1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Support/ManagedStatic.h" 28 #include "llvm/Support/RWMutex.h" 29 #include "llvm/Support/StringPool.h" 30 #include "llvm/Support/Threading.h" 31 using namespace llvm; 32 33 // Explicit instantiations of SymbolTableListTraits since some of the methods 34 // are not in the public header file... 35 template class llvm::SymbolTableListTraits<Argument, Function>; 36 template class llvm::SymbolTableListTraits<BasicBlock, Function>; 37 38 //===----------------------------------------------------------------------===// 39 // Argument Implementation 40 //===----------------------------------------------------------------------===// 41 42 void Argument::anchor() { } 43 44 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 45 : Value(Ty, Value::ArgumentVal) { 46 Parent = nullptr; 47 48 if (Par) 49 Par->getArgumentList().push_back(this); 50 setName(Name); 51 } 52 53 void Argument::setParent(Function *parent) { 54 Parent = parent; 55 } 56 57 /// getArgNo - Return the index of this formal argument in its containing 58 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 59 unsigned Argument::getArgNo() const { 60 const Function *F = getParent(); 61 assert(F && "Argument is not in a function"); 62 63 Function::const_arg_iterator AI = F->arg_begin(); 64 unsigned ArgIdx = 0; 65 for (; &*AI != this; ++AI) 66 ++ArgIdx; 67 68 return ArgIdx; 69 } 70 71 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 72 /// it in its containing function. Also returns true if at least one byte is 73 /// known to be dereferenceable and the pointer is in addrspace(0). 74 bool Argument::hasNonNullAttr() const { 75 if (!getType()->isPointerTy()) return false; 76 if (getParent()->getAttributes(). 77 hasAttribute(getArgNo()+1, Attribute::NonNull)) 78 return true; 79 else if (getDereferenceableBytes() > 0 && 80 getType()->getPointerAddressSpace() == 0) 81 return true; 82 return false; 83 } 84 85 /// hasByValAttr - Return true if this argument has the byval attribute on it 86 /// in its containing function. 87 bool Argument::hasByValAttr() const { 88 if (!getType()->isPointerTy()) return false; 89 return getParent()->getAttributes(). 90 hasAttribute(getArgNo()+1, Attribute::ByVal); 91 } 92 93 /// \brief Return true if this argument has the inalloca attribute on it in 94 /// its containing function. 95 bool Argument::hasInAllocaAttr() const { 96 if (!getType()->isPointerTy()) return false; 97 return getParent()->getAttributes(). 98 hasAttribute(getArgNo()+1, Attribute::InAlloca); 99 } 100 101 bool Argument::hasByValOrInAllocaAttr() const { 102 if (!getType()->isPointerTy()) return false; 103 AttributeSet Attrs = getParent()->getAttributes(); 104 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 105 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 106 } 107 108 unsigned Argument::getParamAlignment() const { 109 assert(getType()->isPointerTy() && "Only pointers have alignments"); 110 return getParent()->getParamAlignment(getArgNo()+1); 111 112 } 113 114 uint64_t Argument::getDereferenceableBytes() const { 115 assert(getType()->isPointerTy() && 116 "Only pointers have dereferenceable bytes"); 117 return getParent()->getDereferenceableBytes(getArgNo()+1); 118 } 119 120 /// hasNestAttr - Return true if this argument has the nest attribute on 121 /// it in its containing function. 122 bool Argument::hasNestAttr() const { 123 if (!getType()->isPointerTy()) return false; 124 return getParent()->getAttributes(). 125 hasAttribute(getArgNo()+1, Attribute::Nest); 126 } 127 128 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 129 /// it in its containing function. 130 bool Argument::hasNoAliasAttr() const { 131 if (!getType()->isPointerTy()) return false; 132 return getParent()->getAttributes(). 133 hasAttribute(getArgNo()+1, Attribute::NoAlias); 134 } 135 136 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 137 /// on it in its containing function. 138 bool Argument::hasNoCaptureAttr() const { 139 if (!getType()->isPointerTy()) return false; 140 return getParent()->getAttributes(). 