xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 4d9f6ab3054bdbe07982333b31974b357586acca)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <string>
72 
73 using namespace llvm;
74 using ProfileCount = Function::ProfileCount;
75 
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits<BasicBlock>;
79 
80 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
81     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
82     cl::desc("Maximum size for the name of non-global values."));
83 
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
87 
88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
89     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
90   setName(Name);
91 }
92 
93 void Argument::setParent(Function *parent) {
94   Parent = parent;
95 }
96 
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
98   if (!getType()->isPointerTy()) return false;
99   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
100       (AllowUndefOrPoison ||
101        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
102     return true;
103   else if (getDereferenceableBytes() > 0 &&
104            !NullPointerIsDefined(getParent(),
105                                  getType()->getPointerAddressSpace()))
106     return true;
107   return false;
108 }
109 
110 bool Argument::hasByValAttr() const {
111   if (!getType()->isPointerTy()) return false;
112   return hasAttribute(Attribute::ByVal);
113 }
114 
115 bool Argument::hasByRefAttr() const {
116   if (!getType()->isPointerTy())
117     return false;
118   return hasAttribute(Attribute::ByRef);
119 }
120 
121 bool Argument::hasSwiftSelfAttr() const {
122   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
123 }
124 
125 bool Argument::hasSwiftErrorAttr() const {
126   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
127 }
128 
129 bool Argument::hasInAllocaAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::InAlloca);
132 }
133 
134 bool Argument::hasPreallocatedAttr() const {
135   if (!getType()->isPointerTy())
136     return false;
137   return hasAttribute(Attribute::Preallocated);
138 }
139 
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
146 }
147 
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149   if (!getType()->isPointerTy())
150     return false;
151   AttributeList Attrs = getParent()->getAttributes();
152   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
156          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
157 }
158 
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
160 /// parameter type.
161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
162   // FIXME: All the type carrying attributes are mutually exclusive, so there
163   // should be a single query to get the stored type that handles any of them.
164   if (Type *ByValTy = ParamAttrs.getByValType())
165     return ByValTy;
166   if (Type *ByRefTy = ParamAttrs.getByRefType())
167     return ByRefTy;
168   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
169     return PreAllocTy;
170   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
171     return InAllocaTy;
172   if (Type *SRetTy = ParamAttrs.getStructRetType())
173     return SRetTy;
174 
175   return nullptr;
176 }
177 
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttrs(getArgNo());
181   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
182     return DL.getTypeAllocSize(MemTy);
183   return 0;
184 }
185 
186 Type *Argument::getPointeeInMemoryValueType() const {
187   AttributeSet ParamAttrs =
188       getParent()->getAttributes().getParamAttrs(getArgNo());
189   return getMemoryParamAllocType(ParamAttrs);
190 }
191 
192 uint64_t Argument::getParamAlignment() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlignment(getArgNo());
195 }
196 
197 MaybeAlign Argument::getParamAlign() const {
198   assert(getType()->isPointerTy() && "Only pointers have alignments");
199   return getParent()->getParamAlign(getArgNo());
200 }
201 
202 MaybeAlign Argument::getParamStackAlign() const {
203   return getParent()->getParamStackAlign(getArgNo());
204 }
205 
206 Type *Argument::getParamByValType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByValType(getArgNo());
209 }
210 
211 Type *Argument::getParamStructRetType() const {
212   assert(getType()->isPointerTy() && "Only pointers have sret types");
213   return getParent()->getParamStructRetType(getArgNo());
214 }
215 
216 Type *Argument::getParamByRefType() const {
217   assert(getType()->isPointerTy() && "Only pointers have byref types");
218   return getParent()->getParamByRefType(getArgNo());
219 }
220 
221 Type *Argument::getParamInAllocaType() const {
222   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
223   return getParent()->getParamInAllocaType(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableBytes(getArgNo());
230 }
231 
232 uint64_t Argument::getDereferenceableOrNullBytes() const {
233   assert(getType()->isPointerTy() &&
234          "Only pointers have dereferenceable bytes");
235   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
236 }
237 
238 bool Argument::hasNestAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::Nest);
241 }
242 
243 bool Argument::hasNoAliasAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoAlias);
246 }
247 
248 bool Argument::hasNoCaptureAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::NoCapture);
251 }
252 
253 bool Argument::hasNoFreeAttr() const {
254   if (!getType()->isPointerTy()) return false;
255   return hasAttribute(Attribute::NoFree);
256 }
257 
258 bool Argument::hasStructRetAttr() const {
259   if (!getType()->isPointerTy()) return false;
260   return hasAttribute(Attribute::StructRet);
261 }
262 
263 bool Argument::hasInRegAttr() const {
264   return hasAttribute(Attribute::InReg);
265 }
266 
267 bool Argument::hasReturnedAttr() const {
268   return hasAttribute(Attribute::Returned);
269 }
270 
271 bool Argument::hasZExtAttr() const {
272   return hasAttribute(Attribute::ZExt);
273 }
274 
275 bool Argument::hasSExtAttr() const {
276   return hasAttribute(Attribute::SExt);
277 }
278 
279 bool Argument::onlyReadsMemory() const {
280   AttributeList Attrs = getParent()->getAttributes();
281   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
282          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
283 }
284 
285 void Argument::addAttrs(AttrBuilder &B) {
286   AttributeList AL = getParent()->getAttributes();
287   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
288   getParent()->setAttributes(AL);
289 }
290 
291 void Argument::addAttr(Attribute::AttrKind Kind) {
292   getParent()->addParamAttr(getArgNo(), Kind);
293 }
294 
295 void Argument::addAttr(Attribute Attr) {
296   getParent()->addParamAttr(getArgNo(), Attr);
297 }
298 
299 void Argument::removeAttr(Attribute::AttrKind Kind) {
300   getParent()->removeParamAttr(getArgNo(), Kind);
301 }
302 
303 void Argument::removeAttrs(const AttributeMask &AM) {
304   AttributeList AL = getParent()->getAttributes();
305   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
306   getParent()->setAttributes(AL);
307 }
308 
309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
310   return getParent()->hasParamAttribute(getArgNo(), Kind);
311 }
312 
313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
314   return getParent()->getParamAttribute(getArgNo(), Kind);
315 }
316 
317 //===----------------------------------------------------------------------===//
318 // Helper Methods in Function
319 //===----------------------------------------------------------------------===//
320 
321 LLVMContext &Function::getContext() const {
322   return getType()->getContext();
323 }
324 
325 unsigned Function::getInstructionCount() const {
326   unsigned NumInstrs = 0;
327   for (const BasicBlock &BB : BasicBlocks)
328     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
329                                BB.instructionsWithoutDebug().end());
330   return NumInstrs;
331 }
332 
333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
334                            const Twine &N, Module &M) {
335   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
336 }
337 
338 Function *Function::createWithDefaultAttr(FunctionType *Ty,
339                                           LinkageTypes Linkage,
340                                           unsigned AddrSpace, const Twine &N,
341                                           Module *M) {
342   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
343   AttrBuilder B(F->getContext());
344   if (M->getUwtable())
345     B.addAttribute(Attribute::UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   F->addFnAttrs(B);
358   return F;
359 }
360 
361 void Function::removeFromParent() {
362   getParent()->getFunctionList().remove(getIterator());
363 }
364 
365 void Function::eraseFromParent() {
366   getParent()->getFunctionList().erase(getIterator());
367 }
368 
369 //===----------------------------------------------------------------------===//
370 // Function Implementation
371 //===----------------------------------------------------------------------===//
372 
373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
374   // If AS == -1 and we are passed a valid module pointer we place the function
375   // in the program address space. Otherwise we default to AS0.
