xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 410626c9b56a2844652dcff9ca23765a6918186f)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsVE.h"
47 #include "llvm/IR/IntrinsicsWebAssembly.h"
48 #include "llvm/IR/IntrinsicsX86.h"
49 #include "llvm/IR/IntrinsicsXCore.h"
50 #include "llvm/IR/LLVMContext.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/SymbolTableListTraits.h"
55 #include "llvm/IR/Type.h"
56 #include "llvm/IR/Use.h"
57 #include "llvm/IR/User.h"
58 #include "llvm/IR/Value.h"
59 #include "llvm/IR/ValueSymbolTable.h"
60 #include "llvm/Support/Casting.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/ErrorHandling.h"
63 #include <algorithm>
64 #include <cassert>
65 #include <cstddef>
66 #include <cstdint>
67 #include <cstring>
68 #include <string>
69 
70 using namespace llvm;
71 using ProfileCount = Function::ProfileCount;
72 
73 // Explicit instantiations of SymbolTableListTraits since some of the methods
74 // are not in the public header file...
75 template class llvm::SymbolTableListTraits<BasicBlock>;
76 
77 //===----------------------------------------------------------------------===//
78 // Argument Implementation
79 //===----------------------------------------------------------------------===//
80 
81 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
82     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
83   setName(Name);
84 }
85 
86 void Argument::setParent(Function *parent) {
87   Parent = parent;
88 }
89 
90 bool Argument::hasNonNullAttr() const {
91   if (!getType()->isPointerTy()) return false;
92   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
93     return true;
94   else if (getDereferenceableBytes() > 0 &&
95            !NullPointerIsDefined(getParent(),
96                                  getType()->getPointerAddressSpace()))
97     return true;
98   return false;
99 }
100 
101 bool Argument::hasByValAttr() const {
102   if (!getType()->isPointerTy()) return false;
103   return hasAttribute(Attribute::ByVal);
104 }
105 
106 bool Argument::hasByRefAttr() const {
107   if (!getType()->isPointerTy())
108     return false;
109   return hasAttribute(Attribute::ByRef);
110 }
111 
112 bool Argument::hasSwiftSelfAttr() const {
113   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
114 }
115 
116 bool Argument::hasSwiftErrorAttr() const {
117   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
118 }
119 
120 bool Argument::hasInAllocaAttr() const {
121   if (!getType()->isPointerTy()) return false;
122   return hasAttribute(Attribute::InAlloca);
123 }
124 
125 bool Argument::hasPreallocatedAttr() const {
126   if (!getType()->isPointerTy())
127     return false;
128   return hasAttribute(Attribute::Preallocated);
129 }
130 
131 bool Argument::hasPassPointeeByValueCopyAttr() const {
132   if (!getType()->isPointerTy()) return false;
133   AttributeList Attrs = getParent()->getAttributes();
134   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
135          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
136          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
137 }
138 
139 bool Argument::hasPointeeInMemoryValueAttr() const {
140   if (!getType()->isPointerTy())
141     return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
145          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
146          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
147          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
148 }
149 
150 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
151 /// parameter type.
152 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
153   // FIXME: All the type carrying attributes are mutually exclusive, so there
154   // should be a single query to get the stored type that handles any of them.
155   if (Type *ByValTy = ParamAttrs.getByValType())
156     return ByValTy;
157   if (Type *ByRefTy = ParamAttrs.getByRefType())
158     return ByRefTy;
159   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
160     return PreAllocTy;
161 
162   // FIXME: sret and inalloca always depends on pointee element type. It's also
163   // possible for byval to miss it.
164   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
165       ParamAttrs.hasAttribute(Attribute::ByVal) ||
166       ParamAttrs.hasAttribute(Attribute::StructRet) ||
167       ParamAttrs.hasAttribute(Attribute::Preallocated))
168     return cast<PointerType>(ArgTy)->getElementType();
169 
170   return nullptr;
171 }
172 
173 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
174   AttributeSet ParamAttrs =
175       getParent()->getAttributes().getParamAttributes(getArgNo());
176   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
177     return DL.getTypeAllocSize(MemTy);
178   return 0;
179 }
180 
181 Type *Argument::getPointeeInMemoryValueType() const {
182   AttributeSet ParamAttrs =
183       getParent()->getAttributes().getParamAttributes(getArgNo());
184   return getMemoryParamAllocType(ParamAttrs, getType());
185 }
186 
187 unsigned Argument::getParamAlignment() const {
188   assert(getType()->isPointerTy() && "Only pointers have alignments");
189   return getParent()->getParamAlignment(getArgNo());
190 }
191 
192 MaybeAlign Argument::getParamAlign() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlign(getArgNo());
195 }
196 
197 Type *Argument::getParamByValType() const {
198   assert(getType()->isPointerTy() && "Only pointers have byval types");
199   return getParent()->getParamByValType(getArgNo());
200 }
201 
202 Type *Argument::getParamStructRetType() const {
203   assert(getType()->isPointerTy() && "Only pointers have sret types");
204   return getParent()->getParamStructRetType(getArgNo());
205 }
206 
207 Type *Argument::getParamByRefType() const {
208   assert(getType()->isPointerTy() && "Only pointers have byval types");
209   return getParent()->getParamByRefType(getArgNo());
210 }
211 
212 uint64_t Argument::getDereferenceableBytes() const {
213   assert(getType()->isPointerTy() &&
214          "Only pointers have dereferenceable bytes");
215   return getParent()->getParamDereferenceableBytes(getArgNo());
216 }
217 
218 uint64_t Argument::getDereferenceableOrNullBytes() const {
219   assert(getType()->isPointerTy() &&
220          "Only pointers have dereferenceable bytes");
221   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
222 }
223 
224 bool Argument::hasNestAttr() const {
225   if (!getType()->isPointerTy()) return false;
226   return hasAttribute(Attribute::Nest);
227 }
228 
229 bool Argument::hasNoAliasAttr() const {
230   if (!getType()->isPointerTy()) return false;
231   return hasAttribute(Attribute::NoAlias);
232 }
233 
234 bool Argument::hasNoCaptureAttr() const {
235   if (!getType()->isPointerTy()) return false;
236   return hasAttribute(Attribute::NoCapture);
237 }
238 
239 bool Argument::hasStructRetAttr() const {
240   if (!getType()->isPointerTy()) return false;
241   return hasAttribute(Attribute::StructRet);
242 }
243 
244 bool Argument::hasInRegAttr() const {
245   return hasAttribute(Attribute::InReg);
246 }
247 
248 bool Argument::hasReturnedAttr() const {
249   return hasAttribute(Attribute::Returned);
250 }
251 
252 bool Argument::hasZExtAttr() const {
253   return hasAttribute(Attribute::ZExt);
254 }
255 
256 bool Argument::hasSExtAttr() const {
257   return hasAttribute(Attribute::SExt);
258 }
259 
260 bool Argument::onlyReadsMemory() const {
261   AttributeList Attrs = getParent()->getAttributes();
262   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
263          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
264 }
265 
266 void Argument::addAttrs(AttrBuilder &B) {
