xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 460dfbd9f83f1178ee754e2734322ddacbd707f3)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <string>
72 
73 using namespace llvm;
74 using ProfileCount = Function::ProfileCount;
75 
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits<BasicBlock>;
79 
80 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
81     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
82     cl::desc("Maximum size for the name of non-global values."));
83 
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
87 
88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
89     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
90   setName(Name);
91 }
92 
93 void Argument::setParent(Function *parent) {
94   Parent = parent;
95 }
96 
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
98   if (!getType()->isPointerTy()) return false;
99   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
100       (AllowUndefOrPoison ||
101        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
102     return true;
103   else if (getDereferenceableBytes() > 0 &&
104            !NullPointerIsDefined(getParent(),
105                                  getType()->getPointerAddressSpace()))
106     return true;
107   return false;
108 }
109 
110 bool Argument::hasByValAttr() const {
111   if (!getType()->isPointerTy()) return false;
112   return hasAttribute(Attribute::ByVal);
113 }
114 
115 bool Argument::hasByRefAttr() const {
116   if (!getType()->isPointerTy())
117     return false;
118   return hasAttribute(Attribute::ByRef);
119 }
120 
121 bool Argument::hasSwiftSelfAttr() const {
122   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
123 }
124 
125 bool Argument::hasSwiftErrorAttr() const {
126   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
127 }
128 
129 bool Argument::hasInAllocaAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::InAlloca);
132 }
133 
134 bool Argument::hasPreallocatedAttr() const {
135   if (!getType()->isPointerTy())
136     return false;
137   return hasAttribute(Attribute::Preallocated);
138 }
139 
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
146 }
147 
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149   if (!getType()->isPointerTy())
150     return false;
151   AttributeList Attrs = getParent()->getAttributes();
152   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
153          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
154          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
155          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
156          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
157 }
158 
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
160 /// parameter type.
161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
162   // FIXME: All the type carrying attributes are mutually exclusive, so there
163   // should be a single query to get the stored type that handles any of them.
164   if (Type *ByValTy = ParamAttrs.getByValType())
165     return ByValTy;
166   if (Type *ByRefTy = ParamAttrs.getByRefType())
167     return ByRefTy;
168   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
169     return PreAllocTy;
170   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
171     return InAllocaTy;
172   if (Type *SRetTy = ParamAttrs.getStructRetType())
173     return SRetTy;
174 
175   return nullptr;
176 }
177 
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttributes(getArgNo());
181   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
182     return DL.getTypeAllocSize(MemTy);
183   return 0;
184 }
185 
186 Type *Argument::getPointeeInMemoryValueType() const {
187   AttributeSet ParamAttrs =
188       getParent()->getAttributes().getParamAttributes(getArgNo());
189   return getMemoryParamAllocType(ParamAttrs, getType());
190 }
191 
192 unsigned Argument::getParamAlignment() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlignment(getArgNo());
195 }
196 
197 MaybeAlign Argument::getParamAlign() const {
198   assert(getType()->isPointerTy() && "Only pointers have alignments");
199   return getParent()->getParamAlign(getArgNo());
200 }
201 
202 MaybeAlign Argument::getParamStackAlign() const {
203   return getParent()->getParamStackAlign(getArgNo());
204 }
205 
206 Type *Argument::getParamByValType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByValType(getArgNo());
209 }
210 
211 Type *Argument::getParamStructRetType() const {
212   assert(getType()->isPointerTy() && "Only pointers have sret types");
213   return getParent()->getParamStructRetType(getArgNo());
214 }
215 
216 Type *Argument::getParamByRefType() const {
217   assert(getType()->isPointerTy() && "Only pointers have byref types");
218   return getParent()->getParamByRefType(getArgNo());
219 }
220 
221 Type *Argument::getParamInAllocaType() const {
222   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
223   return getParent()->getParamInAllocaType(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableBytes(getArgNo());
230 }
231 
232 uint64_t Argument::getDereferenceableOrNullBytes() const {
233   assert(getType()->isPointerTy() &&
234          "Only pointers have dereferenceable bytes");
235   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
236 }
237 
238 bool Argument::hasNestAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::Nest);
241 }
242 
243 bool Argument::hasNoAliasAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoAlias);
246 }
247 
248 bool Argument::hasNoCaptureAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::NoCapture);
251 }
252 
253 bool Argument::hasNoFreeAttr() const {
254   if (!getType()->isPointerTy()) return false;
255   return hasAttribute(Attribute::NoFree);
256 }
257 
258 bool Argument::hasStructRetAttr() const {
259   if (!getType()->isPointerTy()) return false;
260   return hasAttribute(Attribute::StructRet);
261 }
262 
263 bool Argument::hasInRegAttr() const {
264   return hasAttribute(Attribute::InReg);
265 }
266 
267 bool Argument::hasReturnedAttr() const {
268   return hasAttribute(Attribute::Returned);
269 }
270 
271 bool Argument::hasZExtAttr() const {
272   return hasAttribute(Attribute::ZExt);
273 }
274 
275 bool Argument::hasSExtAttr() const {
276   return hasAttribute(Attribute::SExt);
277 }
278 
279 bool Argument::onlyReadsMemory() const {
280   AttributeList Attrs = getParent()->getAttributes();
281   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
282          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
283 }
284 
285 void Argument::addAttrs(AttrBuilder &B) {
286   AttributeList AL = getParent()->getAttributes();
287   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
288   getParent()->setAttributes(AL);
289 }
290 
291 void Argument::addAttr(Attribute::AttrKind Kind) {
292   getParent()->addParamAttr(getArgNo(), Kind);
293 }
294 
295 void Argument::addAttr(Attribute Attr) {
296   getParent()->addParamAttr(getArgNo(), Attr);
297 }
298 
299 void Argument::removeAttr(Attribute::AttrKind Kind) {
300   getParent()->removeParamAttr(getArgNo(), Kind);
301 }
302 
303 void Argument::removeAttrs(const AttrBuilder &B) {
304   AttributeList AL = getParent()->getAttributes();
305   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B);
306   getParent()->setAttributes(AL);
307 }
308 
309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
310   return getParent()->hasParamAttribute(getArgNo(), Kind);
311 }
312 
313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
314   return getParent()->getParamAttribute(getArgNo(), Kind);
315 }
316 
317 //===----------------------------------------------------------------------===//
318 // Helper Methods in Function
319 //===----------------------------------------------------------------------===//
320 
321 LLVMContext &Function::getContext() const {
322   return getType()->getContext();
323 }
324 
325 unsigned Function::getInstructionCount() const {
326   unsigned NumInstrs = 0;
327   for (const BasicBlock &BB : BasicBlocks)
328     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
329                                BB.instructionsWithoutDebug().end());
330   return NumInstrs;
331 }
332 
333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
334                            const Twine &N, Module &M) {
335   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
336 }
337 
338 Function *Function::createWithDefaultAttr(FunctionType *Ty,
339                                           LinkageTypes Linkage,
340                                           unsigned AddrSpace, const Twine &N,
341                                           Module *M) {
342   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
343   AttrBuilder B;
344   if (M->getUwtable())
345     B.addAttribute(Attribute::UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   F->addAttributes(AttributeList::FunctionIndex, B);
358   return F;
359 }
360 
361 void Function::removeFromParent() {
362   getParent()->getFunctionList().remove(getIterator());
363 }
364 
365 void Function::eraseFromParent() {
366   getParent()->getFunctionList().erase(getIterator());
367 }
368 
369 //===----------------------------------------------------------------------===//
370 // Function Implementation
371 //===----------------------------------------------------------------------===//
372 
373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
374   // If AS == -1 and we are passed a valid module pointer we place the function
375   // in the program address space. Otherwise we default to AS0.
