1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsHexagon.h" 39 #include "llvm/IR/IntrinsicsMips.h" 40 #include "llvm/IR/IntrinsicsNVPTX.h" 41 #include "llvm/IR/IntrinsicsPowerPC.h" 42 #include "llvm/IR/IntrinsicsR600.h" 43 #include "llvm/IR/IntrinsicsRISCV.h" 44 #include "llvm/IR/IntrinsicsS390.h" 45 #include "llvm/IR/IntrinsicsWebAssembly.h" 46 #include "llvm/IR/IntrinsicsX86.h" 47 #include "llvm/IR/IntrinsicsXCore.h" 48 #include "llvm/IR/LLVMContext.h" 49 #include "llvm/IR/MDBuilder.h" 50 #include "llvm/IR/Metadata.h" 51 #include "llvm/IR/Module.h" 52 #include "llvm/IR/SymbolTableListTraits.h" 53 #include "llvm/IR/Type.h" 54 #include "llvm/IR/Use.h" 55 #include "llvm/IR/User.h" 56 #include "llvm/IR/Value.h" 57 #include "llvm/IR/ValueSymbolTable.h" 58 #include "llvm/Support/Casting.h" 59 #include "llvm/Support/Compiler.h" 60 #include "llvm/Support/ErrorHandling.h" 61 #include <algorithm> 62 #include <cassert> 63 #include <cstddef> 64 #include <cstdint> 65 #include <cstring> 66 #include <string> 67 68 using namespace llvm; 69 using ProfileCount = Function::ProfileCount; 70 71 // Explicit instantiations of SymbolTableListTraits since some of the methods 72 // are not in the public header file... 73 template class llvm::SymbolTableListTraits<BasicBlock>; 74 75 //===----------------------------------------------------------------------===// 76 // Argument Implementation 77 //===----------------------------------------------------------------------===// 78 79 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 80 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 81 setName(Name); 82 } 83 84 void Argument::setParent(Function *parent) { 85 Parent = parent; 86 } 87 88 bool Argument::hasNonNullAttr() const { 89 if (!getType()->isPointerTy()) return false; 90 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 91 return true; 92 else if (getDereferenceableBytes() > 0 && 93 !NullPointerIsDefined(getParent(), 94 getType()->getPointerAddressSpace())) 95 return true; 96 return false; 97 } 98 99 bool Argument::hasByValAttr() const { 100 if (!getType()->isPointerTy()) return false; 101 return hasAttribute(Attribute::ByVal); 102 } 103 104 bool Argument::hasSwiftSelfAttr() const { 105 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 106 } 107 108 bool Argument::hasSwiftErrorAttr() const { 109 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 110 } 111 112 bool Argument::hasInAllocaAttr() const { 113 if (!getType()->isPointerTy()) return false; 114 return hasAttribute(Attribute::InAlloca); 115 } 116 117 bool Argument::hasByValOrInAllocaAttr() const { 118 if (!getType()->isPointerTy()) return false; 119 AttributeList Attrs = getParent()->getAttributes(); 120 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 121 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 122 } 123 124 unsigned Argument::getParamAlignment() const { 125 assert(getType()->isPointerTy() && "Only pointers have alignments"); 126 return getParent()->getParamAlignment(getArgNo()); 127 } 128 129 MaybeAlign Argument::getParamAlign() const { 130 assert(getType()->isPointerTy() && "Only pointers have alignments"); 131 return getParent()->getParamAlign(getArgNo()); 132 } 133 134 Type *Argument::getParamByValType() const { 135 assert(getType()->isPointerTy() && "Only pointers have byval types"); 136 return getParent()->getParamByValType(getArgNo()); 137 } 138 139 uint64_t Argument::getDereferenceableBytes() const { 140 assert(getType()->isPointerTy() && 141 "Only pointers have dereferenceable bytes"); 142 return getParent()->getParamDereferenceableBytes(getArgNo()); 143 } 144 145 uint64_t Argument::getDereferenceableOrNullBytes() const { 146 assert(getType()->isPointerTy() && 147 "Only pointers have dereferenceable bytes"); 148 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 149 } 150 151 bool Argument::hasNestAttr() const { 152 if (!getType()->isPointerTy()) return false; 153 return hasAttribute(Attribute::Nest); 154 } 155 156 bool Argument::hasNoAliasAttr() const { 157 if (!getType()->isPointerTy()) return false; 158 return hasAttribute(Attribute::NoAlias); 159 } 160 161 bool Argument::hasNoCaptureAttr() const { 162 if (!getType()->isPointerTy()) return false; 163 return hasAttribute(Attribute::NoCapture); 164 } 165 166 bool Argument::hasStructRetAttr() const { 167 if (!getType()->isPointerTy()) return false; 168 return hasAttribute(Attribute::StructRet); 169 } 170 171 bool Argument::hasInRegAttr() const { 172 return hasAttribute(Attribute::InReg); 173 } 174 175 bool Argument::hasReturnedAttr() const { 176 return hasAttribute(Attribute::Returned); 177 } 178 179 bool Argument::hasZExtAttr() const { 180 return hasAttribute(Attribute::ZExt); 181 } 182 183 bool Argument::hasSExtAttr() const { 184 return hasAttribute(Attribute::SExt); 185 } 186 187 bool Argument::onlyReadsMemory() const { 188 AttributeList Attrs = getParent()->getAttributes(); 189 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 190 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 191 } 192 193 void Argument::addAttrs(AttrBuilder &B) { 194 AttributeList AL = getParent()->getAttributes(); 195 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 196 getParent()->setAttributes(AL); 197 } 198 199 void Argument::addAttr(Attribute::AttrKind Kind) { 200 getParent()->addParamAttr(getArgNo(), Kind); 201 } 202 203 void Argument::addAttr(Attribute Attr) { 204 getParent()->addParamAttr(getArgNo(), Attr); 205 } 206 207 void Argument::removeAttr(Attribute::AttrKind Kind) { 208 getParent()->removeParamAttr(getArgNo(), Kind); 209 } 210 211 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 212 return getParent()->hasParamAttribute(getArgNo(), Kind); 213 } 214 215 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 216 return getParent()->getParamAttribute(getArgNo(), Kind); 217 } 218 219 //===----------------------------------------------------------------------===// 220 // Helper Methods in Function 221 //===----------------------------------------------------------------------===// 222 223 LLVMContext &Function::getContext() const { 224 return getType()->getContext(); 225 } 226 227 unsigned Function::getInstructionCount() const { 228 unsigned NumInstrs = 0; 229 for (const BasicBlock &BB : BasicBlocks) 230 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 231 BB.instructionsWithoutDebug().end()); 232 return NumInstrs; 233 } 234 235 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 236 const Twine &N, Module &M) { 237 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 238 } 239 240 void Function::removeFromParent() { 241 getParent()->getFunctionList().remove(getIterator()); 242 } 243 244 void Function::eraseFromParent() { 245 getParent()->getFunctionList().erase(getIterator()); 246 } 247 248 //===----------------------------------------------------------------------===// 249 // Function Implementation 250 //===----------------------------------------------------------------------===// 251 252 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 253 // If AS == -1 and we are passed a valid module pointer we place the function 254 // in the program address space. Otherwise we default to AS0. 