376   if (AddrSpace == static_cast<unsigned>(-1))
377     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
378   return AddrSpace;
379 }
380 
381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
382                    const Twine &name, Module *ParentModule)
383     : GlobalObject(Ty, Value::FunctionVal,
384                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
385                    computeAddrSpace(AddrSpace, ParentModule)),
386       NumArgs(Ty->getNumParams()) {
387   assert(FunctionType::isValidReturnType(getReturnType()) &&
388          "invalid return type");
389   setGlobalObjectSubClassData(0);
390 
391   // We only need a symbol table for a function if the context keeps value names
392   if (!getContext().shouldDiscardValueNames())
393     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
394 
395   // If the function has arguments, mark them as lazily built.
396   if (Ty->getNumParams())
397     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
398 
399   if (ParentModule)
400     ParentModule->getFunctionList().push_back(this);
401 
402   HasLLVMReservedName = getName().startswith("llvm.");
403   // Ensure intrinsics have the right parameter attributes.
404   // Note, the IntID field will have been set in Value::setName if this function
405   // name is a valid intrinsic ID.
406   if (IntID)
407     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
408 }
409 
410 Function::~Function() {
411   dropAllReferences();    // After this it is safe to delete instructions.
412 
413   // Delete all of the method arguments and unlink from symbol table...
414   if (Arguments)
415     clearArguments();
416 
417   // Remove the function from the on-the-side GC table.
418   clearGC();
419 }
420 
421 void Function::BuildLazyArguments() const {
422   // Create the arguments vector, all arguments start out unnamed.
423   auto *FT = getFunctionType();
424   if (NumArgs > 0) {
425     Arguments = std::allocator<Argument>().allocate(NumArgs);
426     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
427       Type *ArgTy = FT->getParamType(i);
428       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
429       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
430     }
431   }
432 
433   // Clear the lazy arguments bit.
434   unsigned SDC = getSubclassDataFromValue();
435   SDC &= ~(1 << 0);
436   const_cast<Function*>(this)->setValueSubclassData(SDC);
437   assert(!hasLazyArguments());
438 }
439 
440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
441   return MutableArrayRef<Argument>(Args, Count);
442 }
443 
444 bool Function::isConstrainedFPIntrinsic() const {
445   switch (getIntrinsicID()) {
446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
447   case Intrinsic::INTRINSIC:
448 #include "llvm/IR/ConstrainedOps.def"
449     return true;
450 #undef INSTRUCTION
451   default:
452     return false;
453   }
454 }
455 
456 void Function::clearArguments() {
457   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
458     A.setName("");
459     A.~Argument();
460   }
461   std::allocator<Argument>().deallocate(Arguments, NumArgs);
462   Arguments = nullptr;
463 }
464 
465 void Function::stealArgumentListFrom(Function &Src) {
466   assert(isDeclaration() && "Expected no references to current arguments");
467 
468   // Drop the current arguments, if any, and set the lazy argument bit.
469   if (!hasLazyArguments()) {
470     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
471                         [](const Argument &A) { return A.use_empty(); }) &&
472            "Expected arguments to be unused in declaration");
473     clearArguments();
474     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
475   }
476 
477   // Nothing to steal if Src has lazy arguments.
478   if (Src.hasLazyArguments())
479     return;
480 
481   // Steal arguments from Src, and fix the lazy argument bits.
482   assert(arg_size() == Src.arg_size());
483   Arguments = Src.Arguments;
484   Src.Arguments = nullptr;
485   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
486     // FIXME: This does the work of transferNodesFromList inefficiently.
487     SmallString<128> Name;
488     if (A.hasName())
489       Name = A.getName();
490     if (!Name.empty())
491       A.setName("");
492     A.setParent(this);
493     if (!Name.empty())
494       A.setName(Name);
495   }
496 
497   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
498   assert(!hasLazyArguments());
499   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
500 }
501 
502 // dropAllReferences() - This function causes all the subinstructions to "let
503 // go" of all references that they are maintaining.  This allows one to
504 // 'delete' a whole class at a time, even though there may be circular
505 // references... first all references are dropped, and all use counts go to
506 // zero.  Then everything is deleted for real.  Note that no operations are
507 // valid on an object that has "dropped all references", except operator
508 // delete.
509 //
510 void Function::dropAllReferences() {
511   setIsMaterializable(false);
512 
513   for (BasicBlock &BB : *this)
514     BB.dropAllReferences();
515 
516   // Delete all basic blocks. They are now unused, except possibly by
517   // blockaddresses, but BasicBlock's destructor takes care of those.
518   while (!BasicBlocks.empty())
519     BasicBlocks.begin()->eraseFromParent();
520 
521   // Drop uses of any optional data (real or placeholder).
522   if (getNumOperands()) {
523     User::dropAllReferences();
524     setNumHungOffUseOperands(0);
525     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
526   }
527 
528   // Metadata is stored in a side-table.
529   clearMetadata();
530 }
531 
532 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
533   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
534 }
535 
536 void Function::addFnAttr(Attribute::AttrKind Kind) {
537   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
538 }
539 
540 void Function::addFnAttr(StringRef Kind, StringRef Val) {
541   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
542 }
543 
544 void Function::addFnAttr(Attribute Attr) {
545   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
546 }
547 
548 void Function::addFnAttrs(const AttrBuilder &Attrs) {
549   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
550 }
551 
552 void Function::addRetAttr(Attribute::AttrKind Kind) {
553   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
554 }
555 
556 void Function::addRetAttr(Attribute Attr) {
557   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
558 }
559 
560 void Function::addRetAttrs(const AttrBuilder &Attrs) {
561   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
562 }
563 
564 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
565   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
566 }
567 
568 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
569   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
570 }
571 
572 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
573   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
574 }
575 
576 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
577   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
578 }
579 
580 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
581   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
582 }
583 
584 void Function::removeFnAttr(Attribute::AttrKind Kind) {
585   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
586 }
587 
588 void Function::removeFnAttr(StringRef Kind) {
589   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
590 }
591 
592 void Function::removeFnAttrs(const AttributeMask &AM) {
593   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
594 }
595 
596 void Function::removeRetAttr(Attribute::AttrKind Kind) {
597   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
598 }
599 
600 void Function::removeRetAttr(StringRef Kind) {
601   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
602 }
603 
604 void Function::removeRetAttrs(const AttributeMask &Attrs) {
605   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
606 }
607 
608 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
609   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
610 }
611 
612 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
613   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
614 }
615 
616 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
617   AttributeSets =
618       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
619 }
620 
621 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
622   AttributeSets =
623       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
624 }
625 
626 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
627   return AttributeSets.hasFnAttr(Kind);
628 }
629 
630 bool Function::hasFnAttribute(StringRef Kind) const {
631   return AttributeSets.hasFnAttr(Kind);
632 }
633 
634 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
635   return AttributeSets.hasRetAttr(Kind);
636 }
637 
638 bool Function::hasParamAttribute(unsigned ArgNo,
639                                  Attribute::AttrKind Kind) const {
640   return AttributeSets.hasParamAttr(ArgNo, Kind);
641 }
642 
643 Attribute Function::getAttributeAtIndex(unsigned i,
644                                         Attribute::AttrKind Kind) const {
645   return AttributeSets.getAttributeAtIndex(i, Kind);
646 }
647 
648 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
649   return AttributeSets.getAttributeAtIndex(i, Kind);
650 }
651 
652 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
653   return AttributeSets.getFnAttr(Kind);
654 }
655 
656 Attribute Function::getFnAttribute(StringRef Kind) const {
657   return AttributeSets.getFnAttr(Kind);
658 }
659 
660 /// gets the specified attribute from the list of attributes.
