xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 4658da10e4aabd15868876d879cfb185115a170c)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsAArch64.h"
35 #include "llvm/IR/IntrinsicsAMDGPU.h"
36 #include "llvm/IR/IntrinsicsARM.h"
37 #include "llvm/IR/IntrinsicsBPF.h"
38 #include "llvm/IR/IntrinsicsHexagon.h"
39 #include "llvm/IR/IntrinsicsMips.h"
40 #include "llvm/IR/IntrinsicsNVPTX.h"
41 #include "llvm/IR/IntrinsicsPowerPC.h"
42 #include "llvm/IR/IntrinsicsR600.h"
43 #include "llvm/IR/IntrinsicsRISCV.h"
44 #include "llvm/IR/IntrinsicsS390.h"
45 #include "llvm/IR/IntrinsicsWebAssembly.h"
46 #include "llvm/IR/IntrinsicsX86.h"
47 #include "llvm/IR/IntrinsicsXCore.h"
48 #include "llvm/IR/LLVMContext.h"
49 #include "llvm/IR/MDBuilder.h"
50 #include "llvm/IR/Metadata.h"
51 #include "llvm/IR/Module.h"
52 #include "llvm/IR/SymbolTableListTraits.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/IR/ValueSymbolTable.h"
58 #include "llvm/Support/Casting.h"
59 #include "llvm/Support/Compiler.h"
60 #include "llvm/Support/ErrorHandling.h"
61 #include <algorithm>
62 #include <cassert>
63 #include <cstddef>
64 #include <cstdint>
65 #include <cstring>
66 #include <string>
67 
68 using namespace llvm;
69 using ProfileCount = Function::ProfileCount;
70 
71 // Explicit instantiations of SymbolTableListTraits since some of the methods
72 // are not in the public header file...
73 template class llvm::SymbolTableListTraits<BasicBlock>;
74 
75 //===----------------------------------------------------------------------===//
76 // Argument Implementation
77 //===----------------------------------------------------------------------===//
78 
79 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
80     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
81   setName(Name);
82 }
83 
84 void Argument::setParent(Function *parent) {
85   Parent = parent;
86 }
87 
88 bool Argument::hasNonNullAttr() const {
89   if (!getType()->isPointerTy()) return false;
90   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
91     return true;
92   else if (getDereferenceableBytes() > 0 &&
93            !NullPointerIsDefined(getParent(),
94                                  getType()->getPointerAddressSpace()))
95     return true;
96   return false;
97 }
98 
99 bool Argument::hasByValAttr() const {
100   if (!getType()->isPointerTy()) return false;
101   return hasAttribute(Attribute::ByVal);
102 }
103 
104 bool Argument::hasSwiftSelfAttr() const {
105   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
106 }
107 
108 bool Argument::hasSwiftErrorAttr() const {
109   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
110 }
111 
112 bool Argument::hasInAllocaAttr() const {
113   if (!getType()->isPointerTy()) return false;
114   return hasAttribute(Attribute::InAlloca);
115 }
116 
117 bool Argument::hasByValOrInAllocaAttr() const {
118   if (!getType()->isPointerTy()) return false;
119   AttributeList Attrs = getParent()->getAttributes();
120   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
121          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
122 }
123 
124 unsigned Argument::getParamAlignment() const {
125   assert(getType()->isPointerTy() && "Only pointers have alignments");
126   return getParent()->getParamAlignment(getArgNo());
127 }
128 
129 Type *Argument::getParamByValType() const {
130   assert(getType()->isPointerTy() && "Only pointers have byval types");
131   return getParent()->getParamByValType(getArgNo());
132 }
133 
134 uint64_t Argument::getDereferenceableBytes() const {
135   assert(getType()->isPointerTy() &&
136          "Only pointers have dereferenceable bytes");
137   return getParent()->getParamDereferenceableBytes(getArgNo());
138 }
139 
140 uint64_t Argument::getDereferenceableOrNullBytes() const {
141   assert(getType()->isPointerTy() &&
142          "Only pointers have dereferenceable bytes");
143   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
144 }
145 
146 bool Argument::hasNestAttr() const {
147   if (!getType()->isPointerTy()) return false;
148   return hasAttribute(Attribute::Nest);
149 }
150 
151 bool Argument::hasNoAliasAttr() const {
152   if (!getType()->isPointerTy()) return false;
153   return hasAttribute(Attribute::NoAlias);
154 }
155 
156 bool Argument::hasNoCaptureAttr() const {
157   if (!getType()->isPointerTy()) return false;
158   return hasAttribute(Attribute::NoCapture);
159 }
160 
161 bool Argument::hasStructRetAttr() const {
162   if (!getType()->isPointerTy()) return false;
163   return hasAttribute(Attribute::StructRet);
164 }
165 
166 bool Argument::hasInRegAttr() const {
167   return hasAttribute(Attribute::InReg);
168 }
169 
170 bool Argument::hasReturnedAttr() const {
171   return hasAttribute(Attribute::Returned);
172 }
173 
174 bool Argument::hasZExtAttr() const {
175   return hasAttribute(Attribute::ZExt);
176 }
177 
178 bool Argument::hasSExtAttr() const {
179   return hasAttribute(Attribute::SExt);
180 }
181 
182 bool Argument::onlyReadsMemory() const {
183   AttributeList Attrs = getParent()->getAttributes();
184   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
185          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
186 }
187 
188 void Argument::addAttrs(AttrBuilder &B) {
189   AttributeList AL = getParent()->getAttributes();
190   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
191   getParent()->setAttributes(AL);
192 }
193 
194 void Argument::addAttr(Attribute::AttrKind Kind) {
195   getParent()->addParamAttr(getArgNo(), Kind);
196 }
197 
198 void Argument::addAttr(Attribute Attr) {
199   getParent()->addParamAttr(getArgNo(), Attr);
200 }
201 
202 void Argument::removeAttr(Attribute::AttrKind Kind) {
203   getParent()->removeParamAttr(getArgNo(), Kind);
204 }
205 
206 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
207   return getParent()->hasParamAttribute(getArgNo(), Kind);
208 }
209 
210 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
211   return getParent()->getParamAttribute(getArgNo(), Kind);
212 }
213 
214 //===----------------------------------------------------------------------===//
215 // Helper Methods in Function
216 //===----------------------------------------------------------------------===//
217 
218 LLVMContext &Function::getContext() const {
219   return getType()->getContext();
220 }
221 
222 unsigned Function::getInstructionCount() const {
223   unsigned NumInstrs = 0;
224   for (const BasicBlock &BB : BasicBlocks)
225     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
226                                BB.instructionsWithoutDebug().end());
227   return NumInstrs;
228 }
229 
230 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
231                            const Twine &N, Module &M) {
232   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
233 }
234 
235 void Function::removeFromParent() {
236   getParent()->getFunctionList().remove(getIterator());
237 }
238 
239 void Function::eraseFromParent() {
240   getParent()->getFunctionList().erase(getIterator());
241 }
242 
243 //===----------------------------------------------------------------------===//
244 // Function Implementation
245 //===----------------------------------------------------------------------===//
246 
247 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
248   // If AS == -1 and we are passed a valid module pointer we place the function
249   // in the program address space. Otherwise we default to AS0.
