1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/IntrinsicInst.h" 33 #include "llvm/IR/Intrinsics.h" 34 #include "llvm/IR/IntrinsicsAArch64.h" 35 #include "llvm/IR/IntrinsicsAMDGPU.h" 36 #include "llvm/IR/IntrinsicsARM.h" 37 #include "llvm/IR/IntrinsicsBPF.h" 38 #include "llvm/IR/IntrinsicsDirectX.h" 39 #include "llvm/IR/IntrinsicsHexagon.h" 40 #include "llvm/IR/IntrinsicsLoongArch.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsSPIRV.h" 48 #include "llvm/IR/IntrinsicsVE.h" 49 #include "llvm/IR/IntrinsicsWebAssembly.h" 50 #include "llvm/IR/IntrinsicsX86.h" 51 #include "llvm/IR/IntrinsicsXCore.h" 52 #include "llvm/IR/LLVMContext.h" 53 #include "llvm/IR/MDBuilder.h" 54 #include "llvm/IR/Metadata.h" 55 #include "llvm/IR/Module.h" 56 #include "llvm/IR/Operator.h" 57 #include "llvm/IR/SymbolTableListTraits.h" 58 #include "llvm/IR/Type.h" 59 #include "llvm/IR/Use.h" 60 #include "llvm/IR/User.h" 61 #include "llvm/IR/Value.h" 62 #include "llvm/IR/ValueSymbolTable.h" 63 #include "llvm/Support/Casting.h" 64 #include "llvm/Support/CommandLine.h" 65 #include "llvm/Support/Compiler.h" 66 #include "llvm/Support/ErrorHandling.h" 67 #include "llvm/Support/ModRef.h" 68 #include <cassert> 69 #include <cstddef> 70 #include <cstdint> 71 #include <cstring> 72 #include <string> 73 74 using namespace llvm; 75 using ProfileCount = Function::ProfileCount; 76 77 // Explicit instantiations of SymbolTableListTraits since some of the methods 78 // are not in the public header file... 79 template class llvm::SymbolTableListTraits<BasicBlock>; 80 81 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 82 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 83 cl::desc("Maximum size for the name of non-global values.")); 84 85 void Function::convertToNewDbgValues() { 86 IsNewDbgInfoFormat = true; 87 for (auto &BB : *this) { 88 BB.convertToNewDbgValues(); 89 } 90 } 91 92 void Function::convertFromNewDbgValues() { 93 IsNewDbgInfoFormat = false; 94 for (auto &BB : *this) { 95 BB.convertFromNewDbgValues(); 96 } 97 } 98 99 void Function::setIsNewDbgInfoFormat(bool NewFlag) { 100 if (NewFlag && !IsNewDbgInfoFormat) 101 convertToNewDbgValues(); 102 else if (!NewFlag && IsNewDbgInfoFormat) 103 convertFromNewDbgValues(); 104 } 105 106 //===----------------------------------------------------------------------===// 107 // Argument Implementation 108 //===----------------------------------------------------------------------===// 109 110 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 111 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 112 setName(Name); 113 } 114 115 void Argument::setParent(Function *parent) { 116 Parent = parent; 117 } 118 119 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 120 if (!getType()->isPointerTy()) return false; 121 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 122 (AllowUndefOrPoison || 123 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 124 return true; 125 else if (getDereferenceableBytes() > 0 && 126 !NullPointerIsDefined(getParent(), 127 getType()->getPointerAddressSpace())) 128 return true; 129 return false; 130 } 131 132 bool Argument::hasByValAttr() const { 133 if (!getType()->isPointerTy()) return false; 134 return hasAttribute(Attribute::ByVal); 135 } 136 137 bool Argument::hasByRefAttr() const { 138 if (!getType()->isPointerTy()) 139 return false; 140 return hasAttribute(Attribute::ByRef); 141 } 142 143 bool Argument::hasSwiftSelfAttr() const { 144 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 145 } 146 147 bool Argument::hasSwiftErrorAttr() const { 148 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 149 } 150 151 bool Argument::hasInAllocaAttr() const { 152 if (!getType()->isPointerTy()) return false; 153 return hasAttribute(Attribute::InAlloca); 154 } 155 156 bool Argument::hasPreallocatedAttr() const { 157 if (!getType()->isPointerTy()) 158 return false; 159 return hasAttribute(Attribute::Preallocated); 160 } 161 162 bool Argument::hasPassPointeeByValueCopyAttr() const { 163 if (!getType()->isPointerTy()) return false; 164 AttributeList Attrs = getParent()->getAttributes(); 165 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 166 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 167 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 168 } 169 170 bool Argument::hasPointeeInMemoryValueAttr() const { 171 if (!getType()->isPointerTy()) 172 return false; 173 AttributeList Attrs = getParent()->getAttributes(); 174 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 175 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 176 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 177 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 178 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 179 } 180 181 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 182 /// parameter type. 183 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 184 // FIXME: All the type carrying attributes are mutually exclusive, so there 185 // should be a single query to get the stored type that handles any of them. 186 if (Type *ByValTy = ParamAttrs.getByValType()) 187 return ByValTy; 188 if (Type *ByRefTy = ParamAttrs.getByRefType()) 189 return ByRefTy; 190 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 191 return PreAllocTy; 192 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 193 return InAllocaTy; 194 if (Type *SRetTy = ParamAttrs.getStructRetType()) 195 return SRetTy; 196 197 return nullptr; 198 } 199 200 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 201 AttributeSet ParamAttrs = 202 getParent()->getAttributes().getParamAttrs(getArgNo()); 203 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 204 return DL.getTypeAllocSize(MemTy); 205 return 0; 206 } 207 208 Type *Argument::getPointeeInMemoryValueType() const { 209 AttributeSet ParamAttrs = 210 getParent()->getAttributes().getParamAttrs(getArgNo()); 211 return getMemoryParamAllocType(ParamAttrs); 212 } 213 214 MaybeAlign Argument::getParamAlign() const { 215 assert(getType()->isPointerTy() && "Only pointers have alignments"); 216 return getParent()->getParamAlign(getArgNo()); 217 } 218 219 MaybeAlign Argument::getParamStackAlign() const { 220 return getParent()->getParamStackAlign(getArgNo()); 221 } 222 223 Type *Argument::getParamByValType() const { 224 assert(getType()->isPointerTy() && "Only pointers have byval types"); 225 return getParent()->getParamByValType(getArgNo()); 226 } 227 228 Type *Argument::getParamStructRetType() const { 229 assert(getType()->isPointerTy() && "Only pointers have sret types"); 230 return getParent()->getParamStructRetType(getArgNo()); 231 } 232 233 Type *Argument::getParamByRefType() const { 234 assert(getType()->isPointerTy() && "Only pointers have byref types"); 235 return getParent()->getParamByRefType(getArgNo()); 236 } 237 238 Type *Argument::getParamInAllocaType() const { 239 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 240 return getParent()->getParamInAllocaType(getArgNo()); 241 } 242 243 uint64_t Argument::getDereferenceableBytes() const { 244 assert(getType()->isPointerTy() && 245 "Only pointers have dereferenceable bytes"); 246 return getParent()->getParamDereferenceableBytes(getArgNo()); 247 } 248 249 uint64_t Argument::getDereferenceableOrNullBytes() const { 250 assert(getType()->isPointerTy() && 251 "Only pointers have dereferenceable bytes"); 252 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 253 } 254 255 FPClassTest Argument::getNoFPClass() const { 256 return getParent()->getParamNoFPClass(getArgNo()); 257 } 258 259 bool Argument::hasNestAttr() const { 260 if (!getType()->isPointerTy()) return false; 261 return hasAttribute(Attribute::Nest); 262 } 263 264 bool Argument::hasNoAliasAttr() const { 265 if (!getType()->isPointerTy()) return false; 266 return hasAttribute(Attribute::NoAlias); 267 } 268 269 bool Argument::hasNoCaptureAttr() const { 270 if (!getType()->isPointerTy()) return false; 271 return hasAttribute(Attribute::NoCapture); 272 } 273 274 bool Argument::hasNoFreeAttr() const { 275 if (!getType()->isPointerTy()) return false; 276 return hasAttribute(Attribute::NoFree); 277 } 278 279 bool Argument::hasStructRetAttr() const { 280 if (!getType()->isPointerTy()) return false; 281 return hasAttribute(Attribute::StructRet); 282 } 283 284 bool Argument::hasInRegAttr() const { 285 return hasAttribute(Attribute::InReg); 286 } 287 288 bool Argument::hasReturnedAttr() const { 289 return hasAttribute(Attribute::Returned); 290 } 291 292 bool Argument::hasZExtAttr() const { 293 return hasAttribute(Attribute::ZExt); 294 } 295 296 bool