376   if (AddrSpace == static_cast<unsigned>(-1))
377     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
378   return AddrSpace;
379 }
380 
381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
382                    const Twine &name, Module *ParentModule)
383     : GlobalObject(Ty, Value::FunctionVal,
384                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
385                    computeAddrSpace(AddrSpace, ParentModule)),
386       NumArgs(Ty->getNumParams()) {
387   assert(FunctionType::isValidReturnType(getReturnType()) &&
388          "invalid return type");
389   setGlobalObjectSubClassData(0);
390 
391   // We only need a symbol table for a function if the context keeps value names
392   if (!getContext().shouldDiscardValueNames())
393     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
394 
395   // If the function has arguments, mark them as lazily built.
396   if (Ty->getNumParams())
397     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
398 
399   if (ParentModule)
400     ParentModule->getFunctionList().push_back(this);
401 
402   HasLLVMReservedName = getName().startswith("llvm.");
403   // Ensure intrinsics have the right parameter attributes.
404   // Note, the IntID field will have been set in Value::setName if this function
405   // name is a valid intrinsic ID.
406   if (IntID)
407     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
408 }
409 
410 Function::~Function() {
411   dropAllReferences();    // After this it is safe to delete instructions.
412 
413   // Delete all of the method arguments and unlink from symbol table...
414   if (Arguments)
415     clearArguments();
416 
417   // Remove the function from the on-the-side GC table.
418   clearGC();
419 }
420 
421 void Function::BuildLazyArguments() const {
422   // Create the arguments vector, all arguments start out unnamed.
423   auto *FT = getFunctionType();
424   if (NumArgs > 0) {
425     Arguments = std::allocator<Argument>().allocate(NumArgs);
426     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
427       Type *ArgTy = FT->getParamType(i);
428       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
429       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
430     }
431   }
432 
433   // Clear the lazy arguments bit.
434   unsigned SDC = getSubclassDataFromValue();
435   SDC &= ~(1 << 0);
436   const_cast<Function*>(this)->setValueSubclassData(SDC);
437   assert(!hasLazyArguments());
438 }
439 
440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
441   return MutableArrayRef<Argument>(Args, Count);
442 }
443 
444 bool Function::isConstrainedFPIntrinsic() const {
445   switch (getIntrinsicID()) {
446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
447   case Intrinsic::INTRINSIC:
448 #include "llvm/IR/ConstrainedOps.def"
449     return true;
450 #undef INSTRUCTION
451   default:
452     return false;
453   }
454 }
455 
456 void Function::clearArguments() {
457   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
458     A.setName("");
459     A.~Argument();
460   }
461   std::allocator<Argument>().deallocate(Arguments, NumArgs);
462   Arguments = nullptr;
463 }
464 
465 void Function::stealArgumentListFrom(Function &Src) {
466   assert(isDeclaration() && "Expected no references to current arguments");
467 
468   // Drop the current arguments, if any, and set the lazy argument bit.
469   if (!hasLazyArguments()) {
470     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
471                         [](const Argument &A) { return A.use_empty(); }) &&
472            "Expected arguments to be unused in declaration");
473     clearArguments();
474     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
475   }
476 
477   // Nothing to steal if Src has lazy arguments.
478   if (Src.hasLazyArguments())
479     return;
480 
481   // Steal arguments from Src, and fix the lazy argument bits.
482   assert(arg_size() == Src.arg_size());
483   Arguments = Src.Arguments;
484   Src.Arguments = nullptr;
485   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
486     // FIXME: This does the work of transferNodesFromList inefficiently.
487     SmallString<128> Name;
488     if (A.hasName())
489       Name = A.getName();
490     if (!Name.empty())
491       A.setName("");
492     A.setParent(this);
493     if (!Name.empty())
494       A.setName(Name);
495   }
496 
497   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
498   assert(!hasLazyArguments());
499   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
500 }
501 
502 // dropAllReferences() - This function causes all the subinstructions to "let
503 // go" of all references that they are maintaining.  This allows one to
504 // 'delete' a whole class at a time, even though there may be circular
505 // references... first all references are dropped, and all use counts go to
506 // zero.  Then everything is deleted for real.  Note that no operations are
507 // valid on an object that has "dropped all references", except operator
508 // delete.
509 //
510 void Function::dropAllReferences() {
511   setIsMaterializable(false);
512 
513   for (BasicBlock &BB : *this)
514     BB.dropAllReferences();
515 
516   // Delete all basic blocks. They are now unused, except possibly by
517   // blockaddresses, but BasicBlock's destructor takes care of those.
518   while (!BasicBlocks.empty())
519     BasicBlocks.begin()->eraseFromParent();
520 
521   // Drop uses of any optional data (real or placeholder).
522   if (getNumOperands()) {
523     User::dropAllReferences();
524     setNumHungOffUseOperands(0);
525     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
526   }
527 
528   // Metadata is stored in a side-table.
529   clearMetadata();
530 }
531 
532 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
533   AttributeList PAL = getAttributes();
534   PAL = PAL.addAttribute(getContext(), i, Kind);
535   setAttributes(PAL);
536 }
537 
538 void Function::addAttribute(unsigned i, Attribute Attr) {
539   AttributeList PAL = getAttributes();
540   PAL = PAL.addAttribute(getContext(), i, Attr);
541   setAttributes(PAL);
542 }
543 
544 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
545   AttributeList PAL = getAttributes();
546   PAL = PAL.addAttributes(getContext(), i, Attrs);
547   setAttributes(PAL);
548 }
549 
550 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
551   AttributeList PAL = getAttributes();
552   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
553   setAttributes(PAL);
554 }
555 
556 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
557   AttributeList PAL = getAttributes();
558   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
559   setAttributes(PAL);
560 }
561 
562 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
563   AttributeList PAL = getAttributes();
564   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
565   setAttributes(PAL);
566 }
567 
568 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
569   AttributeList PAL = getAttributes();
570   PAL = PAL.removeAttribute(getContext(), i, Kind);
571   setAttributes(PAL);
572 }
573 
574 void Function::removeAttribute(unsigned i, StringRef Kind) {
575   AttributeList PAL = getAttributes();
576   PAL = PAL.removeAttribute(getContext(), i, Kind);
577   setAttributes(PAL);
578 }
579 
580 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
581   AttributeList PAL = getAttributes();
582   PAL = PAL.removeAttributes(getContext(), i, Attrs);
583   setAttributes(PAL);
584 }
585 
586 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
587   AttributeList PAL = getAttributes();
588   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
589   setAttributes(PAL);
590 }
591 
592 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
593   AttributeList PAL = getAttributes();
594   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
595   setAttributes(PAL);
596 }
597 
598 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
599   AttributeList PAL = getAttributes();
600   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
601   setAttributes(PAL);
602 }
603 
604 void Function::removeParamUndefImplyingAttrs(unsigned ArgNo) {
605   AttributeList PAL = getAttributes();
606   PAL = PAL.removeParamUndefImplyingAttributes(getContext(), ArgNo);
607   setAttributes(PAL);
608 }
609 
610 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
611   AttributeList PAL = getAttributes();
612   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
613   setAttributes(PAL);
614 }
615 
616 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
617   AttributeList PAL = getAttributes();
618   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
619   setAttributes(PAL);
620 }
621 
622 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
623   AttributeList PAL = getAttributes();
624   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
625   setAttributes(PAL);
626 }
627 
628 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
629                                                  uint64_t Bytes) {
630   AttributeList PAL = getAttributes();
631   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
632   setAttributes(PAL);
633 }
634 
635 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
636   if (&FPType == &APFloat::IEEEsingle()) {
637     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
638     StringRef Val = Attr.getValueAsString();
639     if (!Val.empty())
640       return parseDenormalFPAttribute(Val);
641 
642     // If the f32 variant of the attribute isn't specified, try to use the
643     // generic one.