255 if (AddrSpace == static_cast<unsigned>(-1)) 256 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 257 return AddrSpace; 258 } 259 260 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 261 const Twine &name, Module *ParentModule) 262 : GlobalObject(Ty, Value::FunctionVal, 263 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 264 computeAddrSpace(AddrSpace, ParentModule)), 265 NumArgs(Ty->getNumParams()) { 266 assert(FunctionType::isValidReturnType(getReturnType()) && 267 "invalid return type"); 268 setGlobalObjectSubClassData(0); 269 270 // We only need a symbol table for a function if the context keeps value names 271 if (!getContext().shouldDiscardValueNames()) 272 SymTab = std::make_unique<ValueSymbolTable>(); 273 274 // If the function has arguments, mark them as lazily built. 275 if (Ty->getNumParams()) 276 setValueSubclassData(1); // Set the "has lazy arguments" bit. 277 278 if (ParentModule) 279 ParentModule->getFunctionList().push_back(this); 280 281 HasLLVMReservedName = getName().startswith("llvm."); 282 // Ensure intrinsics have the right parameter attributes. 283 // Note, the IntID field will have been set in Value::setName if this function 284 // name is a valid intrinsic ID. 285 if (IntID) 286 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 287 } 288 289 Function::~Function() { 290 dropAllReferences(); // After this it is safe to delete instructions. 291 292 // Delete all of the method arguments and unlink from symbol table... 293 if (Arguments) 294 clearArguments(); 295 296 // Remove the function from the on-the-side GC table. 297 clearGC(); 298 } 299 300 void Function::BuildLazyArguments() const { 301 // Create the arguments vector, all arguments start out unnamed. 302 auto *FT = getFunctionType(); 303 if (NumArgs > 0) { 304 Arguments = std::allocator<Argument>().allocate(NumArgs); 305 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 306 Type *ArgTy = FT->getParamType(i); 307 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 308 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 309 } 310 } 311 312 // Clear the lazy arguments bit. 313 unsigned SDC = getSubclassDataFromValue(); 314 SDC &= ~(1 << 0); 315 const_cast<Function*>(this)->setValueSubclassData(SDC); 316 assert(!hasLazyArguments()); 317 } 318 319 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 320 return MutableArrayRef<Argument>(Args, Count); 321 } 322 323 bool Function::isConstrainedFPIntrinsic() const { 324 switch (getIntrinsicID()) { 325 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 326 case Intrinsic::INTRINSIC: 327 #include "llvm/IR/ConstrainedOps.def" 328 return true; 329 #undef INSTRUCTION 330 default: 331 return false; 332 } 333 } 334 335 void Function::clearArguments() { 336 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 337 A.setName(""); 338 A.~Argument(); 339 } 340 std::allocator<Argument>().deallocate(Arguments, NumArgs); 341 Arguments = nullptr; 342 } 343 344 void Function::stealArgumentListFrom(Function &Src) { 345 assert(isDeclaration() && "Expected no references to current arguments"); 346 347 // Drop the current arguments, if any, and set the lazy argument bit. 348 if (!hasLazyArguments()) { 349 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 350 [](const Argument &A) { return A.use_empty(); }) && 351 "Expected arguments to be unused in declaration"); 352 clearArguments(); 353 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 354 } 355 356 // Nothing to steal if Src has lazy arguments. 357 if (Src.hasLazyArguments()) 358 return; 359 360 // Steal arguments from Src, and fix the lazy argument bits. 361 assert(arg_size() == Src.arg_size()); 362 Arguments = Src.Arguments; 363 Src.Arguments = nullptr; 364 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 365 // FIXME: This does the work of transferNodesFromList inefficiently. 366 SmallString<128> Name; 367 if (A.hasName()) 368 Name = A.getName(); 369 if (!Name.empty()) 370 A.setName(""); 371 A.setParent(this); 372 if (!Name.empty()) 373 A.setName(Name); 374 } 375 376 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 377 assert(!hasLazyArguments()); 378 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 379 } 380 381 // dropAllReferences() - This function causes all the subinstructions to "let 382 // go" of all references that they are maintaining. This allows one to 383 // 'delete' a whole class at a time, even though there may be circular 384 // references... first all references are dropped, and all use counts go to 385 // zero. Then everything is deleted for real. Note that no operations are 386 // valid on an object that has "dropped all references", except operator 387 // delete. 388 // 389 void Function::dropAllReferences() { 390 setIsMaterializable(false); 391 392 for (BasicBlock &BB : *this) 393 BB.dropAllReferences(); 394 395 // Delete all basic blocks. They are now unused, except possibly by 396 // blockaddresses, but BasicBlock's destructor takes care of those. 397 while (!BasicBlocks.empty()) 398 BasicBlocks.begin()->eraseFromParent(); 399 400 // Drop uses of any optional data (real or placeholder). 401 if (getNumOperands()) { 402 User::dropAllReferences(); 403 setNumHungOffUseOperands(0); 404 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 405 } 406 407 // Metadata is stored in a side-table. 408 clearMetadata(); 409 } 410 411 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 412 AttributeList PAL = getAttributes(); 413 PAL = PAL.addAttribute(getContext(), i, Kind); 414 setAttributes(PAL); 415 } 416 417 void Function::addAttribute(unsigned i, Attribute Attr) { 418 AttributeList PAL = getAttributes(); 419 PAL = PAL.addAttribute(getContext(), i, Attr); 420 setAttributes(PAL); 421 } 422 423 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 424 AttributeList PAL = getAttributes(); 425 PAL = PAL.addAttributes(getContext(), i, Attrs); 426 setAttributes(PAL); 427 } 428 429 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 430 AttributeList PAL = getAttributes(); 431 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 432 setAttributes(PAL); 433 } 434 435 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 436 AttributeList PAL = getAttributes(); 437 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 438 setAttributes(PAL); 439 } 440 441 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 442 AttributeList PAL = getAttributes(); 443 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 444 setAttributes(PAL); 445 } 446 447 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 448 AttributeList PAL = getAttributes(); 449 PAL = PAL.removeAttribute(getContext(), i, Kind); 450 setAttributes(PAL); 451 } 452 453 void