661 Attribute Function::getParamAttribute(unsigned ArgNo,
662                                       Attribute::AttrKind Kind) const {
663   return AttributeSets.getParamAttr(ArgNo, Kind);
664 }
665 
666 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
667                                                  uint64_t Bytes) {
668   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
669                                                                   ArgNo, Bytes);
670 }
671 
672 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
673   if (&FPType == &APFloat::IEEEsingle()) {
674     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
675     StringRef Val = Attr.getValueAsString();
676     if (!Val.empty())
677       return parseDenormalFPAttribute(Val);
678 
679     // If the f32 variant of the attribute isn't specified, try to use the
680     // generic one.
681   }
682 
683   Attribute Attr = getFnAttribute("denormal-fp-math");
684   return parseDenormalFPAttribute(Attr.getValueAsString());
685 }
686 
687 const std::string &Function::getGC() const {
688   assert(hasGC() && "Function has no collector");
689   return getContext().getGC(*this);
690 }
691 
692 void Function::setGC(std::string Str) {
693   setValueSubclassDataBit(14, !Str.empty());
694   getContext().setGC(*this, std::move(Str));
695 }
696 
697 void Function::clearGC() {
698   if (!hasGC())
699     return;
700   getContext().deleteGC(*this);
701   setValueSubclassDataBit(14, false);
702 }
703 
704 bool Function::hasStackProtectorFnAttr() const {
705   return hasFnAttribute(Attribute::StackProtect) ||
706          hasFnAttribute(Attribute::StackProtectStrong) ||
707          hasFnAttribute(Attribute::StackProtectReq);
708 }
709 
710 /// Copy all additional attributes (those not needed to create a Function) from
711 /// the Function Src to this one.
712 void Function::copyAttributesFrom(const Function *Src) {
713   GlobalObject::copyAttributesFrom(Src);
714   setCallingConv(Src->getCallingConv());
715   setAttributes(Src->getAttributes());
716   if (Src->hasGC())
717     setGC(Src->getGC());
718   else
719     clearGC();
720   if (Src->hasPersonalityFn())
721     setPersonalityFn(Src->getPersonalityFn());
722   if (Src->hasPrefixData())
723     setPrefixData(Src->getPrefixData());
724   if (Src->hasPrologueData())
725     setPrologueData(Src->getPrologueData());
726 }
727 
728 /// Table of string intrinsic names indexed by enum value.
729 static const char * const IntrinsicNameTable[] = {
730   "not_intrinsic",
731 #define GET_INTRINSIC_NAME_TABLE
732 #include "llvm/IR/IntrinsicImpl.inc"
733 #undef GET_INTRINSIC_NAME_TABLE
734 };
735 
736 /// Table of per-target intrinsic name tables.
737 #define GET_INTRINSIC_TARGET_DATA
738 #include "llvm/IR/IntrinsicImpl.inc"
739 #undef GET_INTRINSIC_TARGET_DATA
740 
741 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
742   return IID > TargetInfos[0].Count;
743 }
744 
745 bool Function::isTargetIntrinsic() const {
746   return isTargetIntrinsic(IntID);
747 }
748 
749 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
750 /// target as \c Name, or the generic table if \c Name is not target specific.
751 ///
752 /// Returns the relevant slice of \c IntrinsicNameTable
753 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
754   assert(Name.startswith("llvm."));
755 
756   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
757   // Drop "llvm." and take the first dotted component. That will be the target
758   // if this is target specific.
759   StringRef Target = Name.drop_front(5).split('.').first;
760   auto It = partition_point(
761       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
762   // We've either found the target or just fall back to the generic set, which
763   // is always first.
764   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
765   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
766 }
767 
768 /// This does the actual lookup of an intrinsic ID which
769 /// matches the given function name.
770 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
771   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
772   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
773   if (Idx == -1)
774     return Intrinsic::not_intrinsic;
775 
776   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
777   // an index into a sub-table.
778   int Adjust = NameTable.data() - IntrinsicNameTable;
779   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
780 
781   // If the intrinsic is not overloaded, require an exact match. If it is
782   // overloaded, require either exact or prefix match.
783   const auto MatchSize = strlen(NameTable[Idx]);
784   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
785   bool IsExactMatch = Name.size() == MatchSize;
786   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
787                                                      : Intrinsic::not_intrinsic;
788 }
789 
790 void Function::recalculateIntrinsicID() {
791   StringRef Name = getName();
792   if (!Name.startswith("llvm.")) {
793     HasLLVMReservedName = false;
794     IntID = Intrinsic::not_intrinsic;
795     return;
796   }
797   HasLLVMReservedName = true;
798   IntID = lookupIntrinsicID(Name);
799 }
800 
801 /// Returns a stable mangling for the type specified for use in the name
802 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
803 /// of named types is simply their name.  Manglings for unnamed types consist
804 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
805 /// combined with the mangling of their component types.  A vararg function
806 /// type will have a suffix of 'vararg'.  Since function types can contain
807 /// other function types, we close a function type mangling with suffix 'f'
808 /// which can't be confused with it's prefix.  This ensures we don't have
809 /// collisions between two unrelated function types. Otherwise, you might
810 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
811 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
812 /// indicating that extra care must be taken to ensure a unique name.
813 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
814   std::string Result;
815   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
816     Result += "p" + utostr(PTyp->getAddressSpace());
817     // Opaque pointer doesn't have pointee type information, so we just mangle
818     // address space for opaque pointer.
819     if (!PTyp->isOpaque())
820       Result += getMangledTypeStr(PTyp->getNonOpaquePointerElementType(),
821                                   HasUnnamedType);
822   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
823     Result += "a" + utostr(ATyp->getNumElements()) +
824               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
825   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
826     if (!STyp->isLiteral()) {
827       Result += "s_";
828       if (STyp->hasName())
829         Result += STyp->getName();
830       else
831         HasUnnamedType = true;
832     } else {
833       Result += "sl_";
834       for (auto Elem : STyp->elements())
835         Result += getMangledTypeStr(Elem, HasUnnamedType);
836     }
837     // Ensure nested structs are distinguishable.
838     Result += "s";
839   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
840     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
841     for (size_t i = 0; i < FT->getNumParams(); i++)
842       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
843     if (FT->isVarArg())
844       Result += "vararg";
845     // Ensure nested function types are distinguishable.
