F64: 737 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 738 return; 739 case IIT_F128: 740 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 741 return; 742 case IIT_I1: 743 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 744 return; 745 case IIT_I8: 746 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 747 return; 748 case IIT_I16: 749 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 750 return; 751 case IIT_I32: 752 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 753 return; 754 case IIT_I64: 755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 756 return; 757 case IIT_I128: 758 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 759 return; 760 case IIT_V1: 761 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 762 DecodeIITType(NextElt, Infos, OutputTable); 763 return; 764 case IIT_V2: 765 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 766 DecodeIITType(NextElt, Infos, OutputTable); 767 return; 768 case IIT_V4: 769 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 770 DecodeIITType(NextElt, Infos, OutputTable); 771 return; 772 case IIT_V8: 773 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 774 DecodeIITType(NextElt, Infos, OutputTable); 775 return; 776 case IIT_V16: 777 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 778 DecodeIITType(NextElt, Infos, OutputTable); 779 return; 780 case IIT_V32: 781 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 782 DecodeIITType(NextElt, Infos, OutputTable); 783 return; 784 case IIT_V64: 785 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 786 DecodeIITType(NextElt, Infos, OutputTable); 787 return; 788 case IIT_V512: 789 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 790 DecodeIITType(NextElt, Infos, OutputTable); 791 return; 792 case IIT_V1024: 793 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 794 DecodeIITType(NextElt, Infos, OutputTable); 795 return; 796 case IIT_PTR: 797 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 798 DecodeIITType(NextElt, Infos, OutputTable); 799 return; 800 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 801 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 802 Infos[NextElt++])); 803 DecodeIITType(NextElt, Infos, OutputTable); 804 return; 805 } 806 case IIT_ARG: { 807 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 808 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 809 return; 810 } 811 case IIT_EXTEND_ARG: { 812 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 813 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 814 ArgInfo)); 815 return; 816 } 817 case IIT_TRUNC_ARG: { 818 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 819 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 820 ArgInfo)); 821 return; 822 } 823 case IIT_HALF_VEC_ARG: { 824 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 825 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 826 ArgInfo)); 827 return; 828 } 829 case IIT_SAME_VEC_WIDTH_ARG: { 830 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 831 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 832 ArgInfo)); 833 return; 834 } 835 case IIT_PTR_TO_ARG: { 836 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 837 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 838 ArgInfo)); 839 return; 840 } 841 case IIT_PTR_TO_ELT: { 842 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 843 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 844 return; 845 } 846 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 847 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 848 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 849 OutputTable.push_back( 850 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 851 return; 852 } 853 case IIT_EMPTYSTRUCT: 854 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 855 return; 856 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 857 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 858 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 859 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 860 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 861 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 862 case IIT_STRUCT2: { 863 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 864 865 for (unsigned i = 0; i != StructElts; ++i) 866 DecodeIITType(NextElt, Infos, OutputTable); 867 return; 868 } 869 case IIT_VEC_ELEMENT: { 870 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 871 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 872 ArgInfo)); 873 return; 874 } 875 } 876 llvm_unreachable("unhandled"); 877 } 878 879 #define GET_INTRINSIC_GENERATOR_GLOBAL 880 #include "llvm/IR/IntrinsicImpl.inc" 881 #undef GET_INTRINSIC_GENERATOR_GLOBAL 882 883 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 884 SmallVectorImpl<IITDescriptor> &T){ 885 // Check to see if the intrinsic's type was expressible by the table. 