xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 3b57b647a9bb821137f91dfbc2172a9947f620cc)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/IntrinsicInst.h"
33 #include "llvm/IR/Intrinsics.h"
34 #include "llvm/IR/IntrinsicsAArch64.h"
35 #include "llvm/IR/IntrinsicsAMDGPU.h"
36 #include "llvm/IR/IntrinsicsARM.h"
37 #include "llvm/IR/IntrinsicsBPF.h"
38 #include "llvm/IR/IntrinsicsDirectX.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsLoongArch.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsSPIRV.h"
48 #include "llvm/IR/IntrinsicsVE.h"
49 #include "llvm/IR/IntrinsicsWebAssembly.h"
50 #include "llvm/IR/IntrinsicsX86.h"
51 #include "llvm/IR/IntrinsicsXCore.h"
52 #include "llvm/IR/LLVMContext.h"
53 #include "llvm/IR/MDBuilder.h"
54 #include "llvm/IR/Metadata.h"
55 #include "llvm/IR/Module.h"
56 #include "llvm/IR/Operator.h"
57 #include "llvm/IR/SymbolTableListTraits.h"
58 #include "llvm/IR/Type.h"
59 #include "llvm/IR/Use.h"
60 #include "llvm/IR/User.h"
61 #include "llvm/IR/Value.h"
62 #include "llvm/IR/ValueSymbolTable.h"
63 #include "llvm/Support/Casting.h"
64 #include "llvm/Support/CommandLine.h"
65 #include "llvm/Support/Compiler.h"
66 #include "llvm/Support/ErrorHandling.h"
67 #include "llvm/Support/ModRef.h"
68 #include <cassert>
69 #include <cstddef>
70 #include <cstdint>
71 #include <cstring>
72 #include <string>
73 
74 using namespace llvm;
75 using ProfileCount = Function::ProfileCount;
76 
77 // Explicit instantiations of SymbolTableListTraits since some of the methods
78 // are not in the public header file...
79 template class llvm::SymbolTableListTraits<BasicBlock>;
80 
81 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
82     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
83     cl::desc("Maximum size for the name of non-global values."));
84 
85 void Function::convertToNewDbgValues() {
86   IsNewDbgInfoFormat = true;
87   for (auto &BB : *this) {
88     BB.convertToNewDbgValues();
89   }
90 }
91 
92 void Function::convertFromNewDbgValues() {
93   IsNewDbgInfoFormat = false;
94   for (auto &BB : *this) {
95     BB.convertFromNewDbgValues();
96   }
97 }
98 
99 void Function::setIsNewDbgInfoFormat(bool NewFlag) {
100   if (NewFlag && !IsNewDbgInfoFormat)
101     convertToNewDbgValues();
102   else if (!NewFlag && IsNewDbgInfoFormat)
103     convertFromNewDbgValues();
104 }
105 
106 //===----------------------------------------------------------------------===//
107 // Argument Implementation
108 //===----------------------------------------------------------------------===//
109 
110 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
111     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
112   setName(Name);
113 }
114 
115 void Argument::setParent(Function *parent) {
116   Parent = parent;
117 }
118 
119 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
120   if (!getType()->isPointerTy()) return false;
121   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
122       (AllowUndefOrPoison ||
123        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
124     return true;
125   else if (getDereferenceableBytes() > 0 &&
126            !NullPointerIsDefined(getParent(),
127                                  getType()->getPointerAddressSpace()))
128     return true;
129   return false;
130 }
131 
132 bool Argument::hasByValAttr() const {
133   if (!getType()->isPointerTy()) return false;
134   return hasAttribute(Attribute::ByVal);
135 }
136 
137 bool Argument::hasByRefAttr() const {
138   if (!getType()->isPointerTy())
139     return false;
140   return hasAttribute(Attribute::ByRef);
141 }
142 
143 bool Argument::hasSwiftSelfAttr() const {
144   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
145 }
146 
147 bool Argument::hasSwiftErrorAttr() const {
148   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
149 }
150 
151 bool Argument::hasInAllocaAttr() const {
152   if (!getType()->isPointerTy()) return false;
153   return hasAttribute(Attribute::InAlloca);
154 }
155 
156 bool Argument::hasPreallocatedAttr() const {
157   if (!getType()->isPointerTy())
158     return false;
159   return hasAttribute(Attribute::Preallocated);
160 }
161 
162 bool Argument::hasPassPointeeByValueCopyAttr() const {
163   if (!getType()->isPointerTy()) return false;
164   AttributeList Attrs = getParent()->getAttributes();
165   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
166          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
167          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
168 }
169 
170 bool Argument::hasPointeeInMemoryValueAttr() const {
171   if (!getType()->isPointerTy())
172     return false;
173   AttributeList Attrs = getParent()->getAttributes();
174   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
175          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
176          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
177          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
178          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
179 }
180 
181 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
182 /// parameter type.
183 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
184   // FIXME: All the type carrying attributes are mutually exclusive, so there
185   // should be a single query to get the stored type that handles any of them.
186   if (Type *ByValTy = ParamAttrs.getByValType())
187     return ByValTy;
188   if (Type *ByRefTy = ParamAttrs.getByRefType())
189     return ByRefTy;
190   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
191     return PreAllocTy;
192   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
193     return InAllocaTy;
194   if (Type *SRetTy = ParamAttrs.getStructRetType())
195     return SRetTy;
196 
197   return nullptr;
198 }
199 
200 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
201   AttributeSet ParamAttrs =
202       getParent()->getAttributes().getParamAttrs(getArgNo());
203   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
204     return DL.getTypeAllocSize(MemTy);
205   return 0;
206 }
207 
208 Type *Argument::getPointeeInMemoryValueType() const {
209   AttributeSet ParamAttrs =
210       getParent()->getAttributes().getParamAttrs(getArgNo());
211   return getMemoryParamAllocType(ParamAttrs);
212 }
213 
214 MaybeAlign Argument::getParamAlign() const {
215   assert(getType()->isPointerTy() && "Only pointers have alignments");
216   return getParent()->getParamAlign(getArgNo());
217 }
218 
219 MaybeAlign Argument::getParamStackAlign() const {
220   return getParent()->getParamStackAlign(getArgNo());
221 }
222 
223 Type *Argument::getParamByValType() const {
224   assert(getType()->isPointerTy() && "Only pointers have byval types");
225   return getParent()->getParamByValType(getArgNo());
226 }
227 
228 Type *Argument::getParamStructRetType() const {
229   assert(getType()->isPointerTy() && "Only pointers have sret types");
230   return getParent()->getParamStructRetType(getArgNo());
231 }
232 
233 Type *Argument::getParamByRefType() const {
234   assert(getType()->isPointerTy() && "Only pointers have byref types");
235   return getParent()->getParamByRefType(getArgNo());
236 }
237 
238 Type *Argument::getParamInAllocaType() const {
239   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
240   return getParent()->getParamInAllocaType(getArgNo());
241 }
242 
243 uint64_t Argument::getDereferenceableBytes() const {
244   assert(getType()->isPointerTy() &&
245          "Only pointers have dereferenceable bytes");
246   return getParent()->getParamDereferenceableBytes(getArgNo());
247 }
248 
249 uint64_t Argument::getDereferenceableOrNullBytes() const {
250   assert(getType()->isPointerTy() &&
251          "Only pointers have dereferenceable bytes");
252   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
253 }
254 
255 FPClassTest Argument::getNoFPClass() const {
256   return getParent()->getParamNoFPClass(getArgNo());
257 }
258 
259 bool Argument::hasNestAttr() const {
260   if (!getType()->isPointerTy()) return false;
261   return hasAttribute(Attribute::Nest);
262 }
263 
264 bool Argument::hasNoAliasAttr() const {
265   if (!getType()->isPointerTy()) return false;
266   return hasAttribute(Attribute::NoAlias);
267 }
268 
269 bool Argument::hasNoCaptureAttr() const {
270   if (!getType()->isPointerTy()) return false;
271   return hasAttribute(Attribute::NoCapture);
272 }
273 
274 bool Argument::hasNoFreeAttr() const {