644   }
645 
646   Attribute Attr = getFnAttribute("denormal-fp-math");
647   return parseDenormalFPAttribute(Attr.getValueAsString());
648 }
649 
650 const std::string &Function::getGC() const {
651   assert(hasGC() && "Function has no collector");
652   return getContext().getGC(*this);
653 }
654 
655 void Function::setGC(std::string Str) {
656   setValueSubclassDataBit(14, !Str.empty());
657   getContext().setGC(*this, std::move(Str));
658 }
659 
660 void Function::clearGC() {
661   if (!hasGC())
662     return;
663   getContext().deleteGC(*this);
664   setValueSubclassDataBit(14, false);
665 }
666 
667 bool Function::hasStackProtectorFnAttr() const {
668   return hasFnAttribute(Attribute::StackProtect) ||
669          hasFnAttribute(Attribute::StackProtectStrong) ||
670          hasFnAttribute(Attribute::StackProtectReq);
671 }
672 
673 /// Copy all additional attributes (those not needed to create a Function) from
674 /// the Function Src to this one.
675 void Function::copyAttributesFrom(const Function *Src) {
676   GlobalObject::copyAttributesFrom(Src);
677   setCallingConv(Src->getCallingConv());
678   setAttributes(Src->getAttributes());
679   if (Src->hasGC())
680     setGC(Src->getGC());
681   else
682     clearGC();
683   if (Src->hasPersonalityFn())
684     setPersonalityFn(Src->getPersonalityFn());
685   if (Src->hasPrefixData())
686     setPrefixData(Src->getPrefixData());
687   if (Src->hasPrologueData())
688     setPrologueData(Src->getPrologueData());
689 }
690 
691 /// Table of string intrinsic names indexed by enum value.
692 static const char * const IntrinsicNameTable[] = {
693   "not_intrinsic",
694 #define GET_INTRINSIC_NAME_TABLE
695 #include "llvm/IR/IntrinsicImpl.inc"
696 #undef GET_INTRINSIC_NAME_TABLE
697 };
698 
699 /// Table of per-target intrinsic name tables.
700 #define GET_INTRINSIC_TARGET_DATA
701 #include "llvm/IR/IntrinsicImpl.inc"
702 #undef GET_INTRINSIC_TARGET_DATA
703 
704 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
705   return IID > TargetInfos[0].Count;
706 }
707 
708 bool Function::isTargetIntrinsic() const {
709   return isTargetIntrinsic(IntID);
710 }
711 
712 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
713 /// target as \c Name, or the generic table if \c Name is not target specific.
714 ///
715 /// Returns the relevant slice of \c IntrinsicNameTable
716 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
717   assert(Name.startswith("llvm."));
718 
719   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
720   // Drop "llvm." and take the first dotted component. That will be the target
721   // if this is target specific.
722   StringRef Target = Name.drop_front(5).split('.').first;
723   auto It = partition_point(
724       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
725   // We've either found the target or just fall back to the generic set, which
726   // is always first.
727   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
728   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
729 }
730 
731 /// This does the actual lookup of an intrinsic ID which
732 /// matches the given function name.
733 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
734   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
735   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
736   if (Idx == -1)
737     return Intrinsic::not_intrinsic;
738 
739   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
740   // an index into a sub-table.
741   int Adjust = NameTable.data() - IntrinsicNameTable;
742   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
743 
744   // If the intrinsic is not overloaded, require an exact match. If it is
745   // overloaded, require either exact or prefix match.
746   const auto MatchSize = strlen(NameTable[Idx]);
747   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
748   bool IsExactMatch = Name.size() == MatchSize;
749   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
750                                                      : Intrinsic::not_intrinsic;
751 }
752 
753 void Function::recalculateIntrinsicID() {
754   StringRef Name = getName();
755   if (!Name.startswith("llvm.")) {
756     HasLLVMReservedName = false;
757     IntID = Intrinsic::not_intrinsic;
758     return;
759   }
760   HasLLVMReservedName = true;
761   IntID = lookupIntrinsicID(Name);
762 }
763 
764 /// Returns a stable mangling for the type specified for use in the name
765 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
766 /// of named types is simply their name.  Manglings for unnamed types consist
767 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
768 /// combined with the mangling of their component types.  A vararg function
769 /// type will have a suffix of 'vararg'.  Since function types can contain
770 /// other function types, we close a function type mangling with suffix 'f'
771 /// which can't be confused with it's prefix.  This ensures we don't have
772 /// collisions between two unrelated function types. Otherwise, you might
773 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
774 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
775 /// indicating that extra care must be taken to ensure a unique name.
776 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
777   std::string Result;
778   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
779     Result += "p" + utostr(PTyp->getAddressSpace());
780     // Opaque pointer doesn't have pointee type information, so we just mangle
781     // address space for opaque pointer.
782     if (!PTyp->isOpaque())
783       Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
784   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
785     Result += "a" + utostr(ATyp->getNumElements()) +
786               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
787   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
788     if (!STyp->isLiteral()) {
789       Result += "s_";
790       if (STyp->hasName())
791         Result += STyp->getName();
792       else
793         HasUnnamedType = true;
794     } else {
795       Result += "sl_";
796       for (auto Elem : STyp->elements())
797         Result += getMangledTypeStr(Elem, HasUnnamedType);
798     }
799     // Ensure nested structs are distinguishable.
800     Result += "s";
801   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
802     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
803     for (size_t i = 0; i < FT->getNumParams(); i++)
804       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
805     if (FT->isVarArg())
806       Result += "vararg";
807     // Ensure nested function types are distinguishable.