846     Result += "f";
847   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
848     ElementCount EC = VTy->getElementCount();
849     if (EC.isScalable())
850       Result += "nx";
851     Result += "v" + utostr(EC.getKnownMinValue()) +
852               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
853   } else if (Ty) {
854     switch (Ty->getTypeID()) {
855     default: llvm_unreachable("Unhandled type");
856     case Type::VoidTyID:      Result += "isVoid";   break;
857     case Type::MetadataTyID:  Result += "Metadata"; break;
858     case Type::HalfTyID:      Result += "f16";      break;
859     case Type::BFloatTyID:    Result += "bf16";     break;
860     case Type::FloatTyID:     Result += "f32";      break;
861     case Type::DoubleTyID:    Result += "f64";      break;
862     case Type::X86_FP80TyID:  Result += "f80";      break;
863     case Type::FP128TyID:     Result += "f128";     break;
864     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
865     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
866     case Type::X86_AMXTyID:   Result += "x86amx";   break;
867     case Type::IntegerTyID:
868       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
869       break;
870     }
871   }
872   return Result;
873 }
874 
875 StringRef Intrinsic::getBaseName(ID id) {
876   assert(id < num_intrinsics && "Invalid intrinsic ID!");
877   return IntrinsicNameTable[id];
878 }
879 
880 StringRef Intrinsic::getName(ID id) {
881   assert(id < num_intrinsics && "Invalid intrinsic ID!");
882   assert(!Intrinsic::isOverloaded(id) &&
883          "This version of getName does not support overloading");
884   return getBaseName(id);
885 }
886 
887 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
888                                         Module *M, FunctionType *FT,
889                                         bool EarlyModuleCheck) {
890 
891   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
892   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
893          "This version of getName is for overloaded intrinsics only");
894   (void)EarlyModuleCheck;
895   assert((!EarlyModuleCheck || M ||
896           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
897          "Intrinsic overloading on pointer types need to provide a Module");
898   bool HasUnnamedType = false;
899   std::string Result(Intrinsic::getBaseName(Id));
900   for (Type *Ty : Tys)
901     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
902   if (HasUnnamedType) {
903     assert(M && "unnamed types need a module");
904     if (!FT)
905       FT = Intrinsic::getType(M->getContext(), Id, Tys);
906     else
907       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
908              "Provided FunctionType must match arguments");
909     return M->getUniqueIntrinsicName(Result, Id, FT);
910   }
911   return Result;
912 }
913 
914 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
915                                FunctionType *FT) {
916   assert(M && "We need to have a Module");
917   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
918 }
919 
920 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
921   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
922 }
923 
924 /// IIT_Info - These are enumerators that describe the entries returned by the
925 /// getIntrinsicInfoTableEntries function.
926 ///
927 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
928 enum IIT_Info {
929   // Common values should be encoded with 0-15.
930   IIT_Done = 0,
931   IIT_I1   = 1,
932   IIT_I8   = 2,
933   IIT_I16  = 3,
934   IIT_I32  = 4,
935   IIT_I64  = 5,
936   IIT_F16  = 6,
937   IIT_F32  = 7,
938   IIT_F64  = 8,
939   IIT_V2   = 9,
940   IIT_V4   = 10,
941   IIT_V8   = 11,
942   IIT_V16  = 12,
943   IIT_V32  = 13,
944   IIT_PTR  = 14,
945   IIT_ARG  = 15,
946 
947   // Values from 16+ are only encodable with the inefficient encoding.
948   IIT_V64  = 16,
949   IIT_MMX  = 17,
950   IIT_TOKEN = 18,
951   IIT_METADATA = 19,
952   IIT_EMPTYSTRUCT = 20,
953   IIT_STRUCT2 = 21,
954   IIT_STRUCT3 = 22,
955   IIT_STRUCT4 = 23,
956   IIT_STRUCT5 = 24,
957   IIT_EXTEND_ARG = 25,
958   IIT_TRUNC_ARG = 26,
959   IIT_ANYPTR = 27,
960   IIT_V1   = 28,
961   IIT_VARARG = 29,
962   IIT_HALF_VEC_ARG = 30,
963   IIT_SAME_VEC_WIDTH_ARG = 31,
964   IIT_PTR_TO_ARG = 32,
965   IIT_PTR_TO_ELT = 33,
966   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
967   IIT_I128 = 35,
968   IIT_V512 = 36,
969   IIT_V1024 = 37,
970   IIT_STRUCT6 = 38,
971   IIT_STRUCT7 = 39,
972   IIT_STRUCT8 = 40,
973   IIT_F128 = 41,
974   IIT_VEC_ELEMENT = 42,
975   IIT_SCALABLE_VEC = 43,
976   IIT_SUBDIVIDE2_ARG = 44,
977   IIT_SUBDIVIDE4_ARG = 45,
978   IIT_VEC_OF_BITCASTS_TO_INT = 46,
979   IIT_V128 = 47,
980   IIT_BF16 = 48,
981   IIT_STRUCT9 = 49,
982   IIT_V256 = 50,
983   IIT_AMX  = 51,
984   IIT_PPCF128 = 52,
985   IIT_V3 = 53,
986   IIT_EXTERNREF = 54,
987   IIT_FUNCREF = 55
988 };
989 
990 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
991                       IIT_Info LastInfo,
992                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
993   using namespace Intrinsic;
994 
995   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
996 
997   IIT_Info Info = IIT_Info(Infos[NextElt++]);
998   unsigned StructElts = 2;
999 
1000   switch (Info) {
1001   case IIT_Done:
1002     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1003     return;
1004   case IIT_VARARG:
1005     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1006     return;
1007   case IIT_MMX:
1008     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1009     return;
1010   case IIT_AMX:
1011     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1012     return;
1013   case IIT_TOKEN:
1014     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1015     return;
1016   case IIT_METADATA:
1017     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1018     return;
1019   case IIT_F16:
1020     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1021     return;
1022   case IIT_BF16:
1023     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1024     return;
1025   case IIT_F32:
1026     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1027     return;
1028   case IIT_F64:
1029     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1030     return;
1031   case IIT_F128:
1032     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1033     return;
1034   case IIT_PPCF128:
1035     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1036     return;
1037   case IIT_I1:
1038     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1039     return;
1040   case IIT_I8:
1041     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1042     return;
1043   case IIT_I16:
1044     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1045     return;
1046   case IIT_I32:
1047     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1048     return;
1049   case IIT_I64:
1050     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1051     return;
1052   case IIT_I128:
1053     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1054     return;
1055   case IIT_V1:
1056     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1057     DecodeIITType(NextElt, Infos, Info, OutputTable);
1058     return;
1059   case IIT_V2:
1060     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1061     DecodeIITType(NextElt, Infos, Info, OutputTable);
1062     return;
1063   case IIT_V3:
1064     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1065     DecodeIITType(NextElt, Infos, Info, OutputTable);
1066     return;
1067   case IIT_V4:
1068     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1069     DecodeIITType(NextElt, Infos, Info, OutputTable);
1070     return;
1071   case IIT_V8:
1072     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1073     DecodeIITType(NextElt, Infos, Info, OutputTable);
1074     return;
1075   case IIT_V16:
1076     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1077     DecodeIITType(NextElt, Infos, Info, OutputTable);
1078     return;
1079   case IIT_V32:
1080     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1081     DecodeIITType(NextElt, Infos, Info, OutputTable);
1082     return;
1083   case IIT_V64:
1084     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1085     DecodeIITType(NextElt, Infos, Info, OutputTable);
1086     return;
1087   case IIT_V128:
1088     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1089     DecodeIITType(NextElt, Infos, Info, OutputTable);
1090     return;
1091   case IIT_V256:
1092     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1093     DecodeIITType(NextElt, Infos, Info, OutputTable);
1094     return;
1095   case IIT_V512:
1096     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1097     DecodeIITType(NextElt, Infos, Info, OutputTable);
1098     return;
1099   case IIT_V1024:
1100     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1101     DecodeIITType(NextElt, Infos, Info, OutputTable);
1102     return;
1103   case IIT_EXTERNREF:
1104     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1105     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1106     return;
