1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/AbstractCallSite.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/IntrinsicsAArch64.h" 37 #include "llvm/IR/IntrinsicsAMDGPU.h" 38 #include "llvm/IR/IntrinsicsARM.h" 39 #include "llvm/IR/IntrinsicsBPF.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsVE.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/IntrinsicsXCore.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/SymbolTableListTraits.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/CommandLine.h" 64 #include "llvm/Support/Compiler.h" 65 #include "llvm/Support/ErrorHandling.h" 66 #include <algorithm> 67 #include <cassert> 68 #include <cstddef> 69 #include <cstdint> 70 #include <cstring> 71 #include <string> 72 73 using namespace llvm; 74 using ProfileCount = Function::ProfileCount; 75 76 // Explicit instantiations of SymbolTableListTraits since some of the methods 77 // are not in the public header file... 78 template class llvm::SymbolTableListTraits<BasicBlock>; 79 80 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 81 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 82 cl::desc("Maximum size for the name of non-global values.")); 83 84 //===----------------------------------------------------------------------===// 85 // Argument Implementation 86 //===----------------------------------------------------------------------===// 87 88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 89 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 90 setName(Name); 91 } 92 93 void Argument::setParent(Function *parent) { 94 Parent = parent; 95 } 96 97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 98 if (!getType()->isPointerTy()) return false; 99 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 100 (AllowUndefOrPoison || 101 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 102 return true; 103 else if (getDereferenceableBytes() > 0 && 104 !NullPointerIsDefined(getParent(), 105 getType()->getPointerAddressSpace())) 106 return true; 107 return false; 108 } 109 110 bool Argument::hasByValAttr() const { 111 if (!getType()->isPointerTy()) return false; 112 return hasAttribute(Attribute::ByVal); 113 } 114 115 bool Argument::hasByRefAttr() const { 116 if (!getType()->isPointerTy()) 117 return false; 118 return hasAttribute(Attribute::ByRef); 119 } 120 121 bool Argument::hasSwiftSelfAttr() const { 122 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 123 } 124 125 bool Argument::hasSwiftErrorAttr() const { 126 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 127 } 128 129 bool Argument::hasInAllocaAttr() const { 130 if (!getType()->isPointerTy()) return false; 131 return hasAttribute(Attribute::InAlloca); 132 } 133 134 bool Argument::hasPreallocatedAttr() const { 135 if (!getType()->isPointerTy()) 136 return false; 137 return hasAttribute(Attribute::Preallocated); 138 } 139 140 bool Argument::hasPassPointeeByValueCopyAttr() const { 141 if (!getType()->isPointerTy()) return false; 142 AttributeList Attrs = getParent()->getAttributes(); 143 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 144 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 145 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 146 } 147 148 bool Argument::hasPointeeInMemoryValueAttr() const { 149 if (!getType()->isPointerTy()) 150 return false; 151 AttributeList Attrs = getParent()->getAttributes(); 152 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 153 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 154 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 155 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 156 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 157 } 158 159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 160 /// parameter type. 161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) { 162 // FIXME: All the type carrying attributes are mutually exclusive, so there 163 // should be a single query to get the stored type that handles any of them. 164 if (Type *ByValTy = ParamAttrs.getByValType()) 165 return ByValTy; 166 if (Type *ByRefTy = ParamAttrs.getByRefType()) 167 return ByRefTy; 168 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 169 return PreAllocTy; 170 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 171 return InAllocaTy; 172 if (Type *SRetTy = ParamAttrs.getStructRetType()) 173 return SRetTy; 174 175 return nullptr; 176 } 177 178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 179 AttributeSet ParamAttrs = 180 getParent()->getAttributes().getParamAttrs(getArgNo()); 181 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType())) 182 return DL.getTypeAllocSize(MemTy); 183 return 0; 184 } 185 186 Type *Argument::getPointeeInMemoryValueType() const { 187 AttributeSet ParamAttrs = 188 getParent()->getAttributes().getParamAttrs(getArgNo()); 189 return getMemoryParamAllocType(ParamAttrs, getType()); 190 } 191 192 unsigned Argument::getParamAlignment() const { 193 assert(getType()->isPointerTy() && "Only pointers have alignments"); 194 return getParent()->getParamAlignment(getArgNo()); 195 } 196 197 MaybeAlign Argument::getParamAlign() const { 198 assert(getType()->isPointerTy() && "Only pointers have alignments"); 199 return getParent()->getParamAlign(getArgNo()); 200 } 201 202 MaybeAlign Argument::getParamStackAlign() const { 203 return getParent()->getParamStackAlign(getArgNo()); 204 } 205 206 Type *Argument::getParamByValType() const { 207 assert(getType()->isPointerTy() && "Only pointers have byval types"); 208 return