Function::removeAttribute(unsigned i, StringRef Kind) { 454 AttributeList PAL = getAttributes(); 455 PAL = PAL.removeAttribute(getContext(), i, Kind); 456 setAttributes(PAL); 457 } 458 459 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 460 AttributeList PAL = getAttributes(); 461 PAL = PAL.removeAttributes(getContext(), i, Attrs); 462 setAttributes(PAL); 463 } 464 465 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 466 AttributeList PAL = getAttributes(); 467 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 468 setAttributes(PAL); 469 } 470 471 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 472 AttributeList PAL = getAttributes(); 473 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 474 setAttributes(PAL); 475 } 476 477 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 478 AttributeList PAL = getAttributes(); 479 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 480 setAttributes(PAL); 481 } 482 483 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 484 AttributeList PAL = getAttributes(); 485 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 486 setAttributes(PAL); 487 } 488 489 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 490 AttributeList PAL = getAttributes(); 491 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 492 setAttributes(PAL); 493 } 494 495 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 496 AttributeList PAL = getAttributes(); 497 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 498 setAttributes(PAL); 499 } 500 501 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 502 uint64_t Bytes) { 503 AttributeList PAL = getAttributes(); 504 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 505 setAttributes(PAL); 506 } 507 508 const std::string &Function::getGC() const { 509 assert(hasGC() && "Function has no collector"); 510 return getContext().getGC(*this); 511 } 512 513 void Function::setGC(std::string Str) { 514 setValueSubclassDataBit(14, !Str.empty()); 515 getContext().setGC(*this, std::move(Str)); 516 } 517 518 void Function::clearGC() { 519 if (!hasGC()) 520 return; 521 getContext().deleteGC(*this); 522 setValueSubclassDataBit(14, false); 523 } 524 525 /// Copy all additional attributes (those not needed to create a Function) from 526 /// the Function Src to this one. 527 void Function::copyAttributesFrom(const Function *Src) { 528 GlobalObject::copyAttributesFrom(Src); 529 setCallingConv(Src->getCallingConv()); 530 setAttributes(Src->getAttributes()); 531 if (Src->hasGC()) 532 setGC(Src->getGC()); 533 else 534 clearGC(); 535 if (Src->hasPersonalityFn()) 536 setPersonalityFn(Src->getPersonalityFn()); 537 if (Src->hasPrefixData()) 538 setPrefixData(Src->getPrefixData()); 539 if (Src->hasPrologueData()) 540 setPrologueData(Src->getPrologueData()); 541 } 542 543 /// Table of string intrinsic names indexed by enum value. 544 static const char * const IntrinsicNameTable[] = { 545 "not_intrinsic", 546 #define GET_INTRINSIC_NAME_TABLE 547 #include "llvm/IR/IntrinsicImpl.inc" 548 #undef GET_INTRINSIC_NAME_TABLE 549 }; 550 551 /// Table of per-target intrinsic name tables. 552 #define GET_INTRINSIC_TARGET_DATA 553 #include "llvm/IR/IntrinsicImpl.inc" 554 #undef GET_INTRINSIC_TARGET_DATA 555 556 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 557 /// target as \c Name, or the generic table if \c Name is not target specific. 558 /// 559 /// Returns the relevant slice of \c IntrinsicNameTable 560 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 561 assert(Name.startswith("llvm.")); 562 563 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 564 // Drop "llvm." and take the first dotted component. That will be the target 565 // if this is target specific. 566 StringRef Target = Name.drop_front(5).split('.').first; 567 auto It = partition_point( 568 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 569 // We've either found the target or just fall back to the generic set, which 570 // is always first. 571 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 572 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 573 } 574 575 /// This does the actual lookup of an intrinsic ID which 576 /// matches the given function name. 577 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 578 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 579 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 580 if (Idx == -1) 581 return Intrinsic::not_intrinsic; 582 583 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 584 // an index into a sub-table. 585 int Adjust = NameTable.data() - IntrinsicNameTable; 586 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 587 588 // If the intrinsic is not overloaded, require an exact match. If it is 589 // overloaded, require either exact or prefix match. 590 const auto MatchSize = strlen(NameTable[Idx]); 591 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 592 bool IsExactMatch = Name.size() == MatchSize; 593 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 594 : Intrinsic::not_intrinsic; 595 } 596 597 void Function::recalculateIntrinsicID() { 598 StringRef Name = getName(); 599 if (!Name.startswith("llvm.")) { 600 HasLLVMReservedName = false; 601 IntID = Intrinsic::not_intrinsic; 602 return; 603 } 604 HasLLVMReservedName = true; 605 IntID = lookupIntrinsicID(Name); 606 } 607 608 /// Returns a stable mangling for the type specified for use in the name 609 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 610 /// of named types is simply their name. Manglings for unnamed types consist 611 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 612 /// combined with the mangling of their component types. A vararg function 613 /// type will have a suffix of 'vararg'. Since function types can contain 614 /// other function types, we close a function type mangling with suffix 'f' 615 /// which can't be confused with it's prefix. This ensures we don't have 616 /// collisions between two unrelated function types. Otherwise, you might 617 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 618 /// 619 static std::string getMangledTypeStr(Type* Ty) { 620 std::string Result; 621 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 622 Result += "p" + utostr(PTyp->getAddressSpace()) + 623 getMangledTypeStr(PTyp->getElementType()); 624 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 625 Result += "a" + utostr(ATyp->getNumElements()) + 626 getMangledTypeStr(ATyp->getElementType()); 627 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 628 if (!STyp->isLiteral()) { 629 Result += "s_"; 630 Result += STyp->getName(); 631 } else { 632 Result += "sl_"; 633 for (auto Elem : STyp->elements()) 634 Result += getMangledTypeStr(Elem); 635 } 636 // Ensure nested structs are distinguishable. 637 Result += "s"; 638 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 639 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 640 for (size_t i = 0; i < FT->getNumParams(); i++) 641 Result += getMangledTypeStr(FT->getParamType(i)); 642 if (FT->isVarArg()) 643 Result += "vararg"; 644 // Ensure nested function types are distinguishable. 