Argument::hasSExtAttr() const { 297 return hasAttribute(Attribute::SExt); 298 } 299 300 bool Argument::onlyReadsMemory() const { 301 AttributeList Attrs = getParent()->getAttributes(); 302 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 303 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 304 } 305 306 void Argument::addAttrs(AttrBuilder &B) { 307 AttributeList AL = getParent()->getAttributes(); 308 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 309 getParent()->setAttributes(AL); 310 } 311 312 void Argument::addAttr(Attribute::AttrKind Kind) { 313 getParent()->addParamAttr(getArgNo(), Kind); 314 } 315 316 void Argument::addAttr(Attribute Attr) { 317 getParent()->addParamAttr(getArgNo(), Attr); 318 } 319 320 void Argument::removeAttr(Attribute::AttrKind Kind) { 321 getParent()->removeParamAttr(getArgNo(), Kind); 322 } 323 324 void Argument::removeAttrs(const AttributeMask &AM) { 325 AttributeList AL = getParent()->getAttributes(); 326 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 327 getParent()->setAttributes(AL); 328 } 329 330 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 331 return getParent()->hasParamAttribute(getArgNo(), Kind); 332 } 333 334 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 335 return getParent()->getParamAttribute(getArgNo(), Kind); 336 } 337 338 //===----------------------------------------------------------------------===// 339 // Helper Methods in Function 340 //===----------------------------------------------------------------------===// 341 342 LLVMContext &Function::getContext() const { 343 return getType()->getContext(); 344 } 345 346 unsigned Function::getInstructionCount() const { 347 unsigned NumInstrs = 0; 348 for (const BasicBlock &BB : BasicBlocks) 349 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 350 BB.instructionsWithoutDebug().end()); 351 return NumInstrs; 352 } 353 354 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 355 const Twine &N, Module &M) { 356 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 357 } 358 359 Function *Function::createWithDefaultAttr(FunctionType *Ty, 360 LinkageTypes Linkage, 361 unsigned AddrSpace, const Twine &N, 362 Module *M) { 363 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 364 AttrBuilder B(F->getContext()); 365 UWTableKind UWTable = M->getUwtable(); 366 if (UWTable != UWTableKind::None) 367 B.addUWTableAttr(UWTable); 368 switch (M->getFramePointer()) { 369 case FramePointerKind::None: 370 // 0 ("none") is the default. 371 break; 372 case FramePointerKind::NonLeaf: 373 B.addAttribute("frame-pointer", "non-leaf"); 374 break; 375 case FramePointerKind::All: 376 B.addAttribute("frame-pointer", "all"); 377 break; 378 } 379 if (M->getModuleFlag("function_return_thunk_extern")) 380 B.addAttribute(Attribute::FnRetThunkExtern); 381 F->addFnAttrs(B); 382 return F; 383 } 384 385 void Function::removeFromParent() { 386 getParent()->getFunctionList().remove(getIterator()); 387 } 388 389 void Function::eraseFromParent() { 390 getParent()->getFunctionList().erase(getIterator()); 391 } 392 393 void Function::splice(Function::iterator ToIt, Function *FromF, 394 Function::iterator FromBeginIt, 395 Function::iterator FromEndIt) { 396 #ifdef EXPENSIVE_CHECKS 397 // Check that FromBeginIt is before FromEndIt. 398 auto FromFEnd = FromF->end(); 399 for (auto It = FromBeginIt; It != FromEndIt; ++It) 400 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 401 #endif // EXPENSIVE_CHECKS 402 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 403 } 404 405 Function::iterator Function::erase(Function::iterator FromIt, 406 Function::iterator ToIt) { 407 return BasicBlocks.erase(FromIt, ToIt); 408 } 409 410 //===----------------------------------------------------------------------===// 411 // Function Implementation 412 //===----------------------------------------------------------------------===// 413 414 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 415 // If AS == -1 and we are passed a valid module pointer we place the function 416 // in the program address space. Otherwise we default to AS0. 417 if (AddrSpace == static_cast<unsigned>(-1)) 418 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 419 return AddrSpace; 420 } 421 422 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 423 const Twine &name, Module *ParentModule) 424 : GlobalObject(Ty, Value::FunctionVal, 425 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 426 computeAddrSpace(AddrSpace, ParentModule)), 427 NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(false) { 428 assert(FunctionType::isValidReturnType(getReturnType()) && 429 "invalid return type"); 430 setGlobalObjectSubClassData(0); 431 432 // We only need a symbol table for a function if the context keeps value names 433 if (!getContext().shouldDiscardValueNames()) 434 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 435 436 // If the function has arguments, mark them as lazily built. 437 if (Ty->getNumParams()) 438 setValueSubclassData(1); // Set the "has lazy arguments" bit. 439 440 if (ParentModule) { 441 ParentModule->getFunctionList().push_back(this); 442 IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat; 443 } 444 445 HasLLVMReservedName = getName().starts_with("llvm."); 446 // Ensure intrinsics have the right parameter attributes. 447 // Note, the IntID field will have been set in Value::setName if this function 448 // name is a valid intrinsic ID. 449 if (IntID) 450 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 451 } 452 453 Function::~Function() { 454 dropAllReferences(); // After this it is safe to delete instructions. 455 456 // Delete all of the method arguments and unlink from symbol table... 457 if (Arguments) 458 clearArguments(); 459 460 // Remove the function from the on-the-side GC table. 461 clearGC(); 462 } 463 464 void Function::BuildLazyArguments() const { 465 // Create the arguments vector, all arguments start out unnamed. 466 auto *FT = getFunctionType(); 467 if (NumArgs > 0) { 468 Arguments = std::allocator<Argument>().allocate(NumArgs); 469 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 470 Type *ArgTy = FT->getParamType(i); 471 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 472 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 473 } 474 } 475 476 // Clear the lazy arguments bit. 477 unsigned SDC = getSubclassDataFromValue(); 478 SDC &= ~(1 << 0); 479 const_cast<Function*>(this)->setValueSubclassData(SDC); 480 assert(!hasLazyArguments()); 481 } 482 483 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 484 return MutableArrayRef<Argument>(Args, Count); 485 } 486 487 bool Function::isConstrainedFPIntrinsic() const { 488 switch (getIntrinsicID()) { 489 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 490 case Intrinsic::INTRINSIC: 491 #include "llvm/IR/ConstrainedOps.def" 492 return true; 493 #undef INSTRUCTION 494 default: 495 return false; 496 } 497 } 498 499 void Function::clearArguments() { 500 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 501 A.setName(""); 502 A.~Argument(); 503 } 504 std::allocator<Argument>().deallocate(Arguments, NumArgs); 505 Arguments = nullptr; 506 } 507 508 void Function::stealArgumentListFrom(Function &Src) { 509 assert(isDeclaration() && "Expected no references to current arguments"); 510 511 // Drop the current arguments, if any, and set the lazy argument bit. 512 if (!hasLazyArguments()) { 513 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 514 [](const Argument &A) { return A.use_empty(); }) && 515 "Expected arguments to be unused in declaration"); 516 clearArguments(); 517 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 518 } 519 520 // Nothing to steal if Src has lazy arguments. 521 if (Src.hasLazyArguments()) 522 return; 523 524 // Steal arguments from Src, and fix the lazy argument bits. 525 assert(arg_size() == Src.arg_size()); 526 Arguments = Src.Arguments; 527 Src.Arguments = nullptr; 528 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 529 // FIXME: This does the work of transferNodesFromList inefficiently. 530 SmallString<128> Name; 531 if (A.hasName()) 532 Name = A.getName(); 533 if (!Name.empty()) 534 A.setName(""); 535 A.setParent(this); 536 if (!Name.empty()) 537 A.setName(Name); 538 } 539 540 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 541 assert(!hasLazyArguments()); 542 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 543 } 544 545 void Function::deleteBodyImpl(bool ShouldDrop) { 546 setIsMaterializable(false); 547 548 for (BasicBlock &BB : *this) 549 BB.dropAllReferences(); 550 551 // Delete all basic blocks. They are now unused, except possibly by 552 // blockaddresses, but BasicBlock's destructor takes care of those. 