886 unsigned TableVal = IIT_Table[id-1]; 887 888 // Decode the TableVal into an array of IITValues. 889 SmallVector<unsigned char, 8> IITValues; 890 ArrayRef<unsigned char> IITEntries; 891 unsigned NextElt = 0; 892 if ((TableVal >> 31) != 0) { 893 // This is an offset into the IIT_LongEncodingTable. 894 IITEntries = IIT_LongEncodingTable; 895 896 // Strip sentinel bit. 897 NextElt = (TableVal << 1) >> 1; 898 } else { 899 // Decode the TableVal into an array of IITValues. If the entry was encoded 900 // into a single word in the table itself, decode it now. 901 do { 902 IITValues.push_back(TableVal & 0xF); 903 TableVal >>= 4; 904 } while (TableVal); 905 906 IITEntries = IITValues; 907 NextElt = 0; 908 } 909 910 // Okay, decode the table into the output vector of IITDescriptors. 911 DecodeIITType(NextElt, IITEntries, T); 912 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 913 DecodeIITType(NextElt, IITEntries, T); 914 } 915 916 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 917 ArrayRef<Type*> Tys, LLVMContext &Context) { 918 using namespace Intrinsic; 919 920 IITDescriptor D = Infos.front(); 921 Infos = Infos.slice(1); 922 923 switch (D.Kind) { 924 case IITDescriptor::Void: return Type::getVoidTy(Context); 925 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 926 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 927 case IITDescriptor::Token: return Type::getTokenTy(Context); 928 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 929 case IITDescriptor::Half: return Type::getHalfTy(Context); 930 case IITDescriptor::Float: return Type::getFloatTy(Context); 931 case IITDescriptor::Double: return Type::getDoubleTy(Context); 932 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 933 934 case IITDescriptor::Integer: 935 return IntegerType::get(Context, D.Integer_Width); 936 case IITDescriptor::Vector: 937 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 938 case IITDescriptor::Pointer: 939 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 940 D.Pointer_AddressSpace); 941 case IITDescriptor::Struct: { 942 SmallVector<Type *, 8> Elts; 943 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 944 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 945 return StructType::get(Context, Elts); 946 } 947 case IITDescriptor::Argument: 948 return Tys[D.getArgumentNumber()]; 949 case IITDescriptor::ExtendArgument: { 950 Type *Ty = Tys[D.getArgumentNumber()]; 951 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 952 return VectorType::getExtendedElementVectorType(VTy); 953 954 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 955 } 956 case IITDescriptor::TruncArgument: { 957 Type *Ty = Tys[D.getArgumentNumber()]; 958 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 959 return VectorType::getTruncatedElementVectorType(VTy); 960 961 IntegerType *ITy = cast<IntegerType>(Ty); 962 assert(ITy->getBitWidth() % 2 == 0); 963 return IntegerType::get(Context, ITy->getBitWidth() / 2); 964 } 965 case IITDescriptor::HalfVecArgument: 966 return VectorType::getHalfElementsVectorType(cast<VectorType>( 967 Tys[D.getArgumentNumber()])); 968 case IITDescriptor::SameVecWidthArgument: { 969 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 970 Type *Ty = Tys[D.getArgumentNumber()]; 971 if (auto *VTy = dyn_cast<VectorType>(Ty)) 972 return VectorType::get(EltTy, VTy->getNumElements()); 973 return EltTy; 974 } 975 case IITDescriptor::PtrToArgument: { 976 Type *Ty = Tys[D.getArgumentNumber()]; 977 return PointerType::getUnqual(Ty); 978 } 979 case IITDescriptor::PtrToElt: { 980 Type *Ty = Tys[D.getArgumentNumber()]; 981 VectorType *VTy = dyn_cast<VectorType>(Ty); 982 if (!VTy) 983 llvm_unreachable("Expected an argument of Vector Type"); 984 Type *EltTy = VTy->getVectorElementType(); 985 return PointerType::getUnqual(EltTy); 986 } 987 case IITDescriptor::VecElementArgument: { 988 Type *Ty = Tys[D.getArgumentNumber()]; 989 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 990 return VTy->getElementType(); 991 llvm_unreachable("Expected an argument of Vector Type"); 992 } 993 case IITDescriptor::VecOfAnyPtrsToElt: 994 // Return the overloaded type (which determines the pointers address space) 995 return Tys[D.getOverloadArgNumber()]; 996 } 997 llvm_unreachable("unhandled"); 998 } 999 1000 FunctionType *Intrinsic::getType(LLVMContext &Context, 1001 