267   AttributeList AL = getParent()->getAttributes();
268   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
269   getParent()->setAttributes(AL);
270 }
271 
272 void Argument::addAttr(Attribute::AttrKind Kind) {
273   getParent()->addParamAttr(getArgNo(), Kind);
274 }
275 
276 void Argument::addAttr(Attribute Attr) {
277   getParent()->addParamAttr(getArgNo(), Attr);
278 }
279 
280 void Argument::removeAttr(Attribute::AttrKind Kind) {
281   getParent()->removeParamAttr(getArgNo(), Kind);
282 }
283 
284 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
285   return getParent()->hasParamAttribute(getArgNo(), Kind);
286 }
287 
288 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
289   return getParent()->getParamAttribute(getArgNo(), Kind);
290 }
291 
292 //===----------------------------------------------------------------------===//
293 // Helper Methods in Function
294 //===----------------------------------------------------------------------===//
295 
296 LLVMContext &Function::getContext() const {
297   return getType()->getContext();
298 }
299 
300 unsigned Function::getInstructionCount() const {
301   unsigned NumInstrs = 0;
302   for (const BasicBlock &BB : BasicBlocks)
303     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
304                                BB.instructionsWithoutDebug().end());
305   return NumInstrs;
306 }
307 
308 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
309                            const Twine &N, Module &M) {
310   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
311 }
312 
313 void Function::removeFromParent() {
314   getParent()->getFunctionList().remove(getIterator());
315 }
316 
317 void Function::eraseFromParent() {
318   getParent()->getFunctionList().erase(getIterator());
319 }
320 
321 //===----------------------------------------------------------------------===//
322 // Function Implementation
323 //===----------------------------------------------------------------------===//
324 
325 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
326   // If AS == -1 and we are passed a valid module pointer we place the function
327   // in the program address space. Otherwise we default to AS0.
328   if (AddrSpace == static_cast<unsigned>(-1))
329     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
330   return AddrSpace;
331 }
332 
333 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
334                    const Twine &name, Module *ParentModule)
335     : GlobalObject(Ty, Value::FunctionVal,
336                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
337                    computeAddrSpace(AddrSpace, ParentModule)),
338       NumArgs(Ty->getNumParams()) {
339   assert(FunctionType::isValidReturnType(getReturnType()) &&
340          "invalid return type");
341   setGlobalObjectSubClassData(0);
342 
343   // We only need a symbol table for a function if the context keeps value names
344   if (!getContext().shouldDiscardValueNames())
345     SymTab = std::make_unique<ValueSymbolTable>();
346 
347   // If the function has arguments, mark them as lazily built.
348   if (Ty->getNumParams())
349     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
350 
351   if (ParentModule)
352     ParentModule->getFunctionList().push_back(this);
353 
354   HasLLVMReservedName = getName().startswith("llvm.");
355   // Ensure intrinsics have the right parameter attributes.
356   // Note, the IntID field will have been set in Value::setName if this function
357   // name is a valid intrinsic ID.
358   if (IntID)
359     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
360 }
361 
362 Function::~Function() {
363   dropAllReferences();    // After this it is safe to delete instructions.
364 
365   // Delete all of the method arguments and unlink from symbol table...
366   if (Arguments)
367     clearArguments();
368 
369   // Remove the function from the on-the-side GC table.
370   clearGC();
371 }
372 
373 void Function::BuildLazyArguments() const {
374   // Create the arguments vector, all arguments start out unnamed.
375   auto *FT = getFunctionType();
376   if (NumArgs > 0) {
377     Arguments = std::allocator<Argument>().allocate(NumArgs);
378     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
379       Type *ArgTy = FT->getParamType(i);
380       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
381       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
382     }
383   }
384 
385   // Clear the lazy arguments bit.
386   unsigned SDC = getSubclassDataFromValue();
387   SDC &= ~(1 << 0);
388   const_cast<Function*>(this)->setValueSubclassData(SDC);
389   assert(!hasLazyArguments());
390 }
391 
392 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
393   return MutableArrayRef<Argument>(Args, Count);
394 }
395 
396 bool Function::isConstrainedFPIntrinsic() const {
397   switch (getIntrinsicID()) {
398 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
399   case Intrinsic::INTRINSIC:
400 #include "llvm/IR/ConstrainedOps.def"
401     return true;
402 #undef INSTRUCTION
403   default:
404     return false;
405   }
406 }
407 
408 void Function::clearArguments() {
409   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
410     A.setName("");
411     A.~Argument();
412   }
413   std::allocator<Argument>().deallocate(Arguments, NumArgs);
414   Arguments = nullptr;
415 }
416 
417 void Function::stealArgumentListFrom(Function &Src) {
418   assert(isDeclaration() && "Expected no references to current arguments");
419 
420   // Drop the current arguments, if any, and set the lazy argument bit.
421   if (!hasLazyArguments()) {
422     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
423                         [](const Argument &A) { return A.use_empty(); }) &&
424            "Expected arguments to be unused in declaration");
425     clearArguments();
426     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
427   }
428 
429   // Nothing to steal if Src has lazy arguments.
430   if (Src.hasLazyArguments())
431     return;
432 
433   // Steal arguments from Src, and fix the lazy argument bits.
434   assert(arg_size() == Src.arg_size());
435   Arguments = Src.Arguments;
436   Src.Arguments = nullptr;
437   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
438     // FIXME: This does the work of transferNodesFromList inefficiently.
439     SmallString<128> Name;
440     if (A.hasName())
441       Name = A.getName();
442     if (!Name.empty())
443       A.setName("");
444     A.setParent(this);
445     if (!Name.empty())
446       A.setName(Name);
447   }
448 
449   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
450   assert(!hasLazyArguments());
451   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
452 }
453 
454 // dropAllReferences() - This function causes all the subinstructions to "let
455 // go" of all references that they are maintaining.  This allows one to
456 // 'delete' a whole class at a time, even though there may be circular
457 // references... first all references are dropped, and all use counts go to
458 // zero.  Then everything is deleted for real.  Note that no operations are
459 // valid on an object that has "dropped all references", except operator
460 // delete.
461 //
462 void Function::dropAllReferences() {
463   setIsMaterializable(false);
464 
465   for (BasicBlock &BB : *this)
466     BB.dropAllReferences();
467 
468   // Delete all basic blocks. They are now unused, except possibly by
469   // blockaddresses, but BasicBlock's destructor takes care of those.
470   while (!BasicBlocks.empty())
471     BasicBlocks.begin()->eraseFromParent();
472 
473   // Drop uses of any optional data (real or placeholder).