141 hasAttribute(getArgNo()+1, Attribute::NoCapture); 142 } 143 144 /// hasSRetAttr - Return true if this argument has the sret attribute on 145 /// it in its containing function. 146 bool Argument::hasStructRetAttr() const { 147 if (!getType()->isPointerTy()) return false; 148 if (this != getParent()->arg_begin()) 149 return false; // StructRet param must be first param 150 return getParent()->getAttributes(). 151 hasAttribute(1, Attribute::StructRet); 152 } 153 154 /// hasReturnedAttr - Return true if this argument has the returned attribute on 155 /// it in its containing function. 156 bool Argument::hasReturnedAttr() const { 157 return getParent()->getAttributes(). 158 hasAttribute(getArgNo()+1, Attribute::Returned); 159 } 160 161 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 162 /// its containing function. 163 bool Argument::hasZExtAttr() const { 164 return getParent()->getAttributes(). 165 hasAttribute(getArgNo()+1, Attribute::ZExt); 166 } 167 168 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 169 /// containing function. 170 bool Argument::hasSExtAttr() const { 171 return getParent()->getAttributes(). 172 hasAttribute(getArgNo()+1, Attribute::SExt); 173 } 174 175 /// Return true if this argument has the readonly or readnone attribute on it 176 /// in its containing function. 177 bool Argument::onlyReadsMemory() const { 178 return getParent()->getAttributes(). 179 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 180 getParent()->getAttributes(). 181 hasAttribute(getArgNo()+1, Attribute::ReadNone); 182 } 183 184 /// addAttr - Add attributes to an argument. 185 void Argument::addAttr(AttributeSet AS) { 186 assert(AS.getNumSlots() <= 1 && 187 "Trying to add more than one attribute set to an argument!"); 188 AttrBuilder B(AS, AS.getSlotIndex(0)); 189 getParent()->addAttributes(getArgNo() + 1, 190 AttributeSet::get(Parent->getContext(), 191 getArgNo() + 1, B)); 192 } 193 194 /// removeAttr - Remove attributes from an argument. 195 void Argument::removeAttr(AttributeSet AS) { 196 assert(AS.getNumSlots() <= 1 && 197 "Trying to remove more than one attribute set from an argument!"); 198 AttrBuilder B(AS, AS.getSlotIndex(0)); 199 getParent()->removeAttributes(getArgNo() + 1, 200 AttributeSet::get(Parent->getContext(), 201 getArgNo() + 1, B)); 202 } 203 204 //===----------------------------------------------------------------------===// 205 // Helper Methods in Function 206 //===----------------------------------------------------------------------===// 207 208 bool Function::isMaterializable() const { 209 return getGlobalObjectSubClassData() & IsMaterializableBit; 210 } 211 212 void Function::setIsMaterializable(bool V) { 213 setGlobalObjectBit(IsMaterializableBit, V); 214 } 215 216 LLVMContext &Function::getContext() const { 217 return getType()->getContext(); 218 } 219 220 FunctionType *Function::getFunctionType() const { return Ty; } 221 222 bool Function::isVarArg() const { 223 return getFunctionType()->isVarArg(); 224 } 225 226 Type *Function::getReturnType() const { 227 return getFunctionType()->getReturnType(); 228 } 229 230 void Function::removeFromParent() { 231 getParent()->getFunctionList().remove(this); 232 } 233 234 void Function::eraseFromParent() { 235 getParent()->getFunctionList().erase(this); 236 } 237 238 //===----------------------------------------------------------------------===// 239 // Function Implementation 240 //===----------------------------------------------------------------------===// 241 242 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 243 Module *ParentModule) 244 : GlobalObject(PointerType::getUnqual(Ty), Value::FunctionVal, nullptr, 0, 245 Linkage, name), 246 Ty(Ty) { 247 assert(FunctionType::isValidReturnType(getReturnType()) && 248 "invalid return type"); 249 setGlobalObjectSubClassData(0); 250 SymTab = new ValueSymbolTable(); 251 252 // If the function has arguments, mark them as lazily built. 