250   if (AddrSpace == static_cast<unsigned>(-1))
251     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
252   return AddrSpace;
253 }
254 
255 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
256                    const Twine &name, Module *ParentModule)
257     : GlobalObject(Ty, Value::FunctionVal,
258                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
259                    computeAddrSpace(AddrSpace, ParentModule)),
260       NumArgs(Ty->getNumParams()) {
261   assert(FunctionType::isValidReturnType(getReturnType()) &&
262          "invalid return type");
263   setGlobalObjectSubClassData(0);
264 
265   // We only need a symbol table for a function if the context keeps value names
266   if (!getContext().shouldDiscardValueNames())
267     SymTab = std::make_unique<ValueSymbolTable>();
268 
269   // If the function has arguments, mark them as lazily built.
270   if (Ty->getNumParams())
271     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
272 
273   if (ParentModule)
274     ParentModule->getFunctionList().push_back(this);
275 
276   HasLLVMReservedName = getName().startswith("llvm.");
277   // Ensure intrinsics have the right parameter attributes.
278   // Note, the IntID field will have been set in Value::setName if this function
279   // name is a valid intrinsic ID.
280   if (IntID)
281     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
282 }
283 
284 Function::~Function() {
285   dropAllReferences();    // After this it is safe to delete instructions.
286 
287   // Delete all of the method arguments and unlink from symbol table...
288   if (Arguments)
289     clearArguments();
290 
291   // Remove the function from the on-the-side GC table.
292   clearGC();
293 }
294 
295 void Function::BuildLazyArguments() const {
296   // Create the arguments vector, all arguments start out unnamed.
297   auto *FT = getFunctionType();
298   if (NumArgs > 0) {
299     Arguments = std::allocator<Argument>().allocate(NumArgs);
300     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
301       Type *ArgTy = FT->getParamType(i);
302       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
303       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
304     }
305   }
306 
307   // Clear the lazy arguments bit.
308   unsigned SDC = getSubclassDataFromValue();
309   SDC &= ~(1 << 0);
310   const_cast<Function*>(this)->setValueSubclassData(SDC);
311   assert(!hasLazyArguments());
312 }
313 
314 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
315   return MutableArrayRef<Argument>(Args, Count);
316 }
317 
318 void Function::clearArguments() {
319   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
320     A.setName("");
321     A.~Argument();
322   }
323   std::allocator<Argument>().deallocate(Arguments, NumArgs);
324   Arguments = nullptr;
325 }
326 
327 void Function::stealArgumentListFrom(Function &Src) {
328   assert(isDeclaration() && "Expected no references to current arguments");
329 
330   // Drop the current arguments, if any, and set the lazy argument bit.
331   if (!hasLazyArguments()) {
332     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
333                         [](const Argument &A) { return A.use_empty(); }) &&
334            "Expected arguments to be unused in declaration");
335     clearArguments();
336     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
337   }
338 
339   // Nothing to steal if Src has lazy arguments.
340   if (Src.hasLazyArguments())
341     return;
342 
343   // Steal arguments from Src, and fix the lazy argument bits.
344   assert(arg_size() == Src.arg_size());
345   Arguments = Src.Arguments;
346   Src.Arguments = nullptr;
347   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
348     // FIXME: This does the work of transferNodesFromList inefficiently.
349     SmallString<128> Name;
350     if (A.hasName())
351       Name = A.getName();
352     if (!Name.empty())
353       A.setName("");
354     A.setParent(this);
355     if (!Name.empty())
356       A.setName(Name);
357   }
358 
359   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
360   assert(!hasLazyArguments());
361   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
362 }
363 
364 // dropAllReferences() - This function causes all the subinstructions to "let
365 // go" of all references that they are maintaining.  This allows one to
366 // 'delete' a whole class at a time, even though there may be circular
367 // references... first all references are dropped, and all use counts go to
368 // zero.  Then everything is deleted for real.  Note that no operations are
369 // valid on an object that has "dropped all references", except operator
370 // delete.
371 //
372 void Function::dropAllReferences() {
373   setIsMaterializable(false);
374 
375   for (BasicBlock &BB : *this)
376     BB.dropAllReferences();
377 
378   // Delete all basic blocks. They are now unused, except possibly by
379   // blockaddresses, but BasicBlock's destructor takes care of those.
380   while (!BasicBlocks.empty())
381     BasicBlocks.begin()->eraseFromParent();
382 
383   // Drop uses of any optional data (real or placeholder).
384   if (getNumOperands()) {
385     User::dropAllReferences();
386     setNumHungOffUseOperands(0);
387     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
388   }
389 
390   // Metadata is stored in a side-table.