1107   case IIT_FUNCREF:
1108     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1109     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1110     return;
1111   case IIT_PTR:
1112     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1113     DecodeIITType(NextElt, Infos, Info, OutputTable);
1114     return;
1115   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1116     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1117                                              Infos[NextElt++]));
1118     DecodeIITType(NextElt, Infos, Info, OutputTable);
1119     return;
1120   }
1121   case IIT_ARG: {
1122     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1123     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1124     return;
1125   }
1126   case IIT_EXTEND_ARG: {
1127     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1128     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1129                                              ArgInfo));
1130     return;
1131   }
1132   case IIT_TRUNC_ARG: {
1133     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1134     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1135                                              ArgInfo));
1136     return;
1137   }
1138   case IIT_HALF_VEC_ARG: {
1139     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1140     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1141                                              ArgInfo));
1142     return;
1143   }
1144   case IIT_SAME_VEC_WIDTH_ARG: {
1145     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1146     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1147                                              ArgInfo));
1148     return;
1149   }
1150   case IIT_PTR_TO_ARG: {
1151     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1152     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1153                                              ArgInfo));
1154     return;
1155   }
1156   case IIT_PTR_TO_ELT: {
1157     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1158     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1159     return;
1160   }
1161   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1162     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1163     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1164     OutputTable.push_back(
1165         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1166     return;
1167   }
1168   case IIT_EMPTYSTRUCT:
1169     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1170     return;
1171   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1172   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1173   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1174   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1175   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1176   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1177   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1178   case IIT_STRUCT2: {
1179     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1180 
1181     for (unsigned i = 0; i != StructElts; ++i)
1182       DecodeIITType(NextElt, Infos, Info, OutputTable);
1183     return;
1184   }
1185   case IIT_SUBDIVIDE2_ARG: {
1186     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1187     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1188                                              ArgInfo));
1189     return;
1190   }
1191   case IIT_SUBDIVIDE4_ARG: {
1192     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1193     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1194                                              ArgInfo));
1195     return;
1196   }
1197   case IIT_VEC_ELEMENT: {
1198     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1199     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1200                                              ArgInfo));
1201     return;
1202   }
1203   case IIT_SCALABLE_VEC: {
1204     DecodeIITType(NextElt, Infos, Info, OutputTable);
1205     return;
1206   }
1207   case IIT_VEC_OF_BITCASTS_TO_INT: {
1208     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1209     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1210                                              ArgInfo));
1211     return;
1212   }
1213   }
1214   llvm_unreachable("unhandled");
1215 }
1216 
1217 #define GET_INTRINSIC_GENERATOR_GLOBAL
1218 #include "llvm/IR/IntrinsicImpl.inc"
1219 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1220 
1221 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1222                                              SmallVectorImpl<IITDescriptor> &T){
1223   // Check to see if the intrinsic's type was expressible by the table.
1224   unsigned TableVal = IIT_Table[id-1];
1225 
1226   // Decode the TableVal into an array of IITValues.
1227   SmallVector<unsigned char, 8> IITValues;
1228   ArrayRef<unsigned char> IITEntries;
1229   unsigned NextElt = 0;
1230   if ((TableVal >> 31) != 0) {
1231     // This is an offset into the IIT_LongEncodingTable.
1232     IITEntries = IIT_LongEncodingTable;
1233 
1234     // Strip sentinel bit.
1235     NextElt = (TableVal << 1) >> 1;
1236   } else {
1237     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1238     // into a single word in the table itself, decode it now.
1239     do {
1240       IITValues.push_back(TableVal & 0xF);
1241       TableVal >>= 4;
1242     } while (TableVal);
1243 
1244     IITEntries = IITValues;
1245     NextElt = 0;
1246   }
1247 
1248   // Okay, decode the table into the output vector of IITDescriptors.
1249   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1250   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1251     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1252 }
1253 
1254 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1255                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1256   using namespace Intrinsic;
1257 
1258   IITDescriptor D = Infos.front();
1259   Infos = Infos.slice(1);
1260 
1261   switch (D.Kind) {
1262   case IITDescriptor::Void: return Type::getVoidTy(Context);
1263   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1264   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1265   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1266   case IITDescriptor::Token: return Type::getTokenTy(Context);
1267   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1268   case IITDescriptor::Half: return Type::getHalfTy(Context);
1269   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1270   case IITDescriptor::Float: return Type::getFloatTy(Context);
1271   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1272   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1273   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1274 
1275   case IITDescriptor::Integer:
1276     return IntegerType::get(Context, D.Integer_Width);
1277   case IITDescriptor::Vector:
1278     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1279                            D.Vector_Width);
1280   case IITDescriptor::Pointer:
1281     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1282                             D.Pointer_AddressSpace);
1283   case IITDescriptor::Struct: {
1284     SmallVector<Type *, 8> Elts;
1285     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1286       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1287     return StructType::get(Context, Elts);
1288   }
1289   case IITDescriptor::Argument:
1290     return Tys[D.getArgumentNumber()];
1291   case IITDescriptor::ExtendArgument: {
1292     Type *Ty = Tys[D.getArgumentNumber()];
1293     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1294       return VectorType::getExtendedElementVectorType(VTy);
1295 
1296     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1297   }
1298   case IITDescriptor::TruncArgument: {
1299     Type *Ty = Tys[D.getArgumentNumber()];
1300     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1301       return VectorType::getTruncatedElementVectorType(VTy);
1302 
1303     IntegerType *ITy = cast<IntegerType>(Ty);
1304     assert(ITy->getBitWidth() % 2 == 0);
1305     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1306   }
1307   case IITDescriptor::Subdivide2Argument:
1308   case IITDescriptor::Subdivide4Argument: {
1309     Type *Ty = Tys[D.getArgumentNumber()];
1310     VectorType *VTy = dyn_cast<VectorType>(Ty);
1311     assert(VTy && "Expected an argument of Vector Type");
1312     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1313     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1314   }
1315   case IITDescriptor::HalfVecArgument:
1316     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1317                                                   Tys[D.getArgumentNumber()]));
1318   case IITDescriptor::SameVecWidthArgument: {
1319     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1320     Type *Ty = Tys[D.getArgumentNumber()];
1321     if (auto *VTy = dyn_cast<VectorType>(Ty))
1322       return VectorType::get(EltTy, VTy->getElementCount());
1323     return EltTy;
1324   }
1325   case IITDescriptor::PtrToArgument: {
1326     Type *Ty = Tys[D.getArgumentNumber()];
