1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Support/RWMutex.h" 32 #include "llvm/Support/StringPool.h" 33 #include "llvm/Support/Threading.h" 34 using namespace llvm; 35 36 // Explicit instantiations of SymbolTableListTraits since some of the methods 37 // are not in the public header file... 38 template class llvm::SymbolTableListTraits<Argument>; 39 template class llvm::SymbolTableListTraits<BasicBlock>; 40 41 //===----------------------------------------------------------------------===// 42 // Argument Implementation 43 //===----------------------------------------------------------------------===// 44 45 void Argument::anchor() { } 46 47 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 48 : Value(Ty, Value::ArgumentVal) { 49 Parent = nullptr; 50 51 if (Par) 52 Par->getArgumentList().push_back(this); 53 setName(Name); 54 } 55 56 void Argument::setParent(Function *parent) { 57 Parent = parent; 58 } 59 60 /// getArgNo - Return the index of this formal argument in its containing 61 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 62 unsigned Argument::getArgNo() const { 63 const Function *F = getParent(); 64 assert(F && "Argument is not in a function"); 65 66 Function::const_arg_iterator AI = F->arg_begin(); 67 unsigned ArgIdx = 0; 68 for (; &*AI != this; ++AI) 69 ++ArgIdx; 70 71 return ArgIdx; 72 } 73 74 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 75 /// it in its containing function. Also returns true if at least one byte is 76 /// known to be dereferenceable and the pointer is in addrspace(0). 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->getAttributes(). 80 hasAttribute(getArgNo()+1, Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 /// hasByValAttr - Return true if this argument has the byval attribute on it 89 /// in its containing function. 90 bool Argument::hasByValAttr() const { 91 if (!getType()->isPointerTy()) return false; 92 return getParent()->getAttributes(). 93 hasAttribute(getArgNo()+1, Attribute::ByVal); 94 } 95 96 /// \brief Return true if this argument has the inalloca attribute on it in 97 /// its containing function. 98 bool Argument::hasInAllocaAttr() const { 99 if (!getType()->isPointerTy()) return false; 100 return getParent()->getAttributes(). 101 hasAttribute(getArgNo()+1, Attribute::InAlloca); 102 } 103 104 bool Argument::hasByValOrInAllocaAttr() const { 105 if (!getType()->isPointerTy()) return false; 106 AttributeSet Attrs = getParent()->getAttributes(); 107 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 108 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 109 } 110 111 unsigned Argument::getParamAlignment() const { 112 assert(getType()->isPointerTy() && "Only pointers have alignments"); 113 return getParent()->getParamAlignment(getArgNo()+1); 114 115 } 116 117 uint64_t Argument::getDereferenceableBytes() const { 118 assert(getType()->isPointerTy() && 119 "Only pointers have dereferenceable bytes"); 120 return getParent()->getDereferenceableBytes(getArgNo()+1); 121 } 122 123 uint64_t Argument::getDereferenceableOrNullBytes() const { 124 assert(getType()->isPointerTy() && 125 "Only pointers have dereferenceable bytes"); 126 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 127 } 128 129 /// hasNestAttr - Return true if this argument has the nest attribute on 130 /// it in its containing function. 131 bool Argument::hasNestAttr() const { 132 if (!getType()->isPointerTy()) return false; 133 return getParent()->getAttributes(). 134 hasAttribute(getArgNo()+1, Attribute::Nest); 135 } 136 137 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 138 /// it in its containing function. 139 bool Argument::hasNoAliasAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return getParent()->getAttributes(). 142 hasAttribute(getArgNo()+1, Attribute::NoAlias); 143 } 144 145 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 146 /// on it in its containing function. 147 bool Argument::hasNoCaptureAttr() const { 148 if (!getType()->isPointerTy()) return false; 149 return getParent()->getAttributes(). 150 hasAttribute(getArgNo()+1, Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return getParent()->getAttributes(). 