391   clearMetadata();
392 }
393 
394 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
395   AttributeList PAL = getAttributes();
396   PAL = PAL.addAttribute(getContext(), i, Kind);
397   setAttributes(PAL);
398 }
399 
400 void Function::addAttribute(unsigned i, Attribute Attr) {
401   AttributeList PAL = getAttributes();
402   PAL = PAL.addAttribute(getContext(), i, Attr);
403   setAttributes(PAL);
404 }
405 
406 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
407   AttributeList PAL = getAttributes();
408   PAL = PAL.addAttributes(getContext(), i, Attrs);
409   setAttributes(PAL);
410 }
411 
412 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
413   AttributeList PAL = getAttributes();
414   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
415   setAttributes(PAL);
416 }
417 
418 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
419   AttributeList PAL = getAttributes();
420   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
421   setAttributes(PAL);
422 }
423 
424 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
425   AttributeList PAL = getAttributes();
426   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
427   setAttributes(PAL);
428 }
429 
430 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
431   AttributeList PAL = getAttributes();
432   PAL = PAL.removeAttribute(getContext(), i, Kind);
433   setAttributes(PAL);
434 }
435 
436 void Function::removeAttribute(unsigned i, StringRef Kind) {
437   AttributeList PAL = getAttributes();
438   PAL = PAL.removeAttribute(getContext(), i, Kind);
439   setAttributes(PAL);
440 }
441 
442 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
443   AttributeList PAL = getAttributes();
444   PAL = PAL.removeAttributes(getContext(), i, Attrs);
445   setAttributes(PAL);
446 }
447 
448 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
449   AttributeList PAL = getAttributes();
450   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
451   setAttributes(PAL);
452 }
453 
454 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
455   AttributeList PAL = getAttributes();
456   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
457   setAttributes(PAL);
458 }
459 
460 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
461   AttributeList PAL = getAttributes();
462   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
463   setAttributes(PAL);
464 }
465 
466 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
467   AttributeList PAL = getAttributes();
468   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
469   setAttributes(PAL);
470 }
471 
472 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
473   AttributeList PAL = getAttributes();
474   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
475   setAttributes(PAL);
476 }
477 
478 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
479   AttributeList PAL = getAttributes();
480   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
481   setAttributes(PAL);
482 }
483 
484 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
485                                                  uint64_t Bytes) {
486   AttributeList PAL = getAttributes();
487   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
488   setAttributes(PAL);
489 }
490 
491 const std::string &Function::getGC() const {
492   assert(hasGC() && "Function has no collector");
493   return getContext().getGC(*this);
494 }
495 
496 void Function::setGC(std::string Str) {
497   setValueSubclassDataBit(14, !Str.empty());
498   getContext().setGC(*this, std::move(Str));
499 }
500 
501 void Function::clearGC() {
502   if (!hasGC())
503     return;
504   getContext().deleteGC(*this);
505   setValueSubclassDataBit(14, false);
506 }
507 
508 /// Copy all additional attributes (those not needed to create a Function) from
509 /// the Function Src to this one.
510 void Function::copyAttributesFrom(const Function *Src) {
511   GlobalObject::copyAttributesFrom(Src);
512   setCallingConv(Src->getCallingConv());
513   setAttributes(Src->getAttributes());
514   if (Src->hasGC())
515     setGC(Src->getGC());
516   else
517     clearGC();
518   if (Src->hasPersonalityFn())
519     setPersonalityFn(Src->getPersonalityFn());
520   if (Src->hasPrefixData())
521     setPrefixData(Src->getPrefixData());
522   if (Src->hasPrologueData())
523     setPrologueData(Src->getPrologueData());
524 }
525 
526 /// Table of string intrinsic names indexed by enum value.
527 static const char * const IntrinsicNameTable[] = {
528   "not_intrinsic",
529 #define GET_INTRINSIC_NAME_TABLE
530 #include "llvm/IR/IntrinsicImpl.inc"
531 #undef GET_INTRINSIC_NAME_TABLE
532 };
533 
534 /// Table of per-target intrinsic name tables.
535 #define GET_INTRINSIC_TARGET_DATA
536 #include "llvm/IR/IntrinsicImpl.inc"
537 #undef GET_INTRINSIC_TARGET_DATA
538 
539 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
540 /// target as \c Name, or the generic table if \c Name is not target specific.
541 ///
542 /// Returns the relevant slice of \c IntrinsicNameTable
543 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
544   assert(Name.startswith("llvm."));
545 
546   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
547   // Drop "llvm." and take the first dotted component. That will be the target
548   // if this is target specific.
549   StringRef Target = Name.drop_front(5).split('.').first;
550   auto It = partition_point(
551       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
552   // We've either found the target or just fall back to the generic set, which
553   // is always first.
554   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
555   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
556 }
557 
558 /// This does the actual lookup of an intrinsic ID which
559 /// matches the given function name.
560 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
561   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
562   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
563   if (Idx == -1)
564     return Intrinsic::not_intrinsic;
565 
566   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
567   // an index into a sub-table.
568   int Adjust = NameTable.data() - IntrinsicNameTable;
569   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
570 
571   // If the intrinsic is not overloaded, require an exact match. If it is
572   // overloaded, require either exact or prefix match.
573   const auto MatchSize = strlen(NameTable[Idx]);
574   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
575   bool IsExactMatch = Name.size() == MatchSize;
576   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
577                                                      : Intrinsic::not_intrinsic;
578 }
579 
580 void Function::recalculateIntrinsicID() {
581   StringRef Name = getName();
582   if (!Name.startswith("llvm.")) {
583     HasLLVMReservedName = false;
584     IntID = Intrinsic::not_intrinsic;
585     return;
586   }
587   HasLLVMReservedName = true;
588   IntID = lookupIntrinsicID(Name);
589 }
590 
591 /// Returns a stable mangling for the type specified for use in the name
592 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
593 /// of named types is simply their name.  Manglings for unnamed types consist
594 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
595 /// combined with the mangling of their component types.  A vararg function
596 /// type will have a suffix of 'vararg'.  Since function types can contain
597 /// other function types, we close a function type mangling with suffix 'f'
598 /// which can't be confused with it's prefix.  This ensures we don't have
599 /// collisions between two unrelated function types. Otherwise, you might
600 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
601 ///
602 static std::string getMangledTypeStr(Type* Ty) {
603   std::string Result;
604   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
605     Result += "p" + utostr(PTyp->getAddressSpace()) +
606       getMangledTypeStr(PTyp->getElementType());
607   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
608     Result += "a" + utostr(ATyp->getNumElements()) +
609       getMangledTypeStr(ATyp->getElementType());
610   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
611     if (!STyp->isLiteral()) {
612       Result += "s_";
613       Result += STyp->getName();
614     } else {
615       Result += "sl_";
616       for (auto Elem : STyp->elements())
617         Result += getMangledTypeStr(Elem);
618     }
619     // Ensure nested structs are distinguishable.
620     Result += "s";
621   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
622     Result += "f_" + getMangledTypeStr(FT->getReturnType());
623     for (size_t i = 0; i < FT->getNumParams(); i++)
624       Result += getMangledTypeStr(FT->getParamType(i));
625     if (FT->isVarArg())
626       Result += "vararg";
627     // Ensure nested function types are distinguishable.