553 while (!BasicBlocks.empty()) 554 BasicBlocks.begin()->eraseFromParent(); 555 556 if (getNumOperands()) { 557 if (ShouldDrop) { 558 // Drop uses of any optional data (real or placeholder). 559 User::dropAllReferences(); 560 setNumHungOffUseOperands(0); 561 } else { 562 // The code needs to match Function::allocHungoffUselist(). 563 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 564 Op<0>().set(CPN); 565 Op<1>().set(CPN); 566 Op<2>().set(CPN); 567 } 568 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 569 } 570 571 // Metadata is stored in a side-table. 572 clearMetadata(); 573 } 574 575 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 576 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 577 } 578 579 void Function::addFnAttr(Attribute::AttrKind Kind) { 580 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 581 } 582 583 void Function::addFnAttr(StringRef Kind, StringRef Val) { 584 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 585 } 586 587 void Function::addFnAttr(Attribute Attr) { 588 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 589 } 590 591 void Function::addFnAttrs(const AttrBuilder &Attrs) { 592 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 593 } 594 595 void Function::addRetAttr(Attribute::AttrKind Kind) { 596 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 597 } 598 599 void Function::addRetAttr(Attribute Attr) { 600 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 601 } 602 603 void Function::addRetAttrs(const AttrBuilder &Attrs) { 604 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 605 } 606 607 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 608 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 609 } 610 611 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 612 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 613 } 614 615 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 616 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 617 } 618 619 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 620 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 621 } 622 623 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 624 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 625 } 626 627 void Function::removeFnAttr(Attribute::AttrKind Kind) { 628 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 629 } 630 631 void Function::removeFnAttr(StringRef Kind) { 632 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 633 } 634 635 void Function::removeFnAttrs(const AttributeMask &AM) { 636 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 637 } 638 639 void Function::removeRetAttr(Attribute::AttrKind Kind) { 640 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 641 } 642 643 void Function::removeRetAttr(StringRef Kind) { 644 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 645 } 646 647 void Function::removeRetAttrs(const AttributeMask &Attrs) { 648 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 649 } 650 651 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 652 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 653 } 654 655 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 656 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 657 } 658 659 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 660 AttributeSets = 661 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 662 } 663 664 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 665 AttributeSets = 666 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 667 } 668 669 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 670 return AttributeSets.hasFnAttr(Kind); 671 } 672 673 bool Function::hasFnAttribute(StringRef Kind) const { 674 return AttributeSets.hasFnAttr(Kind); 675 } 676 677 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 678 return AttributeSets.hasRetAttr(Kind); 679 } 680 681 bool Function::hasParamAttribute(unsigned ArgNo, 682 Attribute::AttrKind Kind) const { 683 return AttributeSets.hasParamAttr(ArgNo, Kind); 684 } 685 686 Attribute Function::getAttributeAtIndex(unsigned i, 687 Attribute::AttrKind Kind) const { 688 return AttributeSets.getAttributeAtIndex(i, Kind); 689 } 690 691 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 692 return AttributeSets.getAttributeAtIndex(i, Kind); 693 } 694 695 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 696 return AttributeSets.getFnAttr(Kind); 697 } 698 699 Attribute Function::getFnAttribute(StringRef Kind) const { 700 return AttributeSets.getFnAttr(Kind); 701 } 702 703 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 704 uint64_t Default) const { 705 Attribute A = getFnAttribute(Name); 706 uint64_t Result = Default; 707 if (A.isStringAttribute()) { 708 StringRef Str = A.getValueAsString(); 709 if (Str.getAsInteger(0, Result)) 710 getContext().emitError("cannot parse integer attribute " + Name); 711 } 712 713 return Result; 714 } 715 716 /// gets the specified attribute from the list of attributes. 717 Attribute Function::getParamAttribute(unsigned ArgNo, 718 Attribute::AttrKind Kind) const { 719 return AttributeSets.getParamAttr(ArgNo, Kind); 720 } 721 722 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 723 uint64_t Bytes) { 724 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 725 ArgNo, Bytes); 726 } 727 728 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 729 if (&FPType == &APFloat::IEEEsingle()) { 730 DenormalMode Mode = getDenormalModeF32Raw(); 731 // If the f32 variant of the attribute isn't specified, try to use the 732 // generic one. 733 if (Mode.isValid()) 734 return Mode; 735 } 736 737 return getDenormalModeRaw(); 738 } 739 740 DenormalMode Function::getDenormalModeRaw() const { 741 Attribute Attr = getFnAttribute("denormal-fp-math"); 742 StringRef Val = Attr.getValueAsString(); 743 return parseDenormalFPAttribute(Val); 744 } 745 746 DenormalMode Function::getDenormalModeF32Raw() const { 747 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 748 if (Attr.isValid()) { 749 StringRef Val = Attr.getValueAsString(); 750 return parseDenormalFPAttribute(Val); 751 } 752 753 return DenormalMode::getInvalid(); 754 } 755 756 const std::string &Function::getGC() const { 757 assert(hasGC() && "Function has no collector"); 758 return getContext().getGC(*this); 759 } 760 761 void Function::setGC(std::string Str) { 762 setValueSubclassDataBit(14, !Str.empty()); 763 getContext().setGC(*this, std::move(Str)); 764 } 765 766 void Function::clearGC() { 767 if (!hasGC()) 768 return; 769 getContext().deleteGC(*this); 770 setValueSubclassDataBit(14, false); 771 } 772 773 bool Function::hasStackProtectorFnAttr() const { 774 return hasFnAttribute(Attribute::StackProtect) || 775 hasFnAttribute(Attribute::StackProtectStrong) || 776 hasFnAttribute(Attribute::StackProtectReq); 777 } 778 779 /// Copy all additional attributes (those not needed to create a Function) from 780 /// the Function Src to this one. 781 void Function::copyAttributesFrom(const Function *Src) { 782 GlobalObject::copyAttributesFrom(Src); 783 setCallingConv(Src->getCallingConv()); 784 setAttributes(Src->getAttributes()); 785 if (Src->hasGC()) 786 setGC(Src->getGC()); 787 else 788 clearGC(); 789 if (Src->hasPersonalityFn()) 790 setPersonalityFn(Src->getPersonalityFn()); 791 if (Src->hasPrefixData()) 792 setPrefixData(Src->getPrefixData()); 793 if (Src->hasPrologueData()) 794 setPrologueData(Src->getPrologueData()); 795 } 796 797 MemoryEffects Function::getMemoryEffects() const { 798 return getAttributes().getMemoryEffects(); 799 } 800 void Function::setMemoryEffects(MemoryEffects ME) { 801 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 802 } 803 804 /// Determine if the function does not access memory. 805 bool Function::doesNotAccessMemory() const { 806 return getMemoryEffects().doesNotAccessMemory(); 807 } 808 void Function::setDoesNotAccessMemory() { 809 setMemoryEffects(MemoryEffects::none()); 810 } 811 812 /// Determine if the function does not access or only reads memory. 813 bool Function::onlyReadsMemory() const { 814 return getMemoryEffects().onlyReadsMemory(); 815 } 816 void Function::setOnlyReadsMemory() { 817 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 818 } 819 820 /// Determine if the function does not access or only writes memory. 821 bool Function::onlyWritesMemory() const { 822 return getMemoryEffects().onlyWritesMemory(); 823 } 824 void Function::setOnlyWritesMemory() { 825 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 826 } 827 828 /// Determine if the call can access memmory only using pointers based 829 /// on its arguments. 