474   if (getNumOperands()) {
475     User::dropAllReferences();
476     setNumHungOffUseOperands(0);
477     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
478   }
479 
480   // Metadata is stored in a side-table.
481   clearMetadata();
482 }
483 
484 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
485   AttributeList PAL = getAttributes();
486   PAL = PAL.addAttribute(getContext(), i, Kind);
487   setAttributes(PAL);
488 }
489 
490 void Function::addAttribute(unsigned i, Attribute Attr) {
491   AttributeList PAL = getAttributes();
492   PAL = PAL.addAttribute(getContext(), i, Attr);
493   setAttributes(PAL);
494 }
495 
496 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
497   AttributeList PAL = getAttributes();
498   PAL = PAL.addAttributes(getContext(), i, Attrs);
499   setAttributes(PAL);
500 }
501 
502 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
503   AttributeList PAL = getAttributes();
504   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
505   setAttributes(PAL);
506 }
507 
508 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
509   AttributeList PAL = getAttributes();
510   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
511   setAttributes(PAL);
512 }
513 
514 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
515   AttributeList PAL = getAttributes();
516   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
517   setAttributes(PAL);
518 }
519 
520 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
521   AttributeList PAL = getAttributes();
522   PAL = PAL.removeAttribute(getContext(), i, Kind);
523   setAttributes(PAL);
524 }
525 
526 void Function::removeAttribute(unsigned i, StringRef Kind) {
527   AttributeList PAL = getAttributes();
528   PAL = PAL.removeAttribute(getContext(), i, Kind);
529   setAttributes(PAL);
530 }
531 
532 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
533   AttributeList PAL = getAttributes();
534   PAL = PAL.removeAttributes(getContext(), i, Attrs);
535   setAttributes(PAL);
536 }
537 
538 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
539   AttributeList PAL = getAttributes();
540   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
541   setAttributes(PAL);
542 }
543 
544 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
545   AttributeList PAL = getAttributes();
546   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
547   setAttributes(PAL);
548 }
549 
550 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
551   AttributeList PAL = getAttributes();
552   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
553   setAttributes(PAL);
554 }
555 
556 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
557   AttributeList PAL = getAttributes();
558   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
559   setAttributes(PAL);
560 }
561 
562 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
563   AttributeList PAL = getAttributes();
564   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
565   setAttributes(PAL);
566 }
567 
568 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
569   AttributeList PAL = getAttributes();
570   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
571   setAttributes(PAL);
572 }
573 
574 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
575                                                  uint64_t Bytes) {
576   AttributeList PAL = getAttributes();
577   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
578   setAttributes(PAL);
579 }
580 
581 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
582   if (&FPType == &APFloat::IEEEsingle()) {
583     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
584     StringRef Val = Attr.getValueAsString();
585     if (!Val.empty())
586       return parseDenormalFPAttribute(Val);
587 
588     // If the f32 variant of the attribute isn't specified, try to use the
589     // generic one.
590   }
591 
592   Attribute Attr = getFnAttribute("denormal-fp-math");
593   return parseDenormalFPAttribute(Attr.getValueAsString());
594 }
595 
596 const std::string &Function::getGC() const {
597   assert(hasGC() && "Function has no collector");
598   return getContext().getGC(*this);
599 }
600 
601 void Function::setGC(std::string Str) {
602   setValueSubclassDataBit(14, !Str.empty());
603   getContext().setGC(*this, std::move(Str));
604 }
605 
606 void Function::clearGC() {
607   if (!hasGC())
608     return;
609   getContext().deleteGC(*this);
610   setValueSubclassDataBit(14, false);
611 }
612 
613 /// Copy all additional attributes (those not needed to create a Function) from
614 /// the Function Src to this one.
615 void Function::copyAttributesFrom(const Function *Src) {
616   GlobalObject::copyAttributesFrom(Src);
617   setCallingConv(Src->getCallingConv());
618   setAttributes(Src->getAttributes());
619   if (Src->hasGC())
620     setGC(Src->getGC());
621   else
622     clearGC();
623   if (Src->hasPersonalityFn())
624     setPersonalityFn(Src->getPersonalityFn());
625   if (Src->hasPrefixData())
626     setPrefixData(Src->getPrefixData());
627   if (Src->hasPrologueData())
628     setPrologueData(Src->getPrologueData());
629 }
630 
631 /// Table of string intrinsic names indexed by enum value.
632 static const char * const IntrinsicNameTable[] = {
633   "not_intrinsic",
634 #define GET_INTRINSIC_NAME_TABLE
635 #include "llvm/IR/IntrinsicImpl.inc"
636 #undef GET_INTRINSIC_NAME_TABLE
637 };
638 
639 /// Table of per-target intrinsic name tables.
640 #define GET_INTRINSIC_TARGET_DATA
641 #include "llvm/IR/IntrinsicImpl.inc"
642 #undef GET_INTRINSIC_TARGET_DATA
643 
644 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
645   return IID > TargetInfos[0].Count;
646 }
647 
648 bool Function::isTargetIntrinsic() const {
649   return isTargetIntrinsic(IntID);
650 }
651 
652 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
653 /// target as \c Name, or the generic table if \c Name is not target specific.
654 ///
655 /// Returns the relevant slice of \c IntrinsicNameTable
656 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
657   assert(Name.startswith("llvm."));
658 
659   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
660   // Drop "llvm." and take the first dotted component. That will be the target
661   // if this is target specific.
662   StringRef Target = Name.drop_front(5).split('.').first;
663   auto It = partition_point(
664       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
665   // We've either found the target or just fall back to the generic set, which
666   // is always first.
667   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
668   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
669 }
670 
671 /// This does the actual lookup of an intrinsic ID which
672 /// matches the given function name.
673 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
674   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
675   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
676   if (Idx == -1)
677     return Intrinsic::not_intrinsic;
678 
679   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
680   // an index into a sub-table.
681   int Adjust = NameTable.data() - IntrinsicNameTable;
682   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
683 
684   // If the intrinsic is not overloaded, require an exact match. If it is
685   // overloaded, require either exact or prefix match.