253 if (Ty->getNumParams()) 254 setValueSubclassData(1); // Set the "has lazy arguments" bit. 255 256 if (ParentModule) 257 ParentModule->getFunctionList().push_back(this); 258 259 // Ensure intrinsics have the right parameter attributes. 260 if (unsigned IID = getIntrinsicID()) 261 setAttributes(Intrinsic::getAttributes(getContext(), Intrinsic::ID(IID))); 262 263 } 264 265 Function::~Function() { 266 dropAllReferences(); // After this it is safe to delete instructions. 267 268 // Delete all of the method arguments and unlink from symbol table... 269 ArgumentList.clear(); 270 delete SymTab; 271 272 // Remove the function from the on-the-side GC table. 273 clearGC(); 274 275 // Remove the intrinsicID from the Cache. 276 if (getValueName() && isIntrinsic()) 277 getContext().pImpl->IntrinsicIDCache.erase(this); 278 } 279 280 void Function::BuildLazyArguments() const { 281 // Create the arguments vector, all arguments start out unnamed. 282 FunctionType *FT = getFunctionType(); 283 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 284 assert(!FT->getParamType(i)->isVoidTy() && 285 "Cannot have void typed arguments!"); 286 ArgumentList.push_back(new Argument(FT->getParamType(i))); 287 } 288 289 // Clear the lazy arguments bit. 290 unsigned SDC = getSubclassDataFromValue(); 291 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 292 } 293 294 size_t Function::arg_size() const { 295 return getFunctionType()->getNumParams(); 296 } 297 bool Function::arg_empty() const { 298 return getFunctionType()->getNumParams() == 0; 299 } 300 301 void Function::setParent(Module *parent) { 302 Parent = parent; 303 } 304 305 // dropAllReferences() - This function causes all the subinstructions to "let 306 // go" of all references that they are maintaining. This allows one to 307 // 'delete' a whole class at a time, even though there may be circular 308 // references... first all references are dropped, and all use counts go to 309 // zero. Then everything is deleted for real. Note that no operations are 310 // valid on an object that has "dropped all references", except operator 311 // delete. 312 // 313 void Function::dropAllReferences() { 314 setIsMaterializable(false); 315 316 for (iterator I = begin(), E = end(); I != E; ++I) 317 I->dropAllReferences(); 318 319 // Delete all basic blocks. They are now unused, except possibly by 320 // blockaddresses, but BasicBlock's destructor takes care of those. 321 while (!BasicBlocks.empty()) 322 BasicBlocks.begin()->eraseFromParent(); 323 324 // Prefix and prologue data are stored in a side table. 325 setPrefixData(nullptr); 326 setPrologueData(nullptr); 327 } 328 329 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 330 AttributeSet PAL = getAttributes(); 331 PAL = PAL.addAttribute(getContext(), i, attr); 332 setAttributes(PAL); 333 } 334 335 void Function::addAttributes(unsigned i, AttributeSet attrs) { 336 AttributeSet PAL = getAttributes(); 337 PAL = PAL.addAttributes(getContext(), i, attrs); 338 setAttributes(PAL); 339 } 340 341 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 342 AttributeSet PAL = getAttributes(); 343 PAL = PAL.removeAttributes(getContext(), i, attrs); 344 setAttributes(PAL); 345 } 346 347 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 348 AttributeSet PAL = getAttributes(); 349 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 350 setAttributes(PAL); 351 } 352 353 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 354 AttributeSet PAL = getAttributes(); 355 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 356 setAttributes(PAL); 357 } 358 359 // Maintain the GC name for each function in an on-the-side table. This saves 360 // allocating an additional word in Function for programs which do not use GC 361 // (i.e., most programs) at the cost of increased overhead for clients which do 362 // use GC. 363 static DenseMap<const Function*,PooledStringPtr> *GCNames; 364 static StringPool *GCNamePool; 365 static ManagedStatic<sys::SmartRWMutex<true> > GCLock; 366 367 bool Function::hasGC() const { 368 sys::SmartScopedReader<true> Reader(*GCLock); 