830 bool Function::onlyAccessesArgMemory() const { 831 return getMemoryEffects().onlyAccessesArgPointees(); 832 } 833 void Function::setOnlyAccessesArgMemory() { 834 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 835 } 836 837 /// Determine if the function may only access memory that is 838 /// inaccessible from the IR. 839 bool Function::onlyAccessesInaccessibleMemory() const { 840 return getMemoryEffects().onlyAccessesInaccessibleMem(); 841 } 842 void Function::setOnlyAccessesInaccessibleMemory() { 843 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 844 } 845 846 /// Determine if the function may only access memory that is 847 /// either inaccessible from the IR or pointed to by its arguments. 848 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 849 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 850 } 851 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 852 setMemoryEffects(getMemoryEffects() & 853 MemoryEffects::inaccessibleOrArgMemOnly()); 854 } 855 856 /// Table of string intrinsic names indexed by enum value. 857 static const char * const IntrinsicNameTable[] = { 858 "not_intrinsic", 859 #define GET_INTRINSIC_NAME_TABLE 860 #include "llvm/IR/IntrinsicImpl.inc" 861 #undef GET_INTRINSIC_NAME_TABLE 862 }; 863 864 /// Table of per-target intrinsic name tables. 865 #define GET_INTRINSIC_TARGET_DATA 866 #include "llvm/IR/IntrinsicImpl.inc" 867 #undef GET_INTRINSIC_TARGET_DATA 868 869 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 870 return IID > TargetInfos[0].Count; 871 } 872 873 bool Function::isTargetIntrinsic() const { 874 return isTargetIntrinsic(IntID); 875 } 876 877 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 878 /// target as \c Name, or the generic table if \c Name is not target specific. 879 /// 880 /// Returns the relevant slice of \c IntrinsicNameTable 881 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 882 assert(Name.starts_with("llvm.")); 883 884 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 885 // Drop "llvm." and take the first dotted component. That will be the target 886 // if this is target specific. 887 StringRef Target = Name.drop_front(5).split('.').first; 888 auto It = partition_point( 889 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 890 // We've either found the target or just fall back to the generic set, which 891 // is always first. 892 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 893 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 894 } 895 896 /// This does the actual lookup of an intrinsic ID which 897 /// matches the given function name. 898 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 899 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 900 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 901 if (Idx == -1) 902 return Intrinsic::not_intrinsic; 903 904 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 905 // an index into a sub-table. 906 int Adjust = NameTable.data() - IntrinsicNameTable; 907 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 908 909 // If the intrinsic is not overloaded, require an exact match. If it is 910 // overloaded, require either exact or prefix match. 911 const auto MatchSize = strlen(NameTable[Idx]); 912 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 913 bool IsExactMatch = Name.size() == MatchSize; 914 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 915 : Intrinsic::not_intrinsic; 916 } 917 918 void Function::updateAfterNameChange() { 919 LibFuncCache = UnknownLibFunc; 920 StringRef Name = getName(); 921 if (!Name.starts_with("llvm.")) { 922 HasLLVMReservedName = false; 923 IntID = Intrinsic::not_intrinsic; 924 return; 925 } 926 HasLLVMReservedName = true; 927 IntID = lookupIntrinsicID(Name); 928 } 929 930 /// Returns a stable mangling for the type specified for use in the name 931 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 932 /// of named types is simply their name. Manglings for unnamed types consist 933 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 934 /// combined with the mangling of their component types. A vararg function 935 /// type will have a suffix of 'vararg'. Since function types can contain 936 /// other function types, we close a function type mangling with suffix 'f' 937 /// which can't be confused with it's prefix. This ensures we don't have 938 /// collisions between two unrelated function types. Otherwise, you might 939 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 940 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 941 /// indicating that extra care must be taken to ensure a unique name. 942 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 943 std::string Result; 944 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 945 Result += "p" + utostr(PTyp->getAddressSpace()); 946 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 947 Result += "a" + utostr(ATyp->getNumElements()) + 948 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 949 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 950 if (!STyp->isLiteral()) { 951 Result += "s_"; 952 if (STyp->hasName()) 953 Result += STyp->getName(); 954 else 955 HasUnnamedType = true; 956 } else { 957 Result += "sl_"; 958 for (auto *Elem : STyp->elements()) 959 Result += getMangledTypeStr(Elem, HasUnnamedType); 960 } 961 // Ensure nested structs are distinguishable. 962 Result += "s"; 963 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 964 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 965 for (size_t i = 0; i < FT->getNumParams(); i++) 966 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 967 if (FT->isVarArg()) 968 Result += "vararg"; 969 // Ensure nested function types are distinguishable. 970 Result += "f"; 971 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 972 ElementCount EC = VTy->getElementCount(); 973 if (EC.isScalable()) 974 Result += "nx"; 975 Result += "v" + utostr(EC.getKnownMinValue()) + 976 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 977 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 978 Result += "t"; 979 Result += TETy->getName(); 980 for (Type *ParamTy : TETy->type_params()) 981 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 982 for (unsigned IntParam : TETy->int_params()) 983 Result += "_" + utostr(IntParam); 984 // Ensure nested target extension types are distinguishable. 985 Result += "t"; 986 } else if (Ty) { 987 switch (Ty->getTypeID()) { 988 default: llvm_unreachable("Unhandled type"); 989 case Type::VoidTyID: Result += "isVoid"; break; 990 case Type::MetadataTyID: Result += "Metadata"; break; 991 case Type::HalfTyID: Result += "f16"; break; 992 case Type::BFloatTyID: Result += "bf16"; break; 993 case Type::FloatTyID: Result += "f32"; break; 994 case Type::DoubleTyID: Result += "f64"; break; 995 case Type::X86_FP80TyID: Result += "f80"; break; 996 case Type::FP128TyID: Result += "f128"; break; 997 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 998 case Type::X86_MMXTyID: Result += "x86mmx"; break; 999 case Type::X86_AMXTyID: Result += "x86amx"; break; 1000 case Type::IntegerTyID: 1001 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 1002 break; 1003 } 1004 } 1005 return Result; 1006 } 1007 1008 StringRef Intrinsic::getBaseName(ID id) { 1009 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1010 return IntrinsicNameTable[id]; 1011 } 1012 1013 StringRef Intrinsic::getName(ID id) { 1014 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1015 assert(!Intrinsic::isOverloaded(id) && 1016 "This version of getName does not support overloading"); 1017 return getBaseName(id); 1018 } 1019 1020 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 1021 Module *M, FunctionType *FT, 1022 bool EarlyModuleCheck) { 1023 1024 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 1025 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 1026 "This version of getName is for overloaded intrinsics only"); 1027 (void)EarlyModuleCheck; 1028 assert((!EarlyModuleCheck || M || 1029 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 1030 "Intrinsic overloading on pointer types need to provide a Module"); 1031 bool HasUnnamedType = false; 1032 std::string Result(Intrinsic::getBaseName(Id)); 1033 for (Type *Ty : Tys) 1034 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1035 if (HasUnnamedType) { 1036 assert(M && "unnamed types need a module"); 1037 if (!FT) 1038 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1039 else 1040 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1041 "Provided FunctionType must match arguments"); 1042 return M->getUniqueIntrinsicName(Result, Id, FT); 1043 } 1044 return Result; 1045 } 1046 1047 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1048 FunctionType *FT) { 1049 assert(M && "We need to have a Module"); 1050 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1051 } 1052 1053 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1054 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1055 } 1056 1057 /// IIT_Info - These are enumerators that describe the entries returned by the 1058 /// getIntrinsicInfoTableEntries function. 