686   const auto MatchSize = strlen(NameTable[Idx]);
687   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
688   bool IsExactMatch = Name.size() == MatchSize;
689   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
690                                                      : Intrinsic::not_intrinsic;
691 }
692 
693 void Function::recalculateIntrinsicID() {
694   StringRef Name = getName();
695   if (!Name.startswith("llvm.")) {
696     HasLLVMReservedName = false;
697     IntID = Intrinsic::not_intrinsic;
698     return;
699   }
700   HasLLVMReservedName = true;
701   IntID = lookupIntrinsicID(Name);
702 }
703 
704 /// Returns a stable mangling for the type specified for use in the name
705 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
706 /// of named types is simply their name.  Manglings for unnamed types consist
707 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
708 /// combined with the mangling of their component types.  A vararg function
709 /// type will have a suffix of 'vararg'.  Since function types can contain
710 /// other function types, we close a function type mangling with suffix 'f'
711 /// which can't be confused with it's prefix.  This ensures we don't have
712 /// collisions between two unrelated function types. Otherwise, you might
713 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
714 ///
715 static std::string getMangledTypeStr(Type* Ty) {
716   std::string Result;
717   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
718     Result += "p" + utostr(PTyp->getAddressSpace()) +
719       getMangledTypeStr(PTyp->getElementType());
720   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
721     Result += "a" + utostr(ATyp->getNumElements()) +
722       getMangledTypeStr(ATyp->getElementType());
723   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
724     if (!STyp->isLiteral()) {
725       Result += "s_";
726       Result += STyp->getName();
727     } else {
728       Result += "sl_";
729       for (auto Elem : STyp->elements())
730         Result += getMangledTypeStr(Elem);
731     }
732     // Ensure nested structs are distinguishable.
733     Result += "s";
734   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
735     Result += "f_" + getMangledTypeStr(FT->getReturnType());
736     for (size_t i = 0; i < FT->getNumParams(); i++)
737       Result += getMangledTypeStr(FT->getParamType(i));
738     if (FT->isVarArg())
739       Result += "vararg";
740     // Ensure nested function types are distinguishable.
741     Result += "f";
742   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
743     ElementCount EC = VTy->getElementCount();
744     if (EC.isScalable())
745       Result += "nx";
746     Result += "v" + utostr(EC.getKnownMinValue()) +
747               getMangledTypeStr(VTy->getElementType());
748   } else if (Ty) {
749     switch (Ty->getTypeID()) {
750     default: llvm_unreachable("Unhandled type");
751     case Type::VoidTyID:      Result += "isVoid";   break;
752     case Type::MetadataTyID:  Result += "Metadata"; break;
753     case Type::HalfTyID:      Result += "f16";      break;
754     case Type::BFloatTyID:    Result += "bf16";     break;
755     case Type::FloatTyID:     Result += "f32";      break;
756     case Type::DoubleTyID:    Result += "f64";      break;
757     case Type::X86_FP80TyID:  Result += "f80";      break;
758     case Type::FP128TyID:     Result += "f128";     break;
759     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
760     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
761     case Type::IntegerTyID:
762       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
763       break;
764     }
765   }
766   return Result;
767 }
768 
769 StringRef Intrinsic::getName(ID id) {
770   assert(id < num_intrinsics && "Invalid intrinsic ID!");
771   assert(!Intrinsic::isOverloaded(id) &&
772          "This version of getName does not support overloading");
773   return IntrinsicNameTable[id];
774 }
775 
776 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
777   assert(id < num_intrinsics && "Invalid intrinsic ID!");
778   std::string Result(IntrinsicNameTable[id]);
779   for (Type *Ty : Tys) {
780     Result += "." + getMangledTypeStr(Ty);
781   }
782   return Result;
783 }
784 
785 /// IIT_Info - These are enumerators that describe the entries returned by the
786 /// getIntrinsicInfoTableEntries function.
787 ///
788 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
789 enum IIT_Info {
790   // Common values should be encoded with 0-15.
791   IIT_Done = 0,
792   IIT_I1   = 1,
793   IIT_I8   = 2,
794   IIT_I16  = 3,
795   IIT_I32  = 4,
796   IIT_I64  = 5,
797   IIT_F16  = 6,
798   IIT_F32  = 7,
799   IIT_F64  = 8,
800   IIT_V2   = 9,
801   IIT_V4   = 10,
802   IIT_V8   = 11,
803   IIT_V16  = 12,
804   IIT_V32  = 13,
805   IIT_PTR  = 14,
806   IIT_ARG  = 15,
807 
808   // Values from 16+ are only encodable with the inefficient encoding.
809   IIT_V64  = 16,
810   IIT_MMX  = 17,
811   IIT_TOKEN = 18,
812   IIT_METADATA = 19,
813   IIT_EMPTYSTRUCT = 20,
814   IIT_STRUCT2 = 21,
815   IIT_STRUCT3 = 22,
816   IIT_STRUCT4 = 23,
817   IIT_STRUCT5 = 24,
818   IIT_EXTEND_ARG = 25,
819   IIT_TRUNC_ARG = 26,
820   IIT_ANYPTR = 27,
821   IIT_V1   = 28,
822   IIT_VARARG = 29,
823   IIT_HALF_VEC_ARG = 30,
824   IIT_SAME_VEC_WIDTH_ARG = 31,
825   IIT_PTR_TO_ARG = 32,
826   IIT_PTR_TO_ELT = 33,
827   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
828   IIT_I128 = 35,
829   IIT_V512 = 36,
830   IIT_V1024 = 37,
831   IIT_STRUCT6 = 38,
832   IIT_STRUCT7 = 39,
833   IIT_STRUCT8 = 40,
834   IIT_F128 = 41,
835   IIT_VEC_ELEMENT = 42,
836   IIT_SCALABLE_VEC = 43,
837   IIT_SUBDIVIDE2_ARG = 44,
838   IIT_SUBDIVIDE4_ARG = 45,
839   IIT_VEC_OF_BITCASTS_TO_INT = 46,
840   IIT_V128 = 47,
841   IIT_BF16 = 48,
842   IIT_STRUCT9 = 49,
843   IIT_V256 = 50
844 };
845 
846 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
847                       IIT_Info LastInfo,
848                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
849   using namespace Intrinsic;
850 
851   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
852 
853   IIT_Info Info = IIT_Info(Infos[NextElt++]);
854   unsigned StructElts = 2;
855 
856   switch (Info) {
857   case IIT_Done:
858     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
859     return;
860   case IIT_VARARG:
861     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
862     return;
863   case IIT_MMX:
864     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
865     return;
866   case IIT_TOKEN:
867     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
868     return;
869   case IIT_METADATA:
870     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
871     return;
872   case IIT_F16:
873     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
874     return;
875   case IIT_BF16:
876     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
877     return;
878   case IIT_F32:
879     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
880     return;
881   case IIT_F64:
882     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
883     return;
884   case IIT_F128:
885     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
886     return;
887   case IIT_I1:
888     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
889     return;
890   case IIT_I8:
891     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
892     return;
893   case IIT_I16:
894     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
895     return;
896   case IIT_I32:
897     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
898     return;
899   case IIT_I64:
900     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
901     return;
902   case IIT_I128:
903     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
904     return;
905   case IIT_V1:
906     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
907     DecodeIITType(NextElt, Infos, Info, OutputTable);
908     return;
909   case IIT_V2:
910     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
911     DecodeIITType(NextElt, Infos, Info, OutputTable);
912     return;
913   case IIT_V4:
914     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
915     DecodeIITType(NextElt, Infos, Info, OutputTable);
916     return;
917   case IIT_V8:
918     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
919     DecodeIITType(NextElt, Infos, Info, OutputTable);
920     return;
921   case IIT_V16:
922     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
923     DecodeIITType(NextElt, Infos, Info, OutputTable);
924     return;