645 Result += "f"; 646 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 647 ElementCount EC = VTy->getElementCount(); 648 if (EC.Scalable) 649 Result += "nx"; 650 Result += "v" + utostr(EC.Min) + getMangledTypeStr(VTy->getElementType()); 651 } else if (Ty) { 652 switch (Ty->getTypeID()) { 653 default: llvm_unreachable("Unhandled type"); 654 case Type::VoidTyID: Result += "isVoid"; break; 655 case Type::MetadataTyID: Result += "Metadata"; break; 656 case Type::HalfTyID: Result += "f16"; break; 657 case Type::FloatTyID: Result += "f32"; break; 658 case Type::DoubleTyID: Result += "f64"; break; 659 case Type::X86_FP80TyID: Result += "f80"; break; 660 case Type::FP128TyID: Result += "f128"; break; 661 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 662 case Type::X86_MMXTyID: Result += "x86mmx"; break; 663 case Type::IntegerTyID: 664 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 665 break; 666 } 667 } 668 return Result; 669 } 670 671 StringRef Intrinsic::getName(ID id) { 672 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 673 assert(!Intrinsic::isOverloaded(id) && 674 "This version of getName does not support overloading"); 675 return IntrinsicNameTable[id]; 676 } 677 678 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 679 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 680 std::string Result(IntrinsicNameTable[id]); 681 for (Type *Ty : Tys) { 682 Result += "." + getMangledTypeStr(Ty); 683 } 684 return Result; 685 } 686 687 /// IIT_Info - These are enumerators that describe the entries returned by the 688 /// getIntrinsicInfoTableEntries function. 689 /// 690 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 691 enum IIT_Info { 692 // Common values should be encoded with 0-15. 693 IIT_Done = 0, 694 IIT_I1 = 1, 695 IIT_I8 = 2, 696 IIT_I16 = 3, 697 IIT_I32 = 4, 698 IIT_I64 = 5, 699 IIT_F16 = 6, 700 IIT_F32 = 7, 701 IIT_F64 = 8, 702 IIT_V2 = 9, 703 IIT_V4 = 10, 704 IIT_V8 = 11, 705 IIT_V16 = 12, 706 IIT_V32 = 13, 707 IIT_PTR = 14, 708 IIT_ARG = 15, 709 710 // Values from 16+ are only encodable with the inefficient encoding. 711 IIT_V64 = 16, 712 IIT_MMX = 17, 713 IIT_TOKEN = 18, 714 IIT_METADATA = 19, 715 IIT_EMPTYSTRUCT = 20, 716 IIT_STRUCT2 = 21, 717 IIT_STRUCT3 = 22, 718 IIT_STRUCT4 = 23, 719 IIT_STRUCT5 = 24, 720 IIT_EXTEND_ARG = 25, 721 IIT_TRUNC_ARG = 26, 722 IIT_ANYPTR = 27, 723 IIT_V1 = 28, 724 IIT_VARARG = 29, 725 IIT_HALF_VEC_ARG = 30, 726 IIT_SAME_VEC_WIDTH_ARG = 31, 727 IIT_PTR_TO_ARG = 32, 728 IIT_PTR_TO_ELT = 33, 729 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 730 IIT_I128 = 35, 731 IIT_V512 = 36, 732 IIT_V1024 = 37, 733 IIT_STRUCT6 = 38, 734 IIT_STRUCT7 = 39, 735 IIT_STRUCT8 = 40, 736 IIT_F128 = 41, 737 IIT_VEC_ELEMENT = 42, 738 IIT_SCALABLE_VEC = 43, 739 IIT_SUBDIVIDE2_ARG = 44, 740 IIT_SUBDIVIDE4_ARG = 45, 741 IIT_VEC_OF_BITCASTS_TO_INT = 46, 742 IIT_V128 = 47 743 }; 744 745 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 746 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 747 using namespace Intrinsic; 748 749 IIT_Info Info = IIT_Info(Infos[NextElt++]); 750 unsigned StructElts = 2; 751 752 switch (Info) { 753 case IIT_Done: 754 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 755 return; 756 case IIT_VARARG: 757 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 758 return; 759 case IIT_MMX: 760 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 761 return; 762 case IIT_TOKEN: 763 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 764 return; 765 case IIT_METADATA: 766 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 767 return; 768 case IIT_F16: 769 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 770 return; 771 case IIT_F32: 772 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 773 return; 774 case IIT_F64: 775 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 776 return; 777 case IIT_F128: 778 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 779 return; 780 case IIT_I1: 781 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 782 return; 783 case IIT_I8: 784 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 785 return; 786 case IIT_I16: 787 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 788 return; 789 case IIT_I32: 790 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 791 return; 792 case IIT_I64: 793 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 794 return; 795 case IIT_I128: 796 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 797 return; 798 case IIT_V1: 799 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 800 DecodeIITType(NextElt, Infos, OutputTable); 801 return; 802 case IIT_V2: 803 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 804 DecodeIITType(NextElt, Infos, OutputTable); 805 return; 806 case IIT_V4: 807 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 808 DecodeIITType(NextElt, Infos, OutputTable); 809 return; 810 case IIT_V8: 811 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 812 DecodeIITType(NextElt, Infos, OutputTable); 813 return; 814 case IIT_V16: 815 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 816 DecodeIITType(NextElt, Infos, OutputTable); 817 return; 818 case IIT_V32: 819 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 820 DecodeIITType(NextElt, Infos, OutputTable); 821 return; 822 case IIT_V64: 823 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 824 DecodeIITType(NextElt, Infos, OutputTable); 825 return; 826 case IIT_V128: 827 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 128)); 828 DecodeIITType(NextElt, Infos, OutputTable); 829 return; 830 case IIT_V512: 831 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 832 DecodeIITType(NextElt, Infos, OutputTable); 833 return; 834 case IIT_V1024: 835 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 836 DecodeIITType(NextElt, Infos, OutputTable); 837 return; 838 case IIT_PTR: 839 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 840 DecodeIITType(NextElt, Infos, OutputTable); 841 return; 842 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 843 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 844 Infos[NextElt++])); 845 DecodeIITType(NextElt, Infos, OutputTable); 846 return; 847 } 848 case IIT_ARG: { 849 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 850 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 851 return; 852 } 853 case IIT_EXTEND_ARG: { 854 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 855 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 856 ArgInfo)); 857 return; 858 } 859 case IIT_TRUNC_ARG: { 860 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 861 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 862 ArgInfo)); 863 return; 864 } 865 case IIT_HALF_VEC_ARG: { 866 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 867 