1059 /// 1060 /// Defined in Intrinsics.td. 1061 enum IIT_Info { 1062 #define GET_INTRINSIC_IITINFO 1063 #include "llvm/IR/IntrinsicImpl.inc" 1064 #undef GET_INTRINSIC_IITINFO 1065 }; 1066 1067 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1068 IIT_Info LastInfo, 1069 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1070 using namespace Intrinsic; 1071 1072 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1073 1074 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1075 unsigned StructElts = 2; 1076 1077 switch (Info) { 1078 case IIT_Done: 1079 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1080 return; 1081 case IIT_VARARG: 1082 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1083 return; 1084 case IIT_MMX: 1085 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1086 return; 1087 case IIT_AMX: 1088 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1089 return; 1090 case IIT_TOKEN: 1091 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1092 return; 1093 case IIT_METADATA: 1094 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1095 return; 1096 case IIT_F16: 1097 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1098 return; 1099 case IIT_BF16: 1100 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1101 return; 1102 case IIT_F32: 1103 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1104 return; 1105 case IIT_F64: 1106 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1107 return; 1108 case IIT_F128: 1109 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1110 return; 1111 case IIT_PPCF128: 1112 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1113 return; 1114 case IIT_I1: 1115 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1116 return; 1117 case IIT_I2: 1118 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1119 return; 1120 case IIT_I4: 1121 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1122 return; 1123 case IIT_AARCH64_SVCOUNT: 1124 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0)); 1125 return; 1126 case IIT_I8: 1127 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1128 return; 1129 case IIT_I16: 1130 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1131 return; 1132 case IIT_I32: 1133 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1134 return; 1135 case IIT_I64: 1136 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1137 return; 1138 case IIT_I128: 1139 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1140 return; 1141 case IIT_V1: 1142 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1143 DecodeIITType(NextElt, Infos, Info, OutputTable); 1144 return; 1145 case IIT_V2: 1146 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1147 DecodeIITType(NextElt, Infos, Info, OutputTable); 1148 return; 1149 case IIT_V3: 1150 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1151 DecodeIITType(NextElt, Infos, Info, OutputTable); 1152 return; 1153 case IIT_V4: 1154 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1155 DecodeIITType(NextElt, Infos, Info, OutputTable); 1156 return; 1157 case IIT_V8: 1158 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1159 DecodeIITType(NextElt, Infos, Info, OutputTable); 1160 return; 1161 case IIT_V16: 1162 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1163 DecodeIITType(NextElt, Infos, Info, OutputTable); 1164 return; 1165 case IIT_V32: 1166 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1167 DecodeIITType(NextElt, Infos, Info, OutputTable); 1168 return; 1169 case IIT_V64: 1170 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1171 DecodeIITType(NextElt, Infos, Info, OutputTable); 1172 return; 1173 case IIT_V128: 1174 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1175 DecodeIITType(NextElt, Infos, Info, OutputTable); 1176 return; 1177 case IIT_V256: 1178 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1179 DecodeIITType(NextElt, Infos, Info, OutputTable); 1180 return; 1181 case IIT_V512: 1182 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1183 DecodeIITType(NextElt, Infos, Info, OutputTable); 1184 return; 1185 case IIT_V1024: 1186 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1187 DecodeIITType(NextElt, Infos, Info, OutputTable); 1188 return; 1189 case IIT_EXTERNREF: 1190 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1191 return; 1192 case IIT_FUNCREF: 1193 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1194 return; 1195 case IIT_PTR: 1196 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1197 return; 1198 case IIT_ANYPTR: // [ANYPTR addrspace] 1199 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1200 Infos[NextElt++])); 1201 return; 1202 case IIT_ARG: { 1203 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1204 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1205 return; 1206 } 1207 case IIT_EXTEND_ARG: { 1208 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1209 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1210 ArgInfo)); 1211 return; 1212 } 1213 case IIT_TRUNC_ARG: { 1214 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1215 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1216 ArgInfo)); 1217 return; 1218 } 1219 case IIT_HALF_VEC_ARG: { 1220 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1221 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1222 ArgInfo)); 1223 return; 1224 } 1225 case IIT_SAME_VEC_WIDTH_ARG: { 1226 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1227 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1228 ArgInfo)); 1229 return; 1230 } 1231 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1232 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1233 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1234 OutputTable.push_back( 1235 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1236 return; 1237 } 1238 case IIT_EMPTYSTRUCT: 1239 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1240 return; 1241 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1242 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1243 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1244 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1245 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1246 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1247 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1248 case IIT_STRUCT2: { 1249 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1250 1251 for (unsigned i = 0; i != StructElts; ++i) 1252 DecodeIITType(NextElt, Infos, Info, OutputTable); 1253 return; 1254 } 1255 case IIT_SUBDIVIDE2_ARG: { 1256 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1257 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1258 ArgInfo)); 1259 return; 1260 } 1261 case IIT_SUBDIVIDE4_ARG: { 1262 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1263 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1264 ArgInfo)); 1265 return; 1266 } 1267 case IIT_VEC_ELEMENT: { 1268 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1269 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1270 ArgInfo)); 1271 return; 1272 } 1273 case IIT_SCALABLE_VEC: { 1274 DecodeIITType(NextElt, Infos, Info, OutputTable); 1275 return; 1276 } 1277 case IIT_VEC_OF_BITCASTS_TO_INT: { 1278 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1279 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1280 ArgInfo)); 1281 return; 1282 } 1283 } 1284 llvm_unreachable("unhandled"); 1285 } 1286 1287 #define GET_INTRINSIC_GENERATOR_GLOBAL 1288 #include "llvm/IR/IntrinsicImpl.inc" 1289 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1290 1291 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1292 SmallVectorImpl<IITDescriptor> &T){ 1293 // Check to see if the intrinsic's type was expressible by the table. 1294 unsigned TableVal = IIT_Table[id-1]; 1295 1296 // Decode the TableVal into an array of IITValues. 1297 SmallVector<unsigned char, 8> IITValues; 1298 ArrayRef<unsigned char> IITEntries; 1299 unsigned NextElt = 0; 1300 if ((TableVal >> 31) != 0) { 1301 // This is an offset into the IIT_LongEncodingTable. 