925   case IIT_V32:
926     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
927     DecodeIITType(NextElt, Infos, Info, OutputTable);
928     return;
929   case IIT_V64:
930     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
931     DecodeIITType(NextElt, Infos, Info, OutputTable);
932     return;
933   case IIT_V128:
934     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
935     DecodeIITType(NextElt, Infos, Info, OutputTable);
936     return;
937   case IIT_V256:
938     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
939     DecodeIITType(NextElt, Infos, Info, OutputTable);
940     return;
941   case IIT_V512:
942     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
943     DecodeIITType(NextElt, Infos, Info, OutputTable);
944     return;
945   case IIT_V1024:
946     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
947     DecodeIITType(NextElt, Infos, Info, OutputTable);
948     return;
949   case IIT_PTR:
950     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
951     DecodeIITType(NextElt, Infos, Info, OutputTable);
952     return;
953   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
954     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
955                                              Infos[NextElt++]));
956     DecodeIITType(NextElt, Infos, Info, OutputTable);
957     return;
958   }
959   case IIT_ARG: {
960     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
961     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
962     return;
963   }
964   case IIT_EXTEND_ARG: {
965     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
966     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
967                                              ArgInfo));
968     return;
969   }
970   case IIT_TRUNC_ARG: {
971     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
972     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
973                                              ArgInfo));
974     return;
975   }
976   case IIT_HALF_VEC_ARG: {
977     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
978     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
979                                              ArgInfo));
980     return;
981   }
982   case IIT_SAME_VEC_WIDTH_ARG: {
983     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
984     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
985                                              ArgInfo));
986     return;
987   }
988   case IIT_PTR_TO_ARG: {
989     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
990     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
991                                              ArgInfo));
992     return;
993   }
994   case IIT_PTR_TO_ELT: {
995     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
996     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
997     return;
998   }
999   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1000     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1001     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1002     OutputTable.push_back(
1003         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1004     return;
1005   }
1006   case IIT_EMPTYSTRUCT:
1007     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1008     return;
1009   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1010   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1011   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1012   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1013   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1014   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1015   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1016   case IIT_STRUCT2: {
1017     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1018 
1019     for (unsigned i = 0; i != StructElts; ++i)
1020       DecodeIITType(NextElt, Infos, Info, OutputTable);
1021     return;
1022   }
1023   case IIT_SUBDIVIDE2_ARG: {
1024     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1025     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1026                                              ArgInfo));
1027     return;
1028   }
1029   case IIT_SUBDIVIDE4_ARG: {
1030     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1031     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1032                                              ArgInfo));
1033     return;
1034   }
1035   case IIT_VEC_ELEMENT: {
1036     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1037     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1038                                              ArgInfo));
1039     return;
1040   }
1041   case IIT_SCALABLE_VEC: {
1042     DecodeIITType(NextElt, Infos, Info, OutputTable);
1043     return;
1044   }
1045   case IIT_VEC_OF_BITCASTS_TO_INT: {
1046     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1047     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1048                                              ArgInfo));
1049     return;
1050   }
1051   }
1052   llvm_unreachable("unhandled");
1053 }
1054 
1055 #define GET_INTRINSIC_GENERATOR_GLOBAL
1056 #include "llvm/IR/IntrinsicImpl.inc"
1057 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1058 
1059 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1060                                              SmallVectorImpl<IITDescriptor> &T){
1061   // Check to see if the intrinsic's type was expressible by the table.
1062   unsigned TableVal = IIT_Table[id-1];
1063 
1064   // Decode the TableVal into an array of IITValues.
1065   SmallVector<unsigned char, 8> IITValues;
1066   ArrayRef<unsigned char> IITEntries;
1067   unsigned NextElt = 0;
1068   if ((TableVal >> 31) != 0) {
1069     // This is an offset into the IIT_LongEncodingTable.
1070     IITEntries = IIT_LongEncodingTable;
1071 
1072     // Strip sentinel bit.
1073     NextElt = (TableVal << 1) >> 1;
1074   } else {
1075     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1076     // into a single word in the table itself, decode it now.
1077     do {
1078       IITValues.push_back(TableVal & 0xF);
1079       TableVal >>= 4;
1080     } while (TableVal);
1081 
1082     IITEntries = IITValues;
1083     NextElt = 0;
1084   }
1085 
1086   // Okay, decode the table into the output vector of IITDescriptors.
1087   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1088   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1089     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1090 }
1091 
1092 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1093                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1094   using namespace Intrinsic;
1095 
1096   IITDescriptor D = Infos.front();
1097   Infos = Infos.slice(1);
1098 
1099   switch (D.Kind) {
1100   case IITDescriptor::Void: return Type::getVoidTy(Context);
1101   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1102   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1103   case IITDescriptor::Token: return Type::getTokenTy(Context);
1104   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1105   case IITDescriptor::Half: return Type::getHalfTy(Context);
1106   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1107   case IITDescriptor::Float: return Type::getFloatTy(Context);
1108   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1109   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1110 
1111   case IITDescriptor::Integer:
1112     return IntegerType::get(Context, D.Integer_Width);
1113   case IITDescriptor::Vector:
1114     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1115                            D.Vector_Width);
1116   case IITDescriptor::Pointer:
1117     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1118                             D.Pointer_AddressSpace);
1119   case IITDescriptor::Struct: {
1120     SmallVector<Type *, 8> Elts;
1121     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1122       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1123     return StructType::get(Context, Elts);
1124   }
1125   case IITDescriptor::Argument:
1126     return Tys[D.getArgumentNumber()];
1127   case IITDescriptor::ExtendArgument: {
1128     Type *Ty = Tys[D.getArgumentNumber()];
1129     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1130       return VectorType::getExtendedElementVectorType(VTy);
1131 
1132     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1133   }
1134   case IITDescriptor::TruncArgument: {
1135     Type *Ty = Tys[D.getArgumentNumber()];