getParent()->getParamByValType(getArgNo()); 209 } 210 211 Type *Argument::getParamStructRetType() const { 212 assert(getType()->isPointerTy() && "Only pointers have sret types"); 213 return getParent()->getParamStructRetType(getArgNo()); 214 } 215 216 Type *Argument::getParamByRefType() const { 217 assert(getType()->isPointerTy() && "Only pointers have byref types"); 218 return getParent()->getParamByRefType(getArgNo()); 219 } 220 221 Type *Argument::getParamInAllocaType() const { 222 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 223 return getParent()->getParamInAllocaType(getArgNo()); 224 } 225 226 uint64_t Argument::getDereferenceableBytes() const { 227 assert(getType()->isPointerTy() && 228 "Only pointers have dereferenceable bytes"); 229 return getParent()->getParamDereferenceableBytes(getArgNo()); 230 } 231 232 uint64_t Argument::getDereferenceableOrNullBytes() const { 233 assert(getType()->isPointerTy() && 234 "Only pointers have dereferenceable bytes"); 235 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 236 } 237 238 bool Argument::hasNestAttr() const { 239 if (!getType()->isPointerTy()) return false; 240 return hasAttribute(Attribute::Nest); 241 } 242 243 bool Argument::hasNoAliasAttr() const { 244 if (!getType()->isPointerTy()) return false; 245 return hasAttribute(Attribute::NoAlias); 246 } 247 248 bool Argument::hasNoCaptureAttr() const { 249 if (!getType()->isPointerTy()) return false; 250 return hasAttribute(Attribute::NoCapture); 251 } 252 253 bool Argument::hasNoFreeAttr() const { 254 if (!getType()->isPointerTy()) return false; 255 return hasAttribute(Attribute::NoFree); 256 } 257 258 bool Argument::hasStructRetAttr() const { 259 if (!getType()->isPointerTy()) return false; 260 return hasAttribute(Attribute::StructRet); 261 } 262 263 bool Argument::hasInRegAttr() const { 264 return hasAttribute(Attribute::InReg); 265 } 266 267 bool Argument::hasReturnedAttr() const { 268 return hasAttribute(Attribute::Returned); 269 } 270 271 bool Argument::hasZExtAttr() const { 272 return hasAttribute(Attribute::ZExt); 273 } 274 275 bool Argument::hasSExtAttr() const { 276 return hasAttribute(Attribute::SExt); 277 } 278 279 bool Argument::onlyReadsMemory() const { 280 AttributeList Attrs = getParent()->getAttributes(); 281 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 282 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 283 } 284 285 void Argument::addAttrs(AttrBuilder &B) { 286 AttributeList AL = getParent()->getAttributes(); 287 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 288 getParent()->setAttributes(AL); 289 } 290 291 void Argument::addAttr(Attribute::AttrKind Kind) { 292 getParent()->addParamAttr(getArgNo(), Kind); 293 } 294 295 void Argument::addAttr(Attribute Attr) { 296 getParent()->addParamAttr(getArgNo(), Attr); 297 } 298 299 void Argument::removeAttr(Attribute::AttrKind Kind) { 300 getParent()->removeParamAttr(getArgNo(), Kind); 301 } 302 303 void Argument::removeAttrs(const AttrBuilder &B) { 304 AttributeList AL = getParent()->getAttributes(); 305 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B); 306 getParent()->setAttributes(AL); 307 } 308 309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 310 return getParent()->hasParamAttribute(getArgNo(), Kind); 311 } 312 313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 314 return getParent()->getParamAttribute(getArgNo(), Kind); 315 } 316 317 //===----------------------------------------------------------------------===// 318 // Helper Methods in Function 319 //===----------------------------------------------------------------------===// 320 321 LLVMContext &Function::getContext() const { 322 return getType()->getContext(); 323 } 324 325 unsigned Function::getInstructionCount() const { 326 unsigned NumInstrs = 0; 327 for (const BasicBlock &BB : BasicBlocks) 328 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 329 BB.instructionsWithoutDebug().end()); 330 return NumInstrs; 331 } 332 333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 334 const Twine &N, Module &M) { 335 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 336 } 337 338 Function *Function::createWithDefaultAttr(FunctionType *Ty, 339 LinkageTypes Linkage, 340 unsigned AddrSpace, const Twine &N, 341 Module *M) { 342 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 343 AttrBuilder B; 344 if (M->getUwtable()) 345 B.addAttribute(Attribute::UWTable); 346 switch (M->getFramePointer()) { 347 case FramePointerKind::None: 348 // 0 ("none") is the default. 349 break; 350 case FramePointerKind::NonLeaf: 351 B.addAttribute("frame-pointer", "non-leaf"); 352 break; 353 case FramePointerKind::All: 354 B.addAttribute("frame-pointer", "all"); 355 break; 356 } 357 F->addFnAttrs(B); 358 return F; 359 } 360 361 void Function::removeFromParent() { 362 getParent()->getFunctionList().remove(getIterator()); 363 } 364 365 void Function::eraseFromParent() { 366 getParent()->getFunctionList().erase(getIterator()); 367 } 368 369 //===----------------------------------------------------------------------===// 370 // Function Implementation 371 //===----------------------------------------------------------------------===// 372 373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 374 // If AS == -1 and we are passed a valid module pointer we place the function 375 // in the program address space. Otherwise we default to AS0. 