808     Result += "f";
809   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
810     ElementCount EC = VTy->getElementCount();
811     if (EC.isScalable())
812       Result += "nx";
813     Result += "v" + utostr(EC.getKnownMinValue()) +
814               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
815   } else if (Ty) {
816     switch (Ty->getTypeID()) {
817     default: llvm_unreachable("Unhandled type");
818     case Type::VoidTyID:      Result += "isVoid";   break;
819     case Type::MetadataTyID:  Result += "Metadata"; break;
820     case Type::HalfTyID:      Result += "f16";      break;
821     case Type::BFloatTyID:    Result += "bf16";     break;
822     case Type::FloatTyID:     Result += "f32";      break;
823     case Type::DoubleTyID:    Result += "f64";      break;
824     case Type::X86_FP80TyID:  Result += "f80";      break;
825     case Type::FP128TyID:     Result += "f128";     break;
826     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
827     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
828     case Type::X86_AMXTyID:   Result += "x86amx";   break;
829     case Type::IntegerTyID:
830       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
831       break;
832     }
833   }
834   return Result;
835 }
836 
837 StringRef Intrinsic::getBaseName(ID id) {
838   assert(id < num_intrinsics && "Invalid intrinsic ID!");
839   return IntrinsicNameTable[id];
840 }
841 
842 StringRef Intrinsic::getName(ID id) {
843   assert(id < num_intrinsics && "Invalid intrinsic ID!");
844   assert(!Intrinsic::isOverloaded(id) &&
845          "This version of getName does not support overloading");
846   return getBaseName(id);
847 }
848 
849 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
850                                         Module *M, FunctionType *FT,
851                                         bool EarlyModuleCheck) {
852 
853   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
854   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
855          "This version of getName is for overloaded intrinsics only");
856   (void)EarlyModuleCheck;
857   assert((!EarlyModuleCheck || M ||
858           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
859          "Intrinsic overloading on pointer types need to provide a Module");
860   bool HasUnnamedType = false;
861   std::string Result(Intrinsic::getBaseName(Id));
862   for (Type *Ty : Tys)
863     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
864   if (HasUnnamedType) {
865     assert(M && "unnamed types need a module");
866     if (!FT)
867       FT = Intrinsic::getType(M->getContext(), Id, Tys);
868     else
869       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
870              "Provided FunctionType must match arguments");
871     return M->getUniqueIntrinsicName(Result, Id, FT);
872   }
873   return Result;
874 }
875 
876 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
877                                FunctionType *FT) {
878   assert(M && "We need to have a Module");
879   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
880 }
881 
882 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
883   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
884 }
885 
886 /// IIT_Info - These are enumerators that describe the entries returned by the
887 /// getIntrinsicInfoTableEntries function.
888 ///
889 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
890 enum IIT_Info {
891   // Common values should be encoded with 0-15.
892   IIT_Done = 0,
893   IIT_I1   = 1,
894   IIT_I8   = 2,
895   IIT_I16  = 3,
896   IIT_I32  = 4,
897   IIT_I64  = 5,
898   IIT_F16  = 6,
899   IIT_F32  = 7,
900   IIT_F64  = 8,
901   IIT_V2   = 9,
902   IIT_V4   = 10,
903   IIT_V8   = 11,
904   IIT_V16  = 12,
905   IIT_V32  = 13,
906   IIT_PTR  = 14,
907   IIT_ARG  = 15,
908 
909   // Values from 16+ are only encodable with the inefficient encoding.
910   IIT_V64  = 16,
911   IIT_MMX  = 17,
912   IIT_TOKEN = 18,
913   IIT_METADATA = 19,
914   IIT_EMPTYSTRUCT = 20,
915   IIT_STRUCT2 = 21,
916   IIT_STRUCT3 = 22,
917   IIT_STRUCT4 = 23,
918   IIT_STRUCT5 = 24,
919   IIT_EXTEND_ARG = 25,
920   IIT_TRUNC_ARG = 26,
921   IIT_ANYPTR = 27,
922   IIT_V1   = 28,
923   IIT_VARARG = 29,
924   IIT_HALF_VEC_ARG = 30,
925   IIT_SAME_VEC_WIDTH_ARG = 31,
926   IIT_PTR_TO_ARG = 32,
927   IIT_PTR_TO_ELT = 33,
928   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
929   IIT_I128 = 35,
930   IIT_V512 = 36,
931   IIT_V1024 = 37,
932   IIT_STRUCT6 = 38,
933   IIT_STRUCT7 = 39,
934   IIT_STRUCT8 = 40,
935   IIT_F128 = 41,
936   IIT_VEC_ELEMENT = 42,
937   IIT_SCALABLE_VEC = 43,
938   IIT_SUBDIVIDE2_ARG = 44,
939   IIT_SUBDIVIDE4_ARG = 45,
940   IIT_VEC_OF_BITCASTS_TO_INT = 46,
941   IIT_V128 = 47,
942   IIT_BF16 = 48,
943   IIT_STRUCT9 = 49,
944   IIT_V256 = 50,
945   IIT_AMX  = 51
946 };
947 
948 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
949                       IIT_Info LastInfo,
950                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
951   using namespace Intrinsic;
952 
953   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
954 
955   IIT_Info Info = IIT_Info(Infos[NextElt++]);
956   unsigned StructElts = 2;
957 
958   switch (Info) {
959   case IIT_Done:
960     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
961     return;
962   case IIT_VARARG:
963     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
964     return;
965   case IIT_MMX:
966     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
967     return;
968   case IIT_AMX:
969     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
970     return;
971   case IIT_TOKEN:
972     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
973     return;
974   case IIT_METADATA:
975     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
976     return;
977   case IIT_F16:
978     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
979     return;
980   case IIT_BF16:
981     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
982     return;
983   case IIT_F32:
984     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
985     return;
986   case IIT_F64:
987     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
988     return;
989   case IIT_F128:
990     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
991     return;
992   case IIT_I1:
993     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
994     return;
995   case IIT_I8:
996     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
997     return;
998   case IIT_I16:
999     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1000     return;
1001   case IIT_I32:
1002     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1003     return;
1004   case IIT_I64:
1005     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1006     return;
1007   case IIT_I128:
1008     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1009     return;
1010   case IIT_V1:
1011     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1012     DecodeIITType(NextElt, Infos, Info, OutputTable);
1013     return;
1014   case IIT_V2:
1015     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1016     DecodeIITType(NextElt, Infos, Info, OutputTable);
1017     return;
1018   case IIT_V4:
1019     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1020     DecodeIITType(NextElt, Infos, Info, OutputTable);
1021     return;
1022   case IIT_V8:
1023     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1024     DecodeIITType(NextElt, Infos, Info, OutputTable);
1025     return;
1026   case IIT_V16:
1027     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1028     DecodeIITType(NextElt, Infos, Info, OutputTable);
1029     return;
1030   case IIT_V32:
1031     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1032     DecodeIITType(NextElt, Infos, Info, OutputTable);
1033     return;
1034   case IIT_V64:
1035     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1036     DecodeIITType(NextElt, Infos, Info, OutputTable);
1037     return;
1038   case IIT_V128:
1039     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1040     DecodeIITType(NextElt, Infos, Info, OutputTable);
1041     return;
1042   case IIT_V256:
1043     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1044     DecodeIITType(NextElt, Infos, Info, OutputTable);
1045     return;
1046   case IIT_V512:
1047     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1048     DecodeIITType(NextElt, Infos, Info, OutputTable);
1049     return;
1050   case IIT_V1024:
1051     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1052     DecodeIITType(NextElt, Infos, Info, OutputTable);
1053     return;
1054   case IIT_PTR:
1055     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1056     DecodeIITType(NextElt, Infos, Info, OutputTable);