ID id, ArrayRef<Type*> Tys) { 1002 SmallVector<IITDescriptor, 8> Table; 1003 getIntrinsicInfoTableEntries(id, Table); 1004 1005 ArrayRef<IITDescriptor> TableRef = Table; 1006 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1007 1008 SmallVector<Type*, 8> ArgTys; 1009 while (!TableRef.empty()) 1010 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1011 1012 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1013 // If we see void type as the type of the last argument, it is vararg intrinsic 1014 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1015 ArgTys.pop_back(); 1016 return FunctionType::get(ResultTy, ArgTys, true); 1017 } 1018 return FunctionType::get(ResultTy, ArgTys, false); 1019 } 1020 1021 bool Intrinsic::isOverloaded(ID id) { 1022 #define GET_INTRINSIC_OVERLOAD_TABLE 1023 #include "llvm/IR/IntrinsicImpl.inc" 1024 #undef GET_INTRINSIC_OVERLOAD_TABLE 1025 } 1026 1027 bool Intrinsic::isLeaf(ID id) { 1028 switch (id) { 1029 default: 1030 return true; 1031 1032 case Intrinsic::experimental_gc_statepoint: 1033 case Intrinsic::experimental_patchpoint_void: 1034 case Intrinsic::experimental_patchpoint_i64: 1035 return false; 1036 } 1037 } 1038 1039 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1040 #define GET_INTRINSIC_ATTRIBUTES 1041 #include "llvm/IR/IntrinsicImpl.inc" 1042 #undef GET_INTRINSIC_ATTRIBUTES 1043 1044 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1045 // There can never be multiple globals with the same name of different types, 1046 // because intrinsics must be a specific type. 1047 return cast<Function>( 1048 M->getOrInsertFunction(getName(id, Tys), 1049 getType(M->getContext(), id, Tys)) 1050 .getCallee()); 1051 } 1052 1053 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1054 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1055 #include "llvm/IR/IntrinsicImpl.inc" 1056 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1057 1058 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1059 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1060 #include "llvm/IR/IntrinsicImpl.inc" 1061 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1062 1063 using DeferredIntrinsicMatchPair = 1064 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1065 1066 static bool matchIntrinsicType( 1067 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1068 SmallVectorImpl<Type *> &ArgTys, 1069 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1070 bool IsDeferredCheck) { 1071 using namespace Intrinsic; 1072 1073 // If we ran out of descriptors, there are too many arguments. 1074 if (Infos.empty()) return true; 1075 1076 // Do this before slicing off the 'front' part 1077 auto InfosRef = Infos; 1078 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1079 DeferredChecks.emplace_back(T, InfosRef); 1080 return false; 1081 }; 1082 1083 IITDescriptor D = Infos.front(); 1084 Infos = Infos.slice(1); 1085 1086 switch (D.Kind) { 1087 case IITDescriptor::Void: return !Ty->isVoidTy(); 1088 case IITDescriptor::VarArg: return true; 1089 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1090 case IITDescriptor::Token: return !Ty->isTokenTy(); 1091 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1092 case IITDescriptor::Half: return !Ty->isHalfTy(); 1093 case IITDescriptor::Float: return !Ty->isFloatTy(); 1094 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1095 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1096 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1097 case IITDescriptor::Vector: { 1098 VectorType *VT = dyn_cast<VectorType>(Ty); 1099 return !VT || VT->getNumElements() != D.Vector_Width || 1100 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1101 DeferredChecks, IsDeferredCheck); 1102 } 1103 case IITDescriptor::Pointer: { 1104 PointerType *PT = dyn_cast<PointerType>(Ty); 1105 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1106 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1107 DeferredChecks, IsDeferredCheck); 1108 } 1109 1110 case IITDescriptor::Struct: { 1111 StructType *ST = dyn_cast<StructType>(Ty); 1112 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1113 return true; 1114 1115 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1116 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1117 DeferredChecks, IsDeferredCheck)) 1118 return true; 1119 return false; 1120 } 1121 1122 case IITDescriptor::Argument: 1123 // If this is the second occurrence of an argument, 1124 // verify that the later instance matches the previous instance. 