628     Result += "f";
629   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
630     if (VTy->isScalable())
631       Result += "nx";
632     Result += "v" + utostr(VTy->getVectorNumElements()) +
633       getMangledTypeStr(VTy->getVectorElementType());
634   } else if (Ty) {
635     switch (Ty->getTypeID()) {
636     default: llvm_unreachable("Unhandled type");
637     case Type::VoidTyID:      Result += "isVoid";   break;
638     case Type::MetadataTyID:  Result += "Metadata"; break;
639     case Type::HalfTyID:      Result += "f16";      break;
640     case Type::FloatTyID:     Result += "f32";      break;
641     case Type::DoubleTyID:    Result += "f64";      break;
642     case Type::X86_FP80TyID:  Result += "f80";      break;
643     case Type::FP128TyID:     Result += "f128";     break;
644     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
645     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
646     case Type::IntegerTyID:
647       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
648       break;
649     }
650   }
651   return Result;
652 }
653 
654 StringRef Intrinsic::getName(ID id) {
655   assert(id < num_intrinsics && "Invalid intrinsic ID!");
656   assert(!Intrinsic::isOverloaded(id) &&
657          "This version of getName does not support overloading");
658   return IntrinsicNameTable[id];
659 }
660 
661 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
662   assert(id < num_intrinsics && "Invalid intrinsic ID!");
663   std::string Result(IntrinsicNameTable[id]);
664   for (Type *Ty : Tys) {
665     Result += "." + getMangledTypeStr(Ty);
666   }
667   return Result;
668 }
669 
670 /// IIT_Info - These are enumerators that describe the entries returned by the
671 /// getIntrinsicInfoTableEntries function.
672 ///
673 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
674 enum IIT_Info {
675   // Common values should be encoded with 0-15.
676   IIT_Done = 0,
677   IIT_I1   = 1,
678   IIT_I8   = 2,
679   IIT_I16  = 3,
680   IIT_I32  = 4,
681   IIT_I64  = 5,
682   IIT_F16  = 6,
683   IIT_F32  = 7,
684   IIT_F64  = 8,
685   IIT_V2   = 9,
686   IIT_V4   = 10,
687   IIT_V8   = 11,
688   IIT_V16  = 12,
689   IIT_V32  = 13,
690   IIT_PTR  = 14,
691   IIT_ARG  = 15,
692 
693   // Values from 16+ are only encodable with the inefficient encoding.
694   IIT_V64  = 16,
695   IIT_MMX  = 17,
696   IIT_TOKEN = 18,
697   IIT_METADATA = 19,
698   IIT_EMPTYSTRUCT = 20,
699   IIT_STRUCT2 = 21,
700   IIT_STRUCT3 = 22,
701   IIT_STRUCT4 = 23,
702   IIT_STRUCT5 = 24,
703   IIT_EXTEND_ARG = 25,
704   IIT_TRUNC_ARG = 26,
705   IIT_ANYPTR = 27,
706   IIT_V1   = 28,
707   IIT_VARARG = 29,
708   IIT_HALF_VEC_ARG = 30,
709   IIT_SAME_VEC_WIDTH_ARG = 31,
710   IIT_PTR_TO_ARG = 32,
711   IIT_PTR_TO_ELT = 33,
712   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
713   IIT_I128 = 35,
714   IIT_V512 = 36,
715   IIT_V1024 = 37,
716   IIT_STRUCT6 = 38,
717   IIT_STRUCT7 = 39,
718   IIT_STRUCT8 = 40,
719   IIT_F128 = 41,
720   IIT_VEC_ELEMENT = 42,
721   IIT_SCALABLE_VEC = 43,
722   IIT_SUBDIVIDE2_ARG = 44,
723   IIT_SUBDIVIDE4_ARG = 45,
724   IIT_VEC_OF_BITCASTS_TO_INT = 46
725 };
726 
727 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
728                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
729   using namespace Intrinsic;
730 
731   IIT_Info Info = IIT_Info(Infos[NextElt++]);
732   unsigned StructElts = 2;
733 
734   switch (Info) {
735   case IIT_Done:
736     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
737     return;
738   case IIT_VARARG:
739     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
740     return;
741   case IIT_MMX:
742     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
743     return;
744   case IIT_TOKEN:
745     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
746     return;
747   case IIT_METADATA:
748     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
749     return;
750   case IIT_F16:
751     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
752     return;
753   case IIT_F32:
754     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
755     return;
756   case IIT_F64:
757     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
758     return;
759   case IIT_F128:
760     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
761     return;
762   case IIT_I1:
763     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
764     return;
765   case IIT_I8:
766     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
767     return;
768   case IIT_I16:
769     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
770     return;
771   case IIT_I32:
772     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
773     return;
774   case IIT_I64:
775     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
776     return;
777   case IIT_I128:
778     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
779     return;
780   case IIT_V1:
781     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
782     DecodeIITType(NextElt, Infos, OutputTable);
783     return;
784   case IIT_V2:
785     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
786     DecodeIITType(NextElt, Infos, OutputTable);
787     return;
788   case IIT_V4:
789     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
790     DecodeIITType(NextElt, Infos, OutputTable);
791     return;
792   case IIT_V8:
793     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
794     DecodeIITType(NextElt, Infos, OutputTable);
795     return;
796   case IIT_V16:
797     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
798     DecodeIITType(NextElt, Infos, OutputTable);
799     return;
800   case IIT_V32:
801     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
802     DecodeIITType(NextElt, Infos, OutputTable);
803     return;
804   case IIT_V64:
805     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
806     DecodeIITType(NextElt, Infos, OutputTable);
807     return;
808   case IIT_V512:
809     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
810     DecodeIITType(NextElt, Infos, OutputTable);
811     return;
812   case IIT_V1024:
813     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
814     DecodeIITType(NextElt, Infos, OutputTable);
815     return;
816   case IIT_PTR:
817     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
818     DecodeIITType(NextElt, Infos, OutputTable);
819     return;
820   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
821     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
822                                              Infos[NextElt++]));
823     DecodeIITType(NextElt, Infos, OutputTable);
824     return;
825   }
826   case IIT_ARG: {
827     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
828     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
829     return;
830   }
831   case IIT_EXTEND_ARG: {
832     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
833     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
834                                              ArgInfo));
835     return;
836   }
837   case IIT_TRUNC_ARG: {
838     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
839     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
840                                              ArgInfo));
841     return;
842   }
843   case IIT_HALF_VEC_ARG: {
844     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
845     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
846                                              ArgInfo));
847     return;
848   }
849   case IIT_SAME_VEC_WIDTH_ARG: {
850     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
851     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
852                                              ArgInfo));
853     return;
854   }
855   case IIT_PTR_TO_ARG: {
856     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
857     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
858                                              ArgInfo));
859     return;
860   }
861   case IIT_PTR_TO_ELT: {
862     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
863     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
864     return;
865   }
866   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
867     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
868     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
869     OutputTable.push_back(
870         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
871     return;
872   }
873   case IIT_EMPTYSTRUCT:
874     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
875     return;
876   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
877   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
878   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
879   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
880   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
881   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
882   case IIT_STRUCT2: {
883     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
884 
885     for (unsigned i = 0; i != StructElts; ++i)
886       DecodeIITType(NextElt, Infos, OutputTable);
887     return;
888   }
889   case IIT_SUBDIVIDE2_ARG: {
890     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
891     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
892                                              ArgInfo));
893     return;
894   }
895   case IIT_SUBDIVIDE4_ARG: {
896     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
897     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
898                                              ArgInfo));
899     return;
900   }
901   case IIT_VEC_ELEMENT: {
902     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
903     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
904                                              ArgInfo));
905     return;
906   }
907   case IIT_SCALABLE_VEC: {
908     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument,
909                                              0));
910     DecodeIITType(NextElt, Infos, OutputTable);
911     return;
912   }
913   case IIT_VEC_OF_BITCASTS_TO_INT: {
914     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
915     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
916                                              ArgInfo));
917     return;
918   }
919   }
920   llvm_unreachable("unhandled");
921 }
922 
923 #define GET_INTRINSIC_GENERATOR_GLOBAL
924 #include "llvm/IR/IntrinsicImpl.inc"
925 #undef GET_INTRINSIC_GENERATOR_GLOBAL
926 
927 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
928                                              SmallVectorImpl<IITDescriptor> &T){
929   // Check to see if the intrinsic's type was expressible by the table.