1057     return;
1058   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1059     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1060                                              Infos[NextElt++]));
1061     DecodeIITType(NextElt, Infos, Info, OutputTable);
1062     return;
1063   }
1064   case IIT_ARG: {
1065     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1066     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1067     return;
1068   }
1069   case IIT_EXTEND_ARG: {
1070     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1071     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1072                                              ArgInfo));
1073     return;
1074   }
1075   case IIT_TRUNC_ARG: {
1076     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1077     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1078                                              ArgInfo));
1079     return;
1080   }
1081   case IIT_HALF_VEC_ARG: {
1082     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1083     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1084                                              ArgInfo));
1085     return;
1086   }
1087   case IIT_SAME_VEC_WIDTH_ARG: {
1088     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1089     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1090                                              ArgInfo));
1091     return;
1092   }
1093   case IIT_PTR_TO_ARG: {
1094     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1095     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1096                                              ArgInfo));
1097     return;
1098   }
1099   case IIT_PTR_TO_ELT: {
1100     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1101     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1102     return;
1103   }
1104   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1105     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1106     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1107     OutputTable.push_back(
1108         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1109     return;
1110   }
1111   case IIT_EMPTYSTRUCT:
1112     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1113     return;
1114   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1115   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1116   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1117   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1118   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1119   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1120   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1121   case IIT_STRUCT2: {
1122     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1123 
1124     for (unsigned i = 0; i != StructElts; ++i)
1125       DecodeIITType(NextElt, Infos, Info, OutputTable);
1126     return;
1127   }
1128   case IIT_SUBDIVIDE2_ARG: {
1129     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1130     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1131                                              ArgInfo));
1132     return;
1133   }
1134   case IIT_SUBDIVIDE4_ARG: {
1135     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1136     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1137                                              ArgInfo));
1138     return;
1139   }
1140   case IIT_VEC_ELEMENT: {
1141     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1142     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1143                                              ArgInfo));
1144     return;
1145   }
1146   case IIT_SCALABLE_VEC: {
1147     DecodeIITType(NextElt, Infos, Info, OutputTable);
1148     return;
1149   }
1150   case IIT_VEC_OF_BITCASTS_TO_INT: {
1151     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1152     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1153                                              ArgInfo));
1154     return;
1155   }
1156   }
1157   llvm_unreachable("unhandled");
1158 }
1159 
1160 #define GET_INTRINSIC_GENERATOR_GLOBAL
1161 #include "llvm/IR/IntrinsicImpl.inc"
1162 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1163 
1164 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1165                                              SmallVectorImpl<IITDescriptor> &T){
1166   // Check to see if the intrinsic's type was expressible by the table.
1167   unsigned TableVal = IIT_Table[id-1];
1168 
1169   // Decode the TableVal into an array of IITValues.
1170   SmallVector<unsigned char, 8> IITValues;
1171   ArrayRef<unsigned char> IITEntries;
1172   unsigned NextElt = 0;
1173   if ((TableVal >> 31) != 0) {
1174     // This is an offset into the IIT_LongEncodingTable.
1175     IITEntries = IIT_LongEncodingTable;
1176 
1177     // Strip sentinel bit.
1178     NextElt = (TableVal << 1) >> 1;
1179   } else {
1180     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1181     // into a single word in the table itself, decode it now.
1182     do {
1183       IITValues.push_back(TableVal & 0xF);
1184       TableVal >>= 4;
1185     } while (TableVal);
1186 
1187     IITEntries = IITValues;
1188     NextElt = 0;
1189   }
1190 
1191   // Okay, decode the table into the output vector of IITDescriptors.
1192   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1193   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1194     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1195 }
1196 
1197 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1198                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1199   using namespace Intrinsic;
1200 
1201   IITDescriptor D = Infos.front();
1202   Infos = Infos.slice(1);
1203 
1204   switch (D.Kind) {
1205   case IITDescriptor::Void: return Type::getVoidTy(Context);
1206   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1207   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1208   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1209   case IITDescriptor::Token: return Type::getTokenTy(Context);
1210   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1211   case IITDescriptor::Half: return Type::getHalfTy(Context);
1212   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1213   case IITDescriptor::Float: return Type::getFloatTy(Context);
1214   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1215   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1216 
1217   case IITDescriptor::Integer:
1218     return IntegerType::get(Context, D.Integer_Width);
1219   case IITDescriptor::Vector:
1220     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1221                            D.Vector_Width);
1222   case IITDescriptor::Pointer:
1223     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1224                             D.Pointer_AddressSpace);
1225   case IITDescriptor::Struct: {
1226     SmallVector<Type *, 8> Elts;
1227     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1228       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1229     return StructType::get(Context, Elts);
1230   }
1231   case IITDescriptor::Argument:
1232     return Tys[D.getArgumentNumber()];
1233   case IITDescriptor::ExtendArgument: {
1234     Type *Ty = Tys[D.getArgumentNumber()];
1235     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1236       return VectorType::getExtendedElementVectorType(VTy);
1237 
1238     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1239   }
1240   case IITDescriptor::TruncArgument: {
1241     Type *Ty = Tys[D.getArgumentNumber()];
1242     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1243       return VectorType::getTruncatedElementVectorType(VTy);
1244 
1245     IntegerType *ITy = cast<IntegerType>(Ty);
1246     assert(ITy->getBitWidth() % 2 == 0);
1247     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1248   }
1249   case IITDescriptor::Subdivide2Argument:
1250   case IITDescriptor::Subdivide4Argument: {
1251     Type *Ty = Tys[D.getArgumentNumber()];
1252     VectorType *VTy = dyn_cast<VectorType>(Ty);
1253     assert(VTy && "Expected an argument of Vector Type");
1254     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1255     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1256   }
1257   case IITDescriptor::HalfVecArgument:
1258     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1259                                                   Tys[D.getArgumentNumber()]));
1260   case IITDescriptor::SameVecWidthArgument: {
1261     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1262     Type *Ty = Tys[D.getArgumentNumber()];
1263     if (auto *VTy = dyn_cast<VectorType>(Ty))
1264       return VectorType::get(EltTy, VTy->getElementCount());
1265     return EltTy;
1266   }
1267   case IITDescriptor::PtrToArgument: {