1302 IITEntries = IIT_LongEncodingTable; 1303 1304 // Strip sentinel bit. 1305 NextElt = (TableVal << 1) >> 1; 1306 } else { 1307 // Decode the TableVal into an array of IITValues. If the entry was encoded 1308 // into a single word in the table itself, decode it now. 1309 do { 1310 IITValues.push_back(TableVal & 0xF); 1311 TableVal >>= 4; 1312 } while (TableVal); 1313 1314 IITEntries = IITValues; 1315 NextElt = 0; 1316 } 1317 1318 // Okay, decode the table into the output vector of IITDescriptors. 1319 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1320 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1321 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1322 } 1323 1324 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1325 ArrayRef<Type*> Tys, LLVMContext &Context) { 1326 using namespace Intrinsic; 1327 1328 IITDescriptor D = Infos.front(); 1329 Infos = Infos.slice(1); 1330 1331 switch (D.Kind) { 1332 case IITDescriptor::Void: return Type::getVoidTy(Context); 1333 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1334 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1335 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1336 case IITDescriptor::Token: return Type::getTokenTy(Context); 1337 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1338 case IITDescriptor::Half: return Type::getHalfTy(Context); 1339 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1340 case IITDescriptor::Float: return Type::getFloatTy(Context); 1341 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1342 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1343 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1344 case IITDescriptor::AArch64Svcount: 1345 return TargetExtType::get(Context, "aarch64.svcount"); 1346 1347 case IITDescriptor::Integer: 1348 return IntegerType::get(Context, D.Integer_Width); 1349 case IITDescriptor::Vector: 1350 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1351 D.Vector_Width); 1352 case IITDescriptor::Pointer: 1353 return PointerType::get(Context, D.Pointer_AddressSpace); 1354 case IITDescriptor::Struct: { 1355 SmallVector<Type *, 8> Elts; 1356 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1357 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1358 return StructType::get(Context, Elts); 1359 } 1360 case IITDescriptor::Argument: 1361 return Tys[D.getArgumentNumber()]; 1362 case IITDescriptor::ExtendArgument: { 1363 Type *Ty = Tys[D.getArgumentNumber()]; 1364 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1365 return VectorType::getExtendedElementVectorType(VTy); 1366 1367 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1368 } 1369 case IITDescriptor::TruncArgument: { 1370 Type *Ty = Tys[D.getArgumentNumber()]; 1371 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1372 return VectorType::getTruncatedElementVectorType(VTy); 1373 1374 IntegerType *ITy = cast<IntegerType>(Ty); 1375 assert(ITy->getBitWidth() % 2 == 0); 1376 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1377 } 1378 case IITDescriptor::Subdivide2Argument: 1379 case IITDescriptor::Subdivide4Argument: { 1380 Type *Ty = Tys[D.getArgumentNumber()]; 1381 VectorType *VTy = dyn_cast<VectorType>(Ty); 1382 assert(VTy && "Expected an argument of Vector Type"); 1383 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1384 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1385 } 1386 case IITDescriptor::HalfVecArgument: 1387 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1388 Tys[D.getArgumentNumber()])); 1389 case IITDescriptor::SameVecWidthArgument: { 1390 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1391 Type *Ty = Tys[D.getArgumentNumber()]; 1392 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1393 return VectorType::get(EltTy, VTy->getElementCount()); 1394 return EltTy; 1395 } 1396 case IITDescriptor::VecElementArgument: { 1397 Type *Ty = Tys[D.getArgumentNumber()]; 1398 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1399 return VTy->getElementType(); 1400 llvm_unreachable("Expected an argument of Vector Type"); 1401 } 1402 case IITDescriptor::VecOfBitcastsToInt: { 1403 Type *Ty = Tys[D.getArgumentNumber()]; 1404 VectorType *VTy = dyn_cast<VectorType>(Ty); 1405 assert(VTy && "Expected an argument of Vector Type"); 1406 return VectorType::getInteger(VTy); 1407 } 1408 case IITDescriptor::VecOfAnyPtrsToElt: 1409 // Return the overloaded type (which determines the pointers address space) 1410 return Tys[D.getOverloadArgNumber()]; 1411 } 1412 llvm_unreachable("unhandled"); 1413 } 1414 1415 FunctionType *Intrinsic::getType(LLVMContext &Context, 1416 ID id, ArrayRef<Type*> Tys) { 1417 SmallVector<IITDescriptor, 8> Table; 1418 getIntrinsicInfoTableEntries(id, Table); 1419 1420 ArrayRef<IITDescriptor> TableRef = Table; 1421 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1422 1423 SmallVector<Type*, 8> ArgTys; 1424 while (!TableRef.empty()) 1425 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1426 1427 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1428 // If we see void type as the type of the last argument, it is vararg intrinsic 1429 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1430 ArgTys.pop_back(); 1431 return FunctionType::get(ResultTy, ArgTys, true); 1432 } 1433 return FunctionType::get(ResultTy, ArgTys, false); 1434 } 1435 1436 bool Intrinsic::isOverloaded(ID id) { 1437 #define GET_INTRINSIC_OVERLOAD_TABLE 1438 #include "llvm/IR/IntrinsicImpl.inc" 1439 #undef GET_INTRINSIC_OVERLOAD_TABLE 1440 } 1441 1442 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1443 #define GET_INTRINSIC_ATTRIBUTES 1444 #include "llvm/IR/IntrinsicImpl.inc" 1445 #undef GET_INTRINSIC_ATTRIBUTES 1446 1447 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1448 // There can never be multiple globals with the same name of different types, 1449 // because intrinsics must be a specific type. 1450 auto *FT = getType(M->getContext(), id, Tys); 1451 return cast<Function>( 1452 M->getOrInsertFunction( 1453 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1454 .getCallee()); 1455 } 1456 1457 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1458 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1459 #include "llvm/IR/IntrinsicImpl.inc" 1460 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1461 1462 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1463 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1464 #include "llvm/IR/IntrinsicImpl.inc" 1465 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1466 1467 using DeferredIntrinsicMatchPair = 1468 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1469 1470 static bool matchIntrinsicType( 1471 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1472 SmallVectorImpl<Type *> &ArgTys, 1473 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1474 bool IsDeferredCheck) { 1475 using namespace Intrinsic; 1476 1477 // If we ran out of descriptors, there are too many arguments. 1478 if (Infos.empty()) return true; 1479 1480 // Do this before slicing off the 'front' part 1481 auto InfosRef = Infos; 1482 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1483 DeferredChecks.emplace_back(T, InfosRef); 1484 return false; 1485 }; 1486 1487 IITDescriptor D = Infos.front(); 1488 Infos = Infos.slice(1); 1489 1490 switch (D.Kind) { 1491 case IITDescriptor::Void: return !Ty->isVoidTy(); 1492 case IITDescriptor::VarArg: return true; 1493 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1494 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1495 case IITDescriptor::Token: return !Ty->isTokenTy(); 1496 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1497 case IITDescriptor::Half: return !Ty->isHalfTy(); 1498 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1499 case IITDescriptor::Float: return !Ty->isFloatTy(); 1500 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1501 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1502 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1503 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1504 case IITDescriptor::AArch64Svcount: 1505 return !isa<TargetExtType>(Ty) || 1506 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount"; 1507 case IITDescriptor::Vector: { 1508 VectorType *VT = dyn_cast<VectorType>(Ty); 1509 return !VT || VT->getElementCount() != D.Vector_Width || 1510 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1511 DeferredChecks, IsDeferredCheck); 1512 } 1513 case IITDescriptor::Pointer: { 1514 PointerType *PT = dyn_cast<PointerType>(Ty); 1515 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace; 1516 } 1517 1518 case IITDescriptor::Struct: { 1519 StructType *ST = dyn_cast<StructType>(Ty); 1520 if (!ST || !ST->isLiteral() || ST->isPacked() || 1521 ST->getNumElements() != D.Struct_NumElements) 1522 return true; 1523 1524 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1525 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1526 DeferredChecks, IsDeferredCheck)) 1527 return true; 1528 return false; 1529 } 1530 1531 case IITDescriptor::Argument: 1532 // If this is the second occurrence of an argument, 1533 // verify that the later instance matches the previous instance. 