275   if (!getType()->isPointerTy()) return false;
276   return hasAttribute(Attribute::NoFree);
277 }
278 
279 bool Argument::hasStructRetAttr() const {
280   if (!getType()->isPointerTy()) return false;
281   return hasAttribute(Attribute::StructRet);
282 }
283 
284 bool Argument::hasInRegAttr() const {
285   return hasAttribute(Attribute::InReg);
286 }
287 
288 bool Argument::hasReturnedAttr() const {
289   return hasAttribute(Attribute::Returned);
290 }
291 
292 bool Argument::hasZExtAttr() const {
293   return hasAttribute(Attribute::ZExt);
294 }
295 
296 bool Argument::hasSExtAttr() const {
297   return hasAttribute(Attribute::SExt);
298 }
299 
300 bool Argument::onlyReadsMemory() const {
301   AttributeList Attrs = getParent()->getAttributes();
302   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
303          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
304 }
305 
306 void Argument::addAttrs(AttrBuilder &B) {
307   AttributeList AL = getParent()->getAttributes();
308   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
309   getParent()->setAttributes(AL);
310 }
311 
312 void Argument::addAttr(Attribute::AttrKind Kind) {
313   getParent()->addParamAttr(getArgNo(), Kind);
314 }
315 
316 void Argument::addAttr(Attribute Attr) {
317   getParent()->addParamAttr(getArgNo(), Attr);
318 }
319 
320 void Argument::removeAttr(Attribute::AttrKind Kind) {
321   getParent()->removeParamAttr(getArgNo(), Kind);
322 }
323 
324 void Argument::removeAttrs(const AttributeMask &AM) {
325   AttributeList AL = getParent()->getAttributes();
326   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
327   getParent()->setAttributes(AL);
328 }
329 
330 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
331   return getParent()->hasParamAttribute(getArgNo(), Kind);
332 }
333 
334 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
335   return getParent()->getParamAttribute(getArgNo(), Kind);
336 }
337 
338 //===----------------------------------------------------------------------===//
339 // Helper Methods in Function
340 //===----------------------------------------------------------------------===//
341 
342 LLVMContext &Function::getContext() const {
343   return getType()->getContext();
344 }
345 
346 unsigned Function::getInstructionCount() const {
347   unsigned NumInstrs = 0;
348   for (const BasicBlock &BB : BasicBlocks)
349     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
350                                BB.instructionsWithoutDebug().end());
351   return NumInstrs;
352 }
353 
354 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
355                            const Twine &N, Module &M) {
356   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
357 }
358 
359 Function *Function::createWithDefaultAttr(FunctionType *Ty,
360                                           LinkageTypes Linkage,
361                                           unsigned AddrSpace, const Twine &N,
362                                           Module *M) {
363   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
364   AttrBuilder B(F->getContext());
365   UWTableKind UWTable = M->getUwtable();
366   if (UWTable != UWTableKind::None)
367     B.addUWTableAttr(UWTable);
368   switch (M->getFramePointer()) {
369   case FramePointerKind::None:
370     // 0 ("none") is the default.
371     break;
372   case FramePointerKind::NonLeaf:
373     B.addAttribute("frame-pointer", "non-leaf");
374     break;
375   case FramePointerKind::All:
376     B.addAttribute("frame-pointer", "all");
377     break;
378   }
379   if (M->getModuleFlag("function_return_thunk_extern"))
380     B.addAttribute(Attribute::FnRetThunkExtern);
381   F->addFnAttrs(B);
382   return F;
383 }
384 
385 void Function::removeFromParent() {
386   getParent()->getFunctionList().remove(getIterator());
387 }
388 
389 void Function::eraseFromParent() {
390   getParent()->getFunctionList().erase(getIterator());
391 }
392 
393 void Function::splice(Function::iterator ToIt, Function *FromF,
394                       Function::iterator FromBeginIt,
395                       Function::iterator FromEndIt) {
396 #ifdef EXPENSIVE_CHECKS
397   // Check that FromBeginIt is before FromEndIt.
398   auto FromFEnd = FromF->end();
399   for (auto It = FromBeginIt; It != FromEndIt; ++It)
400     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
401 #endif // EXPENSIVE_CHECKS
402   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
403 }
404 
405 Function::iterator Function::erase(Function::iterator FromIt,
406                                    Function::iterator ToIt) {
407   return BasicBlocks.erase(FromIt, ToIt);
408 }
409 
410 //===----------------------------------------------------------------------===//
411 // Function Implementation
412 //===----------------------------------------------------------------------===//
413 
414 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
415   // If AS == -1 and we are passed a valid module pointer we place the function
416   // in the program address space. Otherwise we default to AS0.
417   if (AddrSpace == static_cast<unsigned>(-1))
418     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
419   return AddrSpace;
420 }
421 
422 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
423                    const Twine &name, Module *ParentModule)
424     : GlobalObject(Ty, Value::FunctionVal,
425                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
426                    computeAddrSpace(AddrSpace, ParentModule)),
427       NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(false) {
428   assert(FunctionType::isValidReturnType(getReturnType()) &&
429          "invalid return type");
430   setGlobalObjectSubClassData(0);
431 
432   // We only need a symbol table for a function if the context keeps value names
433   if (!getContext().shouldDiscardValueNames())
434     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
435 
436   // If the function has arguments, mark them as lazily built.
437   if (Ty->getNumParams())
438     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
439 
440   if (ParentModule)
441     ParentModule->getFunctionList().push_back(this);
442 
443   HasLLVMReservedName = getName().starts_with("llvm.");
444   // Ensure intrinsics have the right parameter attributes.
445   // Note, the IntID field will have been set in Value::setName if this function
446   // name is a valid intrinsic ID.
447   if (IntID)
448     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
449 }
450 
451 Function::~Function() {
452   dropAllReferences();    // After this it is safe to delete instructions.
453 
454   // Delete all of the method arguments and unlink from symbol table...
455   if (Arguments)
456     clearArguments();
457 
458   // Remove the function from the on-the-side GC table.
459   clearGC();
460 }
461 
462 void Function::BuildLazyArguments() const {
463   // Create the arguments vector, all arguments start out unnamed.
464   auto *FT = getFunctionType();
465   if (NumArgs > 0) {
466     Arguments = std::allocator<Argument>().allocate(NumArgs);
467     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
468       Type *ArgTy = FT->getParamType(i);
469       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
470       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
471     }
472   }
473 
474   // Clear the lazy arguments bit.
475   unsigned SDC = getSubclassDataFromValue();
476   SDC &= ~(1 << 0);
477   const_cast<Function*>(this)->setValueSubclassData(SDC);
478   assert(!hasLazyArguments());
479 }
480 
481 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
482   return MutableArrayRef<Argument>(Args, Count);
483 }
484 
485 bool Function::isConstrainedFPIntrinsic() const {
486   switch (getIntrinsicID()) {
487 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
488   case Intrinsic::INTRINSIC:
489 #include "llvm/IR/ConstrainedOps.def"
490     return true;
491 #undef INSTRUCTION
492   default:
493     return false;
494   }
495 }
496 
497 void Function::clearArguments() {
498   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
499     A.setName("");
500     A.~Argument();
501   }
502   std::allocator<Argument>().deallocate(Arguments, NumArgs);
503   Arguments = nullptr;
504 }
505 
506 void Function::stealArgumentListFrom(Function &Src) {
507   assert(isDeclaration() && "Expected no references to current arguments");
508 
509   // Drop the current arguments, if any, and set the lazy argument bit.