1125 if (D.getArgumentNumber() < ArgTys.size()) 1126 return Ty != ArgTys[D.getArgumentNumber()]; 1127 1128 if (D.getArgumentNumber() > ArgTys.size() || 1129 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1130 return IsDeferredCheck || DeferCheck(Ty); 1131 1132 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1133 "Table consistency error"); 1134 ArgTys.push_back(Ty); 1135 1136 switch (D.getArgumentKind()) { 1137 case IITDescriptor::AK_Any: return false; // Success 1138 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1139 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1140 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1141 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1142 default: break; 1143 } 1144 llvm_unreachable("all argument kinds not covered"); 1145 1146 case IITDescriptor::ExtendArgument: { 1147 // If this is a forward reference, defer the check for later. 1148 if (D.getArgumentNumber() >= ArgTys.size()) 1149 return IsDeferredCheck || DeferCheck(Ty); 1150 1151 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1152 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1153 NewTy = VectorType::getExtendedElementVectorType(VTy); 1154 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1155 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1156 else 1157 return true; 1158 1159 return Ty != NewTy; 1160 } 1161 case IITDescriptor::TruncArgument: { 1162 // If this is a forward reference, defer the check for later. 1163 if (D.getArgumentNumber() >= ArgTys.size()) 1164 return IsDeferredCheck || DeferCheck(Ty); 1165 1166 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1167 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1168 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1169 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1170 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1171 else 1172 return true; 1173 1174 return Ty != NewTy; 1175 } 1176 case IITDescriptor::HalfVecArgument: 1177 // If this is a forward reference, defer the check for later. 1178 return D.getArgumentNumber() >= ArgTys.size() || 1179 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1180 VectorType::getHalfElementsVectorType( 1181 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1182 case IITDescriptor::SameVecWidthArgument: { 1183 if (D.getArgumentNumber() >= ArgTys.size()) { 1184 // Defer check and subsequent check for the vector element type. 1185 Infos = Infos.slice(1); 1186 return IsDeferredCheck || DeferCheck(Ty); 1187 } 1188 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1189 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1190 // Both must be vectors of the same number of elements or neither. 1191 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1192 return true; 1193 Type *EltTy = Ty; 1194 if (ThisArgType) { 1195 if (ReferenceType->getVectorNumElements() != 1196 ThisArgType->getVectorNumElements()) 1197 return true; 1198 EltTy = ThisArgType->getVectorElementType(); 1199 } 1200 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1201 IsDeferredCheck); 1202 } 1203 case IITDescriptor::PtrToArgument: { 1204 if (D.getArgumentNumber() >= ArgTys.size()) 1205 return IsDeferredCheck || DeferCheck(Ty); 1206 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1207 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1208 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1209 } 1210 case IITDescriptor::PtrToElt: { 1211 if (D.getArgumentNumber() >= ArgTys.size()) 1212 return IsDeferredCheck || DeferCheck(Ty); 1213 VectorType * ReferenceType = 1214 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1215 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1216 1217 return (!ThisArgType || !ReferenceType || 1218 ThisArgType->getElementType() != ReferenceType->getElementType()); 1219 } 1220 case IITDescriptor::VecOfAnyPtrsToElt: { 1221 unsigned RefArgNumber = D.getRefArgNumber(); 1222 if (RefArgNumber >= ArgTys.size()) { 1223 if (IsDeferredCheck) 1224 return true; 1225 // If forward referencing, already add the pointer-vector type and 1226 // defer the checks for later. 