376 if (AddrSpace == static_cast<unsigned>(-1)) 377 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 378 return AddrSpace; 379 } 380 381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 382 const Twine &name, Module *ParentModule) 383 : GlobalObject(Ty, Value::FunctionVal, 384 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 385 computeAddrSpace(AddrSpace, ParentModule)), 386 NumArgs(Ty->getNumParams()) { 387 assert(FunctionType::isValidReturnType(getReturnType()) && 388 "invalid return type"); 389 setGlobalObjectSubClassData(0); 390 391 // We only need a symbol table for a function if the context keeps value names 392 if (!getContext().shouldDiscardValueNames()) 393 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 394 395 // If the function has arguments, mark them as lazily built. 396 if (Ty->getNumParams()) 397 setValueSubclassData(1); // Set the "has lazy arguments" bit. 398 399 if (ParentModule) 400 ParentModule->getFunctionList().push_back(this); 401 402 HasLLVMReservedName = getName().startswith("llvm."); 403 // Ensure intrinsics have the right parameter attributes. 404 // Note, the IntID field will have been set in Value::setName if this function 405 // name is a valid intrinsic ID. 406 if (IntID) 407 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 408 } 409 410 Function::~Function() { 411 dropAllReferences(); // After this it is safe to delete instructions. 412 413 // Delete all of the method arguments and unlink from symbol table... 414 if (Arguments) 415 clearArguments(); 416 417 // Remove the function from the on-the-side GC table. 418 clearGC(); 419 } 420 421 void Function::BuildLazyArguments() const { 422 // Create the arguments vector, all arguments start out unnamed. 423 auto *FT = getFunctionType(); 424 if (NumArgs > 0) { 425 Arguments = std::allocator<Argument>().allocate(NumArgs); 426 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 427 Type *ArgTy = FT->getParamType(i); 428 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 429 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 430 } 431 } 432 433 // Clear the lazy arguments bit. 434 unsigned SDC = getSubclassDataFromValue(); 435 SDC &= ~(1 << 0); 436 const_cast<Function*>(this)->setValueSubclassData(SDC); 437 assert(!hasLazyArguments()); 438 } 439 440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 441 return MutableArrayRef<Argument>(Args, Count); 442 } 443 444 bool Function::isConstrainedFPIntrinsic() const { 445 switch (getIntrinsicID()) { 446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 447 case Intrinsic::INTRINSIC: 448 #include "llvm/IR/ConstrainedOps.def" 449 return true; 450 #undef INSTRUCTION 451 default: 452 return false; 453 } 454 } 455 456 void Function::clearArguments() { 457 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 458 A.setName(""); 459 A.~Argument(); 460 } 461 std::allocator<Argument>().deallocate(Arguments, NumArgs); 462 Arguments = nullptr; 463 } 464 465 void Function::stealArgumentListFrom(Function &Src) { 466 assert(isDeclaration() && "Expected no references to current arguments"); 467 468 // Drop the current arguments, if any, and set the lazy argument bit. 469 if (!hasLazyArguments()) { 470 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 471 [](const Argument &A) { return A.use_empty(); }) && 472 "Expected arguments to be unused in declaration"); 473 clearArguments(); 474 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 475 } 476 477 // Nothing to steal if Src has lazy arguments. 478 if (Src.hasLazyArguments()) 479 return; 480 481 // Steal arguments from Src, and fix the lazy argument bits. 482 assert(arg_size() == Src.arg_size()); 483 Arguments = Src.Arguments; 484 Src.Arguments = nullptr; 485 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 486 // FIXME: This does the work of transferNodesFromList inefficiently. 487 SmallString<128> Name; 488 if (A.hasName()) 489 Name = A.getName(); 490 if (!Name.empty()) 491 A.setName(""); 492 A.setParent(this); 493 if (!Name.empty()) 494 A.setName(Name); 495 } 496 497 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 498 assert(!hasLazyArguments()); 499 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 500 } 501 502 // dropAllReferences() - This function causes all the subinstructions to "let 503 // go" of all references that they are maintaining. This allows one to 504 // 'delete' a whole class at a time, even though there may be circular 505 // references... first all references are dropped, and all use counts go to 506 // zero. Then everything is deleted for real. Note that no operations are 507 // valid on an object that has "dropped all references", except operator 508 // delete. 509 // 510 void Function::dropAllReferences() { 511 setIsMaterializable(false); 512 513 for (BasicBlock &BB : *this) 514 BB.dropAllReferences(); 515 516 // Delete all basic blocks. They are now unused, except possibly by 517 // blockaddresses, but BasicBlock's destructor takes care of those. 518 while (!BasicBlocks.empty()) 519 BasicBlocks.begin()->eraseFromParent(); 520 521 // Drop uses of any optional data (real or placeholder). 522 if (getNumOperands()) { 523 User::dropAllReferences(); 524 setNumHungOffUseOperands(0); 525 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 526 } 527 528 // Metadata is stored in a side-table. 