510   if (!hasLazyArguments()) {
511     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
512                         [](const Argument &A) { return A.use_empty(); }) &&
513            "Expected arguments to be unused in declaration");
514     clearArguments();
515     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
516   }
517 
518   // Nothing to steal if Src has lazy arguments.
519   if (Src.hasLazyArguments())
520     return;
521 
522   // Steal arguments from Src, and fix the lazy argument bits.
523   assert(arg_size() == Src.arg_size());
524   Arguments = Src.Arguments;
525   Src.Arguments = nullptr;
526   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
527     // FIXME: This does the work of transferNodesFromList inefficiently.
528     SmallString<128> Name;
529     if (A.hasName())
530       Name = A.getName();
531     if (!Name.empty())
532       A.setName("");
533     A.setParent(this);
534     if (!Name.empty())
535       A.setName(Name);
536   }
537 
538   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
539   assert(!hasLazyArguments());
540   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
541 }
542 
543 void Function::deleteBodyImpl(bool ShouldDrop) {
544   setIsMaterializable(false);
545 
546   for (BasicBlock &BB : *this)
547     BB.dropAllReferences();
548 
549   // Delete all basic blocks. They are now unused, except possibly by
550   // blockaddresses, but BasicBlock's destructor takes care of those.
551   while (!BasicBlocks.empty())
552     BasicBlocks.begin()->eraseFromParent();
553 
554   if (getNumOperands()) {
555     if (ShouldDrop) {
556       // Drop uses of any optional data (real or placeholder).
557       User::dropAllReferences();
558       setNumHungOffUseOperands(0);
559     } else {
560       // The code needs to match Function::allocHungoffUselist().
561       auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
562       Op<0>().set(CPN);
563       Op<1>().set(CPN);
564       Op<2>().set(CPN);
565     }
566     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
567   }
568 
569   // Metadata is stored in a side-table.
570   clearMetadata();
571 }
572 
573 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
574   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
575 }
576 
577 void Function::addFnAttr(Attribute::AttrKind Kind) {
578   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
579 }
580 
581 void Function::addFnAttr(StringRef Kind, StringRef Val) {
582   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
583 }
584 
585 void Function::addFnAttr(Attribute Attr) {
586   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
587 }
588 
589 void Function::addFnAttrs(const AttrBuilder &Attrs) {
590   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
591 }
592 
593 void Function::addRetAttr(Attribute::AttrKind Kind) {
594   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
595 }
596 
597 void Function::addRetAttr(Attribute Attr) {
598   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
599 }
600 
601 void Function::addRetAttrs(const AttrBuilder &Attrs) {
602   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
603 }
604 
605 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
606   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
607 }
608 
609 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
610   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
611 }
612 
613 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
614   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
615 }
616 
617 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
618   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
619 }
620 
621 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
622   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
623 }
624 
625 void Function::removeFnAttr(Attribute::AttrKind Kind) {
626   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
627 }
628 
629 void Function::removeFnAttr(StringRef Kind) {
630   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
631 }
632 
633 void Function::removeFnAttrs(const AttributeMask &AM) {
634   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
635 }
636 
637 void Function::removeRetAttr(Attribute::AttrKind Kind) {
638   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
639 }
640 
641 void Function::removeRetAttr(StringRef Kind) {
642   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
643 }
644 
645 void Function::removeRetAttrs(const AttributeMask &Attrs) {
646   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
647 }
648 
649 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
650   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
651 }
652 
653 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
654   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
655 }
656 
657 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
658   AttributeSets =
659       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
660 }
661 
662 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
663   AttributeSets =
664       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
665 }
666 
667 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
668   return AttributeSets.hasFnAttr(Kind);
669 }
670 
671 bool Function::hasFnAttribute(StringRef Kind) const {
672   return AttributeSets.hasFnAttr(Kind);
673 }
674 
675 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
676   return AttributeSets.hasRetAttr(Kind);
677 }
678 
679 bool Function::hasParamAttribute(unsigned ArgNo,
680                                  Attribute::AttrKind Kind) const {
681   return AttributeSets.hasParamAttr(ArgNo, Kind);
682 }
683 
684 Attribute Function::getAttributeAtIndex(unsigned i,
685                                         Attribute::AttrKind Kind) const {
686   return AttributeSets.getAttributeAtIndex(i, Kind);
687 }
688 
689 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
690   return AttributeSets.getAttributeAtIndex(i, Kind);
691 }
692 
693 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
694   return AttributeSets.getFnAttr(Kind);
695 }
696 
697 Attribute Function::getFnAttribute(StringRef Kind) const {
698   return AttributeSets.getFnAttr(Kind);
699 }
700 
701 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
702                                                  uint64_t Default) const {
703   Attribute A = getFnAttribute(Name);
704   uint64_t Result = Default;
705   if (A.isStringAttribute()) {
706     StringRef Str = A.getValueAsString();
707     if (Str.getAsInteger(0, Result))
708       getContext().emitError("cannot parse integer attribute " + Name);
709   }
710 
711   return Result;
712 }
713 
714 /// gets the specified attribute from the list of attributes.
715 Attribute Function::getParamAttribute(unsigned ArgNo,
716                                       Attribute::AttrKind Kind) const {
717   return AttributeSets.getParamAttr(ArgNo, Kind);
718 }
719 
720 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
721                                                  uint64_t Bytes) {
722   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
723                                                                   ArgNo, Bytes);
724 }
725 
726 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
727   if (&FPType == &APFloat::IEEEsingle()) {
728     DenormalMode Mode = getDenormalModeF32Raw();
729     // If the f32 variant of the attribute isn't specified, try to use the
730     // generic one.
731     if (Mode.isValid())
732       return Mode;
733   }
734 
735   return getDenormalModeRaw();
736 }
737 
738 DenormalMode Function::getDenormalModeRaw() const {
739   Attribute Attr = getFnAttribute("denormal-fp-math");
740   StringRef Val = Attr.getValueAsString();
741   return parseDenormalFPAttribute(Val);
742 }
743 
744 DenormalMode Function::getDenormalModeF32Raw() const {
745   Attribute Attr = getFnAttribute("denormal-fp-math-f32");
746   if (Attr.isValid()) {
747     StringRef Val = Attr.getValueAsString();
748     return parseDenormalFPAttribute(Val);
749   }
750 
751   return DenormalMode::getInvalid();
752 }
753 
754 const std::string &Function::getGC() const {
755   assert(hasGC() && "Function has no collector");
756   return getContext().getGC(*this);
757 }
758 
759 void Function::setGC(std::string Str) {
760   setValueSubclassDataBit(14, !Str.empty());
761   getContext().setGC(*this, std::move(Str));
762 }
763 
764 void Function::clearGC() {
765   if (!hasGC())
766     return;
767   getContext().deleteGC(*this);
768   setValueSubclassDataBit(14, false);
769 }
770 
771 bool Function::hasStackProtectorFnAttr() const {
772   return hasFnAttribute(Attribute::StackProtect) ||
773          hasFnAttribute(Attribute::StackProtectStrong) ||
774          hasFnAttribute(Attribute::StackProtectReq);
775 }
776 
777 /// Copy all additional attributes (those not needed to create a Function) from
778 /// the Function Src to this one.
779 void Function::copyAttributesFrom(const Function *Src) {
780   GlobalObject::copyAttributesFrom(Src);
781   setCallingConv(Src->getCallingConv());
782   setAttributes(Src->getAttributes());
783   if (Src->hasGC())
784     setGC(Src->getGC());
785   else
786     clearGC();
787   if (Src->hasPersonalityFn())
788     setPersonalityFn(Src->getPersonalityFn());
789   if (Src->hasPrefixData())
790     setPrefixData(Src->getPrefixData());
791   if (Src->hasPrologueData())
792     setPrologueData(Src->getPrologueData());
793 }
794 
795 MemoryEffects Function::getMemoryEffects() const {
796   return getAttributes().getMemoryEffects();
797 }
798 void Function::setMemoryEffects(MemoryEffects ME) {
799   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
800 }
801 
802 /// Determine if the function does not access memory.