369 return GCNames && GCNames->count(this); 370 } 371 372 const char *Function::getGC() const { 373 assert(hasGC() && "Function has no collector"); 374 sys::SmartScopedReader<true> Reader(*GCLock); 375 return *(*GCNames)[this]; 376 } 377 378 void Function::setGC(const char *Str) { 379 sys::SmartScopedWriter<true> Writer(*GCLock); 380 if (!GCNamePool) 381 GCNamePool = new StringPool(); 382 if (!GCNames) 383 GCNames = new DenseMap<const Function*,PooledStringPtr>(); 384 (*GCNames)[this] = GCNamePool->intern(Str); 385 } 386 387 void Function::clearGC() { 388 sys::SmartScopedWriter<true> Writer(*GCLock); 389 if (GCNames) { 390 GCNames->erase(this); 391 if (GCNames->empty()) { 392 delete GCNames; 393 GCNames = nullptr; 394 if (GCNamePool->empty()) { 395 delete GCNamePool; 396 GCNamePool = nullptr; 397 } 398 } 399 } 400 } 401 402 /// copyAttributesFrom - copy all additional attributes (those not needed to 403 /// create a Function) from the Function Src to this one. 404 void Function::copyAttributesFrom(const GlobalValue *Src) { 405 assert(isa<Function>(Src) && "Expected a Function!"); 406 GlobalObject::copyAttributesFrom(Src); 407 const Function *SrcF = cast<Function>(Src); 408 setCallingConv(SrcF->getCallingConv()); 409 setAttributes(SrcF->getAttributes()); 410 if (SrcF->hasGC()) 411 setGC(SrcF->getGC()); 412 else 413 clearGC(); 414 if (SrcF->hasPrefixData()) 415 setPrefixData(SrcF->getPrefixData()); 416 else 417 setPrefixData(nullptr); 418 if (SrcF->hasPrologueData()) 419 setPrologueData(SrcF->getPrologueData()); 420 else 421 setPrologueData(nullptr); 422 } 423 424 /// getIntrinsicID - This method returns the ID number of the specified 425 /// function, or Intrinsic::not_intrinsic if the function is not an 426 /// intrinsic, or if the pointer is null. This value is always defined to be 427 /// zero to allow easy checking for whether a function is intrinsic or not. The 428 /// particular intrinsic functions which correspond to this value are defined in 429 /// llvm/Intrinsics.h. Results are cached in the LLVM context, subsequent 430 /// requests for the same ID return results much faster from the cache. 431 /// 432 unsigned Function::getIntrinsicID() const { 433 const ValueName *ValName = this->getValueName(); 434 if (!ValName || !isIntrinsic()) 435 return 0; 436 437 LLVMContextImpl::IntrinsicIDCacheTy &IntrinsicIDCache = 438 getContext().pImpl->IntrinsicIDCache; 439 if (!IntrinsicIDCache.count(this)) { 440 unsigned Id = lookupIntrinsicID(); 441 IntrinsicIDCache[this]=Id; 442 return Id; 443 } 444 return IntrinsicIDCache[this]; 445 } 446 447 /// This private method does the actual lookup of an intrinsic ID when the query 448 /// could not be answered from the cache. 449 unsigned Function::lookupIntrinsicID() const { 450 const ValueName *ValName = this->getValueName(); 451 unsigned Len = ValName->getKeyLength(); 452 const char *Name = ValName->getKeyData(); 453 454 #define GET_FUNCTION_RECOGNIZER 455 #include "llvm/IR/Intrinsics.gen" 456 #undef GET_FUNCTION_RECOGNIZER 457 458 return 0; 459 } 460 461 /// Returns a stable mangling for the type specified for use in the name 462 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 463 /// of named types is simply their name. Manglings for unnamed types consist 464 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 465 /// combined with the mangling of their component types. A vararg function 466 /// type will have a suffix of 'vararg'. Since function types can contain 467 /// other function types, we close a function type mangling with suffix 'f' 468 /// which can't be confused with it's prefix. This ensures we don't have 469 /// collisions between two unrelated function types. Otherwise, you might 470 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 471 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 472 /// cases) fall back to the MVT codepath, where they could be mangled to 473 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 474 /// everything. 