930   unsigned TableVal = IIT_Table[id-1];
931 
932   // Decode the TableVal into an array of IITValues.
933   SmallVector<unsigned char, 8> IITValues;
934   ArrayRef<unsigned char> IITEntries;
935   unsigned NextElt = 0;
936   if ((TableVal >> 31) != 0) {
937     // This is an offset into the IIT_LongEncodingTable.
938     IITEntries = IIT_LongEncodingTable;
939 
940     // Strip sentinel bit.
941     NextElt = (TableVal << 1) >> 1;
942   } else {
943     // Decode the TableVal into an array of IITValues.  If the entry was encoded
944     // into a single word in the table itself, decode it now.
945     do {
946       IITValues.push_back(TableVal & 0xF);
947       TableVal >>= 4;
948     } while (TableVal);
949 
950     IITEntries = IITValues;
951     NextElt = 0;
952   }
953 
954   // Okay, decode the table into the output vector of IITDescriptors.
955   DecodeIITType(NextElt, IITEntries, T);
956   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
957     DecodeIITType(NextElt, IITEntries, T);
958 }
959 
960 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
961                              ArrayRef<Type*> Tys, LLVMContext &Context) {
962   using namespace Intrinsic;
963 
964   IITDescriptor D = Infos.front();
965   Infos = Infos.slice(1);
966 
967   switch (D.Kind) {
968   case IITDescriptor::Void: return Type::getVoidTy(Context);
969   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
970   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
971   case IITDescriptor::Token: return Type::getTokenTy(Context);
972   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
973   case IITDescriptor::Half: return Type::getHalfTy(Context);
974   case IITDescriptor::Float: return Type::getFloatTy(Context);
975   case IITDescriptor::Double: return Type::getDoubleTy(Context);
976   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
977 
978   case IITDescriptor::Integer:
979     return IntegerType::get(Context, D.Integer_Width);
980   case IITDescriptor::Vector:
981     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
982   case IITDescriptor::Pointer:
983     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
984                             D.Pointer_AddressSpace);
985   case IITDescriptor::Struct: {
986     SmallVector<Type *, 8> Elts;
987     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
988       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
989     return StructType::get(Context, Elts);
990   }
991   case IITDescriptor::Argument:
992     return Tys[D.getArgumentNumber()];
993   case IITDescriptor::ExtendArgument: {
994     Type *Ty = Tys[D.getArgumentNumber()];
995     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
996       return VectorType::getExtendedElementVectorType(VTy);
997 
998     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
999   }
1000   case IITDescriptor::TruncArgument: {
1001     Type *Ty = Tys[D.getArgumentNumber()];
1002     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1003       return VectorType::getTruncatedElementVectorType(VTy);
1004 
1005     IntegerType *ITy = cast<IntegerType>(Ty);
1006     assert(ITy->getBitWidth() % 2 == 0);
1007     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1008   }
1009   case IITDescriptor::Subdivide2Argument:
1010   case IITDescriptor::Subdivide4Argument: {
1011     Type *Ty = Tys[D.getArgumentNumber()];
1012     VectorType *VTy = dyn_cast<VectorType>(Ty);
1013     assert(VTy && "Expected an argument of Vector Type");
1014     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1015     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1016   }
1017   case IITDescriptor::HalfVecArgument:
1018     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1019                                                   Tys[D.getArgumentNumber()]));
1020   case IITDescriptor::SameVecWidthArgument: {
1021     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1022     Type *Ty = Tys[D.getArgumentNumber()];
1023     if (auto *VTy = dyn_cast<VectorType>(Ty))
1024       return VectorType::get(EltTy, VTy->getElementCount());
1025     return EltTy;
1026   }
1027   case IITDescriptor::PtrToArgument: {
1028     Type *Ty = Tys[D.getArgumentNumber()];
1029     return PointerType::getUnqual(Ty);
1030   }
1031   case IITDescriptor::PtrToElt: {
1032     Type *Ty = Tys[D.getArgumentNumber()];
1033     VectorType *VTy = dyn_cast<VectorType>(Ty);
1034     if (!VTy)
1035       llvm_unreachable("Expected an argument of Vector Type");
1036     Type *EltTy = VTy->getVectorElementType();
1037     return PointerType::getUnqual(EltTy);
1038   }
1039   case IITDescriptor::VecElementArgument: {
1040     Type *Ty = Tys[D.getArgumentNumber()];
1041     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1042       return VTy->getElementType();
1043     llvm_unreachable("Expected an argument of Vector Type");
1044   }
1045   case IITDescriptor::VecOfBitcastsToInt: {
1046     Type *Ty = Tys[D.getArgumentNumber()];
1047     VectorType *VTy = dyn_cast<VectorType>(Ty);
1048     assert(VTy && "Expected an argument of Vector Type");
1049     return VectorType::getInteger(VTy);
1050   }
1051   case IITDescriptor::VecOfAnyPtrsToElt:
1052     // Return the overloaded type (which determines the pointers address space)
1053     return Tys[D.getOverloadArgNumber()];
1054   case IITDescriptor::ScalableVecArgument: {
1055     Type *Ty = DecodeFixedType(Infos, Tys, Context);
1056     return VectorType::get(Ty->getVectorElementType(),
1057                            { Ty->getVectorNumElements(), true });
1058   }
1059   }
1060   llvm_unreachable("unhandled");
1061 }
1062 
1063 FunctionType *Intrinsic::getType(LLVMContext &Context,
1064                                  ID id, ArrayRef<Type*> Tys) {
1065   SmallVector<IITDescriptor, 8> Table;
1066   getIntrinsicInfoTableEntries(id, Table);
1067 
1068   ArrayRef<IITDescriptor> TableRef = Table;
1069   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1070 
1071   SmallVector<Type*, 8> ArgTys;
1072   while (!TableRef.empty())
1073     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1074 
1075   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1076   // If we see void type as the type of the last argument, it is vararg intrinsic
1077   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1078     ArgTys.pop_back();
1079     return FunctionType::get(ResultTy, ArgTys, true);
1080   }
1081   return FunctionType::get(ResultTy, ArgTys, false);
1082 }
1083 
1084 bool Intrinsic::isOverloaded(ID id) {