803 bool Function::doesNotAccessMemory() const {
804   return getMemoryEffects().doesNotAccessMemory();
805 }
806 void Function::setDoesNotAccessMemory() {
807   setMemoryEffects(MemoryEffects::none());
808 }
809 
810 /// Determine if the function does not access or only reads memory.
811 bool Function::onlyReadsMemory() const {
812   return getMemoryEffects().onlyReadsMemory();
813 }
814 void Function::setOnlyReadsMemory() {
815   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
816 }
817 
818 /// Determine if the function does not access or only writes memory.
819 bool Function::onlyWritesMemory() const {
820   return getMemoryEffects().onlyWritesMemory();
821 }
822 void Function::setOnlyWritesMemory() {
823   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
824 }
825 
826 /// Determine if the call can access memmory only using pointers based
827 /// on its arguments.
828 bool Function::onlyAccessesArgMemory() const {
829   return getMemoryEffects().onlyAccessesArgPointees();
830 }
831 void Function::setOnlyAccessesArgMemory() {
832   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
833 }
834 
835 /// Determine if the function may only access memory that is
836 ///  inaccessible from the IR.
837 bool Function::onlyAccessesInaccessibleMemory() const {
838   return getMemoryEffects().onlyAccessesInaccessibleMem();
839 }
840 void Function::setOnlyAccessesInaccessibleMemory() {
841   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
842 }
843 
844 /// Determine if the function may only access memory that is
845 ///  either inaccessible from the IR or pointed to by its arguments.
846 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
847   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
848 }
849 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
850   setMemoryEffects(getMemoryEffects() &
851                    MemoryEffects::inaccessibleOrArgMemOnly());
852 }
853 
854 /// Table of string intrinsic names indexed by enum value.
855 static const char * const IntrinsicNameTable[] = {
856   "not_intrinsic",
857 #define GET_INTRINSIC_NAME_TABLE
858 #include "llvm/IR/IntrinsicImpl.inc"
859 #undef GET_INTRINSIC_NAME_TABLE
860 };
861 
862 /// Table of per-target intrinsic name tables.
863 #define GET_INTRINSIC_TARGET_DATA
864 #include "llvm/IR/IntrinsicImpl.inc"
865 #undef GET_INTRINSIC_TARGET_DATA
866 
867 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
868   return IID > TargetInfos[0].Count;
869 }
870 
871 bool Function::isTargetIntrinsic() const {
872   return isTargetIntrinsic(IntID);
873 }
874 
875 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
876 /// target as \c Name, or the generic table if \c Name is not target specific.
877 ///
878 /// Returns the relevant slice of \c IntrinsicNameTable
879 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
880   assert(Name.starts_with("llvm."));
881 
882   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
883   // Drop "llvm." and take the first dotted component. That will be the target
884   // if this is target specific.
885   StringRef Target = Name.drop_front(5).split('.').first;
886   auto It = partition_point(
887       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
888   // We've either found the target or just fall back to the generic set, which
889   // is always first.
890   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
891   return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
892 }
893 
894 /// This does the actual lookup of an intrinsic ID which
895 /// matches the given function name.
896 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
897   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
898   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
899   if (Idx == -1)
900     return Intrinsic::not_intrinsic;
901 
902   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
903   // an index into a sub-table.
904   int Adjust = NameTable.data() - IntrinsicNameTable;
905   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
906 
907   // If the intrinsic is not overloaded, require an exact match. If it is
908   // overloaded, require either exact or prefix match.
909   const auto MatchSize = strlen(NameTable[Idx]);
910   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
911   bool IsExactMatch = Name.size() == MatchSize;
912   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
913                                                      : Intrinsic::not_intrinsic;
914 }
915 
916 void Function::updateAfterNameChange() {
917   LibFuncCache = UnknownLibFunc;
918   StringRef Name = getName();
919   if (!Name.starts_with("llvm.")) {
920     HasLLVMReservedName = false;
921     IntID = Intrinsic::not_intrinsic;
922     return;
923   }
924   HasLLVMReservedName = true;
925   IntID = lookupIntrinsicID(Name);
926 }
927 
928 /// Returns a stable mangling for the type specified for use in the name
929 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
930 /// of named types is simply their name.  Manglings for unnamed types consist
931 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
932 /// combined with the mangling of their component types.  A vararg function
933 /// type will have a suffix of 'vararg'.  Since function types can contain
934 /// other function types, we close a function type mangling with suffix 'f'
935 /// which can't be confused with it's prefix.  This ensures we don't have
936 /// collisions between two unrelated function types. Otherwise, you might
937 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
938 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
939 /// indicating that extra care must be taken to ensure a unique name.
940 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
941   std::string Result;
942   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
943     Result += "p" + utostr(PTyp->getAddressSpace());
944   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
945     Result += "a" + utostr(ATyp->getNumElements()) +
946               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
947   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
948     if (!STyp->isLiteral()) {
949       Result += "s_";
950       if (STyp->hasName())
951         Result += STyp->getName();
952       else
953         HasUnnamedType = true;
954     } else {
955       Result += "sl_";
956       for (auto *Elem : STyp->elements())
957         Result += getMangledTypeStr(Elem, HasUnnamedType);
958     }
959     // Ensure nested structs are distinguishable.
960     Result += "s";
961   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
962     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
963     for (size_t i = 0; i < FT->getNumParams(); i++)
964       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
965     if (FT->isVarArg())
966       Result += "vararg";
967     // Ensure nested function types are distinguishable.
968     Result += "f";
969   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
970     ElementCount EC = VTy->getElementCount();
971     if (EC.isScalable())
972       Result += "nx";
973     Result += "v" + utostr(EC.getKnownMinValue()) +
974               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
975   } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
976     Result += "t";
977     Result += TETy->getName();
978     for (Type *ParamTy : TETy->type_params())
979       Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
980     for (unsigned IntParam : TETy->int_params())
981       Result += "_" + utostr(IntParam);
982     // Ensure nested target extension types are distinguishable.
983     Result += "t";
984   } else if (Ty) {
985     switch (Ty->getTypeID()) {
986     default: llvm_unreachable("Unhandled type");
987     case Type::VoidTyID:      Result += "isVoid";   break;
988     case Type::MetadataTyID:  Result += "Metadata"; break;
989     case Type::HalfTyID:      Result += "f16";      break;
990     case Type::BFloatTyID:    Result += "bf16";     break;
991     case Type::FloatTyID:     Result += "f32";      break;
992     case Type::DoubleTyID:    Result += "f64";      break;
993     case Type::X86_FP80TyID:  Result += "f80";      break;
994     case Type::FP128TyID:     Result += "f128";     break;
995     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
996     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
997     case Type::X86_AMXTyID:   Result += "x86amx";   break;
998     case Type::IntegerTyID:
999       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
1000       break;
1001     }
1002   }
1003   return Result;
1004 }
1005 
1006 StringRef Intrinsic::getBaseName(ID id) {
1007   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1008   return IntrinsicNameTable[id];
1009 }
1010 
1011 StringRef Intrinsic::getName(ID id) {
1012   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1013   assert(!Intrinsic::isOverloaded(id) &&
1014          "This version of getName does not support overloading");
1015   return getBaseName(id);
1016 }
1017 
1018 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
1019                                         Module *M, FunctionType *FT,
1020                                         bool EarlyModuleCheck) {
1021 
1022   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
1023   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
1024          "This version of getName is for overloaded intrinsics only");
1025   (void)EarlyModuleCheck;
1026   assert((!EarlyModuleCheck || M ||
1027           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
1028          "Intrinsic overloading on pointer types need to provide a Module");
1029   bool HasUnnamedType = false;
1030   std::string Result(Intrinsic::getBaseName(Id));
1031   for (Type *Ty : Tys)
1032     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1033   if (HasUnnamedType) {
1034     assert(M && "unnamed types need a module");
1035     if (!FT)
1036       FT = Intrinsic::getType(M->getContext(), Id, Tys);
1037     else
1038       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1039              "Provided FunctionType must match arguments");
1040     return M->getUniqueIntrinsicName(Result, Id, FT);
1041   }
1042   return Result;
1043 }
1044 
1045 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1046                                FunctionType *FT) {
1047   assert(M && "We need to have a Module");
1048   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1049 }
1050 
1051 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1052   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1053 }
1054 
1055 /// IIT_Info - These are enumerators that describe the entries returned by the
1056 /// getIntrinsicInfoTableEntries function.