475 static std::string getMangledTypeStr(Type* Ty) { 476 std::string Result; 477 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 478 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 479 getMangledTypeStr(PTyp->getElementType()); 480 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 481 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 482 getMangledTypeStr(ATyp->getElementType()); 483 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 484 if (!STyp->isLiteral()) 485 Result += STyp->getName(); 486 else 487 llvm_unreachable("TODO: implement literal types"); 488 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 489 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 490 for (size_t i = 0; i < FT->getNumParams(); i++) 491 Result += getMangledTypeStr(FT->getParamType(i)); 492 if (FT->isVarArg()) 493 Result += "vararg"; 494 // Ensure nested function types are distinguishable. 495 Result += "f"; 496 } else if (Ty) 497 Result += EVT::getEVT(Ty).getEVTString(); 498 return Result; 499 } 500 501 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 502 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 503 static const char * const Table[] = { 504 "not_intrinsic", 505 #define GET_INTRINSIC_NAME_TABLE 506 #include "llvm/IR/Intrinsics.gen" 507 #undef GET_INTRINSIC_NAME_TABLE 508 }; 509 if (Tys.empty()) 510 return Table[id]; 511 std::string Result(Table[id]); 512 for (unsigned i = 0; i < Tys.size(); ++i) { 513 Result += "." + getMangledTypeStr(Tys[i]); 514 } 515 return Result; 516 } 517 518 519 /// IIT_Info - These are enumerators that describe the entries returned by the 520 /// getIntrinsicInfoTableEntries function. 521 /// 522 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 523 enum IIT_Info { 524 // Common values should be encoded with 0-15. 525 IIT_Done = 0, 526 IIT_I1 = 1, 527 IIT_I8 = 2, 528 IIT_I16 = 3, 529 IIT_I32 = 4, 530 IIT_I64 = 5, 531 IIT_F16 = 6, 532 IIT_F32 = 7, 533 IIT_F64 = 8, 534 IIT_V2 = 9, 535 IIT_V4 = 10, 536 IIT_V8 = 11, 537 IIT_V16 = 12, 538 IIT_V32 = 13, 539 IIT_PTR = 14, 540 IIT_ARG = 15, 541 542 // Values from 16+ are only encodable with the inefficient encoding. 543 IIT_V64 = 16, 544 IIT_MMX = 17, 545 IIT_METADATA = 18, 546 IIT_EMPTYSTRUCT = 19, 547 IIT_STRUCT2 = 20, 548 IIT_STRUCT3 = 21, 549 IIT_STRUCT4 = 22, 550 IIT_STRUCT5 = 23, 551 IIT_EXTEND_ARG = 24, 552 IIT_TRUNC_ARG = 25, 553 IIT_ANYPTR = 26, 554 IIT_V1 = 27, 555 IIT_VARARG = 28, 556 IIT_HALF_VEC_ARG = 29, 557 IIT_SAME_VEC_WIDTH_ARG = 30, 558 IIT_PTR_TO_ARG = 31, 559 IIT_VEC_OF_PTRS_TO_ELT = 32 560 }; 561 562 563 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 564 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 565 IIT_Info Info = IIT_Info(Infos[NextElt++]); 566 unsigned StructElts = 2; 567 using namespace Intrinsic; 568 569 switch (Info) { 570 case IIT_Done: 571 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 572 return; 573 case IIT_VARARG: 574 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 575 return; 576 case IIT_MMX: 577 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 578 return; 579 case IIT_METADATA: 580 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 581 return; 582 case IIT_F16: 583 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 584 return; 585 case IIT_F32: 586 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 587 return; 588 case IIT_F64: 589 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 590 return; 591 case IIT_I1: 592 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 593 return; 594 case IIT_I8: 595 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 596 return; 597 case IIT_I16: 598 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 599 return; 600 case IIT_I32: 601 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 602 return; 603 case IIT_I64: 604 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 605 return; 606 case IIT_V1: 607 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 608 DecodeIITType(NextElt, Infos, OutputTable); 609 return; 610 case IIT_V2: 611 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 