1227 ArgTys.push_back(Ty); 1228 return DeferCheck(Ty); 1229 } 1230 1231 if (!IsDeferredCheck){ 1232 assert(D.getOverloadArgNumber() == ArgTys.size() && 1233 "Table consistency error"); 1234 ArgTys.push_back(Ty); 1235 } 1236 1237 // Verify the overloaded type "matches" the Ref type. 1238 // i.e. Ty is a vector with the same width as Ref. 1239 // Composed of pointers to the same element type as Ref. 1240 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1241 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1242 if (!ThisArgVecTy || !ReferenceType || 1243 (ReferenceType->getVectorNumElements() != 1244 ThisArgVecTy->getVectorNumElements())) 1245 return true; 1246 PointerType *ThisArgEltTy = 1247 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1248 if (!ThisArgEltTy) 1249 return true; 1250 return ThisArgEltTy->getElementType() != 1251 ReferenceType->getVectorElementType(); 1252 } 1253 case IITDescriptor::VecElementArgument: { 1254 if (D.getArgumentNumber() >= ArgTys.size()) 1255 return IsDeferredCheck ? true : DeferCheck(Ty); 1256 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1257 return !ReferenceType || Ty != ReferenceType->getElementType(); 1258 } 1259 } 1260 llvm_unreachable("unhandled"); 1261 } 1262 1263 Intrinsic::MatchIntrinsicTypesResult 1264 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1265 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1266 SmallVectorImpl<Type *> &ArgTys) { 1267 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1268 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1269 false)) 1270 return MatchIntrinsicTypes_NoMatchRet; 1271 1272 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1273 1274 for (auto Ty : FTy->params()) 1275 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1276 return MatchIntrinsicTypes_NoMatchArg; 1277 1278 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1279 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1280 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1281 true)) 1282 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1283 : MatchIntrinsicTypes_NoMatchArg; 1284 } 1285 1286 return MatchIntrinsicTypes_Match; 1287 } 1288 1289 bool 1290 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1291 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1292 // If there are no descriptors left, then it can't be a vararg. 1293 if (Infos.empty()) 1294 return isVarArg; 1295 1296 // There should be only one descriptor remaining at this point. 1297 if (Infos.size() != 1) 1298 return true; 1299 1300 // Check and verify the descriptor. 1301 IITDescriptor D = Infos.front(); 1302 Infos = Infos.slice(1); 1303 if (D.Kind == IITDescriptor::VarArg) 1304 return !isVarArg; 1305 1306 return true; 1307 } 1308 1309 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1310 Intrinsic::ID ID = F->getIntrinsicID(); 1311 if (!ID) 1312 return None; 1313 1314 FunctionType *FTy = F->getFunctionType(); 1315 // Accumulate an array of overloaded types for the given intrinsic 1316 SmallVector<Type *, 4> ArgTys; 1317 { 1318 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1319 getIntrinsicInfoTableEntries(ID, Table); 1320 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1321 1322 if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys)) 1323 return None; 1324 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1325 return None; 1326 } 1327 1328 StringRef Name = F->getName(); 1329 if (Name == Intrinsic::getName(ID, ArgTys)) 1330 return None; 1331 1332 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1333 NewDecl->setCallingConv(F->getCallingConv()); 1334 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1335 return NewDecl; 1336 } 1337 1338 /// hasAddressTaken - returns true if there are any uses of this function 1339 /// other than direct calls or invokes to it. 1340 bool Function::hasAddressTaken(const User* *PutOffender) const { 1341 for (const Use &U : uses()) { 1342 const User *FU = U.getUser(); 1343 if (isa<BlockAddress>(FU)) 1344 continue; 1345 const auto *Call = dyn_cast<CallBase>(FU); 1346 if (!Call) { 1347 if (PutOffender) 1348 *PutOffender = FU; 1349 return true; 1350 } 1351 if (!Call->isCallee(&U)) { 1352 if (PutOffender) 1353 *PutOffender = FU; 1354 return true; 1355 } 1356 } 1357 return false; 1358 } 1359 1360 bool Function::isDefTriviallyDead() const { 1361 // Check the linkage 1362 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1363 !hasAvailableExternallyLinkage()) 1364 return false; 1365 1366 // Check if the function is used by anything other than a blockaddress. 1367 for (const User *U : users()) 1368 if (!isa<BlockAddress>(U)) 1369 return false; 1370 1371 return true; 1372 } 1373 1374 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1375 /// setjmp or other function that gcc recognizes as "returning twice". 