158 hasAttribute(getArgNo()+1, Attribute::StructRet); 159 } 160 161 /// hasReturnedAttr - Return true if this argument has the returned attribute on 162 /// it in its containing function. 163 bool Argument::hasReturnedAttr() const { 164 return getParent()->getAttributes(). 165 hasAttribute(getArgNo()+1, Attribute::Returned); 166 } 167 168 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 169 /// its containing function. 170 bool Argument::hasZExtAttr() const { 171 return getParent()->getAttributes(). 172 hasAttribute(getArgNo()+1, Attribute::ZExt); 173 } 174 175 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 176 /// containing function. 177 bool Argument::hasSExtAttr() const { 178 return getParent()->getAttributes(). 179 hasAttribute(getArgNo()+1, Attribute::SExt); 180 } 181 182 /// Return true if this argument has the readonly or readnone attribute on it 183 /// in its containing function. 184 bool Argument::onlyReadsMemory() const { 185 return getParent()->getAttributes(). 186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 187 getParent()->getAttributes(). 188 hasAttribute(getArgNo()+1, Attribute::ReadNone); 189 } 190 191 /// addAttr - Add attributes to an argument. 192 void Argument::addAttr(AttributeSet AS) { 193 assert(AS.getNumSlots() <= 1 && 194 "Trying to add more than one attribute set to an argument!"); 195 AttrBuilder B(AS, AS.getSlotIndex(0)); 196 getParent()->addAttributes(getArgNo() + 1, 197 AttributeSet::get(Parent->getContext(), 198 getArgNo() + 1, B)); 199 } 200 201 /// removeAttr - Remove attributes from an argument. 202 void Argument::removeAttr(AttributeSet AS) { 203 assert(AS.getNumSlots() <= 1 && 204 "Trying to remove more than one attribute set from an argument!"); 205 AttrBuilder B(AS, AS.getSlotIndex(0)); 206 getParent()->removeAttributes(getArgNo() + 1, 207 AttributeSet::get(Parent->getContext(), 208 getArgNo() + 1, B)); 209 } 210 211 //===----------------------------------------------------------------------===// 212 // Helper Methods in Function 213 //===----------------------------------------------------------------------===// 214 215 bool Function::isMaterializable() const { 216 return getGlobalObjectSubClassData() & IsMaterializableBit; 217 } 218 219 void Function::setIsMaterializable(bool V) { 220 setGlobalObjectBit(IsMaterializableBit, V); 221 } 222 223 LLVMContext &Function::getContext() const { 224 return getType()->getContext(); 225 } 226 227 FunctionType *Function::getFunctionType() const { return Ty; } 228 229 bool Function::isVarArg() const { 230 return getFunctionType()->isVarArg(); 231 } 232 233 Type *Function::getReturnType() const { 234 return getFunctionType()->getReturnType(); 235 } 236 237 void Function::removeFromParent() { 238 getParent()->getFunctionList().remove(getIterator()); 239 } 240 241 void Function::eraseFromParent() { 242 getParent()->getFunctionList().erase(getIterator()); 243 } 244 245 //===----------------------------------------------------------------------===// 246 // Function Implementation 247 //===----------------------------------------------------------------------===// 248 249 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 250 Module *ParentModule) 251 : GlobalObject(Ty, Value::FunctionVal, 252 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 253 Ty(Ty) { 254 assert(FunctionType::isValidReturnType(getReturnType()) && 255 "invalid return type"); 256 setGlobalObjectSubClassData(0); 257 SymTab = new ValueSymbolTable(); 258 259 // If the function has arguments, mark them as lazily built. 260 if (Ty->getNumParams()) 261 setValueSubclassData(1); // Set the "has lazy arguments" bit. 262 263 if (ParentModule) 264 ParentModule->getFunctionList().push_back(this); 265 266 // Ensure intrinsics have the right parameter attributes. 267 // Note, the IntID field will have been set in Value::setName if this function 268 // name is a valid intrinsic ID. 269 if (IntID) 270 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 271 } 272 273 Function::~Function() { 274 dropAllReferences(); // After this it is safe to delete instructions. 275 276 // Delete all of the method arguments and unlink from symbol table... 277 ArgumentList.clear(); 278 delete SymTab; 279 280 // Remove the function from the on-the-side GC table. 