612 DecodeIITType(NextElt, Infos, OutputTable); 613 return; 614 case IIT_V4: 615 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 616 DecodeIITType(NextElt, Infos, OutputTable); 617 return; 618 case IIT_V8: 619 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 620 DecodeIITType(NextElt, Infos, OutputTable); 621 return; 622 case IIT_V16: 623 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 624 DecodeIITType(NextElt, Infos, OutputTable); 625 return; 626 case IIT_V32: 627 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 628 DecodeIITType(NextElt, Infos, OutputTable); 629 return; 630 case IIT_V64: 631 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 632 DecodeIITType(NextElt, Infos, OutputTable); 633 return; 634 case IIT_PTR: 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 636 DecodeIITType(NextElt, Infos, OutputTable); 637 return; 638 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 639 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 640 Infos[NextElt++])); 641 DecodeIITType(NextElt, Infos, OutputTable); 642 return; 643 } 644 case IIT_ARG: { 645 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 646 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 647 return; 648 } 649 case IIT_EXTEND_ARG: { 650 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 651 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 652 ArgInfo)); 653 return; 654 } 655 case IIT_TRUNC_ARG: { 656 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 657 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 658 ArgInfo)); 659 return; 660 } 661 case IIT_HALF_VEC_ARG: { 662 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 663 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 664 ArgInfo)); 665 return; 666 } 667 case IIT_SAME_VEC_WIDTH_ARG: { 668 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 669 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 670 ArgInfo)); 671 return; 672 } 673 case IIT_PTR_TO_ARG: { 674 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 675 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 676 ArgInfo)); 677 return; 678 } 679 case IIT_VEC_OF_PTRS_TO_ELT: { 680 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 681 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 682 ArgInfo)); 683 return; 684 } 685 case IIT_EMPTYSTRUCT: 686 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 687 return; 688 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 689 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 690 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 691 case IIT_STRUCT2: { 692 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 693 694 for (unsigned i = 0; i != StructElts; ++i) 695 DecodeIITType(NextElt, Infos, OutputTable); 696 return; 697 } 698 } 699 llvm_unreachable("unhandled"); 700 } 701 702 703 #define GET_INTRINSIC_GENERATOR_GLOBAL 704 #include "llvm/IR/Intrinsics.gen" 705 #undef GET_INTRINSIC_GENERATOR_GLOBAL 706 707 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 708 SmallVectorImpl<IITDescriptor> &T){ 709 // Check to see if the intrinsic's type was expressible by the table. 710 unsigned TableVal = IIT_Table[id-1]; 711 712 // Decode the TableVal into an array of IITValues. 713 SmallVector<unsigned char, 8> IITValues; 714 ArrayRef<unsigned char> IITEntries; 715 unsigned NextElt = 0; 716 if ((TableVal >> 31) != 0) { 717 // This is an offset into the IIT_LongEncodingTable. 718 IITEntries = IIT_LongEncodingTable; 719 720 // Strip sentinel bit. 721 NextElt = (TableVal << 1) >> 1; 722 } else { 723 // Decode the TableVal into an array of IITValues. If the entry was encoded 724 // into a single word in the table itself, decode it now. 725 do { 726 IITValues.push_back(TableVal & 0xF); 727 TableVal >>= 4; 728 } while (TableVal); 729 730 IITEntries = IITValues; 731 NextElt = 0; 732 } 733 734 // Okay, decode the table into the output vector of IITDescriptors. 