1057 ///
1058 /// Defined in Intrinsics.td.
1059 enum IIT_Info {
1060 #define GET_INTRINSIC_IITINFO
1061 #include "llvm/IR/IntrinsicImpl.inc"
1062 #undef GET_INTRINSIC_IITINFO
1063 };
1064 
1065 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1066                       IIT_Info LastInfo,
1067                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1068   using namespace Intrinsic;
1069 
1070   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1071 
1072   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1073   unsigned StructElts = 2;
1074 
1075   switch (Info) {
1076   case IIT_Done:
1077     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1078     return;
1079   case IIT_VARARG:
1080     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1081     return;
1082   case IIT_MMX:
1083     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1084     return;
1085   case IIT_AMX:
1086     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1087     return;
1088   case IIT_TOKEN:
1089     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1090     return;
1091   case IIT_METADATA:
1092     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1093     return;
1094   case IIT_F16:
1095     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1096     return;
1097   case IIT_BF16:
1098     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1099     return;
1100   case IIT_F32:
1101     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1102     return;
1103   case IIT_F64:
1104     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1105     return;
1106   case IIT_F128:
1107     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1108     return;
1109   case IIT_PPCF128:
1110     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1111     return;
1112   case IIT_I1:
1113     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1114     return;
1115   case IIT_I2:
1116     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1117     return;
1118   case IIT_I4:
1119     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1120     return;
1121   case IIT_AARCH64_SVCOUNT:
1122     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
1123     return;
1124   case IIT_I8:
1125     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1126     return;
1127   case IIT_I16:
1128     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1129     return;
1130   case IIT_I32:
1131     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1132     return;
1133   case IIT_I64:
1134     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1135     return;
1136   case IIT_I128:
1137     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1138     return;
1139   case IIT_V1:
1140     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1141     DecodeIITType(NextElt, Infos, Info, OutputTable);
1142     return;
1143   case IIT_V2:
1144     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1145     DecodeIITType(NextElt, Infos, Info, OutputTable);
1146     return;
1147   case IIT_V3:
1148     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1149     DecodeIITType(NextElt, Infos, Info, OutputTable);
1150     return;
1151   case IIT_V4:
1152     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1153     DecodeIITType(NextElt, Infos, Info, OutputTable);
1154     return;
1155   case IIT_V8:
1156     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1157     DecodeIITType(NextElt, Infos, Info, OutputTable);
1158     return;
1159   case IIT_V16:
1160     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1161     DecodeIITType(NextElt, Infos, Info, OutputTable);
1162     return;
1163   case IIT_V32:
1164     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1165     DecodeIITType(NextElt, Infos, Info, OutputTable);
1166     return;
1167   case IIT_V64:
1168     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1169     DecodeIITType(NextElt, Infos, Info, OutputTable);
1170     return;
1171   case IIT_V128:
1172     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1173     DecodeIITType(NextElt, Infos, Info, OutputTable);
1174     return;
1175   case IIT_V256:
1176     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1177     DecodeIITType(NextElt, Infos, Info, OutputTable);
1178     return;
1179   case IIT_V512:
1180     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1181     DecodeIITType(NextElt, Infos, Info, OutputTable);
1182     return;
1183   case IIT_V1024:
1184     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1185     DecodeIITType(NextElt, Infos, Info, OutputTable);
1186     return;
1187   case IIT_EXTERNREF:
1188     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1189     return;
1190   case IIT_FUNCREF:
1191     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1192     return;
1193   case IIT_PTR:
1194     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1195     return;
1196   case IIT_ANYPTR: // [ANYPTR addrspace]
1197     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1198                                              Infos[NextElt++]));
1199     return;
1200   case IIT_ARG: {
1201     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1202     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1203     return;
1204   }
1205   case IIT_EXTEND_ARG: {
1206     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1207     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1208                                              ArgInfo));
1209     return;
1210   }
1211   case IIT_TRUNC_ARG: {
1212     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1213     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1214                                              ArgInfo));
1215     return;
1216   }
1217   case IIT_HALF_VEC_ARG: {
1218     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1219     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1220                                              ArgInfo));
1221     return;
1222   }
1223   case IIT_SAME_VEC_WIDTH_ARG: {
1224     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1225     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1226                                              ArgInfo));
1227     return;
1228   }
1229   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1230     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1231     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1232     OutputTable.push_back(
1233         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1234     return;
1235   }
1236   case IIT_EMPTYSTRUCT:
1237     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1238     return;
1239   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1240   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1241   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1242   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1243   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1244   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1245   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1246   case IIT_STRUCT2: {
1247     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1248 
1249     for (unsigned i = 0; i != StructElts; ++i)
1250       DecodeIITType(NextElt, Infos, Info, OutputTable);
1251     return;
1252   }
1253   case IIT_SUBDIVIDE2_ARG: {
1254     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1255     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1256                                              ArgInfo));
1257     return;
1258   }
1259   case IIT_SUBDIVIDE4_ARG: {
1260     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1261     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1262                                              ArgInfo));
1263     return;
1264   }
1265   case IIT_VEC_ELEMENT: {
1266     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1267     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1268                                              ArgInfo));
1269     return;
1270   }
1271   case IIT_SCALABLE_VEC: {
1272     DecodeIITType(NextElt, Infos, Info, OutputTable);
1273     return;
1274   }
1275   case IIT_VEC_OF_BITCASTS_TO_INT: {
1276     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1277     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1278                                              ArgInfo));
1279     return;
1280   }
1281   }
1282   llvm_unreachable("unhandled");
1283 }
1284 
1285 #define GET_INTRINSIC_GENERATOR_GLOBAL
1286 #include "llvm/IR/IntrinsicImpl.inc"
1287 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1288 
1289 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1290                                              SmallVectorImpl<IITDescriptor> &T){
1291   // Check to see if the intrinsic's type was expressible by the table.
1292   unsigned TableVal = IIT_Table[id-1];
1293 
1294   // Decode the TableVal into an array of IITValues.
1295   SmallVector<unsigned char, 8> IITValues;
1296   ArrayRef<unsigned char> IITEntries;
1297   unsigned NextElt = 0;
1298   if ((TableVal >> 31) != 0) {
1299     // This is an offset into the IIT_LongEncodingTable.
1300     IITEntries = IIT_LongEncodingTable;
1301 
1302     // Strip sentinel bit.
1303     NextElt = (TableVal << 1) >> 1;
1304   } else {
1305     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1306     // into a single word in the table itself, decode it now.
1307     do {
1308       IITValues.push_back(TableVal & 0xF);
1309       TableVal >>= 4;
1310     } while (TableVal);
1311 
1312     IITEntries = IITValues;
1313     NextElt = 0;
1314   }
1315 
1316   // Okay, decode the table into the output vector of IITDescriptors.