1085 #define GET_INTRINSIC_OVERLOAD_TABLE
1086 #include "llvm/IR/IntrinsicImpl.inc"
1087 #undef GET_INTRINSIC_OVERLOAD_TABLE
1088 }
1089 
1090 bool Intrinsic::isLeaf(ID id) {
1091   switch (id) {
1092   default:
1093     return true;
1094 
1095   case Intrinsic::experimental_gc_statepoint:
1096   case Intrinsic::experimental_patchpoint_void:
1097   case Intrinsic::experimental_patchpoint_i64:
1098     return false;
1099   }
1100 }
1101 
1102 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1103 #define GET_INTRINSIC_ATTRIBUTES
1104 #include "llvm/IR/IntrinsicImpl.inc"
1105 #undef GET_INTRINSIC_ATTRIBUTES
1106 
1107 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1108   // There can never be multiple globals with the same name of different types,
1109   // because intrinsics must be a specific type.
1110   return cast<Function>(
1111       M->getOrInsertFunction(getName(id, Tys),
1112                              getType(M->getContext(), id, Tys))
1113           .getCallee());
1114 }
1115 
1116 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1117 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1118 #include "llvm/IR/IntrinsicImpl.inc"
1119 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1120 
1121 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1122 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1123 #include "llvm/IR/IntrinsicImpl.inc"
1124 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1125 
1126 using DeferredIntrinsicMatchPair =
1127     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1128 
1129 static bool matchIntrinsicType(
1130     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1131     SmallVectorImpl<Type *> &ArgTys,
1132     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1133     bool IsDeferredCheck) {
1134   using namespace Intrinsic;
1135 
1136   // If we ran out of descriptors, there are too many arguments.
1137   if (Infos.empty()) return true;
1138 
1139   // Do this before slicing off the 'front' part
1140   auto InfosRef = Infos;
1141   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1142     DeferredChecks.emplace_back(T, InfosRef);
1143     return false;
1144   };
1145 
1146   IITDescriptor D = Infos.front();
1147   Infos = Infos.slice(1);
1148 
1149   switch (D.Kind) {
1150     case IITDescriptor::Void: return !Ty->isVoidTy();
1151     case IITDescriptor::VarArg: return true;
1152     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1153     case IITDescriptor::Token: return !Ty->isTokenTy();
1154     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1155     case IITDescriptor::Half: return !Ty->isHalfTy();
1156     case IITDescriptor::Float: return !Ty->isFloatTy();
1157     case IITDescriptor::Double: return !Ty->isDoubleTy();
1158     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1159     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1160     case IITDescriptor::Vector: {
1161       VectorType *VT = dyn_cast<VectorType>(Ty);
1162       return !VT || VT->getNumElements() != D.Vector_Width ||
1163              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1164                                 DeferredChecks, IsDeferredCheck);
1165     }
1166     case IITDescriptor::Pointer: {
1167       PointerType *PT = dyn_cast<PointerType>(Ty);
1168       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1169              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1170                                 DeferredChecks, IsDeferredCheck);
1171     }
1172 
1173     case IITDescriptor::Struct: {
1174       StructType *ST = dyn_cast<StructType>(Ty);
1175       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1176         return true;
1177 
1178       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1179         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1180                                DeferredChecks, IsDeferredCheck))
1181           return true;
1182       return false;
1183     }
1184 
1185     case IITDescriptor::Argument:
1186       // If this is the second occurrence of an argument,
1187       // verify that the later instance matches the previous instance.
1188       if (D.getArgumentNumber() < ArgTys.size())
1189         return Ty != ArgTys[D.getArgumentNumber()];
1190 
1191       if (D.getArgumentNumber() > ArgTys.size() ||
1192           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1193         return IsDeferredCheck || DeferCheck(Ty);
1194 
1195       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1196              "Table consistency error");
1197       ArgTys.push_back(Ty);
1198 
1199       switch (D.getArgumentKind()) {
1200         case IITDescriptor::AK_Any:        return false; // Success
1201         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1202         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1203         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1204         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1205         default:                           break;
1206       }
1207       llvm_unreachable("all argument kinds not covered");
1208 
1209     case IITDescriptor::ExtendArgument: {
1210       // If this is a forward reference, defer the check for later.
1211       if (D.getArgumentNumber() >= ArgTys.size())
1212         return IsDeferredCheck || DeferCheck(Ty);
1213 
1214       Type *NewTy = ArgTys[D.getArgumentNumber()];
1215       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1216         NewTy = VectorType::getExtendedElementVectorType(VTy);
1217       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1218         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1219       else
1220         return true;
1221 
1222       return Ty != NewTy;
1223     }
1224     case IITDescriptor::TruncArgument: {
1225       // If this is a forward reference, defer the check for later.
1226       if (D.getArgumentNumber() >= ArgTys.size())
1227         return IsDeferredCheck || DeferCheck(Ty);
1228 
1229       Type *NewTy = ArgTys[D.getArgumentNumber()];
1230       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1231         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1232       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1233         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1234       else
1235         return true;
1236 
1237       return Ty != NewTy;
1238     }
1239     case IITDescriptor::HalfVecArgument:
1240       // If this is a forward reference, defer the check for later.