1268     Type *Ty = Tys[D.getArgumentNumber()];
1269     return PointerType::getUnqual(Ty);
1270   }
1271   case IITDescriptor::PtrToElt: {
1272     Type *Ty = Tys[D.getArgumentNumber()];
1273     VectorType *VTy = dyn_cast<VectorType>(Ty);
1274     if (!VTy)
1275       llvm_unreachable("Expected an argument of Vector Type");
1276     Type *EltTy = VTy->getElementType();
1277     return PointerType::getUnqual(EltTy);
1278   }
1279   case IITDescriptor::VecElementArgument: {
1280     Type *Ty = Tys[D.getArgumentNumber()];
1281     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1282       return VTy->getElementType();
1283     llvm_unreachable("Expected an argument of Vector Type");
1284   }
1285   case IITDescriptor::VecOfBitcastsToInt: {
1286     Type *Ty = Tys[D.getArgumentNumber()];
1287     VectorType *VTy = dyn_cast<VectorType>(Ty);
1288     assert(VTy && "Expected an argument of Vector Type");
1289     return VectorType::getInteger(VTy);
1290   }
1291   case IITDescriptor::VecOfAnyPtrsToElt:
1292     // Return the overloaded type (which determines the pointers address space)
1293     return Tys[D.getOverloadArgNumber()];
1294   }
1295   llvm_unreachable("unhandled");
1296 }
1297 
1298 FunctionType *Intrinsic::getType(LLVMContext &Context,
1299                                  ID id, ArrayRef<Type*> Tys) {
1300   SmallVector<IITDescriptor, 8> Table;
1301   getIntrinsicInfoTableEntries(id, Table);
1302 
1303   ArrayRef<IITDescriptor> TableRef = Table;
1304   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1305 
1306   SmallVector<Type*, 8> ArgTys;
1307   while (!TableRef.empty())
1308     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1309 
1310   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1311   // If we see void type as the type of the last argument, it is vararg intrinsic
1312   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1313     ArgTys.pop_back();
1314     return FunctionType::get(ResultTy, ArgTys, true);
1315   }
1316   return FunctionType::get(ResultTy, ArgTys, false);
1317 }
1318 
1319 bool Intrinsic::isOverloaded(ID id) {
1320 #define GET_INTRINSIC_OVERLOAD_TABLE
1321 #include "llvm/IR/IntrinsicImpl.inc"
1322 #undef GET_INTRINSIC_OVERLOAD_TABLE
1323 }
1324 
1325 bool Intrinsic::isLeaf(ID id) {
1326   switch (id) {
1327   default:
1328     return true;
1329 
1330   case Intrinsic::experimental_gc_statepoint:
1331   case Intrinsic::experimental_patchpoint_void:
1332   case Intrinsic::experimental_patchpoint_i64:
1333     return false;
1334   }
1335 }
1336 
1337 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1338 #define GET_INTRINSIC_ATTRIBUTES
1339 #include "llvm/IR/IntrinsicImpl.inc"
1340 #undef GET_INTRINSIC_ATTRIBUTES
1341 
1342 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1343   // There can never be multiple globals with the same name of different types,
1344   // because intrinsics must be a specific type.
1345   auto *FT = getType(M->getContext(), id, Tys);
1346   return cast<Function>(
1347       M->getOrInsertFunction(Tys.empty() ? getName(id)
1348                                          : getName(id, Tys, M, FT),
1349                              getType(M->getContext(), id, Tys))
1350           .getCallee());
1351 }
1352 
1353 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1354 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1355 #include "llvm/IR/IntrinsicImpl.inc"
1356 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1357 
1358 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1359 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1360 #include "llvm/IR/IntrinsicImpl.inc"
1361 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1362 
1363 using DeferredIntrinsicMatchPair =
1364     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1365 
1366 static bool matchIntrinsicType(
1367     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1368     SmallVectorImpl<Type *> &ArgTys,
1369     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1370     bool IsDeferredCheck) {
1371   using namespace Intrinsic;
1372 
1373   // If we ran out of descriptors, there are too many arguments.
1374   if (Infos.empty()) return true;
1375 
1376   // Do this before slicing off the 'front' part
1377   auto InfosRef = Infos;
1378   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1379     DeferredChecks.emplace_back(T, InfosRef);
1380     return false;
1381   };
1382 
1383   IITDescriptor D = Infos.front();
1384   Infos = Infos.slice(1);
1385 
1386   switch (D.Kind) {
1387     case IITDescriptor::Void: return !Ty->isVoidTy();
1388     case IITDescriptor::VarArg: return true;
1389     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1390     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1391     case IITDescriptor::Token: return !Ty->isTokenTy();
1392     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1393     case IITDescriptor::Half: return !Ty->isHalfTy();
1394     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1395     case IITDescriptor::Float: return !Ty->isFloatTy();
1396     case IITDescriptor::Double: return !Ty->isDoubleTy();
1397     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1398     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1399     case IITDescriptor::Vector: {
1400       VectorType *VT = dyn_cast<VectorType>(Ty);
1401       return !VT || VT->getElementCount() != D.Vector_Width ||
1402              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1403                                 DeferredChecks, IsDeferredCheck);
1404     }
1405     case IITDescriptor::Pointer: {
1406       PointerType *PT = dyn_cast<PointerType>(Ty);
1407       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1408         return true;
1409       if (!PT->isOpaque())
1410         return matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1411                                   DeferredChecks, IsDeferredCheck);
1412       // If typed pointers are supported, do not allow using opaque pointer in
1413       // place of fixed pointer type. This would make the intrinsic signature
1414       // non-unique.
1415       if (Ty->getContext().supportsTypedPointers())
1416         return true;
1417       // Consume IIT descriptors relating to the pointer element type.
1418       while (Infos.front().Kind == IITDescriptor::Pointer)
1419         Infos = Infos.slice(1);
1420       Infos = Infos.slice(1);
1421       return false;
1422     }
1423 
1424     case IITDescriptor::Struct: {
1425       StructType *ST = dyn_cast<StructType>(Ty);
1426       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1427         return true;
1428 
1429       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1430         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1431                                DeferredChecks, IsDeferredCheck))
1432           return true;
1433       return false;
1434     }
1435 
1436     case IITDescriptor::Argument:
1437       // If this is the second occurrence of an argument,
1438       // verify that the later instance matches the previous instance.
1439       if (D.getArgumentNumber() < ArgTys.size())
1440         return Ty != ArgTys[D.getArgumentNumber()];
1441 
1442       if (D.getArgumentNumber() > ArgTys.size() ||
1443           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1444         return IsDeferredCheck || DeferCheck(Ty);
1445 
1446       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1447              "Table consistency error");
1448       ArgTys.push_back(Ty);
1449 
1450       switch (D.getArgumentKind()) {
1451         case IITDescriptor::AK_Any:        return false; // Success
1452         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1453         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1454         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1455         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1456         default:                           break;
1457       }
1458       llvm_unreachable("all argument kinds not covered");
1459 
1460     case IITDescriptor::ExtendArgument: {
1461       // If this is a forward reference, defer the check for later.
1462       if (D.getArgumentNumber() >= ArgTys.size())
1463         return IsDeferredCheck || DeferCheck(Ty);
1464 
1465       Type *NewTy = ArgTys[D.getArgumentNumber()];
1466       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1467         NewTy = VectorType::getExtendedElementVectorType(VTy);
1468       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1469         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1470       else
1471         return true;
1472 
1473       return Ty != NewTy;
1474     }
1475     case IITDescriptor::TruncArgument: {
1476       // If this is a forward reference, defer the check for later.