1534 if (D.getArgumentNumber() < ArgTys.size()) 1535 return Ty != ArgTys[D.getArgumentNumber()]; 1536 1537 if (D.getArgumentNumber() > ArgTys.size() || 1538 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1539 return IsDeferredCheck || DeferCheck(Ty); 1540 1541 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1542 "Table consistency error"); 1543 ArgTys.push_back(Ty); 1544 1545 switch (D.getArgumentKind()) { 1546 case IITDescriptor::AK_Any: return false; // Success 1547 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1548 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1549 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1550 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1551 default: break; 1552 } 1553 llvm_unreachable("all argument kinds not covered"); 1554 1555 case IITDescriptor::ExtendArgument: { 1556 // If this is a forward reference, defer the check for later. 1557 if (D.getArgumentNumber() >= ArgTys.size()) 1558 return IsDeferredCheck || DeferCheck(Ty); 1559 1560 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1561 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1562 NewTy = VectorType::getExtendedElementVectorType(VTy); 1563 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1564 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1565 else 1566 return true; 1567 1568 return Ty != NewTy; 1569 } 1570 case IITDescriptor::TruncArgument: { 1571 // If this is a forward reference, defer the check for later. 1572 if (D.getArgumentNumber() >= ArgTys.size()) 1573 return IsDeferredCheck || DeferCheck(Ty); 1574 1575 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1576 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1577 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1578 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1579 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1580 else 1581 return true; 1582 1583 return Ty != NewTy; 1584 } 1585 case IITDescriptor::HalfVecArgument: 1586 // If this is a forward reference, defer the check for later. 1587 if (D.getArgumentNumber() >= ArgTys.size()) 1588 return IsDeferredCheck || DeferCheck(Ty); 1589 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1590 VectorType::getHalfElementsVectorType( 1591 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1592 case IITDescriptor::SameVecWidthArgument: { 1593 if (D.getArgumentNumber() >= ArgTys.size()) { 1594 // Defer check and subsequent check for the vector element type. 1595 Infos = Infos.slice(1); 1596 return IsDeferredCheck || DeferCheck(Ty); 1597 } 1598 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1599 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1600 // Both must be vectors of the same number of elements or neither. 1601 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1602 return true; 1603 Type *EltTy = Ty; 1604 if (ThisArgType) { 1605 if (ReferenceType->getElementCount() != 1606 ThisArgType->getElementCount()) 1607 return true; 1608 EltTy = ThisArgType->getElementType(); 1609 } 1610 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1611 IsDeferredCheck); 1612 } 1613 case IITDescriptor::VecOfAnyPtrsToElt: { 1614 unsigned RefArgNumber = D.getRefArgNumber(); 1615 if (RefArgNumber >= ArgTys.size()) { 1616 if (IsDeferredCheck) 1617 return true; 1618 // If forward referencing, already add the pointer-vector type and 1619 // defer the checks for later. 1620 ArgTys.push_back(Ty); 1621 return DeferCheck(Ty); 1622 } 1623 1624 if (!IsDeferredCheck){ 1625 assert(D.getOverloadArgNumber() == ArgTys.size() && 1626 "Table consistency error"); 1627 ArgTys.push_back(Ty); 1628 } 1629 1630 // Verify the overloaded type "matches" the Ref type. 1631 // i.e. Ty is a vector with the same width as Ref. 1632 // Composed of pointers to the same element type as Ref. 1633 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1634 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1635 if (!ThisArgVecTy || !ReferenceType || 1636 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1637 return true; 1638 return !ThisArgVecTy->getElementType()->isPointerTy(); 1639 } 1640 case IITDescriptor::VecElementArgument: { 1641 if (D.getArgumentNumber() >= ArgTys.size()) 1642 return IsDeferredCheck ? true : DeferCheck(Ty); 1643 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1644 return !ReferenceType || Ty != ReferenceType->getElementType(); 1645 } 1646 case IITDescriptor::Subdivide2Argument: 1647 case IITDescriptor::Subdivide4Argument: { 1648 // If this is a forward reference, defer the check for later. 1649 if (D.getArgumentNumber() >= ArgTys.size()) 1650 return IsDeferredCheck || DeferCheck(Ty); 1651 1652 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1653 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1654 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1655 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1656 return Ty != NewTy; 1657 } 1658 return true; 1659 } 1660 case IITDescriptor::VecOfBitcastsToInt: { 1661 if (D.getArgumentNumber() >= ArgTys.size()) 1662 return IsDeferredCheck || DeferCheck(Ty); 1663 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1664 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1665 if (!ThisArgVecTy || !ReferenceType) 1666 return true; 1667 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1668 } 1669 } 1670 llvm_unreachable("unhandled"); 1671 } 1672 1673 Intrinsic::MatchIntrinsicTypesResult 1674 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1675 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1676 SmallVectorImpl<Type *> &ArgTys) { 1677 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1678 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1679 false)) 1680 return MatchIntrinsicTypes_NoMatchRet; 1681 1682 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1683 1684 for (auto *Ty : FTy->params()) 1685 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1686 return MatchIntrinsicTypes_NoMatchArg; 1687 1688 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1689 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1690 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1691 true)) 1692 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1693 : MatchIntrinsicTypes_NoMatchArg; 1694 } 1695 1696 return MatchIntrinsicTypes_Match; 1697 } 1698 1699 bool 1700 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1701 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1702 // If there are no descriptors left, then it can't be a vararg. 1703 if (Infos.empty()) 1704 return isVarArg; 1705 1706 // There should be only one descriptor remaining at this point. 1707 if (Infos.size() != 1) 1708 return true; 1709 1710 // Check and verify the descriptor. 1711 IITDescriptor D = Infos.front(); 1712 Infos = Infos.slice(1); 1713 if (D.Kind == IITDescriptor::VarArg) 1714 return !isVarArg; 1715 1716 return true; 1717 } 1718 1719 bool Intrinsic::getIntrinsicSignature(Function *F, 1720 SmallVectorImpl<Type *> &ArgTys) { 1721 Intrinsic::ID ID = F->getIntrinsicID(); 1722 if (!ID) 1723 return false; 1724 1725 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1726 getIntrinsicInfoTableEntries(ID, Table); 1727 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1728 1729 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1730 ArgTys) != 1731 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1732 return false; 1733 } 1734 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1735 TableRef)) 1736 return false; 1737 return true; 1738 } 1739 1740 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1741 SmallVector<Type *, 4> ArgTys; 1742 if (!getIntrinsicSignature(F, ArgTys)) 1743 return std::nullopt; 1744 1745 Intrinsic::ID ID = F->getIntrinsicID(); 1746 StringRef Name = F->getName(); 1747 std::string WantedName = 1748 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1749 if (Name == WantedName) 1750 return std::nullopt; 1751 1752 Function *NewDecl = [&] { 1753 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1754 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1755 if (ExistingF->getFunctionType() == F->getFunctionType()) 1756 return ExistingF; 1757 1758 // The name already exists, but is not a function or has the wrong 1759 // prototype. Make place for the new one by renaming the old version. 