1241       if (D.getArgumentNumber() >= ArgTys.size())
1242         return IsDeferredCheck || DeferCheck(Ty);
1243       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1244              VectorType::getHalfElementsVectorType(
1245                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1246     case IITDescriptor::SameVecWidthArgument: {
1247       if (D.getArgumentNumber() >= ArgTys.size()) {
1248         // Defer check and subsequent check for the vector element type.
1249         Infos = Infos.slice(1);
1250         return IsDeferredCheck || DeferCheck(Ty);
1251       }
1252       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1253       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1254       // Both must be vectors of the same number of elements or neither.
1255       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1256         return true;
1257       Type *EltTy = Ty;
1258       if (ThisArgType) {
1259         if (ReferenceType->getElementCount() !=
1260             ThisArgType->getElementCount())
1261           return true;
1262         EltTy = ThisArgType->getVectorElementType();
1263       }
1264       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1265                                 IsDeferredCheck);
1266     }
1267     case IITDescriptor::PtrToArgument: {
1268       if (D.getArgumentNumber() >= ArgTys.size())
1269         return IsDeferredCheck || DeferCheck(Ty);
1270       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1271       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1272       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1273     }
1274     case IITDescriptor::PtrToElt: {
1275       if (D.getArgumentNumber() >= ArgTys.size())
1276         return IsDeferredCheck || DeferCheck(Ty);
1277       VectorType * ReferenceType =
1278         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1279       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1280 
1281       return (!ThisArgType || !ReferenceType ||
1282               ThisArgType->getElementType() != ReferenceType->getElementType());
1283     }
1284     case IITDescriptor::VecOfAnyPtrsToElt: {
1285       unsigned RefArgNumber = D.getRefArgNumber();
1286       if (RefArgNumber >= ArgTys.size()) {
1287         if (IsDeferredCheck)
1288           return true;
1289         // If forward referencing, already add the pointer-vector type and
1290         // defer the checks for later.
1291         ArgTys.push_back(Ty);
1292         return DeferCheck(Ty);
1293       }
1294 
1295       if (!IsDeferredCheck){
1296         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1297                "Table consistency error");
1298         ArgTys.push_back(Ty);
1299       }
1300 
1301       // Verify the overloaded type "matches" the Ref type.
1302       // i.e. Ty is a vector with the same width as Ref.
1303       // Composed of pointers to the same element type as Ref.
1304       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1305       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1306       if (!ThisArgVecTy || !ReferenceType ||
1307           (ReferenceType->getVectorNumElements() !=
1308            ThisArgVecTy->getVectorNumElements()))
1309         return true;
1310       PointerType *ThisArgEltTy =
1311               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1312       if (!ThisArgEltTy)
1313         return true;
1314       return ThisArgEltTy->getElementType() !=
1315              ReferenceType->getVectorElementType();
1316     }
1317     case IITDescriptor::VecElementArgument: {
1318       if (D.getArgumentNumber() >= ArgTys.size())
1319         return IsDeferredCheck ? true : DeferCheck(Ty);
1320       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1321       return !ReferenceType || Ty != ReferenceType->getElementType();
1322     }
1323     case IITDescriptor::Subdivide2Argument:
1324     case IITDescriptor::Subdivide4Argument: {
1325       // If this is a forward reference, defer the check for later.
1326       if (D.getArgumentNumber() >= ArgTys.size())
1327         return IsDeferredCheck || DeferCheck(Ty);
1328 
1329       Type *NewTy = ArgTys[D.getArgumentNumber()];
1330       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1331         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1332         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1333         return Ty != NewTy;
1334       }
1335       return true;
1336     }
1337     case IITDescriptor::ScalableVecArgument: {
1338       VectorType *VTy = dyn_cast<VectorType>(Ty);
1339       if (!VTy || !VTy->isScalable())
1340         return true;
1341       return matchIntrinsicType(VTy, Infos, ArgTys, DeferredChecks,
1342                                 IsDeferredCheck);
1343     }
1344     case IITDescriptor::VecOfBitcastsToInt: {
1345       if (D.getArgumentNumber() >= ArgTys.size())
1346         return IsDeferredCheck || DeferCheck(Ty);
1347       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1348       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1349       if (!ThisArgVecTy || !ReferenceType)
1350         return true;
1351       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1352     }
1353   }
1354   llvm_unreachable("unhandled");
1355 }
1356 
1357 Intrinsic::MatchIntrinsicTypesResult
1358 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1359                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1360                                    SmallVectorImpl<Type *> &ArgTys) {
1361   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1362   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1363                          false))
1364     return MatchIntrinsicTypes_NoMatchRet;
1365 
1366   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1367 
1368   for (auto Ty : FTy->params())
1369     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1370       return MatchIntrinsicTypes_NoMatchArg;
1371 
1372   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1373     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1374     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1375                            true))
1376       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1377                                          : MatchIntrinsicTypes_NoMatchArg;
1378   }
1379 
1380   return MatchIntrinsicTypes_Match;
1381 }
1382 
1383 bool
1384 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1385                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1386   // If there are no descriptors left, then it can't be a vararg.
1387   if (Infos.empty())
1388     return isVarArg;
1389 
1390   // There should be only one descriptor remaining at this point.
1391   if (Infos.size() != 1)
1392     return true;
1393 
1394   // Check and verify the descriptor.
1395   IITDescriptor D = Infos.front();
1396   Infos = Infos.slice(1);
1397   if (D.Kind == IITDescriptor::VarArg)
1398     return !isVarArg;
1399 
1400   return true;
1401 }
1402 
1403 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1404   Intrinsic::ID ID = F->getIntrinsicID();
1405   if (!ID)
1406     return None;
1407 
1408   FunctionType *FTy = F->getFunctionType();
1409   // Accumulate an array of overloaded types for the given intrinsic
1410   SmallVector<Type *, 4> ArgTys;
1411   {
1412     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1413     getIntrinsicInfoTableEntries(ID, Table);
1414     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1415 
1416     if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys))
1417       return None;
1418     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1419       return None;
1420   }
1421 
1422   StringRef Name = F->getName();
1423   if (Name == Intrinsic::getName(ID, ArgTys))
1424     return None;
1425 
1426   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1427   NewDecl->setCallingConv(F->getCallingConv());
1428   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1429   return NewDecl;
1430 }
1431 
1432 /// hasAddressTaken - returns true if there are any uses of this function
1433 /// other than direct calls or invokes to it.