529 clearMetadata(); 530 } 531 532 void Function::addAttribute(unsigned i, Attribute Attr) { 533 AttributeSets = AttributeSets.addAttribute(getContext(), i, Attr); 534 } 535 536 void Function::addAttribute(unsigned i, Attribute::AttrKind Attr) { 537 AttributeSets = AttributeSets.addAttribute(getContext(), i, Attr); 538 } 539 540 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 541 AttributeSets = AttributeSets.addAttributes(getContext(), i, Attrs); 542 } 543 544 void Function::addFnAttr(Attribute::AttrKind Kind) { 545 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 546 } 547 548 void Function::addFnAttr(StringRef Kind, StringRef Val) { 549 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 550 } 551 552 void Function::addFnAttr(Attribute Attr) { 553 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 554 } 555 556 void Function::addFnAttrs(const AttrBuilder &Attrs) { 557 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 558 } 559 560 void Function::addRetAttr(Attribute::AttrKind Kind) { 561 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 562 } 563 564 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 565 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 566 } 567 568 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 569 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 570 } 571 572 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 573 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 574 } 575 576 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 577 AttributeSets = AttributeSets.removeAttribute(getContext(), i, Kind); 578 } 579 580 void Function::removeAttribute(unsigned i, StringRef Kind) { 581 AttributeSets = AttributeSets.removeAttribute(getContext(), i, Kind); 582 } 583 584 void Function::removeFnAttr(Attribute::AttrKind Kind) { 585 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 586 } 587 588 void Function::removeFnAttr(StringRef Kind) { 589 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 590 } 591 592 void Function::removeFnAttrs(const AttrBuilder &Attrs) { 593 AttributeSets = AttributeSets.removeFnAttributes(getContext(), Attrs); 594 } 595 596 void Function::removeRetAttr(Attribute::AttrKind Kind) { 597 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 598 } 599 600 void Function::removeRetAttr(StringRef Kind) { 601 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 602 } 603 604 void Function::removeRetAttrs(const AttrBuilder &Attrs) { 605 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 606 } 607 608 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 609 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 610 } 611 612 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 613 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 614 } 615 616 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 617 AttributeSets = 618 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 619 } 620 621 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 622 AttributeSets = 623 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 624 } 625 626 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 627 return AttributeSets.hasFnAttr(Kind); 628 } 629 630 bool Function::hasFnAttribute(StringRef Kind) const { 631 return AttributeSets.hasFnAttr(Kind); 632 } 633 634 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 635 return AttributeSets.hasRetAttr(Kind); 636 } 637 638 bool Function::hasParamAttribute(unsigned ArgNo, 639 Attribute::AttrKind Kind) const { 640 return AttributeSets.hasParamAttr(ArgNo, Kind); 641 } 642 643 Attribute Function::getAttribute(unsigned i, Attribute::AttrKind Kind) const { 644 return AttributeSets.getAttribute(i, Kind); 645 } 646 647 Attribute Function::getAttribute(unsigned i, StringRef Kind) const { 648 return AttributeSets.getAttribute(i, Kind); 649 } 650 651 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 652 return AttributeSets.getFnAttr(Kind); 653 } 654 655 Attribute Function::getFnAttribute(StringRef Kind) const { 656 return AttributeSets.getFnAttr(Kind); 657 } 658 659 /// gets the specified attribute from the list of attributes. 660 Attribute Function::getParamAttribute(unsigned ArgNo, 661 Attribute::AttrKind Kind) const { 662 return AttributeSets.getParamAttr(ArgNo, Kind); 663 } 664 665 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 666 uint64_t Bytes) { 667 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 668 ArgNo, Bytes); 669 } 670 671 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 672 if (&FPType == &APFloat::IEEEsingle()) { 673 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 674 StringRef Val = Attr.getValueAsString(); 675 if (!Val.empty()) 676 return parseDenormalFPAttribute(Val); 677 678 // If the f32 variant of the attribute isn't specified, try to use the 679 // generic one. 680 } 681 682 Attribute Attr = getFnAttribute("denormal-fp-math"); 683 return parseDenormalFPAttribute(Attr.getValueAsString()); 684 } 685 686 const std::string &Function::getGC() const { 687 assert(hasGC() && "Function has no collector"); 688 return getContext().getGC(*this); 689 } 690 691 void Function::setGC(std::string Str) { 692 setValueSubclassDataBit(14, !Str.empty()); 693 getContext().setGC(*this, std::move(Str)); 694 } 695 696 void Function::clearGC() { 697 if (!hasGC()) 698 return; 699 getContext().deleteGC(*this); 700 setValueSubclassDataBit(14, false); 701 } 702 703 bool Function::hasStackProtectorFnAttr() const { 704 return hasFnAttribute(Attribute::StackProtect) || 705 hasFnAttribute(Attribute::StackProtectStrong) || 706 hasFnAttribute(Attribute::StackProtectReq); 707 } 708 709 /// Copy all additional attributes (those not needed to create a Function) from 710 /// the Function Src to this one. 711 void Function::copyAttributesFrom(const Function *Src) { 712 GlobalObject::copyAttributesFrom(Src); 713 setCallingConv(Src->getCallingConv()); 714 setAttributes(Src->getAttributes()); 715 if (Src->hasGC()) 716 setGC(Src->getGC()); 717 else 718 clearGC(); 719 if (Src->hasPersonalityFn()) 720 setPersonalityFn(Src->getPersonalityFn()); 721 if (Src->hasPrefixData()) 722 setPrefixData(Src->getPrefixData()); 723 if (Src->hasPrologueData()) 724 setPrologueData(Src->getPrologueData()); 725 } 726 727 /// Table of string intrinsic names indexed by enum value. 