281 clearGC(); 282 283 // FIXME: needed by operator delete 284 setFunctionNumOperands(1); 285 } 286 287 void Function::BuildLazyArguments() const { 288 // Create the arguments vector, all arguments start out unnamed. 289 FunctionType *FT = getFunctionType(); 290 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 291 assert(!FT->getParamType(i)->isVoidTy() && 292 "Cannot have void typed arguments!"); 293 ArgumentList.push_back(new Argument(FT->getParamType(i))); 294 } 295 296 // Clear the lazy arguments bit. 297 unsigned SDC = getSubclassDataFromValue(); 298 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 299 } 300 301 size_t Function::arg_size() const { 302 return getFunctionType()->getNumParams(); 303 } 304 bool Function::arg_empty() const { 305 return getFunctionType()->getNumParams() == 0; 306 } 307 308 void Function::setParent(Module *parent) { 309 Parent = parent; 310 } 311 312 // dropAllReferences() - This function causes all the subinstructions to "let 313 // go" of all references that they are maintaining. This allows one to 314 // 'delete' a whole class at a time, even though there may be circular 315 // references... first all references are dropped, and all use counts go to 316 // zero. Then everything is deleted for real. Note that no operations are 317 // valid on an object that has "dropped all references", except operator 318 // delete. 319 // 320 void Function::dropAllReferences() { 321 setIsMaterializable(false); 322 323 for (iterator I = begin(), E = end(); I != E; ++I) 324 I->dropAllReferences(); 325 326 // Delete all basic blocks. They are now unused, except possibly by 327 // blockaddresses, but BasicBlock's destructor takes care of those. 328 while (!BasicBlocks.empty()) 329 BasicBlocks.begin()->eraseFromParent(); 330 331 // Prefix and prologue data are stored in a side table. 332 setPrefixData(nullptr); 333 setPrologueData(nullptr); 334 335 // Metadata is stored in a side-table. 336 clearMetadata(); 337 338 setPersonalityFn(nullptr); 339 } 340 341 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 342 AttributeSet PAL = getAttributes(); 343 PAL = PAL.addAttribute(getContext(), i, attr); 344 setAttributes(PAL); 345 } 346 347 void Function::addAttributes(unsigned i, AttributeSet attrs) { 348 AttributeSet PAL = getAttributes(); 349 PAL = PAL.addAttributes(getContext(), i, attrs); 350 setAttributes(PAL); 351 } 352 353 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 354 AttributeSet PAL = getAttributes(); 355 PAL = PAL.removeAttributes(getContext(), i, attrs); 356 setAttributes(PAL); 357 } 358 359 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 360 AttributeSet PAL = getAttributes(); 361 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 362 setAttributes(PAL); 363 } 364 365 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 366 AttributeSet PAL = getAttributes(); 367 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 368 setAttributes(PAL); 369 } 370 371 // Maintain the GC name for each function in an on-the-side table. This saves 372 // allocating an additional word in Function for programs which do not use GC 373 // (i.e., most programs) at the cost of increased overhead for clients which do 374 // use GC. 375 static DenseMap<const Function*,PooledStringPtr> *GCNames; 376 static StringPool *GCNamePool; 377 static ManagedStatic<sys::SmartRWMutex<true> > GCLock; 378 379 bool Function::hasGC() const { 380 sys::SmartScopedReader<true> Reader(*GCLock); 381 return GCNames && GCNames->count(this); 382 } 383 384 const char *Function::getGC() const { 385 assert(hasGC() && "Function has no collector"); 386 sys::SmartScopedReader<true> Reader(*GCLock); 387 return *(*GCNames)[this]; 388 } 389 390 void Function::setGC(const char *Str) { 391 sys::SmartScopedWriter<true> Writer(*GCLock); 392 if (!GCNamePool) 393 GCNamePool = new StringPool(); 394 if (!GCNames) 395 GCNames = new DenseMap<const Function*,PooledStringPtr>(); 396 (*GCNames)[this] = GCNamePool->intern(Str); 397 } 398 399 void Function::clearGC() { 400 sys::SmartScopedWriter<true> Writer(*GCLock); 401 if (GCNames) { 402 GCNames->erase(this); 403 if (GCNames->empty()) { 404 