1327     return PointerType::getUnqual(Ty);
1328   }
1329   case IITDescriptor::PtrToElt: {
1330     Type *Ty = Tys[D.getArgumentNumber()];
1331     VectorType *VTy = dyn_cast<VectorType>(Ty);
1332     if (!VTy)
1333       llvm_unreachable("Expected an argument of Vector Type");
1334     Type *EltTy = VTy->getElementType();
1335     return PointerType::getUnqual(EltTy);
1336   }
1337   case IITDescriptor::VecElementArgument: {
1338     Type *Ty = Tys[D.getArgumentNumber()];
1339     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1340       return VTy->getElementType();
1341     llvm_unreachable("Expected an argument of Vector Type");
1342   }
1343   case IITDescriptor::VecOfBitcastsToInt: {
1344     Type *Ty = Tys[D.getArgumentNumber()];
1345     VectorType *VTy = dyn_cast<VectorType>(Ty);
1346     assert(VTy && "Expected an argument of Vector Type");
1347     return VectorType::getInteger(VTy);
1348   }
1349   case IITDescriptor::VecOfAnyPtrsToElt:
1350     // Return the overloaded type (which determines the pointers address space)
1351     return Tys[D.getOverloadArgNumber()];
1352   }
1353   llvm_unreachable("unhandled");
1354 }
1355 
1356 FunctionType *Intrinsic::getType(LLVMContext &Context,
1357                                  ID id, ArrayRef<Type*> Tys) {
1358   SmallVector<IITDescriptor, 8> Table;
1359   getIntrinsicInfoTableEntries(id, Table);
1360 
1361   ArrayRef<IITDescriptor> TableRef = Table;
1362   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1363 
1364   SmallVector<Type*, 8> ArgTys;
1365   while (!TableRef.empty())
1366     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1367 
1368   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1369   // If we see void type as the type of the last argument, it is vararg intrinsic
1370   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1371     ArgTys.pop_back();
1372     return FunctionType::get(ResultTy, ArgTys, true);
1373   }
1374   return FunctionType::get(ResultTy, ArgTys, false);
1375 }
1376 
1377 bool Intrinsic::isOverloaded(ID id) {
1378 #define GET_INTRINSIC_OVERLOAD_TABLE
1379 #include "llvm/IR/IntrinsicImpl.inc"
1380 #undef GET_INTRINSIC_OVERLOAD_TABLE
1381 }
1382 
1383 bool Intrinsic::isLeaf(ID id) {
1384   switch (id) {
1385   default:
1386     return true;
1387 
1388   case Intrinsic::experimental_gc_statepoint:
1389   case Intrinsic::experimental_patchpoint_void:
1390   case Intrinsic::experimental_patchpoint_i64:
1391     return false;
1392   }
1393 }
1394 
1395 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1396 #define GET_INTRINSIC_ATTRIBUTES
1397 #include "llvm/IR/IntrinsicImpl.inc"
1398 #undef GET_INTRINSIC_ATTRIBUTES
1399 
1400 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1401   // There can never be multiple globals with the same name of different types,
1402   // because intrinsics must be a specific type.
1403   auto *FT = getType(M->getContext(), id, Tys);
1404   return cast<Function>(
1405       M->getOrInsertFunction(Tys.empty() ? getName(id)
1406                                          : getName(id, Tys, M, FT),
1407                              getType(M->getContext(), id, Tys))
1408           .getCallee());
1409 }
1410 
1411 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1412 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1413 #include "llvm/IR/IntrinsicImpl.inc"
1414 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1415 
1416 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1417 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1418 #include "llvm/IR/IntrinsicImpl.inc"
1419 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1420 
1421 using DeferredIntrinsicMatchPair =
1422     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1423 
1424 static bool matchIntrinsicType(
1425     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1426     SmallVectorImpl<Type *> &ArgTys,
1427     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1428     bool IsDeferredCheck) {
1429   using namespace Intrinsic;
1430 
1431   // If we ran out of descriptors, there are too many arguments.
1432   if (Infos.empty()) return true;
1433 
1434   // Do this before slicing off the 'front' part
1435   auto InfosRef = Infos;
1436   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1437     DeferredChecks.emplace_back(T, InfosRef);
1438     return false;
1439   };
1440 
1441   IITDescriptor D = Infos.front();
1442   Infos = Infos.slice(1);
1443 
1444   switch (D.Kind) {
1445     case IITDescriptor::Void: return !Ty->isVoidTy();
1446     case IITDescriptor::VarArg: return true;
1447     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1448     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1449     case IITDescriptor::Token: return !Ty->isTokenTy();
1450     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1451     case IITDescriptor::Half: return !Ty->isHalfTy();
1452     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1453     case IITDescriptor::Float: return !Ty->isFloatTy();
1454     case IITDescriptor::Double: return !Ty->isDoubleTy();
1455     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1456     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1457     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1458     case IITDescriptor::Vector: {
1459       VectorType *VT = dyn_cast<VectorType>(Ty);
1460       return !VT || VT->getElementCount() != D.Vector_Width ||
1461              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1462                                 DeferredChecks, IsDeferredCheck);
1463     }
1464     case IITDescriptor::Pointer: {
1465       PointerType *PT = dyn_cast<PointerType>(Ty);
1466       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1467         return true;
1468       if (!PT->isOpaque())
1469         return matchIntrinsicType(PT->getNonOpaquePointerElementType(), Infos,
1470                                   ArgTys, DeferredChecks, IsDeferredCheck);
1471       // Consume IIT descriptors relating to the pointer element type.
1472       while (Infos.front().Kind == IITDescriptor::Pointer)
1473         Infos = Infos.slice(1);
1474       Infos = Infos.slice(1);
1475       return false;
1476     }
1477 
1478     case IITDescriptor::Struct: {
1479       StructType *ST = dyn_cast<StructType>(Ty);
1480       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1481         return true;
1482 
1483       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1484         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1485                                DeferredChecks, IsDeferredCheck))
1486           return true;
1487       return false;
1488     }
1489 
1490     case IITDescriptor::Argument:
1491       // If this is the second occurrence of an argument,
1492       // verify that the later instance matches the previous instance.
1493       if (D.getArgumentNumber() < ArgTys.size())
1494         return Ty != ArgTys[D.getArgumentNumber()];
1495 
1496       if (D.getArgumentNumber() > ArgTys.size() ||
1497           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1498         return IsDeferredCheck || DeferCheck(Ty);
1499 
1500       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1501              "Table consistency error");
1502       ArgTys.push_back(Ty);
1503 
1504       switch (D.getArgumentKind()) {
1505         case IITDescriptor::AK_Any:        return false; // Success
1506         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1507         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1508         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1509         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1510         default:                           break;
1511       }
1512       llvm_unreachable("all argument kinds not covered");
1513 
1514     case IITDescriptor::ExtendArgument: {
1515       // If this is a forward reference, defer the check for later.
1516       if (D.getArgumentNumber() >= ArgTys.size())
1517         return IsDeferredCheck || DeferCheck(Ty);
1518 
1519       Type *NewTy = ArgTys[D.getArgumentNumber()];
1520       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1521         NewTy = VectorType::getExtendedElementVectorType(VTy);
1522       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1523         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1524       else
1525         return true;
1526 
1527       return Ty != NewTy;
1528     }
1529     case IITDescriptor::TruncArgument: {
1530       // If this is a forward reference, defer the check for later.
1531       if (D.getArgumentNumber() >= ArgTys.size())
1532         return IsDeferredCheck || DeferCheck(Ty);
1533 
1534       Type *NewTy = ArgTys[D.getArgumentNumber()];
1535       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1536         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1537       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1538         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1539       else
1540         return true;
1541 
1542       return Ty != NewTy;
1543     }
1544     case IITDescriptor::HalfVecArgument:
1545       // If this is a forward reference, defer the check for later.