728 static const char * const IntrinsicNameTable[] = { 729 "not_intrinsic", 730 #define GET_INTRINSIC_NAME_TABLE 731 #include "llvm/IR/IntrinsicImpl.inc" 732 #undef GET_INTRINSIC_NAME_TABLE 733 }; 734 735 /// Table of per-target intrinsic name tables. 736 #define GET_INTRINSIC_TARGET_DATA 737 #include "llvm/IR/IntrinsicImpl.inc" 738 #undef GET_INTRINSIC_TARGET_DATA 739 740 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 741 return IID > TargetInfos[0].Count; 742 } 743 744 bool Function::isTargetIntrinsic() const { 745 return isTargetIntrinsic(IntID); 746 } 747 748 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 749 /// target as \c Name, or the generic table if \c Name is not target specific. 750 /// 751 /// Returns the relevant slice of \c IntrinsicNameTable 752 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 753 assert(Name.startswith("llvm.")); 754 755 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 756 // Drop "llvm." and take the first dotted component. That will be the target 757 // if this is target specific. 758 StringRef Target = Name.drop_front(5).split('.').first; 759 auto It = partition_point( 760 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 761 // We've either found the target or just fall back to the generic set, which 762 // is always first. 763 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 764 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 765 } 766 767 /// This does the actual lookup of an intrinsic ID which 768 /// matches the given function name. 769 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 770 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 771 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 772 if (Idx == -1) 773 return Intrinsic::not_intrinsic; 774 775 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 776 // an index into a sub-table. 777 int Adjust = NameTable.data() - IntrinsicNameTable; 778 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 779 780 // If the intrinsic is not overloaded, require an exact match. If it is 781 // overloaded, require either exact or prefix match. 782 const auto MatchSize = strlen(NameTable[Idx]); 783 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 784 bool IsExactMatch = Name.size() == MatchSize; 785 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 786 : Intrinsic::not_intrinsic; 787 } 788 789 void Function::recalculateIntrinsicID() { 790 StringRef Name = getName(); 791 if (!Name.startswith("llvm.")) { 792 HasLLVMReservedName = false; 793 IntID = Intrinsic::not_intrinsic; 794 return; 795 } 796 HasLLVMReservedName = true; 797 IntID = lookupIntrinsicID(Name); 798 } 799 800 /// Returns a stable mangling for the type specified for use in the name 801 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 802 /// of named types is simply their name. Manglings for unnamed types consist 803 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 804 /// combined with the mangling of their component types. A vararg function 805 /// type will have a suffix of 'vararg'. Since function types can contain 806 /// other function types, we close a function type mangling with suffix 'f' 807 /// which can't be confused with it's prefix. This ensures we don't have 808 /// collisions between two unrelated function types. Otherwise, you might 809 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 810 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 811 /// indicating that extra care must be taken to ensure a unique name. 812 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 813 std::string Result; 814 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 815 Result += "p" + utostr(PTyp->getAddressSpace()); 816 // Opaque pointer doesn't have pointee type information, so we just mangle 817 // address space for opaque pointer. 818 if (!PTyp->isOpaque()) 819 Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType); 820 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 821 Result += "a" + utostr(ATyp->getNumElements()) + 822 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 823 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 824 if (!STyp->isLiteral()) { 825 Result += "s_"; 826 if (STyp->hasName()) 827 Result += STyp->getName(); 828 else 829 HasUnnamedType = true; 830 } else { 831 Result += "sl_"; 832 for (auto Elem : STyp->elements()) 833 Result += getMangledTypeStr(Elem, HasUnnamedType); 834 } 835 // Ensure nested structs are distinguishable. 836 Result += "s"; 837 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 838 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 839 for (size_t i = 0; i < FT->getNumParams(); i++) 840 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 841 if (FT->isVarArg()) 842 Result += "vararg"; 843 // Ensure nested function types are distinguishable. 