1477       if (D.getArgumentNumber() >= ArgTys.size())
1478         return IsDeferredCheck || DeferCheck(Ty);
1479 
1480       Type *NewTy = ArgTys[D.getArgumentNumber()];
1481       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1482         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1483       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1484         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1485       else
1486         return true;
1487 
1488       return Ty != NewTy;
1489     }
1490     case IITDescriptor::HalfVecArgument:
1491       // If this is a forward reference, defer the check for later.
1492       if (D.getArgumentNumber() >= ArgTys.size())
1493         return IsDeferredCheck || DeferCheck(Ty);
1494       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1495              VectorType::getHalfElementsVectorType(
1496                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1497     case IITDescriptor::SameVecWidthArgument: {
1498       if (D.getArgumentNumber() >= ArgTys.size()) {
1499         // Defer check and subsequent check for the vector element type.
1500         Infos = Infos.slice(1);
1501         return IsDeferredCheck || DeferCheck(Ty);
1502       }
1503       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1504       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1505       // Both must be vectors of the same number of elements or neither.
1506       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1507         return true;
1508       Type *EltTy = Ty;
1509       if (ThisArgType) {
1510         if (ReferenceType->getElementCount() !=
1511             ThisArgType->getElementCount())
1512           return true;
1513         EltTy = ThisArgType->getElementType();
1514       }
1515       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1516                                 IsDeferredCheck);
1517     }
1518     case IITDescriptor::PtrToArgument: {
1519       if (D.getArgumentNumber() >= ArgTys.size())
1520         return IsDeferredCheck || DeferCheck(Ty);
1521       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1522       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1523       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1524     }
1525     case IITDescriptor::PtrToElt: {
1526       if (D.getArgumentNumber() >= ArgTys.size())
1527         return IsDeferredCheck || DeferCheck(Ty);
1528       VectorType * ReferenceType =
1529         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1530       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1531 
1532       if (!ThisArgType || !ReferenceType)
1533         return true;
1534       if (!ThisArgType->isOpaque())
1535         return ThisArgType->getElementType() != ReferenceType->getElementType();
1536       // If typed pointers are supported, do not allow opaque pointer to ensure
1537       // uniqueness.
1538       return Ty->getContext().supportsTypedPointers();
1539     }
1540     case IITDescriptor::VecOfAnyPtrsToElt: {
1541       unsigned RefArgNumber = D.getRefArgNumber();
1542       if (RefArgNumber >= ArgTys.size()) {
1543         if (IsDeferredCheck)
1544           return true;
1545         // If forward referencing, already add the pointer-vector type and
1546         // defer the checks for later.
1547         ArgTys.push_back(Ty);
1548         return DeferCheck(Ty);
1549       }
1550 
1551       if (!IsDeferredCheck){
1552         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1553                "Table consistency error");
1554         ArgTys.push_back(Ty);
1555       }
1556 
1557       // Verify the overloaded type "matches" the Ref type.
1558       // i.e. Ty is a vector with the same width as Ref.
1559       // Composed of pointers to the same element type as Ref.
1560       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1561       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1562       if (!ThisArgVecTy || !ReferenceType ||
1563           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1564         return true;
1565       PointerType *ThisArgEltTy =
1566           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1567       if (!ThisArgEltTy)
1568         return true;
1569       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1570           ReferenceType->getElementType());
1571     }
1572     case IITDescriptor::VecElementArgument: {
1573       if (D.getArgumentNumber() >= ArgTys.size())
1574         return IsDeferredCheck ? true : DeferCheck(Ty);
1575       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1576       return !ReferenceType || Ty != ReferenceType->getElementType();
1577     }
1578     case IITDescriptor::Subdivide2Argument:
1579     case IITDescriptor::Subdivide4Argument: {
1580       // If this is a forward reference, defer the check for later.
1581       if (D.getArgumentNumber() >= ArgTys.size())
1582         return IsDeferredCheck || DeferCheck(Ty);
1583 
1584       Type *NewTy = ArgTys[D.getArgumentNumber()];
1585       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1586         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1587         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1588         return Ty != NewTy;
1589       }
1590       return true;
1591     }
1592     case IITDescriptor::VecOfBitcastsToInt: {
1593       if (D.getArgumentNumber() >= ArgTys.size())
1594         return IsDeferredCheck || DeferCheck(Ty);
1595       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1596       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1597       if (!ThisArgVecTy || !ReferenceType)
1598         return true;
1599       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1600     }
1601   }
1602   llvm_unreachable("unhandled");
1603 }
1604 
1605 Intrinsic::MatchIntrinsicTypesResult
1606 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1607                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1608                                    SmallVectorImpl<Type *> &ArgTys) {
1609   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1610   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1611                          false))
1612     return MatchIntrinsicTypes_NoMatchRet;
1613 
1614   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1615 
1616   for (auto Ty : FTy->params())
1617     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1618       return MatchIntrinsicTypes_NoMatchArg;
1619 
1620   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1621     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1622     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1623                            true))
1624       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1625                                          : MatchIntrinsicTypes_NoMatchArg;
1626   }
1627 
1628   return MatchIntrinsicTypes_Match;
1629 }
1630 
1631 bool
1632 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1633                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1634   // If there are no descriptors left, then it can't be a vararg.
1635   if (Infos.empty())
1636     return isVarArg;
1637 
1638   // There should be only one descriptor remaining at this point.
1639   if (Infos.size() != 1)
1640     return true;
1641 
1642   // Check and verify the descriptor.
1643   IITDescriptor D = Infos.front();
1644   Infos = Infos.slice(1);
1645   if (D.Kind == IITDescriptor::VarArg)
1646     return !isVarArg;
1647 
1648   return true;
1649 }
1650 
1651 bool Intrinsic::getIntrinsicSignature(Function *F,
1652                                       SmallVectorImpl<Type *> &ArgTys) {
1653   Intrinsic::ID ID = F->getIntrinsicID();
1654   if (!ID)
1655     return false;
1656 
1657   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1658   getIntrinsicInfoTableEntries(ID, Table);
1659   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1660 
1661   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1662                                          ArgTys) !=
1663       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1664     return false;
1665   }
1666   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1667                                       TableRef))
1668     return false;
1669   return true;
1670 }
1671 
1672 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1673   SmallVector<Type *, 4> ArgTys;
1674   if (!getIntrinsicSignature(F, ArgTys))
1675     return None;
1676 
1677   Intrinsic::ID ID = F->getIntrinsicID();
1678   StringRef Name = F->getName();
1679   if (Name ==
1680       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()))
1681     return None;
1682 
1683   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1684   NewDecl->setCallingConv(F->getCallingConv());
1685   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1686          "Shouldn't change the signature");
1687   return NewDecl;
1688 }
1689 
1690 /// hasAddressTaken - returns true if there are any uses of this function
1691 /// other than direct calls or invokes to it. Optionally ignores callback
1692 /// uses, assume like pointer annotation calls, and references in llvm.used
1693 /// and llvm.compiler.used variables.