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 868 ArgInfo)); 869 return; 870 } 871 case IIT_SAME_VEC_WIDTH_ARG: { 872 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 873 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 874 ArgInfo)); 875 return; 876 } 877 case IIT_PTR_TO_ARG: { 878 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 879 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 880 ArgInfo)); 881 return; 882 } 883 case IIT_PTR_TO_ELT: { 884 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 885 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 886 return; 887 } 888 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 889 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 890 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 891 OutputTable.push_back( 892 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 893 return; 894 } 895 case IIT_EMPTYSTRUCT: 896 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 897 return; 898 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 899 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 900 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 901 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 902 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 903 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 904 case IIT_STRUCT2: { 905 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 906 907 for (unsigned i = 0; i != StructElts; ++i) 908 DecodeIITType(NextElt, Infos, OutputTable); 909 return; 910 } 911 case IIT_SUBDIVIDE2_ARG: { 912 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 913 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 914 ArgInfo)); 915 return; 916 } 917 case IIT_SUBDIVIDE4_ARG: { 918 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 919 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 920 ArgInfo)); 921 return; 922 } 923 case IIT_VEC_ELEMENT: { 924 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 925 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 926 ArgInfo)); 927 return; 928 } 929 case IIT_SCALABLE_VEC: { 930 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument, 931 0)); 932 DecodeIITType(NextElt, Infos, OutputTable); 933 return; 934 } 935 case IIT_VEC_OF_BITCASTS_TO_INT: { 936 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 937 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 938 ArgInfo)); 939 return; 940 } 941 } 942 llvm_unreachable("unhandled"); 943 } 944 945 #define GET_INTRINSIC_GENERATOR_GLOBAL 946 #include "llvm/IR/IntrinsicImpl.inc" 947 #undef GET_INTRINSIC_GENERATOR_GLOBAL 948 949 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 950 SmallVectorImpl<IITDescriptor> &T){ 951 // Check to see if the intrinsic's type was expressible by the table. 952 unsigned TableVal = IIT_Table[id-1]; 953 954 // Decode the TableVal into an array of IITValues. 955 SmallVector<unsigned char, 8> IITValues; 956 ArrayRef<unsigned char> IITEntries; 957 unsigned NextElt = 0; 958 if ((TableVal >> 31) != 0) { 959 // This is an offset into the IIT_LongEncodingTable. 960 IITEntries = IIT_LongEncodingTable; 961 962 // Strip sentinel bit. 963 NextElt = (TableVal << 1) >> 1; 964 } else { 965 // Decode the TableVal into an array of IITValues. If the entry was encoded 966 // into a single word in the table itself, decode it now. 967 do { 968 IITValues.push_back(TableVal & 0xF); 969 TableVal >>= 4; 970 } while (TableVal); 971 972 IITEntries = IITValues; 973 NextElt = 0; 974 } 975 976 // Okay, decode the table into the output vector of IITDescriptors. 977 DecodeIITType(NextElt, IITEntries, T); 978 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 979 DecodeIITType(NextElt, IITEntries, T); 980 } 981 982 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 983 ArrayRef<Type*> Tys, LLVMContext &Context) { 984 using namespace Intrinsic; 985 986 IITDescriptor D = Infos.front(); 987 Infos = Infos.slice(1); 988 989 switch (D.Kind) { 990 case IITDescriptor::Void: return Type::getVoidTy(Context); 991 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 992 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 993 case IITDescriptor::Token: return Type::getTokenTy(Context); 994 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 995 case IITDescriptor::Half: return Type::getHalfTy(Context); 996 case IITDescriptor::Float: return Type::getFloatTy(Context); 997 case IITDescriptor::Double: return Type::getDoubleTy(Context); 998 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 999 1000 case IITDescriptor::Integer: 1001 return IntegerType::get(Context, D.Integer_Width); 1002 case IITDescriptor::Vector: 1003 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 1004 case IITDescriptor::Pointer: 1005 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1006 D.Pointer_AddressSpace); 1007 case IITDescriptor::Struct: { 1008 SmallVector<Type *, 8> Elts; 1009 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1010 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1011 return StructType::get(Context, Elts); 1012 } 1013 case IITDescriptor::Argument: 1014 return Tys[D.getArgumentNumber()]; 1015 case IITDescriptor::ExtendArgument: { 1016 Type *Ty = Tys[D.getArgumentNumber()]; 1017 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1018 return VectorType::getExtendedElementVectorType(VTy); 1019 1020 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1021 } 1022 case IITDescriptor::TruncArgument: { 1023 Type *Ty = Tys[D.getArgumentNumber()]; 1024 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1025 return VectorType::getTruncatedElementVectorType(VTy); 1026 1027 IntegerType *ITy = cast<IntegerType>(Ty); 1028 assert(ITy->getBitWidth() % 2 == 0); 1029 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1030 } 1031 case IITDescriptor::Subdivide2Argument: 1032 case IITDescriptor::Subdivide4Argument: { 1033 Type *Ty = Tys[D.getArgumentNumber()]; 1034 VectorType *VTy = dyn_cast<VectorType>(Ty); 1035 assert(VTy && "Expected an argument of Vector Type"); 1036 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1037 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1038 } 1039 case IITDescriptor::HalfVecArgument: 1040 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1041 Tys[D.getArgumentNumber()])); 1042 case IITDescriptor::SameVecWidthArgument: { 1043 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1044 Type *Ty = Tys[D.getArgumentNumber()]; 1045 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1046 return VectorType::get(EltTy, VTy->getElementCount()); 1047 return EltTy; 1048 } 1049 case IITDescriptor::PtrToArgument: { 1050 Type *Ty = Tys[D.getArgumentNumber()]; 1051 return PointerType::getUnqual(Ty); 1052 } 1053 case IITDescriptor::PtrToElt: { 1054 Type *Ty = Tys[D.getArgumentNumber()]; 1055 VectorType *VTy = dyn_cast<VectorType>(Ty); 1056 if (!VTy) 1057 llvm_unreachable("Expected an argument of Vector Type"); 1058 Type *EltTy = VTy->getElementType(); 1059 