844 Result += "f"; 845 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 846 ElementCount EC = VTy->getElementCount(); 847 if (EC.isScalable()) 848 Result += "nx"; 849 Result += "v" + utostr(EC.getKnownMinValue()) + 850 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 851 } else if (Ty) { 852 switch (Ty->getTypeID()) { 853 default: llvm_unreachable("Unhandled type"); 854 case Type::VoidTyID: Result += "isVoid"; break; 855 case Type::MetadataTyID: Result += "Metadata"; break; 856 case Type::HalfTyID: Result += "f16"; break; 857 case Type::BFloatTyID: Result += "bf16"; break; 858 case Type::FloatTyID: Result += "f32"; break; 859 case Type::DoubleTyID: Result += "f64"; break; 860 case Type::X86_FP80TyID: Result += "f80"; break; 861 case Type::FP128TyID: Result += "f128"; break; 862 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 863 case Type::X86_MMXTyID: Result += "x86mmx"; break; 864 case Type::X86_AMXTyID: Result += "x86amx"; break; 865 case Type::IntegerTyID: 866 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 867 break; 868 } 869 } 870 return Result; 871 } 872 873 StringRef Intrinsic::getBaseName(ID id) { 874 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 875 return IntrinsicNameTable[id]; 876 } 877 878 StringRef Intrinsic::getName(ID id) { 879 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 880 assert(!Intrinsic::isOverloaded(id) && 881 "This version of getName does not support overloading"); 882 return getBaseName(id); 883 } 884 885 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 886 Module *M, FunctionType *FT, 887 bool EarlyModuleCheck) { 888 889 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 890 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 891 "This version of getName is for overloaded intrinsics only"); 892 (void)EarlyModuleCheck; 893 assert((!EarlyModuleCheck || M || 894 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 895 "Intrinsic overloading on pointer types need to provide a Module"); 896 bool HasUnnamedType = false; 897 std::string Result(Intrinsic::getBaseName(Id)); 898 for (Type *Ty : Tys) 899 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 900 if (HasUnnamedType) { 901 assert(M && "unnamed types need a module"); 902 if (!FT) 903 FT = Intrinsic::getType(M->getContext(), Id, Tys); 904 else 905 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 906 "Provided FunctionType must match arguments"); 907 return M->getUniqueIntrinsicName(Result, Id, FT); 908 } 909 return Result; 910 } 911 912 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 913 FunctionType *FT) { 914 assert(M && "We need to have a Module"); 915 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 916 } 917 918 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 919 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 920 } 921 922 /// IIT_Info - These are enumerators that describe the entries returned by the 923 /// getIntrinsicInfoTableEntries function. 924 /// 925 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 926 enum IIT_Info { 927 // Common values should be encoded with 0-15. 928 IIT_Done = 0, 929 IIT_I1 = 1, 930 IIT_I8 = 2, 931 IIT_I16 = 3, 932 IIT_I32 = 4, 933 IIT_I64 = 5, 934 IIT_F16 = 6, 935 IIT_F32 = 7, 936 IIT_F64 = 8, 937 IIT_V2 = 9, 938 IIT_V4 = 10, 939 IIT_V8 = 11, 940 IIT_V16 = 12, 941 IIT_V32 = 13, 942 IIT_PTR = 14, 943 IIT_ARG = 15, 944 945 // Values from 16+ are only encodable with the inefficient encoding. 946 IIT_V64 = 16, 947 IIT_MMX = 17, 948 IIT_TOKEN = 18, 949 IIT_METADATA = 19, 950 IIT_EMPTYSTRUCT = 20, 951 IIT_STRUCT2 = 21, 952 IIT_STRUCT3 = 22, 953 IIT_STRUCT4 = 23, 954 IIT_STRUCT5 = 24, 955 IIT_EXTEND_ARG = 25, 956 IIT_TRUNC_ARG = 26, 957 IIT_ANYPTR = 27, 958 IIT_V1 = 28, 959 IIT_VARARG = 29, 960 IIT_HALF_VEC_ARG = 30, 961 IIT_SAME_VEC_WIDTH_ARG = 31, 962 IIT_PTR_TO_ARG = 32, 963 IIT_PTR_TO_ELT = 33, 964 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 965 IIT_I128 = 35, 966 IIT_V512 = 36, 967 IIT_V1024 = 37, 968 IIT_STRUCT6 = 38, 969 IIT_STRUCT7 = 39, 970 IIT_STRUCT8 = 40, 971 IIT_F128 = 41, 972 IIT_VEC_ELEMENT = 42, 973 IIT_SCALABLE_VEC = 43, 974 IIT_SUBDIVIDE2_ARG = 44, 975 IIT_SUBDIVIDE4_ARG = 45, 976 IIT_VEC_OF_BITCASTS_TO_INT = 46, 977 IIT_V128 = 47, 978 IIT_BF16 = 48, 979 IIT_STRUCT9 = 49, 980 IIT_V256 = 50, 981 IIT_AMX = 51 982 }; 983 984 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 985 IIT_Info LastInfo, 986 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 987 using namespace Intrinsic; 988 989 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 990 991 IIT_Info Info = IIT_Info(Infos[NextElt++]); 992 unsigned StructElts = 2; 993 994 switch (Info) { 995 case IIT_Done: 996 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 997 return; 998 case IIT_VARARG: 999 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1000 return; 1001 case IIT_MMX: 1002 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1003 return; 1004 case IIT_AMX: 1005 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1006 return; 1007 case IIT_TOKEN: 1008 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1009 return; 1010 case IIT_METADATA: 1011 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1012 return; 1013 case IIT_F16: 1014 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1015 return; 1016 case IIT_BF16: 1017 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1018 return; 1019 case IIT_F32: 1020 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1021 return; 1022 case IIT_F64: 1023 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1024 return; 1025 case IIT_F128: 1026 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1027 return; 1028 case IIT_I1: 1029 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1030 return; 1031 case IIT_I8: 1032 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1033 return; 1034 case IIT_I16: 1035 