delete GCNames; 405 GCNames = nullptr; 406 if (GCNamePool->empty()) { 407 delete GCNamePool; 408 GCNamePool = nullptr; 409 } 410 } 411 } 412 } 413 414 /// Copy all additional attributes (those not needed to create a Function) from 415 /// the Function Src to this one. 416 void Function::copyAttributesFrom(const GlobalValue *Src) { 417 GlobalObject::copyAttributesFrom(Src); 418 const Function *SrcF = dyn_cast<Function>(Src); 419 if (!SrcF) 420 return; 421 422 setCallingConv(SrcF->getCallingConv()); 423 setAttributes(SrcF->getAttributes()); 424 if (SrcF->hasGC()) 425 setGC(SrcF->getGC()); 426 else 427 clearGC(); 428 if (SrcF->hasPrefixData()) 429 setPrefixData(SrcF->getPrefixData()); 430 else 431 setPrefixData(nullptr); 432 if (SrcF->hasPrologueData()) 433 setPrologueData(SrcF->getPrologueData()); 434 else 435 setPrologueData(nullptr); 436 if (SrcF->hasPersonalityFn()) 437 setPersonalityFn(SrcF->getPersonalityFn()); 438 else 439 setPersonalityFn(nullptr); 440 } 441 442 /// \brief This does the actual lookup of an intrinsic ID which 443 /// matches the given function name. 444 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) { 445 unsigned Len = ValName->getKeyLength(); 446 const char *Name = ValName->getKeyData(); 447 448 #define GET_FUNCTION_RECOGNIZER 449 #include "llvm/IR/Intrinsics.gen" 450 #undef GET_FUNCTION_RECOGNIZER 451 452 return Intrinsic::not_intrinsic; 453 } 454 455 void Function::recalculateIntrinsicID() { 456 const ValueName *ValName = this->getValueName(); 457 if (!ValName || !isIntrinsic()) { 458 IntID = Intrinsic::not_intrinsic; 459 return; 460 } 461 IntID = lookupIntrinsicID(ValName); 462 } 463 464 /// Returns a stable mangling for the type specified for use in the name 465 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 466 /// of named types is simply their name. Manglings for unnamed types consist 467 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 468 /// combined with the mangling of their component types. A vararg function 469 /// type will have a suffix of 'vararg'. Since function types can contain 470 /// other function types, we close a function type mangling with suffix 'f' 471 /// which can't be confused with it's prefix. This ensures we don't have 472 /// collisions between two unrelated function types. Otherwise, you might 473 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 474 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 475 /// cases) fall back to the MVT codepath, where they could be mangled to 476 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 477 /// everything. 478 static std::string getMangledTypeStr(Type* Ty) { 479 std::string Result; 480 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 481 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 482 getMangledTypeStr(PTyp->getElementType()); 483 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 484 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 485 getMangledTypeStr(ATyp->getElementType()); 486 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 487 assert(!STyp->isLiteral() && "TODO: implement literal types"); 488 Result += STyp->getName(); 489 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 490 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 491 for (size_t i = 0; i < FT->getNumParams(); i++) 492 Result += getMangledTypeStr(FT->getParamType(i)); 493 if (FT->isVarArg()) 494 Result += "vararg"; 495 // Ensure nested function types are distinguishable. 496 Result += "f"; 497 } else if (isa<VectorType>(Ty)) 498 Result += "v" + utostr(Ty->getVectorNumElements()) + 499 getMangledTypeStr(Ty->getVectorElementType()); 500 else if (Ty) 501 Result += EVT::getEVT(Ty).getEVTString(); 502 return Result; 503 } 504 505 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 506 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 507 static const char * const Table[] = { 508 "not_intrinsic", 509 #define GET_INTRINSIC_NAME_TABLE 510 #include "llvm/IR/Intrinsics.gen" 511 #undef GET_INTRINSIC_NAME_TABLE 512 }; 513 if (Tys.empty()) 514 return Table[id]; 515 std::string Result(Table[id]); 516 for (unsigned i = 0; i < Tys.size(); ++i) { 517 Result += "." + getMangledTypeStr(Tys[i]); 518 } 519 return Result; 520 } 521 522 523 /// IIT_Info - These are enumerators that describe the entries returned by the 524 /// getIntrinsicInfoTableEntries function. 