return PointerType::getUnqual(EltTy); 1060 } 1061 case IITDescriptor::VecElementArgument: { 1062 Type *Ty = Tys[D.getArgumentNumber()]; 1063 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1064 return VTy->getElementType(); 1065 llvm_unreachable("Expected an argument of Vector Type"); 1066 } 1067 case IITDescriptor::VecOfBitcastsToInt: { 1068 Type *Ty = Tys[D.getArgumentNumber()]; 1069 VectorType *VTy = dyn_cast<VectorType>(Ty); 1070 assert(VTy && "Expected an argument of Vector Type"); 1071 return VectorType::getInteger(VTy); 1072 } 1073 case IITDescriptor::VecOfAnyPtrsToElt: 1074 // Return the overloaded type (which determines the pointers address space) 1075 return Tys[D.getOverloadArgNumber()]; 1076 case IITDescriptor::ScalableVecArgument: { 1077 auto *Ty = cast<VectorType>(DecodeFixedType(Infos, Tys, Context)); 1078 return VectorType::get(Ty->getElementType(), {Ty->getNumElements(), true}); 1079 } 1080 } 1081 llvm_unreachable("unhandled"); 1082 } 1083 1084 FunctionType *Intrinsic::getType(LLVMContext &Context, 1085 ID id, ArrayRef<Type*> Tys) { 1086 SmallVector<IITDescriptor, 8> Table; 1087 getIntrinsicInfoTableEntries(id, Table); 1088 1089 ArrayRef<IITDescriptor> TableRef = Table; 1090 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1091 1092 SmallVector<Type*, 8> ArgTys; 1093 while (!TableRef.empty()) 1094 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1095 1096 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1097 // If we see void type as the type of the last argument, it is vararg intrinsic 1098 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1099 ArgTys.pop_back(); 1100 return FunctionType::get(ResultTy, ArgTys, true); 1101 } 1102 return FunctionType::get(ResultTy, ArgTys, false); 1103 } 1104 1105 bool Intrinsic::isOverloaded(ID id) { 1106 #define GET_INTRINSIC_OVERLOAD_TABLE 1107 #include "llvm/IR/IntrinsicImpl.inc" 1108 #undef GET_INTRINSIC_OVERLOAD_TABLE 1109 } 1110 1111 bool Intrinsic::isLeaf(ID id) { 1112 switch (id) { 1113 default: 1114 return true; 1115 1116 case Intrinsic::experimental_gc_statepoint: 1117 case Intrinsic::experimental_patchpoint_void: 1118 case Intrinsic::experimental_patchpoint_i64: 1119 return false; 1120 } 1121 } 1122 1123 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1124 #define GET_INTRINSIC_ATTRIBUTES 1125 #include "llvm/IR/IntrinsicImpl.inc" 1126 #undef GET_INTRINSIC_ATTRIBUTES 1127 1128 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1129 // There can never be multiple globals with the same name of different types, 1130 // because intrinsics must be a specific type. 1131 return cast<Function>( 1132 M->getOrInsertFunction(getName(id, Tys), 1133 getType(M->getContext(), id, Tys)) 1134 .getCallee()); 1135 } 1136 1137 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1138 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1139 #include "llvm/IR/IntrinsicImpl.inc" 1140 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1141 1142 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1143 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1144 #include "llvm/IR/IntrinsicImpl.inc" 1145 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1146 1147 using DeferredIntrinsicMatchPair = 1148 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1149 1150 static bool matchIntrinsicType( 1151 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1152 SmallVectorImpl<Type *> &ArgTys, 1153 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1154 bool IsDeferredCheck) { 1155 using namespace Intrinsic; 1156 1157 // If we ran out of descriptors, there are too many arguments. 1158 if (Infos.empty()) return true; 1159 1160 // Do this before slicing off the 'front' part 1161 auto InfosRef = Infos; 1162 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1163 DeferredChecks.emplace_back(T, InfosRef); 1164 return false; 1165 }; 1166 1167 IITDescriptor D = Infos.front(); 1168 Infos = Infos.slice(1); 1169 1170 switch (D.Kind) { 1171 case IITDescriptor::Void: return !Ty->isVoidTy(); 1172 case IITDescriptor::VarArg: return true; 1173 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1174 case IITDescriptor::Token: return !Ty->isTokenTy(); 1175 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1176 case IITDescriptor::Half: return !Ty->isHalfTy(); 1177 case IITDescriptor::Float: return !Ty->isFloatTy(); 1178 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1179 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1180 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1181 case IITDescriptor::Vector: { 1182 VectorType *VT = dyn_cast<VectorType>(Ty); 1183 return !VT || VT->getNumElements() != D.Vector_Width || 1184 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1185 DeferredChecks, IsDeferredCheck); 1186 } 1187 case IITDescriptor::Pointer: { 1188 PointerType *PT = dyn_cast<PointerType>(Ty); 1189 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1190 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1191 DeferredChecks, IsDeferredCheck); 1192 } 1193 1194 case IITDescriptor::Struct: { 1195 StructType *ST = dyn_cast<StructType>(Ty); 1196 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1197 return true; 1198 1199 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1200 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1201 DeferredChecks, IsDeferredCheck)) 1202 return true; 1203 return false; 1204 } 1205 1206 case IITDescriptor::Argument: 1207 // If this is the second occurrence of an argument, 1208 // verify that the later instance matches the previous instance. 1209 if (D.getArgumentNumber() < ArgTys.size()) 1210 return Ty != ArgTys[D.getArgumentNumber()]; 1211 1212 if (D.getArgumentNumber() > ArgTys.size() || 1213 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1214 return IsDeferredCheck || DeferCheck(Ty); 1215 1216 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1217 "Table consistency error"); 1218 ArgTys.push_back(Ty); 1219 1220 switch (D.getArgumentKind()) { 1221 case IITDescriptor::AK_Any: return false; // Success 1222 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1223 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1224 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1225 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1226 default: break; 1227 } 1228 llvm_unreachable("all argument kinds not covered"); 1229 1230 case IITDescriptor::ExtendArgument: { 1231 // If this is a forward reference, defer the check for later. 1232 if (D.getArgumentNumber() >= ArgTys.size()) 1233 return IsDeferredCheck || DeferCheck(Ty); 1234 1235 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1236 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1237 NewTy = VectorType::getExtendedElementVectorType(VTy); 1238 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1239 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1240 else 1241 return true; 1242 1243 return Ty != NewTy; 1244 } 1245 case IITDescriptor::TruncArgument: { 1246 // If this is a forward reference, defer the check for later. 