1760 // Either this old version will be removed later on or the module is 1761 // invalid and we'll get an error. 1762 ExistingGV->setName(WantedName + ".renamed"); 1763 } 1764 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1765 }(); 1766 1767 NewDecl->setCallingConv(F->getCallingConv()); 1768 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1769 "Shouldn't change the signature"); 1770 return NewDecl; 1771 } 1772 1773 /// hasAddressTaken - returns true if there are any uses of this function 1774 /// other than direct calls or invokes to it. Optionally ignores callback 1775 /// uses, assume like pointer annotation calls, and references in llvm.used 1776 /// and llvm.compiler.used variables. 1777 bool Function::hasAddressTaken(const User **PutOffender, 1778 bool IgnoreCallbackUses, 1779 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1780 bool IgnoreARCAttachedCall, 1781 bool IgnoreCastedDirectCall) const { 1782 for (const Use &U : uses()) { 1783 const User *FU = U.getUser(); 1784 if (isa<BlockAddress>(FU)) 1785 continue; 1786 1787 if (IgnoreCallbackUses) { 1788 AbstractCallSite ACS(&U); 1789 if (ACS && ACS.isCallbackCall()) 1790 continue; 1791 } 1792 1793 const auto *Call = dyn_cast<CallBase>(FU); 1794 if (!Call) { 1795 if (IgnoreAssumeLikeCalls && 1796 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1797 all_of(FU->users(), [](const User *U) { 1798 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1799 return I->isAssumeLikeIntrinsic(); 1800 return false; 1801 })) { 1802 continue; 1803 } 1804 1805 if (IgnoreLLVMUsed && !FU->user_empty()) { 1806 const User *FUU = FU; 1807 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1808 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1809 FUU = *FU->user_begin(); 1810 if (llvm::all_of(FUU->users(), [](const User *U) { 1811 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1812 return GV->hasName() && 1813 (GV->getName().equals("llvm.compiler.used") || 1814 GV->getName().equals("llvm.used")); 1815 return false; 1816 })) 1817 continue; 1818 } 1819 if (PutOffender) 1820 *PutOffender = FU; 1821 return true; 1822 } 1823 1824 if (IgnoreAssumeLikeCalls) { 1825 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1826 if (I->isAssumeLikeIntrinsic()) 1827 continue; 1828 } 1829 1830 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall && 1831 Call->getFunctionType() != getFunctionType())) { 1832 if (IgnoreARCAttachedCall && 1833 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1834 U.getOperandNo())) 1835 continue; 1836 1837 if (PutOffender) 1838 *PutOffender = FU; 1839 return true; 1840 } 1841 } 1842 return false; 1843 } 1844 1845 bool Function::isDefTriviallyDead() const { 1846 // Check the linkage 1847 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1848 !hasAvailableExternallyLinkage()) 1849 return false; 1850 1851 // Check if the function is used by anything other than a blockaddress. 1852 for (const User *U : users()) 1853 if (!isa<BlockAddress>(U)) 1854 return false; 1855 1856 return true; 1857 } 1858 1859 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1860 /// setjmp or other function that gcc recognizes as "returning twice". 1861 bool Function::callsFunctionThatReturnsTwice() const { 1862 for (const Instruction &I : instructions(this)) 1863 if (const auto *Call = dyn_cast<CallBase>(&I)) 1864 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1865 return true; 1866 1867 return false; 1868 } 1869 1870 Constant *Function::getPersonalityFn() const { 1871 assert(hasPersonalityFn() && getNumOperands()); 1872 return cast<Constant>(Op<0>()); 1873 } 1874 1875 void Function::setPersonalityFn(Constant *Fn) { 1876 setHungoffOperand<0>(Fn); 1877 setValueSubclassDataBit(3, Fn != nullptr); 1878 } 1879 1880 Constant *Function::getPrefixData() const { 1881 assert(hasPrefixData() && getNumOperands()); 1882 return cast<Constant>(Op<1>()); 1883 } 1884 1885 void Function::setPrefixData(Constant *PrefixData) { 1886 setHungoffOperand<1>(PrefixData); 1887 setValueSubclassDataBit(1, PrefixData != nullptr); 1888 } 1889 1890 Constant *Function::getPrologueData() const { 1891 assert(hasPrologueData() && getNumOperands()); 1892 return cast<Constant>(Op<2>()); 1893 } 1894 1895 void Function::setPrologueData(Constant *PrologueData) { 1896 setHungoffOperand<2>(PrologueData); 1897 setValueSubclassDataBit(2, PrologueData != nullptr); 1898 } 1899 1900 void Function::allocHungoffUselist() { 1901 // If we've already allocated a uselist, stop here. 1902 if (getNumOperands()) 1903 return; 1904 1905 allocHungoffUses(3, /*IsPhi=*/ false); 1906 setNumHungOffUseOperands(3); 1907 1908 // Initialize the uselist with placeholder operands to allow traversal. 1909 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 1910 Op<0>().set(CPN); 1911 Op<1>().set(CPN); 1912 Op<2>().set(CPN); 1913 } 1914 1915 template <int Idx> 1916 void Function::setHungoffOperand(Constant *C) { 1917 if (C) { 1918 allocHungoffUselist(); 1919 Op<Idx>().set(C); 1920 } else if (getNumOperands()) { 1921 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0))); 1922 } 1923 } 1924 1925 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1926 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1927 if (On) 1928 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1929 else 1930 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1931 } 1932 1933 void Function::setEntryCount(ProfileCount Count, 1934 const DenseSet<GlobalValue::GUID> *S) { 1935 #if !defined(NDEBUG) 1936 auto PrevCount = getEntryCount(); 1937 assert(!PrevCount || PrevCount->getType() == Count.getType()); 1938 #endif 1939 1940 auto ImportGUIDs = getImportGUIDs(); 1941 if (S == nullptr && ImportGUIDs.size()) 1942 S = &ImportGUIDs; 1943 1944 MDBuilder MDB(getContext()); 1945 setMetadata( 1946 LLVMContext::MD_prof, 1947 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1948 } 1949 1950 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1951 const DenseSet<GlobalValue::GUID> *Imports) { 1952 setEntryCount(ProfileCount(Count, Type), Imports); 1953 } 1954 1955 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 1956 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1957 if (MD && MD->getOperand(0)) 1958 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1959 if (MDS->getString().equals("function_entry_count")) { 1960 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1961 uint64_t Count = CI->getValue().getZExtValue(); 1962 // A value of -1 is used for SamplePGO when there were no samples. 1963 // Treat this the same as unknown. 1964 if (Count == (uint64_t)-1) 1965 return std::nullopt; 1966 return ProfileCount(Count, PCT_Real); 1967 } else if (AllowSynthetic && 1968 MDS->getString().equals("synthetic_function_entry_count")) { 1969 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1970 uint64_t Count = CI->getValue().getZExtValue(); 1971 return ProfileCount(Count, PCT_Synthetic); 1972 } 1973 } 1974 return std::nullopt; 1975 } 1976 1977 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1978 DenseSet<GlobalValue::GUID> R; 1979 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1980 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1981 if (MDS->getString().equals("function_entry_count")) 1982 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1983 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1984 ->getValue() 1985 .getZExtValue()); 1986 return R; 1987 } 1988 1989 void Function::setSectionPrefix(StringRef Prefix) { 1990 MDBuilder MDB(getContext()); 1991 setMetadata(LLVMContext::MD_section_prefix, 1992 MDB.createFunctionSectionPrefix(Prefix)); 1993 } 1994 1995 std::optional<StringRef> Function::getSectionPrefix() const { 1996 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1997 assert(cast<MDString>(MD->getOperand(0)) 1998 ->getString() 1999 .equals("function_section_prefix") && 2000 "Metadata not match"); 2001 return cast<MDString>(MD->getOperand(1))->getString(); 2002 } 2003 return std::nullopt; 2004 } 2005 2006 bool Function::nullPointerIsDefined() const { 2007 return hasFnAttribute(Attribute::NullPointerIsValid); 2008 } 2009 2010 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2011 if (F && F->nullPointerIsDefined()) 2012 return true; 2013 2014 if (AS != 0) 2015 return true; 2016 2017 return false; 2018 } 2019