1136     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1137       return VectorType::getTruncatedElementVectorType(VTy);
1138 
1139     IntegerType *ITy = cast<IntegerType>(Ty);
1140     assert(ITy->getBitWidth() % 2 == 0);
1141     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1142   }
1143   case IITDescriptor::Subdivide2Argument:
1144   case IITDescriptor::Subdivide4Argument: {
1145     Type *Ty = Tys[D.getArgumentNumber()];
1146     VectorType *VTy = dyn_cast<VectorType>(Ty);
1147     assert(VTy && "Expected an argument of Vector Type");
1148     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1149     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1150   }
1151   case IITDescriptor::HalfVecArgument:
1152     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1153                                                   Tys[D.getArgumentNumber()]));
1154   case IITDescriptor::SameVecWidthArgument: {
1155     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1156     Type *Ty = Tys[D.getArgumentNumber()];
1157     if (auto *VTy = dyn_cast<VectorType>(Ty))
1158       return VectorType::get(EltTy, VTy->getElementCount());
1159     return EltTy;
1160   }
1161   case IITDescriptor::PtrToArgument: {
1162     Type *Ty = Tys[D.getArgumentNumber()];
1163     return PointerType::getUnqual(Ty);
1164   }
1165   case IITDescriptor::PtrToElt: {
1166     Type *Ty = Tys[D.getArgumentNumber()];
1167     VectorType *VTy = dyn_cast<VectorType>(Ty);
1168     if (!VTy)
1169       llvm_unreachable("Expected an argument of Vector Type");
1170     Type *EltTy = VTy->getElementType();
1171     return PointerType::getUnqual(EltTy);
1172   }
1173   case IITDescriptor::VecElementArgument: {
1174     Type *Ty = Tys[D.getArgumentNumber()];
1175     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1176       return VTy->getElementType();
1177     llvm_unreachable("Expected an argument of Vector Type");
1178   }
1179   case IITDescriptor::VecOfBitcastsToInt: {
1180     Type *Ty = Tys[D.getArgumentNumber()];
1181     VectorType *VTy = dyn_cast<VectorType>(Ty);
1182     assert(VTy && "Expected an argument of Vector Type");
1183     return VectorType::getInteger(VTy);
1184   }
1185   case IITDescriptor::VecOfAnyPtrsToElt:
1186     // Return the overloaded type (which determines the pointers address space)
1187     return Tys[D.getOverloadArgNumber()];
1188   }
1189   llvm_unreachable("unhandled");
1190 }
1191 
1192 FunctionType *Intrinsic::getType(LLVMContext &Context,
1193                                  ID id, ArrayRef<Type*> Tys) {
1194   SmallVector<IITDescriptor, 8> Table;
1195   getIntrinsicInfoTableEntries(id, Table);
1196 
1197   ArrayRef<IITDescriptor> TableRef = Table;
1198   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1199 
1200   SmallVector<Type*, 8> ArgTys;
1201   while (!TableRef.empty())
1202     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1203 
1204   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1205   // If we see void type as the type of the last argument, it is vararg intrinsic
1206   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1207     ArgTys.pop_back();
1208     return FunctionType::get(ResultTy, ArgTys, true);
1209   }
1210   return FunctionType::get(ResultTy, ArgTys, false);
1211 }
1212 
1213 bool Intrinsic::isOverloaded(ID id) {
1214 #define GET_INTRINSIC_OVERLOAD_TABLE
1215 #include "llvm/IR/IntrinsicImpl.inc"
1216 #undef GET_INTRINSIC_OVERLOAD_TABLE
1217 }
1218 
1219 bool Intrinsic::isLeaf(ID id) {
1220   switch (id) {
1221   default:
1222     return true;
1223 
1224   case Intrinsic::experimental_gc_statepoint:
1225   case Intrinsic::experimental_patchpoint_void:
1226   case Intrinsic::experimental_patchpoint_i64:
1227     return false;
1228   }
1229 }
1230 
1231 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1232 #define GET_INTRINSIC_ATTRIBUTES
1233 #include "llvm/IR/IntrinsicImpl.inc"
1234 #undef GET_INTRINSIC_ATTRIBUTES
1235 
1236 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1237   // There can never be multiple globals with the same name of different types,
1238   // because intrinsics must be a specific type.
1239   return cast<Function>(
1240       M->getOrInsertFunction(getName(id, Tys),
1241                              getType(M->getContext(), id, Tys))
1242           .getCallee());
1243 }
1244 
1245 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1246 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1247 #include "llvm/IR/IntrinsicImpl.inc"
1248 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1249 
1250 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1251 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1252 #include "llvm/IR/IntrinsicImpl.inc"
1253 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1254 
1255 using DeferredIntrinsicMatchPair =
1256     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1257 
1258 static bool matchIntrinsicType(
1259     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1260     SmallVectorImpl<Type *> &ArgTys,
1261     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1262     bool IsDeferredCheck) {
1263   using namespace Intrinsic;
1264 
1265   // If we ran out of descriptors, there are too many arguments.
1266   if (Infos.empty()) return true;
1267 
1268   // Do this before slicing off the 'front' part
1269   auto InfosRef = Infos;
1270   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1271     DeferredChecks.emplace_back(T, InfosRef);
1272     return false;
1273   };
1274 
1275   IITDescriptor D = Infos.front();
1276   Infos = Infos.slice(1);
1277 
1278   switch (D.Kind) {
1279     case IITDescriptor::Void: return !Ty->isVoidTy();
1280     case IITDescriptor::VarArg: return true;
1281     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1282     case IITDescriptor::Token: return !Ty->isTokenTy();
1283     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1284     case IITDescriptor::Half: return !Ty->isHalfTy();
1285     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1286     case IITDescriptor::Float: return !Ty->isFloatTy();
1287     case IITDescriptor::Double: return !Ty->isDoubleTy();
1288     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1289     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1290     case IITDescriptor::Vector: {
1291       VectorType *VT = dyn_cast<VectorType>(Ty);
1292       return !VT || VT->getElementCount() != D.Vector_Width ||
1293              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1294                                 DeferredChecks, IsDeferredCheck);
1295     }
1296     case IITDescriptor::Pointer: {
1297       PointerType *PT = dyn_cast<PointerType>(Ty);
1298       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1299              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1300                                 DeferredChecks, IsDeferredCheck);
1301     }
1302 
1303     case IITDescriptor::Struct: {
1304       StructType *ST = dyn_cast<StructType>(Ty);
1305       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1306         return true;
1307 
1308       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1309         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1310                                DeferredChecks, IsDeferredCheck))
1311           return true;
1312       return false;
1313     }
1314 
1315     case IITDescriptor::Argument:
1316       // If this is the second occurrence of an argument,
1317       // verify that the later instance matches the previous instance.
1318       if (D.getArgumentNumber() < ArgTys.size())
1319         return Ty != ArgTys[D.getArgumentNumber()];
1320 
1321       if (D.getArgumentNumber() > ArgTys.size() ||
1322           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1323         return IsDeferredCheck || DeferCheck(Ty);
1324 
1325       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1326              "Table consistency error");
1327       ArgTys.push_back(Ty);
1328 
1329       switch (D.getArgumentKind()) {
1330         case IITDescriptor::AK_Any:        return false; // Success
1331         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1332         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1333         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1334         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1335         default:                           break;
1336       }
1337       llvm_unreachable("all argument kinds not covered");
1338 
1339     case IITDescriptor::ExtendArgument: {
1340       // If this is a forward reference, defer the check for later.