1247 if (D.getArgumentNumber() >= ArgTys.size()) 1248 return IsDeferredCheck || DeferCheck(Ty); 1249 1250 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1251 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1252 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1253 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1254 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1255 else 1256 return true; 1257 1258 return Ty != NewTy; 1259 } 1260 case IITDescriptor::HalfVecArgument: 1261 // If this is a forward reference, defer the check for later. 1262 if (D.getArgumentNumber() >= ArgTys.size()) 1263 return IsDeferredCheck || DeferCheck(Ty); 1264 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1265 VectorType::getHalfElementsVectorType( 1266 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1267 case IITDescriptor::SameVecWidthArgument: { 1268 if (D.getArgumentNumber() >= ArgTys.size()) { 1269 // Defer check and subsequent check for the vector element type. 1270 Infos = Infos.slice(1); 1271 return IsDeferredCheck || DeferCheck(Ty); 1272 } 1273 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1274 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1275 // Both must be vectors of the same number of elements or neither. 1276 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1277 return true; 1278 Type *EltTy = Ty; 1279 if (ThisArgType) { 1280 if (ReferenceType->getElementCount() != 1281 ThisArgType->getElementCount()) 1282 return true; 1283 EltTy = ThisArgType->getElementType(); 1284 } 1285 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1286 IsDeferredCheck); 1287 } 1288 case IITDescriptor::PtrToArgument: { 1289 if (D.getArgumentNumber() >= ArgTys.size()) 1290 return IsDeferredCheck || DeferCheck(Ty); 1291 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1292 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1293 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1294 } 1295 case IITDescriptor::PtrToElt: { 1296 if (D.getArgumentNumber() >= ArgTys.size()) 1297 return IsDeferredCheck || DeferCheck(Ty); 1298 VectorType * ReferenceType = 1299 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1300 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1301 1302 return (!ThisArgType || !ReferenceType || 1303 ThisArgType->getElementType() != ReferenceType->getElementType()); 1304 } 1305 case IITDescriptor::VecOfAnyPtrsToElt: { 1306 unsigned RefArgNumber = D.getRefArgNumber(); 1307 if (RefArgNumber >= ArgTys.size()) { 1308 if (IsDeferredCheck) 1309 return true; 1310 // If forward referencing, already add the pointer-vector type and 1311 // defer the checks for later. 1312 ArgTys.push_back(Ty); 1313 return DeferCheck(Ty); 1314 } 1315 1316 if (!IsDeferredCheck){ 1317 assert(D.getOverloadArgNumber() == ArgTys.size() && 1318 "Table consistency error"); 1319 ArgTys.push_back(Ty); 1320 } 1321 1322 // Verify the overloaded type "matches" the Ref type. 1323 // i.e. Ty is a vector with the same width as Ref. 1324 // Composed of pointers to the same element type as Ref. 1325 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1326 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1327 if (!ThisArgVecTy || !ReferenceType || 1328 (ReferenceType->getNumElements() != ThisArgVecTy->getNumElements())) 1329 return true; 1330 PointerType *ThisArgEltTy = 1331 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1332 if (!ThisArgEltTy) 1333 return true; 1334 return ThisArgEltTy->getElementType() != ReferenceType->getElementType(); 1335 } 1336 case IITDescriptor::VecElementArgument: { 1337 if (D.getArgumentNumber() >= ArgTys.size()) 1338 return IsDeferredCheck ? true : DeferCheck(Ty); 1339 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1340 return !ReferenceType || Ty != ReferenceType->getElementType(); 1341 } 1342 case IITDescriptor::Subdivide2Argument: 1343 case IITDescriptor::Subdivide4Argument: { 1344 // If this is a forward reference, defer the check for later. 1345 if (D.getArgumentNumber() >= ArgTys.size()) 1346 return IsDeferredCheck || DeferCheck(Ty); 1347 1348 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1349 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1350 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1351 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1352 return Ty != NewTy; 1353 } 1354 return true; 1355 } 1356 case IITDescriptor::ScalableVecArgument: { 1357 if (!isa<ScalableVectorType>(Ty)) 1358 return true; 1359 return matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, 1360 IsDeferredCheck); 1361 } 1362 case IITDescriptor::VecOfBitcastsToInt: { 1363 if (D.getArgumentNumber() >= ArgTys.size()) 1364 return IsDeferredCheck || DeferCheck(Ty); 1365 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1366 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1367 if (!ThisArgVecTy || !ReferenceType) 1368 return true; 1369 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1370 } 1371 } 1372 llvm_unreachable("unhandled"); 1373 } 1374 1375 Intrinsic::MatchIntrinsicTypesResult 1376 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1377 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1378 SmallVectorImpl<Type *> &ArgTys) { 1379 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1380 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1381 false)) 1382 return MatchIntrinsicTypes_NoMatchRet; 1383 1384 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1385 1386 for (auto Ty : FTy->params()) 1387 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1388 return MatchIntrinsicTypes_NoMatchArg; 1389 1390 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1391 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1392 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1393 true)) 1394 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1395 : MatchIntrinsicTypes_NoMatchArg; 1396 } 1397 1398 return MatchIntrinsicTypes_Match; 1399 } 1400 1401 bool 1402 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1403 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1404 // If there are no descriptors left, then it can't be a vararg. 1405 if (Infos.empty()) 1406 return isVarArg; 1407 1408 // There should be only one descriptor remaining at this point. 1409 if (Infos.size() != 1) 1410 return true; 1411 1412 // Check and verify the descriptor. 