525 /// 526 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 527 enum IIT_Info { 528 // Common values should be encoded with 0-15. 529 IIT_Done = 0, 530 IIT_I1 = 1, 531 IIT_I8 = 2, 532 IIT_I16 = 3, 533 IIT_I32 = 4, 534 IIT_I64 = 5, 535 IIT_F16 = 6, 536 IIT_F32 = 7, 537 IIT_F64 = 8, 538 IIT_V2 = 9, 539 IIT_V4 = 10, 540 IIT_V8 = 11, 541 IIT_V16 = 12, 542 IIT_V32 = 13, 543 IIT_PTR = 14, 544 IIT_ARG = 15, 545 546 // Values from 16+ are only encodable with the inefficient encoding. 547 IIT_V64 = 16, 548 IIT_MMX = 17, 549 IIT_TOKEN = 18, 550 IIT_METADATA = 19, 551 IIT_EMPTYSTRUCT = 20, 552 IIT_STRUCT2 = 21, 553 IIT_STRUCT3 = 22, 554 IIT_STRUCT4 = 23, 555 IIT_STRUCT5 = 24, 556 IIT_EXTEND_ARG = 25, 557 IIT_TRUNC_ARG = 26, 558 IIT_ANYPTR = 27, 559 IIT_V1 = 28, 560 IIT_VARARG = 29, 561 IIT_HALF_VEC_ARG = 30, 562 IIT_SAME_VEC_WIDTH_ARG = 31, 563 IIT_PTR_TO_ARG = 32, 564 IIT_VEC_OF_PTRS_TO_ELT = 33, 565 IIT_I128 = 34, 566 IIT_V512 = 35, 567 IIT_V1024 = 36 568 }; 569 570 571 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 572 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 573 IIT_Info Info = IIT_Info(Infos[NextElt++]); 574 unsigned StructElts = 2; 575 using namespace Intrinsic; 576 577 switch (Info) { 578 case IIT_Done: 579 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 580 return; 581 case IIT_VARARG: 582 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 583 return; 584 case IIT_MMX: 585 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 586 return; 587 case IIT_TOKEN: 588 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 589 return; 590 case IIT_METADATA: 591 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 592 return; 593 case IIT_F16: 594 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 595 return; 596 case IIT_F32: 597 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 598 return; 599 case IIT_F64: 600 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 601 return; 602 case IIT_I1: 603 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 604 return; 605 case IIT_I8: 606 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 607 return; 608 case IIT_I16: 609 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 610 return; 611 case IIT_I32: 612 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 613 return; 614 case IIT_I64: 615 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 616 return; 617 case IIT_I128: 618 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 619 return; 620 case IIT_V1: 621 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 622 DecodeIITType(NextElt, Infos, OutputTable); 623 return; 624 case IIT_V2: 625 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 626 DecodeIITType(NextElt, Infos, OutputTable); 627 return; 628 case IIT_V4: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 630 DecodeIITType(NextElt, Infos, OutputTable); 631 return; 632 case IIT_V8: 633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 634 DecodeIITType(NextElt, Infos, OutputTable); 635 return; 636 case IIT_V16: 637 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 638 DecodeIITType(NextElt, Infos, OutputTable); 639 return; 640 case IIT_V32: 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 642 DecodeIITType(NextElt, Infos, OutputTable); 643 return; 644 case IIT_V64: 645 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 646 DecodeIITType(NextElt, Infos, OutputTable); 647 return; 648 case IIT_V512: 649 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 650 DecodeIITType(NextElt, Infos, OutputTable); 651 return; 652 case IIT_V1024: 653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 654 DecodeIITType(NextElt, Infos, OutputTable); 655 return; 656 case IIT_PTR: 657 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 658 DecodeIITType(NextElt, Infos, OutputTable); 659 return; 660 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 661 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 662 Infos[NextElt++])); 663 DecodeIITType(NextElt, Infos, OutputTable); 664 return; 665 } 666 case IIT_ARG: { 667 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 668 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 669 return; 670 } 671 case IIT_EXTEND_ARG: { 672 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 673 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 674 ArgInfo)); 675 return; 676 } 677 case IIT_TRUNC_ARG: { 678 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 679 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 680 ArgInfo)); 681 return; 682 } 683 case IIT_HALF_VEC_ARG: { 684 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 685 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 686 ArgInfo)); 687 return; 688 } 689 case IIT_SAME_VEC_WIDTH_ARG: { 690 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 691 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 692 ArgInfo)); 693 return; 694 } 695 case IIT_PTR_TO_ARG: { 696 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 697 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 698 ArgInfo)); 699 return; 700 } 701 case IIT_VEC_OF_PTRS_TO_ELT: { 702 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 703 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 704 ArgInfo)); 705 return; 706 } 707 case IIT_EMPTYSTRUCT: 708 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 709 return; 710 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 711 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 712 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 713 case IIT_STRUCT2: { 714 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 715 716 for (unsigned i = 0; i != StructElts; ++i) 717 DecodeIITType(NextElt, Infos, OutputTable); 718 return; 719 } 720 } 721 llvm_unreachable("unhandled"); 722 } 723 724 725 #define GET_INTRINSIC_GENERATOR_GLOBAL 726 #include "llvm/IR/Intrinsics.gen" 727 #undef GET_INTRINSIC_GENERATOR_GLOBAL 728 729 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 730 SmallVectorImpl<IITDescriptor> &T){ 731 // Check to see if the intrinsic's type was expressible by the table. 732 unsigned TableVal = IIT_Table[id-1]; 733 734 // Decode the TableVal into an array of IITValues. 735 SmallVector<unsigned char, 8> IITValues; 736 ArrayRef<unsigned char> IITEntries; 737 unsigned NextElt = 0; 738 if ((TableVal >> 31) != 0) { 739 // This is an offset into the IIT_LongEncodingTable. 740 IITEntries = IIT_LongEncodingTable; 741 742 // Strip sentinel bit. 743 NextElt = (TableVal << 1) >> 1; 744 } else { 745 // Decode the TableVal into an array of IITValues. If the entry was encoded 746 // into a single word in the table itself, decode it now. 747 do { 748 IITValues.push_back(TableVal & 0xF); 749 TableVal >>= 4; 750 } while (TableVal); 751 752 IITEntries = IITValues; 753 NextElt = 0; 754 } 755 756 // Okay, decode the table into the output vector of IITDescriptors. 757 DecodeIITType(NextElt, IITEntries, T); 758 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 759 DecodeIITType(NextElt, IITEntries, T); 760 } 761 762 763 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 764 ArrayRef<Type*> Tys, LLVMContext &Context) { 765 using namespace Intrinsic; 766 IITDescriptor D = Infos.front(); 767 Infos = Infos.slice(1); 768 769 switch (D.Kind) { 770 case IITDescriptor::Void: return Type::getVoidTy(Context); 771 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 772 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 773 case IITDescriptor::Token: return Type::getTokenTy(Context); 774 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 775 case IITDescriptor::Half: return Type::getHalfTy(Context); 776 case IITDescriptor::Float: return Type::getFloatTy(Context); 777 case IITDescriptor::Double: return Type::getDoubleTy(Context); 778 779 case IITDescriptor::Integer: 780 return IntegerType::get(Context, D.Integer_Width); 781 case IITDescriptor::Vector: 782 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 783 case IITDescriptor::Pointer: 784 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 785 D.Pointer_AddressSpace); 786 case IITDescriptor::Struct: { 787 Type *Elts[5]; 788 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 789 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 790 