1376 bool Function::callsFunctionThatReturnsTwice() const { 1377 for (const Instruction &I : instructions(this)) 1378 if (const auto *Call = dyn_cast<CallBase>(&I)) 1379 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1380 return true; 1381 1382 return false; 1383 } 1384 1385 Constant *Function::getPersonalityFn() const { 1386 assert(hasPersonalityFn() && getNumOperands()); 1387 return cast<Constant>(Op<0>()); 1388 } 1389 1390 void Function::setPersonalityFn(Constant *Fn) { 1391 setHungoffOperand<0>(Fn); 1392 setValueSubclassDataBit(3, Fn != nullptr); 1393 } 1394 1395 Constant *Function::getPrefixData() const { 1396 assert(hasPrefixData() && getNumOperands()); 1397 return cast<Constant>(Op<1>()); 1398 } 1399 1400 void Function::setPrefixData(Constant *PrefixData) { 1401 setHungoffOperand<1>(PrefixData); 1402 setValueSubclassDataBit(1, PrefixData != nullptr); 1403 } 1404 1405 Constant *Function::getPrologueData() const { 1406 assert(hasPrologueData() && getNumOperands()); 1407 return cast<Constant>(Op<2>()); 1408 } 1409 1410 void Function::setPrologueData(Constant *PrologueData) { 1411 setHungoffOperand<2>(PrologueData); 1412 setValueSubclassDataBit(2, PrologueData != nullptr); 1413 } 1414 1415 void Function::allocHungoffUselist() { 1416 // If we've already allocated a uselist, stop here. 1417 if (getNumOperands()) 1418 return; 1419 1420 allocHungoffUses(3, /*IsPhi=*/ false); 1421 setNumHungOffUseOperands(3); 1422 1423 // Initialize the uselist with placeholder operands to allow traversal. 1424 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1425 Op<0>().set(CPN); 1426 Op<1>().set(CPN); 1427 Op<2>().set(CPN); 1428 } 1429 1430 template <int Idx> 1431 void Function::setHungoffOperand(Constant *C) { 1432 if (C) { 1433 allocHungoffUselist(); 1434 Op<Idx>().set(C); 1435 } else if (getNumOperands()) { 1436 Op<Idx>().set( 1437 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1438 } 1439 } 1440 1441 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1442 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1443 if (On) 1444 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1445 else 1446 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1447 } 1448 1449 void Function::setEntryCount(ProfileCount Count, 1450 const DenseSet<GlobalValue::GUID> *S) { 1451 assert(Count.hasValue()); 1452 #if !defined(NDEBUG) 1453 auto PrevCount = getEntryCount(); 1454 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1455 #endif 1456 MDBuilder MDB(getContext()); 1457 setMetadata( 1458 LLVMContext::MD_prof, 1459 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1460 } 1461 1462 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1463 const DenseSet<GlobalValue::GUID> *Imports) { 1464 setEntryCount(ProfileCount(Count, Type), Imports); 1465 } 1466 1467 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1468 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1469 if (MD && MD->getOperand(0)) 1470 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1471 if (MDS->getString().equals("function_entry_count")) { 1472 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1473 uint64_t Count = CI->getValue().getZExtValue(); 1474 // A value of -1 is used for SamplePGO when there were no samples. 1475 // Treat this the same as unknown. 1476 if (Count == (uint64_t)-1) 1477 return ProfileCount::getInvalid(); 1478 return ProfileCount(Count, PCT_Real); 1479 } else if (AllowSynthetic && 1480 MDS->getString().equals("synthetic_function_entry_count")) { 1481 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1482 uint64_t Count = CI->getValue().getZExtValue(); 1483 return ProfileCount(Count, PCT_Synthetic); 1484 } 1485 } 1486 return ProfileCount::getInvalid(); 1487 } 1488 1489 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1490 DenseSet<GlobalValue::GUID> R; 1491 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1492 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1493 if (MDS->getString().equals("function_entry_count")) 1494 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1495 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1496 ->getValue() 1497 .getZExtValue()); 1498 return R; 1499 } 1500 1501 void Function::setSectionPrefix(StringRef Prefix) { 1502 MDBuilder MDB(getContext()); 1503 setMetadata(LLVMContext::MD_section_prefix, 1504 MDB.createFunctionSectionPrefix(Prefix)); 1505 } 1506 1507 Optional<StringRef> Function::getSectionPrefix() const { 1508 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1509 assert(cast<MDString>(MD->getOperand(0)) 1510 ->getString() 1511 .equals("function_section_prefix") && 1512 "Metadata not match"); 1513 return cast<MDString>(MD->getOperand(1))->getString(); 1514 } 1515 return None; 1516 } 1517 1518 bool Function::nullPointerIsDefined() const { 1519 return getFnAttribute("null-pointer-is-valid") 1520 .getValueAsString() 1521 .equals("true"); 1522 } 1523 1524 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1525 if (F && F->nullPointerIsDefined()) 1526 return true; 1527 1528 if (AS != 0) 1529 return true; 1530 1531 return false; 1532 } 1533