1694 bool Function::hasAddressTaken(const User **PutOffender,
1695                                bool IgnoreCallbackUses,
1696                                bool IgnoreAssumeLikeCalls,
1697                                bool IgnoreLLVMUsed) const {
1698   for (const Use &U : uses()) {
1699     const User *FU = U.getUser();
1700     if (isa<BlockAddress>(FU))
1701       continue;
1702 
1703     if (IgnoreCallbackUses) {
1704       AbstractCallSite ACS(&U);
1705       if (ACS && ACS.isCallbackCall())
1706         continue;
1707     }
1708 
1709     const auto *Call = dyn_cast<CallBase>(FU);
1710     if (!Call) {
1711       if (IgnoreAssumeLikeCalls) {
1712         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1713           if (FI->isCast() && !FI->user_empty() &&
1714               llvm::all_of(FU->users(), [](const User *U) {
1715                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1716                   return I->isAssumeLikeIntrinsic();
1717                 return false;
1718               }))
1719             continue;
1720         }
1721       }
1722       if (IgnoreLLVMUsed && !FU->user_empty()) {
1723         const User *FUU = FU;
1724         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1725             !FU->user_begin()->user_empty())
1726           FUU = *FU->user_begin();
1727         if (llvm::all_of(FUU->users(), [](const User *U) {
1728               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1729                 return GV->hasName() &&
1730                        (GV->getName().equals("llvm.compiler.used") ||
1731                         GV->getName().equals("llvm.used"));
1732               return false;
1733             }))
1734           continue;
1735       }
1736       if (PutOffender)
1737         *PutOffender = FU;
1738       return true;
1739     }
1740     if (!Call->isCallee(&U)) {
1741       if (PutOffender)
1742         *PutOffender = FU;
1743       return true;
1744     }
1745   }
1746   return false;
1747 }
1748 
1749 bool Function::isDefTriviallyDead() const {
1750   // Check the linkage
1751   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1752       !hasAvailableExternallyLinkage())
1753     return false;
1754 
1755   // Check if the function is used by anything other than a blockaddress.
1756   for (const User *U : users())
1757     if (!isa<BlockAddress>(U))
1758       return false;
1759 
1760   return true;
1761 }
1762 
1763 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1764 /// setjmp or other function that gcc recognizes as "returning twice".
1765 bool Function::callsFunctionThatReturnsTwice() const {
1766   for (const Instruction &I : instructions(this))
1767     if (const auto *Call = dyn_cast<CallBase>(&I))
1768       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1769         return true;
1770 
1771   return false;
1772 }
1773 
1774 Constant *Function::getPersonalityFn() const {
1775   assert(hasPersonalityFn() && getNumOperands());
1776   return cast<Constant>(Op<0>());
1777 }
1778 
1779 void Function::setPersonalityFn(Constant *Fn) {
1780   setHungoffOperand<0>(Fn);
1781   setValueSubclassDataBit(3, Fn != nullptr);
1782 }
1783 
1784 Constant *Function::getPrefixData() const {
1785   assert(hasPrefixData() && getNumOperands());
1786   return cast<Constant>(Op<1>());
1787 }
1788 
1789 void Function::setPrefixData(Constant *PrefixData) {
1790   setHungoffOperand<1>(PrefixData);
1791   setValueSubclassDataBit(1, PrefixData != nullptr);
1792 }
1793 
1794 Constant *Function::getPrologueData() const {
1795   assert(hasPrologueData() && getNumOperands());
1796   return cast<Constant>(Op<2>());
1797 }
1798 
1799 void Function::setPrologueData(Constant *PrologueData) {
1800   setHungoffOperand<2>(PrologueData);
1801   setValueSubclassDataBit(2, PrologueData != nullptr);
1802 }
1803 
1804 void Function::allocHungoffUselist() {
1805   // If we've already allocated a uselist, stop here.
1806   if (getNumOperands())
1807     return;
1808 
1809   allocHungoffUses(3, /*IsPhi=*/ false);
1810   setNumHungOffUseOperands(3);
1811 
1812   // Initialize the uselist with placeholder operands to allow traversal.
1813   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1814   Op<0>().set(CPN);
1815   Op<1>().set(CPN);
1816   Op<2>().set(CPN);
1817 }
1818 
1819 template <int Idx>
1820 void Function::setHungoffOperand(Constant *C) {
1821   if (C) {
1822     allocHungoffUselist();
1823     Op<Idx>().set(C);
1824   } else if (getNumOperands()) {
1825     Op<Idx>().set(
1826         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1827   }
1828 }
1829 
1830 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1831   assert(Bit < 16 && "SubclassData contains only 16 bits");
1832   if (On)
1833     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1834   else
1835     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1836 }
1837 
1838 void Function::setEntryCount(ProfileCount Count,
1839                              const DenseSet<GlobalValue::GUID> *S) {
1840   assert(Count.hasValue());
1841 #if !defined(NDEBUG)
1842   auto PrevCount = getEntryCount();
1843   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1844 #endif
1845 
1846   auto ImportGUIDs = getImportGUIDs();
1847   if (S == nullptr && ImportGUIDs.size())
1848     S = &ImportGUIDs;
1849 
1850   MDBuilder MDB(getContext());
1851   setMetadata(
1852       LLVMContext::MD_prof,
1853       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1854 }
1855 
1856 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1857                              const DenseSet<GlobalValue::GUID> *Imports) {
1858   setEntryCount(ProfileCount(Count, Type), Imports);
1859 }
1860 
1861 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1862   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1863   if (MD && MD->getOperand(0))
1864     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1865       if (MDS->getString().equals("function_entry_count")) {
1866         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1867         uint64_t Count = CI->getValue().getZExtValue();
1868         // A value of -1 is used for SamplePGO when there were no samples.
1869         // Treat this the same as unknown.
1870         if (Count == (uint64_t)-1)
1871           return ProfileCount::getInvalid();
1872         return ProfileCount(Count, PCT_Real);
1873       } else if (AllowSynthetic &&
1874                  MDS->getString().equals("synthetic_function_entry_count")) {
1875         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1876         uint64_t Count = CI->getValue().getZExtValue();
1877         return ProfileCount(Count, PCT_Synthetic);
1878       }
1879     }
1880   return ProfileCount::getInvalid();
1881 }
1882 
1883 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1884   DenseSet<GlobalValue::GUID> R;
1885   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1886     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1887       if (MDS->getString().equals("function_entry_count"))
1888         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1889           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1890                        ->getValue()
1891                        .getZExtValue());
1892   return R;
1893 }
1894 
1895 void Function::setSectionPrefix(StringRef Prefix) {
1896   MDBuilder MDB(getContext());
1897   setMetadata(LLVMContext::MD_section_prefix,
1898               MDB.createFunctionSectionPrefix(Prefix));
1899 }
1900 
1901 Optional<StringRef> Function::getSectionPrefix() const {
1902   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1903     assert(cast<MDString>(MD->getOperand(0))
1904                ->getString()
1905                .equals("function_section_prefix") &&
1906            "Metadata not match");
1907     return cast<MDString>(MD->getOperand(1))->getString();
1908   }
1909   return None;
1910 }
1911 
1912 bool Function::nullPointerIsDefined() const {
1913   return hasFnAttribute(Attribute::NullPointerIsValid);
1914 }
1915 
1916 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1917   if (F && F->nullPointerIsDefined())
1918     return true;
1919 
1920   if (AS != 0)
1921     return true;
1922 
1923   return false;
1924 }
1925