1341       if (D.getArgumentNumber() >= ArgTys.size())
1342         return IsDeferredCheck || DeferCheck(Ty);
1343 
1344       Type *NewTy = ArgTys[D.getArgumentNumber()];
1345       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1346         NewTy = VectorType::getExtendedElementVectorType(VTy);
1347       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1348         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1349       else
1350         return true;
1351 
1352       return Ty != NewTy;
1353     }
1354     case IITDescriptor::TruncArgument: {
1355       // If this is a forward reference, defer the check for later.
1356       if (D.getArgumentNumber() >= ArgTys.size())
1357         return IsDeferredCheck || DeferCheck(Ty);
1358 
1359       Type *NewTy = ArgTys[D.getArgumentNumber()];
1360       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1361         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1362       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1363         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1364       else
1365         return true;
1366 
1367       return Ty != NewTy;
1368     }
1369     case IITDescriptor::HalfVecArgument:
1370       // If this is a forward reference, defer the check for later.
1371       if (D.getArgumentNumber() >= ArgTys.size())
1372         return IsDeferredCheck || DeferCheck(Ty);
1373       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1374              VectorType::getHalfElementsVectorType(
1375                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1376     case IITDescriptor::SameVecWidthArgument: {
1377       if (D.getArgumentNumber() >= ArgTys.size()) {
1378         // Defer check and subsequent check for the vector element type.
1379         Infos = Infos.slice(1);
1380         return IsDeferredCheck || DeferCheck(Ty);
1381       }
1382       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1383       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1384       // Both must be vectors of the same number of elements or neither.
1385       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1386         return true;
1387       Type *EltTy = Ty;
1388       if (ThisArgType) {
1389         if (ReferenceType->getElementCount() !=
1390             ThisArgType->getElementCount())
1391           return true;
1392         EltTy = ThisArgType->getElementType();
1393       }
1394       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1395                                 IsDeferredCheck);
1396     }
1397     case IITDescriptor::PtrToArgument: {
1398       if (D.getArgumentNumber() >= ArgTys.size())
1399         return IsDeferredCheck || DeferCheck(Ty);
1400       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1401       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1402       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1403     }
1404     case IITDescriptor::PtrToElt: {
1405       if (D.getArgumentNumber() >= ArgTys.size())
1406         return IsDeferredCheck || DeferCheck(Ty);
1407       VectorType * ReferenceType =
1408         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1409       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1410 
1411       return (!ThisArgType || !ReferenceType ||
1412               ThisArgType->getElementType() != ReferenceType->getElementType());
1413     }
1414     case IITDescriptor::VecOfAnyPtrsToElt: {
1415       unsigned RefArgNumber = D.getRefArgNumber();
1416       if (RefArgNumber >= ArgTys.size()) {
1417         if (IsDeferredCheck)
1418           return true;
1419         // If forward referencing, already add the pointer-vector type and
1420         // defer the checks for later.
1421         ArgTys.push_back(Ty);
1422         return DeferCheck(Ty);
1423       }
1424 
1425       if (!IsDeferredCheck){
1426         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1427                "Table consistency error");
1428         ArgTys.push_back(Ty);
1429       }
1430 
1431       // Verify the overloaded type "matches" the Ref type.
1432       // i.e. Ty is a vector with the same width as Ref.
1433       // Composed of pointers to the same element type as Ref.
1434       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1435       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1436       if (!ThisArgVecTy || !ReferenceType ||
1437           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1438         return true;
1439       PointerType *ThisArgEltTy =
1440           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1441       if (!ThisArgEltTy)
1442         return true;
1443       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1444     }
1445     case IITDescriptor::VecElementArgument: {
1446       if (D.getArgumentNumber() >= ArgTys.size())
1447         return IsDeferredCheck ? true : DeferCheck(Ty);
1448       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1449       return !ReferenceType || Ty != ReferenceType->getElementType();
1450     }
1451     case IITDescriptor::Subdivide2Argument:
1452     case IITDescriptor::Subdivide4Argument: {
1453       // If this is a forward reference, defer the check for later.
1454       if (D.getArgumentNumber() >= ArgTys.size())
1455         return IsDeferredCheck || DeferCheck(Ty);
1456 
1457       Type *NewTy = ArgTys[D.getArgumentNumber()];
1458       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1459         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1460         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1461         return Ty != NewTy;
1462       }
1463       return true;
1464     }
1465     case IITDescriptor::VecOfBitcastsToInt: {
1466       if (D.getArgumentNumber() >= ArgTys.size())
1467         return IsDeferredCheck || DeferCheck(Ty);
1468       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1469       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1470       if (!ThisArgVecTy || !ReferenceType)
1471         return true;
1472       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1473     }
1474   }
1475   llvm_unreachable("unhandled");
1476 }
1477 
1478 Intrinsic::MatchIntrinsicTypesResult
1479 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1480                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1481                                    SmallVectorImpl<Type *> &ArgTys) {
1482   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1483   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1484                          false))
1485     return MatchIntrinsicTypes_NoMatchRet;
1486 
1487   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1488 
1489   for (auto Ty : FTy->params())
1490     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1491       return MatchIntrinsicTypes_NoMatchArg;
1492 
1493   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1494     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1495     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1496                            true))
1497       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1498                                          : MatchIntrinsicTypes_NoMatchArg;
1499   }
1500 
1501   return MatchIntrinsicTypes_Match;
1502 }
1503 
1504 bool
1505 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1506                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1507   // If there are no descriptors left, then it can't be a vararg.
1508   if (Infos.empty())
1509     return isVarArg;
1510 
1511   // There should be only one descriptor remaining at this point.
1512   if (Infos.size() != 1)
1513     return true;
1514 
1515   // Check and verify the descriptor.
1516   IITDescriptor D = Infos.front();
1517   Infos = Infos.slice(1);
1518   if (D.Kind == IITDescriptor::VarArg)
1519     return !isVarArg;
1520 
1521   return true;
1522 }
1523 
1524 bool Intrinsic::getIntrinsicSignature(Function *F,
1525                                       SmallVectorImpl<Type *> &ArgTys) {
1526   Intrinsic::ID ID = F->getIntrinsicID();
1527   if (!ID)
1528     return false;
1529 
1530   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1531   getIntrinsicInfoTableEntries(ID, Table);
1532   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1533 
1534   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1535                                          ArgTys) !=
1536       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1537     return false;
1538   }
1539   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1540                                       TableRef))
1541     return false;
1542   return true;
1543 }
1544 
1545 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1546   SmallVector<Type *, 4> ArgTys;
1547   if (!getIntrinsicSignature(F, ArgTys))
1548     return None;
1549 
1550   Intrinsic::ID ID = F->getIntrinsicID();
1551   StringRef Name = F->getName();
1552   if (Name == Intrinsic::getName(ID, ArgTys))
1553     return None;
1554 
1555   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1556   NewDecl->setCallingConv(F->getCallingConv());
1557   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1558          "Shouldn't change the signature");
1559   return NewDecl;
1560 }
1561 
1562 /// hasAddressTaken - returns true if there are any uses of this function
1563 /// other than direct calls or invokes to it. Optionally ignores callback
1564 /// uses.