1317   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1318   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1319     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1320 }
1321 
1322 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1323                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1324   using namespace Intrinsic;
1325 
1326   IITDescriptor D = Infos.front();
1327   Infos = Infos.slice(1);
1328 
1329   switch (D.Kind) {
1330   case IITDescriptor::Void: return Type::getVoidTy(Context);
1331   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1332   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1333   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1334   case IITDescriptor::Token: return Type::getTokenTy(Context);
1335   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1336   case IITDescriptor::Half: return Type::getHalfTy(Context);
1337   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1338   case IITDescriptor::Float: return Type::getFloatTy(Context);
1339   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1340   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1341   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1342   case IITDescriptor::AArch64Svcount:
1343     return TargetExtType::get(Context, "aarch64.svcount");
1344 
1345   case IITDescriptor::Integer:
1346     return IntegerType::get(Context, D.Integer_Width);
1347   case IITDescriptor::Vector:
1348     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1349                            D.Vector_Width);
1350   case IITDescriptor::Pointer:
1351     return PointerType::get(Context, D.Pointer_AddressSpace);
1352   case IITDescriptor::Struct: {
1353     SmallVector<Type *, 8> Elts;
1354     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1355       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1356     return StructType::get(Context, Elts);
1357   }
1358   case IITDescriptor::Argument:
1359     return Tys[D.getArgumentNumber()];
1360   case IITDescriptor::ExtendArgument: {
1361     Type *Ty = Tys[D.getArgumentNumber()];
1362     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1363       return VectorType::getExtendedElementVectorType(VTy);
1364 
1365     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1366   }
1367   case IITDescriptor::TruncArgument: {
1368     Type *Ty = Tys[D.getArgumentNumber()];
1369     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1370       return VectorType::getTruncatedElementVectorType(VTy);
1371 
1372     IntegerType *ITy = cast<IntegerType>(Ty);
1373     assert(ITy->getBitWidth() % 2 == 0);
1374     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1375   }
1376   case IITDescriptor::Subdivide2Argument:
1377   case IITDescriptor::Subdivide4Argument: {
1378     Type *Ty = Tys[D.getArgumentNumber()];
1379     VectorType *VTy = dyn_cast<VectorType>(Ty);
1380     assert(VTy && "Expected an argument of Vector Type");
1381     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1382     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1383   }
1384   case IITDescriptor::HalfVecArgument:
1385     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1386                                                   Tys[D.getArgumentNumber()]));
1387   case IITDescriptor::SameVecWidthArgument: {
1388     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1389     Type *Ty = Tys[D.getArgumentNumber()];
1390     if (auto *VTy = dyn_cast<VectorType>(Ty))
1391       return VectorType::get(EltTy, VTy->getElementCount());
1392     return EltTy;
1393   }
1394   case IITDescriptor::VecElementArgument: {
1395     Type *Ty = Tys[D.getArgumentNumber()];
1396     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1397       return VTy->getElementType();
1398     llvm_unreachable("Expected an argument of Vector Type");
1399   }
1400   case IITDescriptor::VecOfBitcastsToInt: {
1401     Type *Ty = Tys[D.getArgumentNumber()];
1402     VectorType *VTy = dyn_cast<VectorType>(Ty);
1403     assert(VTy && "Expected an argument of Vector Type");
1404     return VectorType::getInteger(VTy);
1405   }
1406   case IITDescriptor::VecOfAnyPtrsToElt:
1407     // Return the overloaded type (which determines the pointers address space)
1408     return Tys[D.getOverloadArgNumber()];
1409   }
1410   llvm_unreachable("unhandled");
1411 }
1412 
1413 FunctionType *Intrinsic::getType(LLVMContext &Context,
1414                                  ID id, ArrayRef<Type*> Tys) {
1415   SmallVector<IITDescriptor, 8> Table;
1416   getIntrinsicInfoTableEntries(id, Table);
1417 
1418   ArrayRef<IITDescriptor> TableRef = Table;
1419   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1420 
1421   SmallVector<Type*, 8> ArgTys;
1422   while (!TableRef.empty())
1423     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1424 
1425   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1426   // If we see void type as the type of the last argument, it is vararg intrinsic
1427   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1428     ArgTys.pop_back();
1429     return FunctionType::get(ResultTy, ArgTys, true);
1430   }
1431   return FunctionType::get(ResultTy, ArgTys, false);
1432 }
1433 
1434 bool Intrinsic::isOverloaded(ID id) {
1435 #define GET_INTRINSIC_OVERLOAD_TABLE
1436 #include "llvm/IR/IntrinsicImpl.inc"
1437 #undef GET_INTRINSIC_OVERLOAD_TABLE
1438 }
1439 
1440 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1441 #define GET_INTRINSIC_ATTRIBUTES
1442 #include "llvm/IR/IntrinsicImpl.inc"
1443 #undef GET_INTRINSIC_ATTRIBUTES
1444 
1445 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1446   // There can never be multiple globals with the same name of different types,
1447   // because intrinsics must be a specific type.
1448   auto *FT = getType(M->getContext(), id, Tys);
1449   return cast<Function>(
1450       M->getOrInsertFunction(
1451            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1452           .getCallee());
1453 }
1454 
1455 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1456 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1457 #include "llvm/IR/IntrinsicImpl.inc"
1458 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1459 
1460 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1461 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1462 #include "llvm/IR/IntrinsicImpl.inc"
1463 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1464 
1465 using DeferredIntrinsicMatchPair =
1466     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1467 
1468 static bool matchIntrinsicType(
1469     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1470     SmallVectorImpl<Type *> &ArgTys,
1471     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1472     bool IsDeferredCheck) {
1473   using namespace Intrinsic;
1474 
1475   // If we ran out of descriptors, there are too many arguments.
1476   if (Infos.empty()) return true;
1477 
1478   // Do this before slicing off the 'front' part
1479   auto InfosRef = Infos;
1480   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1481     DeferredChecks.emplace_back(T, InfosRef);
1482     return false;
1483   };
1484 
1485   IITDescriptor D = Infos.front();
1486   Infos = Infos.slice(1);
1487 
1488   switch (D.Kind) {
1489     case IITDescriptor::Void: return !Ty->isVoidTy();
1490     case IITDescriptor::VarArg: return true;
1491     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1492     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1493     case IITDescriptor::Token: return !Ty->isTokenTy();
1494     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1495     case IITDescriptor::Half: return !Ty->isHalfTy();
1496     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1497     case IITDescriptor::Float: return !Ty->isFloatTy();
1498     case IITDescriptor::Double: return !Ty->isDoubleTy();
1499     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1500     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1501     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1502     case IITDescriptor::AArch64Svcount:
1503       return !isa<TargetExtType>(Ty) ||
1504              cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
1505     case IITDescriptor::Vector: {
1506       VectorType *VT = dyn_cast<VectorType>(Ty);
1507       return !VT || VT->getElementCount() != D.Vector_Width ||
1508              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1509                                 DeferredChecks, IsDeferredCheck);
1510     }
1511     case IITDescriptor::Pointer: {
1512       PointerType *PT = dyn_cast<PointerType>(Ty);
1513       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
1514     }
1515 
1516     case IITDescriptor::Struct: {
1517       StructType *ST = dyn_cast<StructType>(Ty);
1518       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1519           ST->getNumElements() != D.Struct_NumElements)
1520         return true;
1521 
1522       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1523         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1524                                DeferredChecks, IsDeferredCheck))
1525           return true;
1526       return false;
1527     }
1528 
1529     case IITDescriptor::Argument:
1530       // If this is the second occurrence of an argument,
1531       // verify that the later instance matches the previous instance.