735 DecodeIITType(NextElt, IITEntries, T); 736 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 737 DecodeIITType(NextElt, IITEntries, T); 738 } 739 740 741 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 742 ArrayRef<Type*> Tys, LLVMContext &Context) { 743 using namespace Intrinsic; 744 IITDescriptor D = Infos.front(); 745 Infos = Infos.slice(1); 746 747 switch (D.Kind) { 748 case IITDescriptor::Void: return Type::getVoidTy(Context); 749 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 750 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 751 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 752 case IITDescriptor::Half: return Type::getHalfTy(Context); 753 case IITDescriptor::Float: return Type::getFloatTy(Context); 754 case IITDescriptor::Double: return Type::getDoubleTy(Context); 755 756 case IITDescriptor::Integer: 757 return IntegerType::get(Context, D.Integer_Width); 758 case IITDescriptor::Vector: 759 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 760 case IITDescriptor::Pointer: 761 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 762 D.Pointer_AddressSpace); 763 case IITDescriptor::Struct: { 764 Type *Elts[5]; 765 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 766 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 767 Elts[i] = DecodeFixedType(Infos, Tys, Context); 768 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 769 } 770 771 case IITDescriptor::Argument: 772 return Tys[D.getArgumentNumber()]; 773 case IITDescriptor::ExtendArgument: { 774 Type *Ty = Tys[D.getArgumentNumber()]; 775 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 776 return VectorType::getExtendedElementVectorType(VTy); 777 778 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 779 } 780 case IITDescriptor::TruncArgument: { 781 Type *Ty = Tys[D.getArgumentNumber()]; 782 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 783 return VectorType::getTruncatedElementVectorType(VTy); 784 785 IntegerType *ITy = cast<IntegerType>(Ty); 786 assert(ITy->getBitWidth() % 2 == 0); 787 return IntegerType::get(Context, ITy->getBitWidth() / 2); 788 } 789 case IITDescriptor::HalfVecArgument: 790 return VectorType::getHalfElementsVectorType(cast<VectorType>( 791 Tys[D.getArgumentNumber()])); 792 case IITDescriptor::SameVecWidthArgument: { 793 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 794 Type *Ty = Tys[D.getArgumentNumber()]; 795 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 796 return VectorType::get(EltTy, VTy->getNumElements()); 797 } 798 llvm_unreachable("unhandled"); 799 } 800 case IITDescriptor::PtrToArgument: { 801 Type *Ty = Tys[D.getArgumentNumber()]; 802 return PointerType::getUnqual(Ty); 803 } 804 case IITDescriptor::VecOfPtrsToElt: { 805 Type *Ty = Tys[D.getArgumentNumber()]; 806 VectorType *VTy = dyn_cast<VectorType>(Ty); 807 if (!VTy) 808 llvm_unreachable("Expected an argument of Vector Type"); 809 Type *EltTy = VTy->getVectorElementType(); 810 return VectorType::get(PointerType::getUnqual(EltTy), 811 VTy->getNumElements()); 812 } 813 } 814 llvm_unreachable("unhandled"); 815 } 816 817 818 819 FunctionType *Intrinsic::getType(LLVMContext &Context, 820 ID id, ArrayRef<Type*> Tys) { 821 SmallVector<IITDescriptor, 8> Table; 822 getIntrinsicInfoTableEntries(id, Table); 823 824 ArrayRef<IITDescriptor> TableRef = Table; 825 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 826 827 SmallVector<Type*, 8> ArgTys; 828 while (!TableRef.empty()) 829 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 830 831 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 832 // If we see void type as the type of the last argument, it is vararg intrinsic 833 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 834 ArgTys.pop_back(); 835 return FunctionType::get(ResultTy, ArgTys, true); 836 } 837 return FunctionType::get(ResultTy, ArgTys, false); 838 } 839 840 bool Intrinsic::isOverloaded(ID id) { 841 #define GET_INTRINSIC_OVERLOAD_TABLE 842 #include "llvm/IR/Intrinsics.gen" 843 #undef GET_INTRINSIC_OVERLOAD_TABLE 844 } 845 846 /// This defines the "Intrinsic::getAttributes(ID id)" method. 