Elts[i] = DecodeFixedType(Infos, Tys, Context); 791 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 792 } 793 794 case IITDescriptor::Argument: 795 return Tys[D.getArgumentNumber()]; 796 case IITDescriptor::ExtendArgument: { 797 Type *Ty = Tys[D.getArgumentNumber()]; 798 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 799 return VectorType::getExtendedElementVectorType(VTy); 800 801 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 802 } 803 case IITDescriptor::TruncArgument: { 804 Type *Ty = Tys[D.getArgumentNumber()]; 805 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 806 return VectorType::getTruncatedElementVectorType(VTy); 807 808 IntegerType *ITy = cast<IntegerType>(Ty); 809 assert(ITy->getBitWidth() % 2 == 0); 810 return IntegerType::get(Context, ITy->getBitWidth() / 2); 811 } 812 case IITDescriptor::HalfVecArgument: 813 return VectorType::getHalfElementsVectorType(cast<VectorType>( 814 Tys[D.getArgumentNumber()])); 815 case IITDescriptor::SameVecWidthArgument: { 816 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 817 Type *Ty = Tys[D.getArgumentNumber()]; 818 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 819 return VectorType::get(EltTy, VTy->getNumElements()); 820 } 821 llvm_unreachable("unhandled"); 822 } 823 case IITDescriptor::PtrToArgument: { 824 Type *Ty = Tys[D.getArgumentNumber()]; 825 return PointerType::getUnqual(Ty); 826 } 827 case IITDescriptor::VecOfPtrsToElt: { 828 Type *Ty = Tys[D.getArgumentNumber()]; 829 VectorType *VTy = dyn_cast<VectorType>(Ty); 830 if (!VTy) 831 llvm_unreachable("Expected an argument of Vector Type"); 832 Type *EltTy = VTy->getVectorElementType(); 833 return VectorType::get(PointerType::getUnqual(EltTy), 834 VTy->getNumElements()); 835 } 836 } 837 llvm_unreachable("unhandled"); 838 } 839 840 841 842 FunctionType *Intrinsic::getType(LLVMContext &Context, 843 ID id, ArrayRef<Type*> Tys) { 844 SmallVector<IITDescriptor, 8> Table; 845 getIntrinsicInfoTableEntries(id, Table); 846 847 ArrayRef<IITDescriptor> TableRef = Table; 848 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 849 850 SmallVector<Type*, 8> ArgTys; 851 while (!TableRef.empty()) 852 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 853 854 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 855 // If we see void type as the type of the last argument, it is vararg intrinsic 856 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 857 ArgTys.pop_back(); 858 return FunctionType::get(ResultTy, ArgTys, true); 859 } 860 return FunctionType::get(ResultTy, ArgTys, false); 861 } 862 863 bool Intrinsic::isOverloaded(ID id) { 864 #define GET_INTRINSIC_OVERLOAD_TABLE 865 #include "llvm/IR/Intrinsics.gen" 866 #undef GET_INTRINSIC_OVERLOAD_TABLE 867 } 868 869 bool Intrinsic::isLeaf(ID id) { 870 switch (id) { 871 default: 872 return true; 873 874 case Intrinsic::experimental_gc_statepoint: 875 case Intrinsic::experimental_patchpoint_void: 876 case Intrinsic::experimental_patchpoint_i64: 877 return false; 878 } 879 } 880 881 /// This defines the "Intrinsic::getAttributes(ID id)" method. 882 #define GET_INTRINSIC_ATTRIBUTES 883 #include "llvm/IR/Intrinsics.gen" 884 #undef GET_INTRINSIC_ATTRIBUTES 885 886 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 887 // There can never be multiple globals with the same name of different types, 888 // because intrinsics must be a specific type. 889 return 890 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 891 getType(M->getContext(), id, Tys))); 892 } 893 894 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 895 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 896 #include "llvm/IR/Intrinsics.gen" 897 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 898 899 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 900 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 901 #include "llvm/IR/Intrinsics.gen" 902 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 903 904 /// hasAddressTaken - returns true if there are any uses of this function 905 /// other than direct calls or invokes to it. 906 bool Function::hasAddressTaken(const User* *PutOffender) const { 907 for (const Use &U : uses()) { 908 const User *FU = U.getUser(); 909 if (isa<BlockAddress>(FU)) 910 continue; 911 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) 912 return PutOffender ? (*PutOffender = FU, true) : true; 913 ImmutableCallSite CS(cast<Instruction>(FU)); 914 if (!CS.isCallee(&U)) 915 return PutOffender ? (*PutOffender = FU, true) : true; 916 } 917 return false; 918 } 919 920 bool Function::isDefTriviallyDead() const { 921 // Check the linkage 922 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 923 !hasAvailableExternallyLinkage()) 924 return false; 925 926 // Check if the function is used by anything other than a blockaddress. 