1413 IITDescriptor D = Infos.front(); 1414 Infos = Infos.slice(1); 1415 if (D.Kind == IITDescriptor::VarArg) 1416 return !isVarArg; 1417 1418 return true; 1419 } 1420 1421 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1422 Intrinsic::ID ID = F->getIntrinsicID(); 1423 if (!ID) 1424 return None; 1425 1426 FunctionType *FTy = F->getFunctionType(); 1427 // Accumulate an array of overloaded types for the given intrinsic 1428 SmallVector<Type *, 4> ArgTys; 1429 { 1430 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1431 getIntrinsicInfoTableEntries(ID, Table); 1432 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1433 1434 if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys)) 1435 return None; 1436 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1437 return None; 1438 } 1439 1440 StringRef Name = F->getName(); 1441 if (Name == Intrinsic::getName(ID, ArgTys)) 1442 return None; 1443 1444 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1445 NewDecl->setCallingConv(F->getCallingConv()); 1446 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1447 return NewDecl; 1448 } 1449 1450 /// hasAddressTaken - returns true if there are any uses of this function 1451 /// other than direct calls or invokes to it. 1452 bool Function::hasAddressTaken(const User* *PutOffender) const { 1453 for (const Use &U : uses()) { 1454 const User *FU = U.getUser(); 1455 if (isa<BlockAddress>(FU)) 1456 continue; 1457 const auto *Call = dyn_cast<CallBase>(FU); 1458 if (!Call) { 1459 if (PutOffender) 1460 *PutOffender = FU; 1461 return true; 1462 } 1463 if (!Call->isCallee(&U)) { 1464 if (PutOffender) 1465 *PutOffender = FU; 1466 return true; 1467 } 1468 } 1469 return false; 1470 } 1471 1472 bool Function::isDefTriviallyDead() const { 1473 // Check the linkage 1474 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1475 !hasAvailableExternallyLinkage()) 1476 return false; 1477 1478 // Check if the function is used by anything other than a blockaddress. 1479 for (const User *U : users()) 1480 if (!isa<BlockAddress>(U)) 1481 return false; 1482 1483 return true; 1484 } 1485 1486 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1487 /// setjmp or other function that gcc recognizes as "returning twice". 1488 bool Function::callsFunctionThatReturnsTwice() const { 1489 for (const Instruction &I : instructions(this)) 1490 if (const auto *Call = dyn_cast<CallBase>(&I)) 1491 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1492 return true; 1493 1494 return false; 1495 } 1496 1497 Constant *Function::getPersonalityFn() const { 1498 assert(hasPersonalityFn() && getNumOperands()); 1499 return cast<Constant>(Op<0>()); 1500 } 1501 1502 void Function::setPersonalityFn(Constant *Fn) { 1503 setHungoffOperand<0>(Fn); 1504 setValueSubclassDataBit(3, Fn != nullptr); 1505 } 1506 1507 Constant *Function::getPrefixData() const { 1508 assert(hasPrefixData() && getNumOperands()); 1509 return cast<Constant>(Op<1>()); 1510 } 1511 1512 void Function::setPrefixData(Constant *PrefixData) { 1513 setHungoffOperand<1>(PrefixData); 1514 setValueSubclassDataBit(1, PrefixData != nullptr); 1515 } 1516 1517 Constant *Function::getPrologueData() const { 1518 assert(hasPrologueData() && getNumOperands()); 1519 return cast<Constant>(Op<2>()); 1520 } 1521 1522 void Function::setPrologueData(Constant *PrologueData) { 1523 setHungoffOperand<2>(PrologueData); 1524 setValueSubclassDataBit(2, PrologueData != nullptr); 1525 } 1526 1527 void Function::allocHungoffUselist() { 1528 // If we've already allocated a uselist, stop here. 1529 if (getNumOperands()) 1530 return; 1531 1532 allocHungoffUses(3, /*IsPhi=*/ false); 1533 setNumHungOffUseOperands(3); 1534 1535 // Initialize the uselist with placeholder operands to allow traversal. 1536 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1537 Op<0>().set(CPN); 1538 Op<1>().set(CPN); 1539 Op<2>().set(CPN); 1540 } 1541 1542 template <int Idx> 1543 void Function::setHungoffOperand(Constant *C) { 1544 if (C) { 1545 allocHungoffUselist(); 1546 Op<Idx>().set(C); 1547 } else if (getNumOperands()) { 1548 Op<Idx>().set( 1549 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1550 } 1551 } 1552 1553 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1554 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1555 if (On) 1556 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1557 else 1558 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1559 } 1560 1561 void Function::setEntryCount(ProfileCount Count, 1562 const DenseSet<GlobalValue::GUID> *S) { 1563 assert(Count.hasValue()); 1564 #if !defined(NDEBUG) 1565 auto PrevCount = getEntryCount(); 1566 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1567 #endif 1568 1569 auto ImportGUIDs = getImportGUIDs(); 1570 if (S == nullptr && ImportGUIDs.size()) 1571 S = &ImportGUIDs; 1572 1573 MDBuilder MDB(getContext()); 1574 setMetadata( 1575 LLVMContext::MD_prof, 1576 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1577 } 1578 1579 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1580 const DenseSet<GlobalValue::GUID> *Imports) { 1581 setEntryCount(ProfileCount(Count, Type), Imports); 1582 } 1583 1584 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1585 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1586 if (MD && MD->getOperand(0)) 1587 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1588 if (MDS->getString().equals("function_entry_count")) { 1589 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1590 uint64_t Count = CI->getValue().getZExtValue(); 1591 // A value of -1 is used for SamplePGO when there were no samples. 1592 // Treat this the same as unknown. 1593 if (Count == (uint64_t)-1) 1594 return ProfileCount::getInvalid(); 1595 return ProfileCount(Count, PCT_Real); 1596 } else if (AllowSynthetic && 1597 MDS->getString().equals("synthetic_function_entry_count")) { 1598 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1599 uint64_t Count = CI->getValue().getZExtValue(); 1600 return ProfileCount(Count, PCT_Synthetic); 1601 } 1602 } 1603 return ProfileCount::getInvalid(); 1604 } 1605 1606 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1607 DenseSet<GlobalValue::GUID> R; 1608 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1609 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1610 if (MDS->getString().equals("function_entry_count")) 1611 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1612 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1613 ->getValue() 1614 .getZExtValue()); 1615 return R; 1616 } 1617 1618 void Function::setSectionPrefix(StringRef Prefix) { 1619 MDBuilder MDB(getContext()); 1620 setMetadata(LLVMContext::MD_section_prefix, 1621 MDB.createFunctionSectionPrefix(Prefix)); 1622 } 1623 1624 Optional<StringRef> Function::getSectionPrefix() const { 1625 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1626 assert(cast<MDString>(MD->getOperand(0)) 1627 ->getString() 1628 .equals("function_section_prefix") && 1629 "Metadata not match"); 1630 return cast<MDString>(MD->getOperand(1))->getString(); 1631 } 1632 return None; 1633 } 1634 1635 bool Function::nullPointerIsDefined() const { 1636 return getFnAttribute("null-pointer-is-valid") 1637 .getValueAsString() 1638 .equals("true"); 1639 } 1640 1641 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1642 if (F && F->nullPointerIsDefined()) 1643 return true; 1644 1645 if (AS != 0) 1646 return true; 1647 1648 return false; 1649 } 1650