1532       if (D.getArgumentNumber() < ArgTys.size())
1533         return Ty != ArgTys[D.getArgumentNumber()];
1534 
1535       if (D.getArgumentNumber() > ArgTys.size() ||
1536           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1537         return IsDeferredCheck || DeferCheck(Ty);
1538 
1539       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1540              "Table consistency error");
1541       ArgTys.push_back(Ty);
1542 
1543       switch (D.getArgumentKind()) {
1544         case IITDescriptor::AK_Any:        return false; // Success
1545         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1546         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1547         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1548         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1549         default:                           break;
1550       }
1551       llvm_unreachable("all argument kinds not covered");
1552 
1553     case IITDescriptor::ExtendArgument: {
1554       // If this is a forward reference, defer the check for later.
1555       if (D.getArgumentNumber() >= ArgTys.size())
1556         return IsDeferredCheck || DeferCheck(Ty);
1557 
1558       Type *NewTy = ArgTys[D.getArgumentNumber()];
1559       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1560         NewTy = VectorType::getExtendedElementVectorType(VTy);
1561       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1562         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1563       else
1564         return true;
1565 
1566       return Ty != NewTy;
1567     }
1568     case IITDescriptor::TruncArgument: {
1569       // If this is a forward reference, defer the check for later.
1570       if (D.getArgumentNumber() >= ArgTys.size())
1571         return IsDeferredCheck || DeferCheck(Ty);
1572 
1573       Type *NewTy = ArgTys[D.getArgumentNumber()];
1574       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1575         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1576       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1577         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1578       else
1579         return true;
1580 
1581       return Ty != NewTy;
1582     }
1583     case IITDescriptor::HalfVecArgument:
1584       // If this is a forward reference, defer the check for later.
1585       if (D.getArgumentNumber() >= ArgTys.size())
1586         return IsDeferredCheck || DeferCheck(Ty);
1587       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1588              VectorType::getHalfElementsVectorType(
1589                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1590     case IITDescriptor::SameVecWidthArgument: {
1591       if (D.getArgumentNumber() >= ArgTys.size()) {
1592         // Defer check and subsequent check for the vector element type.
1593         Infos = Infos.slice(1);
1594         return IsDeferredCheck || DeferCheck(Ty);
1595       }
1596       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1597       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1598       // Both must be vectors of the same number of elements or neither.
1599       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1600         return true;
1601       Type *EltTy = Ty;
1602       if (ThisArgType) {
1603         if (ReferenceType->getElementCount() !=
1604             ThisArgType->getElementCount())
1605           return true;
1606         EltTy = ThisArgType->getElementType();
1607       }
1608       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1609                                 IsDeferredCheck);
1610     }
1611     case IITDescriptor::VecOfAnyPtrsToElt: {
1612       unsigned RefArgNumber = D.getRefArgNumber();
1613       if (RefArgNumber >= ArgTys.size()) {
1614         if (IsDeferredCheck)
1615           return true;
1616         // If forward referencing, already add the pointer-vector type and
1617         // defer the checks for later.
1618         ArgTys.push_back(Ty);
1619         return DeferCheck(Ty);
1620       }
1621 
1622       if (!IsDeferredCheck){
1623         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1624                "Table consistency error");
1625         ArgTys.push_back(Ty);
1626       }
1627 
1628       // Verify the overloaded type "matches" the Ref type.
1629       // i.e. Ty is a vector with the same width as Ref.
1630       // Composed of pointers to the same element type as Ref.
1631       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1632       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1633       if (!ThisArgVecTy || !ReferenceType ||
1634           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1635         return true;
1636       return !ThisArgVecTy->getElementType()->isPointerTy();
1637     }
1638     case IITDescriptor::VecElementArgument: {
1639       if (D.getArgumentNumber() >= ArgTys.size())
1640         return IsDeferredCheck ? true : DeferCheck(Ty);
1641       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1642       return !ReferenceType || Ty != ReferenceType->getElementType();
1643     }
1644     case IITDescriptor::Subdivide2Argument:
1645     case IITDescriptor::Subdivide4Argument: {
1646       // If this is a forward reference, defer the check for later.
1647       if (D.getArgumentNumber() >= ArgTys.size())
1648         return IsDeferredCheck || DeferCheck(Ty);
1649 
1650       Type *NewTy = ArgTys[D.getArgumentNumber()];
1651       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1652         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1653         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1654         return Ty != NewTy;
1655       }
1656       return true;
1657     }
1658     case IITDescriptor::VecOfBitcastsToInt: {
1659       if (D.getArgumentNumber() >= ArgTys.size())
1660         return IsDeferredCheck || DeferCheck(Ty);
1661       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1662       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1663       if (!ThisArgVecTy || !ReferenceType)
1664         return true;
1665       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1666     }
1667   }
1668   llvm_unreachable("unhandled");
1669 }
1670 
1671 Intrinsic::MatchIntrinsicTypesResult
1672 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1673                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1674                                    SmallVectorImpl<Type *> &ArgTys) {
1675   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1676   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1677                          false))
1678     return MatchIntrinsicTypes_NoMatchRet;
1679 
1680   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1681 
1682   for (auto *Ty : FTy->params())
1683     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1684       return MatchIntrinsicTypes_NoMatchArg;
1685 
1686   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1687     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1688     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1689                            true))
1690       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1691                                          : MatchIntrinsicTypes_NoMatchArg;
1692   }
1693 
1694   return MatchIntrinsicTypes_Match;
1695 }
1696 
1697 bool
1698 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1699                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1700   // If there are no descriptors left, then it can't be a vararg.
1701   if (Infos.empty())
1702     return isVarArg;
1703 
1704   // There should be only one descriptor remaining at this point.
1705   if (Infos.size() != 1)
1706     return true;
1707 
1708   // Check and verify the descriptor.
1709   IITDescriptor D = Infos.front();
1710   Infos = Infos.slice(1);
1711   if (D.Kind == IITDescriptor::VarArg)
1712     return !isVarArg;
1713 
1714   return true;
1715 }
1716 
1717 bool Intrinsic::getIntrinsicSignature(Function *F,
1718                                       SmallVectorImpl<Type *> &ArgTys) {
1719   Intrinsic::ID ID = F->getIntrinsicID();
1720   if (!ID)
1721     return false;
1722 
1723   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1724   getIntrinsicInfoTableEntries(ID, Table);
1725   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1726 
1727   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1728                                          ArgTys) !=
1729       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1730     return false;
1731   }
1732   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1733                                       TableRef))
1734     return false;
1735   return true;
1736 }
1737 
1738 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1739   SmallVector<Type *, 4> ArgTys;
1740   if (!getIntrinsicSignature(F, ArgTys))
1741     return std::nullopt;
1742 
1743   Intrinsic::ID ID = F->getIntrinsicID();
1744   StringRef Name = F->getName();
1745   std::string WantedName =
1746       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1747   if (Name == WantedName)
1748     return std::nullopt;
1749 
1750   Function *NewDecl = [&] {
1751     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1752       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1753         if (ExistingF->getFunctionType() == F->getFunctionType())
1754           return ExistingF;
1755 
1756       // The name already exists, but is not a function or has the wrong
1757       // prototype. Make place for the new one by renaming the old version.
1758       // Either this old version will be removed later on or the module is
1759       // invalid and we'll get an error.
1760       ExistingGV->setName(WantedName + ".renamed");
1761     }
1762     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1763   }();
1764 
1765   NewDecl->setCallingConv(F->getCallingConv());
1766   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1767          "Shouldn't change the signature");
1768   return NewDecl;
1769 }
1770 
1771 /// hasAddressTaken - returns true if there are any uses of this function
1772 /// other than direct calls or invokes to it. Optionally ignores callback
1773 /// uses, assume like pointer annotation calls, and references in llvm.used
1774 /// and llvm.compiler.used variables.