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1036 return; 1037 case IIT_I32: 1038 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1039 return; 1040 case IIT_I64: 1041 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1042 return; 1043 case IIT_I128: 1044 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1045 return; 1046 case IIT_V1: 1047 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1048 DecodeIITType(NextElt, Infos, Info, OutputTable); 1049 return; 1050 case IIT_V2: 1051 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1052 DecodeIITType(NextElt, Infos, Info, OutputTable); 1053 return; 1054 case IIT_V4: 1055 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1056 DecodeIITType(NextElt, Infos, Info, OutputTable); 1057 return; 1058 case IIT_V8: 1059 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1060 DecodeIITType(NextElt, Infos, Info, OutputTable); 1061 return; 1062 case IIT_V16: 1063 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1064 DecodeIITType(NextElt, Infos, Info, OutputTable); 1065 return; 1066 case IIT_V32: 1067 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1068 DecodeIITType(NextElt, Infos, Info, OutputTable); 1069 return; 1070 case IIT_V64: 1071 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1072 DecodeIITType(NextElt, Infos, Info, OutputTable); 1073 return; 1074 case IIT_V128: 1075 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1076 DecodeIITType(NextElt, Infos, Info, OutputTable); 1077 return; 1078 case IIT_V256: 1079 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1080 DecodeIITType(NextElt, Infos, Info, OutputTable); 1081 return; 1082 case IIT_V512: 1083 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1084 DecodeIITType(NextElt, Infos, Info, OutputTable); 1085 return; 1086 case IIT_V1024: 1087 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1088 DecodeIITType(NextElt, Infos, Info, OutputTable); 1089 return; 1090 case IIT_PTR: 1091 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1092 DecodeIITType(NextElt, Infos, Info, OutputTable); 1093 return; 1094 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1095 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1096 Infos[NextElt++])); 1097 DecodeIITType(NextElt, Infos, Info, OutputTable); 1098 return; 1099 } 1100 case IIT_ARG: { 1101 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1102 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1103 return; 1104 } 1105 case IIT_EXTEND_ARG: { 1106 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1107 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1108 ArgInfo)); 1109 return; 1110 } 1111 case IIT_TRUNC_ARG: { 1112 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1113 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1114 ArgInfo)); 1115 return; 1116 } 1117 case IIT_HALF_VEC_ARG: { 1118 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1119 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1120 ArgInfo)); 1121 return; 1122 } 1123 case IIT_SAME_VEC_WIDTH_ARG: { 1124 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1125 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1126 ArgInfo)); 1127 return; 1128 } 1129 case IIT_PTR_TO_ARG: { 1130 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1131 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1132 ArgInfo)); 1133 return; 1134 } 1135 case IIT_PTR_TO_ELT: { 1136 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1137 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1138 return; 1139 } 1140 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1141 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1142 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1143 OutputTable.push_back( 1144 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1145 return; 1146 } 1147 case IIT_EMPTYSTRUCT: 1148 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1149 return; 1150 case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH; 1151 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 1152 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 1153 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 1154 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 1155 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 1156 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 1157 case IIT_STRUCT2: { 1158 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1159 1160 for (unsigned i = 0; i != StructElts; ++i) 1161 DecodeIITType(NextElt, Infos, Info, OutputTable); 1162 return; 1163 } 1164 case IIT_SUBDIVIDE2_ARG: { 1165 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1166 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1167 ArgInfo)); 1168 return; 1169 } 1170 case IIT_SUBDIVIDE4_ARG: { 1171 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1172 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1173 ArgInfo)); 1174 return; 1175 } 1176 case IIT_VEC_ELEMENT: { 1177 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1178 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1179 ArgInfo)); 1180 return; 1181 } 1182 case IIT_SCALABLE_VEC: { 1183 DecodeIITType(NextElt, Infos, Info, OutputTable); 1184 return; 1185 } 1186 case IIT_VEC_OF_BITCASTS_TO_INT: { 1187 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1188 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1189 ArgInfo)); 1190 return; 1191 } 1192 } 1193 llvm_unreachable("unhandled"); 1194 } 1195 1196 #define GET_INTRINSIC_GENERATOR_GLOBAL 1197 #include "llvm/IR/IntrinsicImpl.inc" 1198 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1199 1200 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1201 SmallVectorImpl<IITDescriptor> &T){ 1202 // Check to see if the intrinsic's type was expressible by the table. 