1546       if (D.getArgumentNumber() >= ArgTys.size())
1547         return IsDeferredCheck || DeferCheck(Ty);
1548       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1549              VectorType::getHalfElementsVectorType(
1550                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1551     case IITDescriptor::SameVecWidthArgument: {
1552       if (D.getArgumentNumber() >= ArgTys.size()) {
1553         // Defer check and subsequent check for the vector element type.
1554         Infos = Infos.slice(1);
1555         return IsDeferredCheck || DeferCheck(Ty);
1556       }
1557       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1558       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1559       // Both must be vectors of the same number of elements or neither.
1560       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1561         return true;
1562       Type *EltTy = Ty;
1563       if (ThisArgType) {
1564         if (ReferenceType->getElementCount() !=
1565             ThisArgType->getElementCount())
1566           return true;
1567         EltTy = ThisArgType->getElementType();
1568       }
1569       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1570                                 IsDeferredCheck);
1571     }
1572     case IITDescriptor::PtrToArgument: {
1573       if (D.getArgumentNumber() >= ArgTys.size())
1574         return IsDeferredCheck || DeferCheck(Ty);
1575       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1576       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1577       return (!ThisArgType ||
1578               !ThisArgType->isOpaqueOrPointeeTypeMatches(ReferenceType));
1579     }
1580     case IITDescriptor::PtrToElt: {
1581       if (D.getArgumentNumber() >= ArgTys.size())
1582         return IsDeferredCheck || DeferCheck(Ty);
1583       VectorType * ReferenceType =
1584         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1585       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1586 
1587       if (!ThisArgType || !ReferenceType)
1588         return true;
1589       return !ThisArgType->isOpaqueOrPointeeTypeMatches(
1590           ReferenceType->getElementType());
1591     }
1592     case IITDescriptor::VecOfAnyPtrsToElt: {
1593       unsigned RefArgNumber = D.getRefArgNumber();
1594       if (RefArgNumber >= ArgTys.size()) {
1595         if (IsDeferredCheck)
1596           return true;
1597         // If forward referencing, already add the pointer-vector type and
1598         // defer the checks for later.
1599         ArgTys.push_back(Ty);
1600         return DeferCheck(Ty);
1601       }
1602 
1603       if (!IsDeferredCheck){
1604         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1605                "Table consistency error");
1606         ArgTys.push_back(Ty);
1607       }
1608 
1609       // Verify the overloaded type "matches" the Ref type.
1610       // i.e. Ty is a vector with the same width as Ref.
1611       // Composed of pointers to the same element type as Ref.
1612       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1613       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1614       if (!ThisArgVecTy || !ReferenceType ||
1615           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1616         return true;
1617       PointerType *ThisArgEltTy =
1618           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1619       if (!ThisArgEltTy)
1620         return true;
1621       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1622           ReferenceType->getElementType());
1623     }
1624     case IITDescriptor::VecElementArgument: {
1625       if (D.getArgumentNumber() >= ArgTys.size())
1626         return IsDeferredCheck ? true : DeferCheck(Ty);
1627       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1628       return !ReferenceType || Ty != ReferenceType->getElementType();
1629     }
1630     case IITDescriptor::Subdivide2Argument:
1631     case IITDescriptor::Subdivide4Argument: {
1632       // If this is a forward reference, defer the check for later.
1633       if (D.getArgumentNumber() >= ArgTys.size())
1634         return IsDeferredCheck || DeferCheck(Ty);
1635 
1636       Type *NewTy = ArgTys[D.getArgumentNumber()];
1637       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1638         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1639         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1640         return Ty != NewTy;
1641       }
1642       return true;
1643     }
1644     case IITDescriptor::VecOfBitcastsToInt: {
1645       if (D.getArgumentNumber() >= ArgTys.size())
1646         return IsDeferredCheck || DeferCheck(Ty);
1647       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1648       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1649       if (!ThisArgVecTy || !ReferenceType)
1650         return true;
1651       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1652     }
1653   }
1654   llvm_unreachable("unhandled");
1655 }
1656 
1657 Intrinsic::MatchIntrinsicTypesResult
1658 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1659                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1660                                    SmallVectorImpl<Type *> &ArgTys) {
1661   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1662   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1663                          false))
1664     return MatchIntrinsicTypes_NoMatchRet;
1665 
1666   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1667 
1668   for (auto Ty : FTy->params())
1669     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1670       return MatchIntrinsicTypes_NoMatchArg;
1671 
1672   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1673     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1674     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1675                            true))
1676       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1677                                          : MatchIntrinsicTypes_NoMatchArg;
1678   }
1679 
1680   return MatchIntrinsicTypes_Match;
1681 }
1682 
1683 bool
1684 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1685                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1686   // If there are no descriptors left, then it can't be a vararg.
1687   if (Infos.empty())
1688     return isVarArg;
1689 
1690   // There should be only one descriptor remaining at this point.
1691   if (Infos.size() != 1)
1692     return true;
1693 
1694   // Check and verify the descriptor.
1695   IITDescriptor D = Infos.front();
1696   Infos = Infos.slice(1);
1697   if (D.Kind == IITDescriptor::VarArg)
1698     return !isVarArg;
1699 
1700   return true;
1701 }
1702 
1703 bool Intrinsic::getIntrinsicSignature(Function *F,
1704                                       SmallVectorImpl<Type *> &ArgTys) {
1705   Intrinsic::ID ID = F->getIntrinsicID();
1706   if (!ID)
1707     return false;
1708 
1709   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1710   getIntrinsicInfoTableEntries(ID, Table);
1711   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1712 
1713   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1714                                          ArgTys) !=
1715       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1716     return false;
1717   }
1718   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1719                                       TableRef))
1720     return false;
1721   return true;
1722 }
1723 
1724 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1725   SmallVector<Type *, 4> ArgTys;
1726   if (!getIntrinsicSignature(F, ArgTys))
1727     return None;
1728 
1729   Intrinsic::ID ID = F->getIntrinsicID();
1730   StringRef Name = F->getName();
1731   std::string WantedName =
1732       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1733   if (Name == WantedName)
1734     return None;
1735 
1736   Function *NewDecl = [&] {
1737     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1738       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1739         if (ExistingF->getFunctionType() == F->getFunctionType())
1740           return ExistingF;
1741 
1742       // The name already exists, but is not a function or has the wrong
1743       // prototype. Make place for the new one by renaming the old version.
1744       // Either this old version will be removed later on or the module is
1745       // invalid and we'll get an error.
1746       ExistingGV->setName(WantedName + ".renamed");
1747     }
1748     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1749   }();
1750 
1751   NewDecl->setCallingConv(F->getCallingConv());
1752   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1753          "Shouldn't change the signature");
1754   return NewDecl;
1755 }
1756 
1757 /// hasAddressTaken - returns true if there are any uses of this function
1758 /// other than direct calls or invokes to it. Optionally ignores callback
1759 /// uses, assume like pointer annotation calls, and references in llvm.used
1760 /// and llvm.compiler.used variables.