927 for (const User *U : users()) 928 if (!isa<BlockAddress>(U)) 929 return false; 930 931 return true; 932 } 933 934 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 935 /// setjmp or other function that gcc recognizes as "returning twice". 936 bool Function::callsFunctionThatReturnsTwice() const { 937 for (const_inst_iterator 938 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 939 ImmutableCallSite CS(&*I); 940 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 941 return true; 942 } 943 944 return false; 945 } 946 947 static Constant * 948 getFunctionData(const Function *F, 949 const LLVMContextImpl::FunctionDataMapTy &Map) { 950 const auto &Entry = Map.find(F); 951 assert(Entry != Map.end()); 952 return cast<Constant>(Entry->second->getReturnValue()); 953 } 954 955 /// setFunctionData - Set "Map[F] = Data". Return an updated SubclassData value 956 /// in which Bit is low iff Data is null. 957 static unsigned setFunctionData(Function *F, 958 LLVMContextImpl::FunctionDataMapTy &Map, 959 Constant *Data, unsigned SCData, unsigned Bit) { 960 ReturnInst *&Holder = Map[F]; 961 if (Data) { 962 if (Holder) 963 Holder->setOperand(0, Data); 964 else 965 Holder = ReturnInst::Create(F->getContext(), Data); 966 return SCData | (1 << Bit); 967 } else { 968 delete Holder; 969 Map.erase(F); 970 return SCData & ~(1 << Bit); 971 } 972 } 973 974 Constant *Function::getPrefixData() const { 975 assert(hasPrefixData()); 976 return getFunctionData(this, getContext().pImpl->PrefixDataMap); 977 } 978 979 void Function::setPrefixData(Constant *PrefixData) { 980 if (!PrefixData && !hasPrefixData()) 981 return; 982 983 unsigned SCData = getSubclassDataFromValue(); 984 SCData = setFunctionData(this, getContext().pImpl->PrefixDataMap, PrefixData, 985 SCData, /*Bit=*/1); 986 setValueSubclassData(SCData); 987 } 988 989 Constant *Function::getPrologueData() const { 990 assert(hasPrologueData()); 991 return getFunctionData(this, getContext().pImpl->PrologueDataMap); 992 } 993 994 void Function::setPrologueData(Constant *PrologueData) { 995 if (!PrologueData && !hasPrologueData()) 996 return; 997 998 unsigned SCData = getSubclassDataFromValue(); 999 SCData = setFunctionData(this, getContext().pImpl->PrologueDataMap, 1000 PrologueData, SCData, /*Bit=*/2); 1001 setValueSubclassData(SCData); 1002 } 1003 1004 void Function::setEntryCount(uint64_t Count) { 1005 MDBuilder MDB(getContext()); 1006 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1007 } 1008 1009 Optional<uint64_t> Function::getEntryCount() const { 1010 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1011 if (MD && MD->getOperand(0)) 1012 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1013 if (MDS->getString().equals("function_entry_count")) { 1014 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1015 return CI->getValue().getZExtValue(); 1016 } 1017 return None; 1018 } 1019 1020 void Function::setPersonalityFn(Constant *C) { 1021 if (!C) { 1022 if (hasPersonalityFn()) { 1023 // Note, the num operands is used to compute the offset of the operand, so 1024 // the order here matters. Clearing the operand then clearing the num 1025 // operands ensures we have the correct offset to the operand. 1026 Op<0>().set(nullptr); 1027 setFunctionNumOperands(0); 1028 } 1029 } else { 1030 // Note, the num operands is used to compute the offset of the operand, so 1031 // the order here matters. We need to set num operands to 1 first so that 1032 // we get the correct offset to the first operand when we set it. 1033 if (!hasPersonalityFn()) 1034 setFunctionNumOperands(1); 1035 Op<0>().set(C); 1036 } 1037 } 1038