1434 bool Function::hasAddressTaken(const User* *PutOffender) const {
1435   for (const Use &U : uses()) {
1436     const User *FU = U.getUser();
1437     if (isa<BlockAddress>(FU))
1438       continue;
1439     const auto *Call = dyn_cast<CallBase>(FU);
1440     if (!Call) {
1441       if (PutOffender)
1442         *PutOffender = FU;
1443       return true;
1444     }
1445     if (!Call->isCallee(&U)) {
1446       if (PutOffender)
1447         *PutOffender = FU;
1448       return true;
1449     }
1450   }
1451   return false;
1452 }
1453 
1454 bool Function::isDefTriviallyDead() const {
1455   // Check the linkage
1456   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1457       !hasAvailableExternallyLinkage())
1458     return false;
1459 
1460   // Check if the function is used by anything other than a blockaddress.
1461   for (const User *U : users())
1462     if (!isa<BlockAddress>(U))
1463       return false;
1464 
1465   return true;
1466 }
1467 
1468 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1469 /// setjmp or other function that gcc recognizes as "returning twice".
1470 bool Function::callsFunctionThatReturnsTwice() const {
1471   for (const Instruction &I : instructions(this))
1472     if (const auto *Call = dyn_cast<CallBase>(&I))
1473       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1474         return true;
1475 
1476   return false;
1477 }
1478 
1479 Constant *Function::getPersonalityFn() const {
1480   assert(hasPersonalityFn() && getNumOperands());
1481   return cast<Constant>(Op<0>());
1482 }
1483 
1484 void Function::setPersonalityFn(Constant *Fn) {
1485   setHungoffOperand<0>(Fn);
1486   setValueSubclassDataBit(3, Fn != nullptr);
1487 }
1488 
1489 Constant *Function::getPrefixData() const {
1490   assert(hasPrefixData() && getNumOperands());
1491   return cast<Constant>(Op<1>());
1492 }
1493 
1494 void Function::setPrefixData(Constant *PrefixData) {
1495   setHungoffOperand<1>(PrefixData);
1496   setValueSubclassDataBit(1, PrefixData != nullptr);
1497 }
1498 
1499 Constant *Function::getPrologueData() const {
1500   assert(hasPrologueData() && getNumOperands());
1501   return cast<Constant>(Op<2>());
1502 }
1503 
1504 void Function::setPrologueData(Constant *PrologueData) {
1505   setHungoffOperand<2>(PrologueData);
1506   setValueSubclassDataBit(2, PrologueData != nullptr);
1507 }
1508 
1509 void Function::allocHungoffUselist() {
1510   // If we've already allocated a uselist, stop here.
1511   if (getNumOperands())
1512     return;
1513 
1514   allocHungoffUses(3, /*IsPhi=*/ false);
1515   setNumHungOffUseOperands(3);
1516 
1517   // Initialize the uselist with placeholder operands to allow traversal.
1518   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1519   Op<0>().set(CPN);
1520   Op<1>().set(CPN);
1521   Op<2>().set(CPN);
1522 }
1523 
1524 template <int Idx>
1525 void Function::setHungoffOperand(Constant *C) {
1526   if (C) {
1527     allocHungoffUselist();
1528     Op<Idx>().set(C);
1529   } else if (getNumOperands()) {
1530     Op<Idx>().set(
1531         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1532   }
1533 }
1534 
1535 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1536   assert(Bit < 16 && "SubclassData contains only 16 bits");
1537   if (On)
1538     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1539   else
1540     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1541 }
1542 
1543 void Function::setEntryCount(ProfileCount Count,
1544                              const DenseSet<GlobalValue::GUID> *S) {
1545   assert(Count.hasValue());
1546 #if !defined(NDEBUG)
1547   auto PrevCount = getEntryCount();
1548   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1549 #endif
1550 
1551   auto ImportGUIDs = getImportGUIDs();
1552   if (S == nullptr && ImportGUIDs.size())
1553     S = &ImportGUIDs;
1554 
1555   MDBuilder MDB(getContext());
1556   setMetadata(
1557       LLVMContext::MD_prof,
1558       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1559 }
1560 
1561 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1562                              const DenseSet<GlobalValue::GUID> *Imports) {
1563   setEntryCount(ProfileCount(Count, Type), Imports);
1564 }
1565 
1566 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1567   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1568   if (MD && MD->getOperand(0))
1569     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1570       if (MDS->getString().equals("function_entry_count")) {
1571         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1572         uint64_t Count = CI->getValue().getZExtValue();
1573         // A value of -1 is used for SamplePGO when there were no samples.
1574         // Treat this the same as unknown.
1575         if (Count == (uint64_t)-1)
1576           return ProfileCount::getInvalid();
1577         return ProfileCount(Count, PCT_Real);
1578       } else if (AllowSynthetic &&
1579                  MDS->getString().equals("synthetic_function_entry_count")) {
1580         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1581         uint64_t Count = CI->getValue().getZExtValue();
1582         return ProfileCount(Count, PCT_Synthetic);
1583       }
1584     }
1585   return ProfileCount::getInvalid();
1586 }
1587 
1588 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1589   DenseSet<GlobalValue::GUID> R;
1590   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1591     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1592       if (MDS->getString().equals("function_entry_count"))
1593         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1594           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1595                        ->getValue()
1596                        .getZExtValue());
1597   return R;
1598 }
1599 
1600 void Function::setSectionPrefix(StringRef Prefix) {
1601   MDBuilder MDB(getContext());
1602   setMetadata(LLVMContext::MD_section_prefix,
1603               MDB.createFunctionSectionPrefix(Prefix));
1604 }
1605 
1606 Optional<StringRef> Function::getSectionPrefix() const {
1607   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1608     assert(cast<MDString>(MD->getOperand(0))
1609                ->getString()
1610                .equals("function_section_prefix") &&
1611            "Metadata not match");
1612     return cast<MDString>(MD->getOperand(1))->getString();
1613   }
1614   return None;
1615 }
1616 
1617 bool Function::nullPointerIsDefined() const {
1618   return getFnAttribute("null-pointer-is-valid")
1619           .getValueAsString()
1620           .equals("true");
1621 }
1622 
1623 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1624   if (F && F->nullPointerIsDefined())
1625     return true;
1626 
1627   if (AS != 0)
1628     return true;
1629 
1630   return false;
1631 }
1632