1565 bool Function::hasAddressTaken(const User **PutOffender,
1566                                bool IgnoreCallbackUses) const {
1567   for (const Use &U : uses()) {
1568     const User *FU = U.getUser();
1569     if (isa<BlockAddress>(FU))
1570       continue;
1571 
1572     if (IgnoreCallbackUses) {
1573       AbstractCallSite ACS(&U);
1574       if (ACS && ACS.isCallbackCall())
1575         continue;
1576     }
1577 
1578     const auto *Call = dyn_cast<CallBase>(FU);
1579     if (!Call) {
1580       if (PutOffender)
1581         *PutOffender = FU;
1582       return true;
1583     }
1584     if (!Call->isCallee(&U)) {
1585       if (PutOffender)
1586         *PutOffender = FU;
1587       return true;
1588     }
1589   }
1590   return false;
1591 }
1592 
1593 bool Function::isDefTriviallyDead() const {
1594   // Check the linkage
1595   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1596       !hasAvailableExternallyLinkage())
1597     return false;
1598 
1599   // Check if the function is used by anything other than a blockaddress.
1600   for (const User *U : users())
1601     if (!isa<BlockAddress>(U))
1602       return false;
1603 
1604   return true;
1605 }
1606 
1607 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1608 /// setjmp or other function that gcc recognizes as "returning twice".
1609 bool Function::callsFunctionThatReturnsTwice() const {
1610   for (const Instruction &I : instructions(this))
1611     if (const auto *Call = dyn_cast<CallBase>(&I))
1612       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1613         return true;
1614 
1615   return false;
1616 }
1617 
1618 Constant *Function::getPersonalityFn() const {
1619   assert(hasPersonalityFn() && getNumOperands());
1620   return cast<Constant>(Op<0>());
1621 }
1622 
1623 void Function::setPersonalityFn(Constant *Fn) {
1624   setHungoffOperand<0>(Fn);
1625   setValueSubclassDataBit(3, Fn != nullptr);
1626 }
1627 
1628 Constant *Function::getPrefixData() const {
1629   assert(hasPrefixData() && getNumOperands());
1630   return cast<Constant>(Op<1>());
1631 }
1632 
1633 void Function::setPrefixData(Constant *PrefixData) {
1634   setHungoffOperand<1>(PrefixData);
1635   setValueSubclassDataBit(1, PrefixData != nullptr);
1636 }
1637 
1638 Constant *Function::getPrologueData() const {
1639   assert(hasPrologueData() && getNumOperands());
1640   return cast<Constant>(Op<2>());
1641 }
1642 
1643 void Function::setPrologueData(Constant *PrologueData) {
1644   setHungoffOperand<2>(PrologueData);
1645   setValueSubclassDataBit(2, PrologueData != nullptr);
1646 }
1647 
1648 void Function::allocHungoffUselist() {
1649   // If we've already allocated a uselist, stop here.
1650   if (getNumOperands())
1651     return;
1652 
1653   allocHungoffUses(3, /*IsPhi=*/ false);
1654   setNumHungOffUseOperands(3);
1655 
1656   // Initialize the uselist with placeholder operands to allow traversal.
1657   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1658   Op<0>().set(CPN);
1659   Op<1>().set(CPN);
1660   Op<2>().set(CPN);
1661 }
1662 
1663 template <int Idx>
1664 void Function::setHungoffOperand(Constant *C) {
1665   if (C) {
1666     allocHungoffUselist();
1667     Op<Idx>().set(C);
1668   } else if (getNumOperands()) {
1669     Op<Idx>().set(
1670         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1671   }
1672 }
1673 
1674 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1675   assert(Bit < 16 && "SubclassData contains only 16 bits");
1676   if (On)
1677     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1678   else
1679     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1680 }
1681 
1682 void Function::setEntryCount(ProfileCount Count,
1683                              const DenseSet<GlobalValue::GUID> *S) {
1684   assert(Count.hasValue());
1685 #if !defined(NDEBUG)
1686   auto PrevCount = getEntryCount();
1687   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1688 #endif
1689 
1690   auto ImportGUIDs = getImportGUIDs();
1691   if (S == nullptr && ImportGUIDs.size())
1692     S = &ImportGUIDs;
1693 
1694   MDBuilder MDB(getContext());
1695   setMetadata(
1696       LLVMContext::MD_prof,
1697       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1698 }
1699 
1700 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1701                              const DenseSet<GlobalValue::GUID> *Imports) {
1702   setEntryCount(ProfileCount(Count, Type), Imports);
1703 }
1704 
1705 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1706   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1707   if (MD && MD->getOperand(0))
1708     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1709       if (MDS->getString().equals("function_entry_count")) {
1710         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1711         uint64_t Count = CI->getValue().getZExtValue();
1712         // A value of -1 is used for SamplePGO when there were no samples.
1713         // Treat this the same as unknown.
1714         if (Count == (uint64_t)-1)
1715           return ProfileCount::getInvalid();
1716         return ProfileCount(Count, PCT_Real);
1717       } else if (AllowSynthetic &&
1718                  MDS->getString().equals("synthetic_function_entry_count")) {
1719         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1720         uint64_t Count = CI->getValue().getZExtValue();
1721         return ProfileCount(Count, PCT_Synthetic);
1722       }
1723     }
1724   return ProfileCount::getInvalid();
1725 }
1726 
1727 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1728   DenseSet<GlobalValue::GUID> R;
1729   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1730     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1731       if (MDS->getString().equals("function_entry_count"))
1732         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1733           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1734                        ->getValue()
1735                        .getZExtValue());
1736   return R;
1737 }
1738 
1739 void Function::setSectionPrefix(StringRef Prefix) {
1740   MDBuilder MDB(getContext());
1741   setMetadata(LLVMContext::MD_section_prefix,
1742               MDB.createFunctionSectionPrefix(Prefix));
1743 }
1744 
1745 Optional<StringRef> Function::getSectionPrefix() const {
1746   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1747     assert(cast<MDString>(MD->getOperand(0))
1748                ->getString()
1749                .equals("function_section_prefix") &&
1750            "Metadata not match");
1751     return cast<MDString>(MD->getOperand(1))->getString();
1752   }
1753   return None;
1754 }
1755 
1756 bool Function::nullPointerIsDefined() const {
1757   return hasFnAttribute(Attribute::NullPointerIsValid);
1758 }
1759 
1760 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1761   if (F && F->nullPointerIsDefined())
1762     return true;
1763 
1764   if (AS != 0)
1765     return true;
1766 
1767   return false;
1768 }
1769