847 #define GET_INTRINSIC_ATTRIBUTES 848 #include "llvm/IR/Intrinsics.gen" 849 #undef GET_INTRINSIC_ATTRIBUTES 850 851 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 852 // There can never be multiple globals with the same name of different types, 853 // because intrinsics must be a specific type. 854 return 855 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 856 getType(M->getContext(), id, Tys))); 857 } 858 859 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 860 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 861 #include "llvm/IR/Intrinsics.gen" 862 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 863 864 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 865 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 866 #include "llvm/IR/Intrinsics.gen" 867 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 868 869 /// hasAddressTaken - returns true if there are any uses of this function 870 /// other than direct calls or invokes to it. 871 bool Function::hasAddressTaken(const User* *PutOffender) const { 872 for (const Use &U : uses()) { 873 const User *FU = U.getUser(); 874 if (isa<BlockAddress>(FU)) 875 continue; 876 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) 877 return PutOffender ? (*PutOffender = FU, true) : true; 878 ImmutableCallSite CS(cast<Instruction>(FU)); 879 if (!CS.isCallee(&U)) 880 return PutOffender ? (*PutOffender = FU, true) : true; 881 } 882 return false; 883 } 884 885 bool Function::isDefTriviallyDead() const { 886 // Check the linkage 887 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 888 !hasAvailableExternallyLinkage()) 889 return false; 890 891 // Check if the function is used by anything other than a blockaddress. 892 for (const User *U : users()) 893 if (!isa<BlockAddress>(U)) 894 return false; 895 896 return true; 897 } 898 899 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 900 /// setjmp or other function that gcc recognizes as "returning twice". 901 bool Function::callsFunctionThatReturnsTwice() const { 902 for (const_inst_iterator 903 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 904 ImmutableCallSite CS(&*I); 905 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 906 return true; 907 } 908 909 return false; 910 } 911 912 Constant *Function::getPrefixData() const { 913 assert(hasPrefixData()); 914 const LLVMContextImpl::PrefixDataMapTy &PDMap = 915 getContext().pImpl->PrefixDataMap; 916 assert(PDMap.find(this) != PDMap.end()); 917 return cast<Constant>(PDMap.find(this)->second->getReturnValue()); 918 } 919 920 void Function::setPrefixData(Constant *PrefixData) { 921 if (!PrefixData && !hasPrefixData()) 922 return; 923 924 unsigned SCData = getSubclassDataFromValue(); 925 LLVMContextImpl::PrefixDataMapTy &PDMap = getContext().pImpl->PrefixDataMap; 926 ReturnInst *&PDHolder = PDMap[this]; 927 if (PrefixData) { 928 if (PDHolder) 929 PDHolder->setOperand(0, PrefixData); 930 else 931 PDHolder = ReturnInst::Create(getContext(), PrefixData); 932 SCData |= (1<<1); 933 } else { 934 delete PDHolder; 935 PDMap.erase(this); 936 SCData &= ~(1<<1); 937 } 938 setValueSubclassData(SCData); 939 } 940 941 Constant *Function::getPrologueData() const { 942 assert(hasPrologueData()); 943 const LLVMContextImpl::PrologueDataMapTy &SOMap = 944 getContext().pImpl->PrologueDataMap; 945 assert(SOMap.find(this) != SOMap.end()); 946 return cast<Constant>(SOMap.find(this)->second->getReturnValue()); 947 } 948 949 void Function::setPrologueData(Constant *PrologueData) { 950 if (!PrologueData && !hasPrologueData()) 951 return; 952 953 unsigned PDData = getSubclassDataFromValue(); 954 LLVMContextImpl::PrologueDataMapTy &PDMap = getContext().pImpl->PrologueDataMap; 955 ReturnInst *&PDHolder = PDMap[this]; 956 if (PrologueData) { 957 if (PDHolder) 958 PDHolder->setOperand(0, PrologueData); 959 else 960 PDHolder = ReturnInst::Create(getContext(), PrologueData); 961 PDData |= (1<<2); 962 } else { 963 delete PDHolder; 964 PDMap.erase(this); 965 PDData &= ~(1<<2); 966 } 967 setValueSubclassData(PDData); 968 } 969