1775 bool Function::hasAddressTaken(const User **PutOffender,
1776                                bool IgnoreCallbackUses,
1777                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1778                                bool IgnoreARCAttachedCall,
1779                                bool IgnoreCastedDirectCall) const {
1780   for (const Use &U : uses()) {
1781     const User *FU = U.getUser();
1782     if (isa<BlockAddress>(FU))
1783       continue;
1784 
1785     if (IgnoreCallbackUses) {
1786       AbstractCallSite ACS(&U);
1787       if (ACS && ACS.isCallbackCall())
1788         continue;
1789     }
1790 
1791     const auto *Call = dyn_cast<CallBase>(FU);
1792     if (!Call) {
1793       if (IgnoreAssumeLikeCalls &&
1794           isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1795           all_of(FU->users(), [](const User *U) {
1796             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1797               return I->isAssumeLikeIntrinsic();
1798             return false;
1799           })) {
1800         continue;
1801       }
1802 
1803       if (IgnoreLLVMUsed && !FU->user_empty()) {
1804         const User *FUU = FU;
1805         if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1806             FU->hasOneUse() && !FU->user_begin()->user_empty())
1807           FUU = *FU->user_begin();
1808         if (llvm::all_of(FUU->users(), [](const User *U) {
1809               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1810                 return GV->hasName() &&
1811                        (GV->getName().equals("llvm.compiler.used") ||
1812                         GV->getName().equals("llvm.used"));
1813               return false;
1814             }))
1815           continue;
1816       }
1817       if (PutOffender)
1818         *PutOffender = FU;
1819       return true;
1820     }
1821 
1822     if (IgnoreAssumeLikeCalls) {
1823       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1824         if (I->isAssumeLikeIntrinsic())
1825           continue;
1826     }
1827 
1828     if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall &&
1829                                 Call->getFunctionType() != getFunctionType())) {
1830       if (IgnoreARCAttachedCall &&
1831           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1832                                       U.getOperandNo()))
1833         continue;
1834 
1835       if (PutOffender)
1836         *PutOffender = FU;
1837       return true;
1838     }
1839   }
1840   return false;
1841 }
1842 
1843 bool Function::isDefTriviallyDead() const {
1844   // Check the linkage
1845   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1846       !hasAvailableExternallyLinkage())
1847     return false;
1848 
1849   // Check if the function is used by anything other than a blockaddress.
1850   for (const User *U : users())
1851     if (!isa<BlockAddress>(U))
1852       return false;
1853 
1854   return true;
1855 }
1856 
1857 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1858 /// setjmp or other function that gcc recognizes as "returning twice".
1859 bool Function::callsFunctionThatReturnsTwice() const {
1860   for (const Instruction &I : instructions(this))
1861     if (const auto *Call = dyn_cast<CallBase>(&I))
1862       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1863         return true;
1864 
1865   return false;
1866 }
1867 
1868 Constant *Function::getPersonalityFn() const {
1869   assert(hasPersonalityFn() && getNumOperands());
1870   return cast<Constant>(Op<0>());
1871 }
1872 
1873 void Function::setPersonalityFn(Constant *Fn) {
1874   setHungoffOperand<0>(Fn);
1875   setValueSubclassDataBit(3, Fn != nullptr);
1876 }
1877 
1878 Constant *Function::getPrefixData() const {
1879   assert(hasPrefixData() && getNumOperands());
1880   return cast<Constant>(Op<1>());
1881 }
1882 
1883 void Function::setPrefixData(Constant *PrefixData) {
1884   setHungoffOperand<1>(PrefixData);
1885   setValueSubclassDataBit(1, PrefixData != nullptr);
1886 }
1887 
1888 Constant *Function::getPrologueData() const {
1889   assert(hasPrologueData() && getNumOperands());
1890   return cast<Constant>(Op<2>());
1891 }
1892 
1893 void Function::setPrologueData(Constant *PrologueData) {
1894   setHungoffOperand<2>(PrologueData);
1895   setValueSubclassDataBit(2, PrologueData != nullptr);
1896 }
1897 
1898 void Function::allocHungoffUselist() {
1899   // If we've already allocated a uselist, stop here.
1900   if (getNumOperands())
1901     return;
1902 
1903   allocHungoffUses(3, /*IsPhi=*/ false);
1904   setNumHungOffUseOperands(3);
1905 
1906   // Initialize the uselist with placeholder operands to allow traversal.
1907   auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
1908   Op<0>().set(CPN);
1909   Op<1>().set(CPN);
1910   Op<2>().set(CPN);
1911 }
1912 
1913 template <int Idx>
1914 void Function::setHungoffOperand(Constant *C) {
1915   if (C) {
1916     allocHungoffUselist();
1917     Op<Idx>().set(C);
1918   } else if (getNumOperands()) {
1919     Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0)));
1920   }
1921 }
1922 
1923 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1924   assert(Bit < 16 && "SubclassData contains only 16 bits");
1925   if (On)
1926     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1927   else
1928     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1929 }
1930 
1931 void Function::setEntryCount(ProfileCount Count,
1932                              const DenseSet<GlobalValue::GUID> *S) {
1933 #if !defined(NDEBUG)
1934   auto PrevCount = getEntryCount();
1935   assert(!PrevCount || PrevCount->getType() == Count.getType());
1936 #endif
1937 
1938   auto ImportGUIDs = getImportGUIDs();
1939   if (S == nullptr && ImportGUIDs.size())
1940     S = &ImportGUIDs;
1941 
1942   MDBuilder MDB(getContext());
1943   setMetadata(
1944       LLVMContext::MD_prof,
1945       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1946 }
1947 
1948 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1949                              const DenseSet<GlobalValue::GUID> *Imports) {
1950   setEntryCount(ProfileCount(Count, Type), Imports);
1951 }
1952 
1953 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1954   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1955   if (MD && MD->getOperand(0))
1956     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1957       if (MDS->getString().equals("function_entry_count")) {
1958         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1959         uint64_t Count = CI->getValue().getZExtValue();
1960         // A value of -1 is used for SamplePGO when there were no samples.
1961         // Treat this the same as unknown.
1962         if (Count == (uint64_t)-1)
1963           return std::nullopt;
1964         return ProfileCount(Count, PCT_Real);
1965       } else if (AllowSynthetic &&
1966                  MDS->getString().equals("synthetic_function_entry_count")) {
1967         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1968         uint64_t Count = CI->getValue().getZExtValue();
1969         return ProfileCount(Count, PCT_Synthetic);
1970       }
1971     }
1972   return std::nullopt;
1973 }
1974 
1975 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1976   DenseSet<GlobalValue::GUID> R;
1977   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1978     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1979       if (MDS->getString().equals("function_entry_count"))
1980         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1981           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1982                        ->getValue()
1983                        .getZExtValue());
1984   return R;
1985 }
1986 
1987 void Function::setSectionPrefix(StringRef Prefix) {
1988   MDBuilder MDB(getContext());
1989   setMetadata(LLVMContext::MD_section_prefix,
1990               MDB.createFunctionSectionPrefix(Prefix));
1991 }
1992 
1993 std::optional<StringRef> Function::getSectionPrefix() const {
1994   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1995     assert(cast<MDString>(MD->getOperand(0))
1996                ->getString()
1997                .equals("function_section_prefix") &&
1998            "Metadata not match");
1999     return cast<MDString>(MD->getOperand(1))->getString();
2000   }
2001   return std::nullopt;
2002 }
2003 
2004 bool Function::nullPointerIsDefined() const {
2005   return hasFnAttribute(Attribute::NullPointerIsValid);
2006 }
2007 
2008 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2009   if (F && F->nullPointerIsDefined())
2010     return true;
2011 
2012   if (AS != 0)
2013     return true;
2014 
2015   return false;
2016 }
2017