1761 bool Function::hasAddressTaken(const User **PutOffender,
1762                                bool IgnoreCallbackUses,
1763                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1764                                bool IgnoreARCAttachedCall) const {
1765   for (const Use &U : uses()) {
1766     const User *FU = U.getUser();
1767     if (isa<BlockAddress>(FU))
1768       continue;
1769 
1770     if (IgnoreCallbackUses) {
1771       AbstractCallSite ACS(&U);
1772       if (ACS && ACS.isCallbackCall())
1773         continue;
1774     }
1775 
1776     const auto *Call = dyn_cast<CallBase>(FU);
1777     if (!Call) {
1778       if (IgnoreAssumeLikeCalls) {
1779         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1780           if (FI->isCast() && !FI->user_empty() &&
1781               llvm::all_of(FU->users(), [](const User *U) {
1782                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1783                   return I->isAssumeLikeIntrinsic();
1784                 return false;
1785               }))
1786             continue;
1787         }
1788       }
1789       if (IgnoreLLVMUsed && !FU->user_empty()) {
1790         const User *FUU = FU;
1791         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1792             !FU->user_begin()->user_empty())
1793           FUU = *FU->user_begin();
1794         if (llvm::all_of(FUU->users(), [](const User *U) {
1795               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1796                 return GV->hasName() &&
1797                        (GV->getName().equals("llvm.compiler.used") ||
1798                         GV->getName().equals("llvm.used"));
1799               return false;
1800             }))
1801           continue;
1802       }
1803       if (PutOffender)
1804         *PutOffender = FU;
1805       return true;
1806     }
1807     if (!Call->isCallee(&U)) {
1808       if (IgnoreARCAttachedCall &&
1809           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1810                                       U.getOperandNo()))
1811         continue;
1812 
1813       if (PutOffender)
1814         *PutOffender = FU;
1815       return true;
1816     }
1817   }
1818   return false;
1819 }
1820 
1821 bool Function::isDefTriviallyDead() const {
1822   // Check the linkage
1823   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1824       !hasAvailableExternallyLinkage())
1825     return false;
1826 
1827   // Check if the function is used by anything other than a blockaddress.
1828   for (const User *U : users())
1829     if (!isa<BlockAddress>(U))
1830       return false;
1831 
1832   return true;
1833 }
1834 
1835 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1836 /// setjmp or other function that gcc recognizes as "returning twice".
1837 bool Function::callsFunctionThatReturnsTwice() const {
1838   for (const Instruction &I : instructions(this))
1839     if (const auto *Call = dyn_cast<CallBase>(&I))
1840       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1841         return true;
1842 
1843   return false;
1844 }
1845 
1846 Constant *Function::getPersonalityFn() const {
1847   assert(hasPersonalityFn() && getNumOperands());
1848   return cast<Constant>(Op<0>());
1849 }
1850 
1851 void Function::setPersonalityFn(Constant *Fn) {
1852   setHungoffOperand<0>(Fn);
1853   setValueSubclassDataBit(3, Fn != nullptr);
1854 }
1855 
1856 Constant *Function::getPrefixData() const {
1857   assert(hasPrefixData() && getNumOperands());
1858   return cast<Constant>(Op<1>());
1859 }
1860 
1861 void Function::setPrefixData(Constant *PrefixData) {
1862   setHungoffOperand<1>(PrefixData);
1863   setValueSubclassDataBit(1, PrefixData != nullptr);
1864 }
1865 
1866 Constant *Function::getPrologueData() const {
1867   assert(hasPrologueData() && getNumOperands());
1868   return cast<Constant>(Op<2>());
1869 }
1870 
1871 void Function::setPrologueData(Constant *PrologueData) {
1872   setHungoffOperand<2>(PrologueData);
1873   setValueSubclassDataBit(2, PrologueData != nullptr);
1874 }
1875 
1876 void Function::allocHungoffUselist() {
1877   // If we've already allocated a uselist, stop here.
1878   if (getNumOperands())
1879     return;
1880 
1881   allocHungoffUses(3, /*IsPhi=*/ false);
1882   setNumHungOffUseOperands(3);
1883 
1884   // Initialize the uselist with placeholder operands to allow traversal.
1885   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1886   Op<0>().set(CPN);
1887   Op<1>().set(CPN);
1888   Op<2>().set(CPN);
1889 }
1890 
1891 template <int Idx>
1892 void Function::setHungoffOperand(Constant *C) {
1893   if (C) {
1894     allocHungoffUselist();
1895     Op<Idx>().set(C);
1896   } else if (getNumOperands()) {
1897     Op<Idx>().set(
1898         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1899   }
1900 }
1901 
1902 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1903   assert(Bit < 16 && "SubclassData contains only 16 bits");
1904   if (On)
1905     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1906   else
1907     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1908 }
1909 
1910 void Function::setEntryCount(ProfileCount Count,
1911                              const DenseSet<GlobalValue::GUID> *S) {
1912 #if !defined(NDEBUG)
1913   auto PrevCount = getEntryCount();
1914   assert(!PrevCount.hasValue() || PrevCount->getType() == Count.getType());
1915 #endif
1916 
1917   auto ImportGUIDs = getImportGUIDs();
1918   if (S == nullptr && ImportGUIDs.size())
1919     S = &ImportGUIDs;
1920 
1921   MDBuilder MDB(getContext());
1922   setMetadata(
1923       LLVMContext::MD_prof,
1924       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1925 }
1926 
1927 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1928                              const DenseSet<GlobalValue::GUID> *Imports) {
1929   setEntryCount(ProfileCount(Count, Type), Imports);
1930 }
1931 
1932 Optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1933   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1934   if (MD && MD->getOperand(0))
1935     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1936       if (MDS->getString().equals("function_entry_count")) {
1937         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1938         uint64_t Count = CI->getValue().getZExtValue();
1939         // A value of -1 is used for SamplePGO when there were no samples.
1940         // Treat this the same as unknown.
1941         if (Count == (uint64_t)-1)
1942           return None;
1943         return ProfileCount(Count, PCT_Real);
1944       } else if (AllowSynthetic &&
1945                  MDS->getString().equals("synthetic_function_entry_count")) {
1946         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1947         uint64_t Count = CI->getValue().getZExtValue();
1948         return ProfileCount(Count, PCT_Synthetic);
1949       }
1950     }
1951   return None;
1952 }
1953 
1954 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1955   DenseSet<GlobalValue::GUID> R;
1956   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1957     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1958       if (MDS->getString().equals("function_entry_count"))
1959         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1960           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1961                        ->getValue()
1962                        .getZExtValue());
1963   return R;
1964 }
1965 
1966 void Function::setSectionPrefix(StringRef Prefix) {
1967   MDBuilder MDB(getContext());
1968   setMetadata(LLVMContext::MD_section_prefix,
1969               MDB.createFunctionSectionPrefix(Prefix));
1970 }
1971 
1972 Optional<StringRef> Function::getSectionPrefix() const {
1973   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1974     assert(cast<MDString>(MD->getOperand(0))
1975                ->getString()
1976                .equals("function_section_prefix") &&
1977            "Metadata not match");
1978     return cast<MDString>(MD->getOperand(1))->getString();
1979   }
1980   return None;
1981 }
1982 
1983 bool Function::nullPointerIsDefined() const {
1984   return hasFnAttribute(Attribute::NullPointerIsValid);
1985 }
1986 
1987 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1988   if (F && F->nullPointerIsDefined())
1989     return true;
1990 
1991   if (AS != 0)
1992     return true;
1993 
1994   return false;
1995 }
1996