1203 unsigned TableVal = IIT_Table[id-1]; 1204 1205 // Decode the TableVal into an array of IITValues. 1206 SmallVector<unsigned char, 8> IITValues; 1207 ArrayRef<unsigned char> IITEntries; 1208 unsigned NextElt = 0; 1209 if ((TableVal >> 31) != 0) { 1210 // This is an offset into the IIT_LongEncodingTable. 1211 IITEntries = IIT_LongEncodingTable; 1212 1213 // Strip sentinel bit. 1214 NextElt = (TableVal << 1) >> 1; 1215 } else { 1216 // Decode the TableVal into an array of IITValues. If the entry was encoded 1217 // into a single word in the table itself, decode it now. 1218 do { 1219 IITValues.push_back(TableVal & 0xF); 1220 TableVal >>= 4; 1221 } while (TableVal); 1222 1223 IITEntries = IITValues; 1224 NextElt = 0; 1225 } 1226 1227 // Okay, decode the table into the output vector of IITDescriptors. 1228 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1229 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1230 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1231 } 1232 1233 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1234 ArrayRef<Type*> Tys, LLVMContext &Context) { 1235 using namespace Intrinsic; 1236 1237 IITDescriptor D = Infos.front(); 1238 Infos = Infos.slice(1); 1239 1240 switch (D.Kind) { 1241 case IITDescriptor::Void: return Type::getVoidTy(Context); 1242 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1243 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1244 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1245 case IITDescriptor::Token: return Type::getTokenTy(Context); 1246 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1247 case IITDescriptor::Half: return Type::getHalfTy(Context); 1248 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1249 case IITDescriptor::Float: return Type::getFloatTy(Context); 1250 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1251 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1252 1253 case IITDescriptor::Integer: 1254 return IntegerType::get(Context, D.Integer_Width); 1255 case IITDescriptor::Vector: 1256 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1257 D.Vector_Width); 1258 case IITDescriptor::Pointer: 1259 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1260 D.Pointer_AddressSpace); 1261 case IITDescriptor::Struct: { 1262 SmallVector<Type *, 8> Elts; 1263 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1264 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1265 return StructType::get(Context, Elts); 1266 } 1267 case IITDescriptor::Argument: 1268 return Tys[D.getArgumentNumber()]; 1269 case IITDescriptor::ExtendArgument: { 1270 Type *Ty = Tys[D.getArgumentNumber()]; 1271 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1272 return VectorType::getExtendedElementVectorType(VTy); 1273 1274 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1275 } 1276 case IITDescriptor::TruncArgument: { 1277 Type *Ty = Tys[D.getArgumentNumber()]; 1278 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1279 return VectorType::getTruncatedElementVectorType(VTy); 1280 1281 IntegerType *ITy = cast<IntegerType>(Ty); 1282 assert(ITy->getBitWidth() % 2 == 0); 1283 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1284 } 1285 case IITDescriptor::Subdivide2Argument: 1286 case IITDescriptor::Subdivide4Argument: { 1287 Type *Ty = Tys[D.getArgumentNumber()]; 1288 VectorType *VTy = dyn_cast<VectorType>(Ty); 1289 assert(VTy && "Expected an argument of Vector Type"); 1290 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1291 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1292 } 1293 case IITDescriptor::HalfVecArgument: 1294 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1295 Tys[D.getArgumentNumber()])); 1296 case IITDescriptor::SameVecWidthArgument: { 1297 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1298 Type *Ty = Tys[D.getArgumentNumber()]; 1299 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1300 return VectorType::get(EltTy, VTy->getElementCount()); 1301 return EltTy; 1302 } 1303 case IITDescriptor::PtrToArgument: { 1304 Type *Ty = Tys[D.getArgumentNumber()]; 1305 return PointerType::getUnqual(Ty); 1306 } 1307 case IITDescriptor::PtrToElt: { 1308 Type *Ty = Tys[D.getArgumentNumber()]; 1309 VectorType *VTy = dyn_cast<VectorType>(Ty); 1310 if (!VTy) 1311 llvm_unreachable("Expected an argument of Vector Type"); 1312 Type *EltTy = VTy->getElementType(); 1313 return PointerType::getUnqual(EltTy); 1314 } 1315 case IITDescriptor::VecElementArgument: { 1316 Type *Ty = Tys[D.getArgumentNumber()]; 1317 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1318 return VTy->getElementType(); 1319 llvm_unreachable("Expected an argument of Vector Type"); 1320 } 1321 case IITDescriptor::VecOfBitcastsToInt: { 1322 Type *Ty = Tys[D.getArgumentNumber()]; 1323 VectorType *VTy = dyn_cast<VectorType>(Ty); 1324 assert(VTy && "Expected an argument of Vector Type"); 1325 return VectorType::getInteger(VTy); 1326 } 1327 case IITDescriptor::VecOfAnyPtrsToElt: 1328 // Return the overloaded type (which determines the pointers address space) 1329 return Tys[D.getOverloadArgNumber()]; 1330 } 1331 llvm_unreachable("unhandled"); 1332 } 1333 1334 FunctionType *Intrinsic::getType(LLVMContext &Context, 1335 ID id, ArrayRef<Type*> Tys) { 1336 SmallVector<IITDescriptor, 8> Table; 1337 getIntrinsicInfoTableEntries(id, Table); 1338 1339 ArrayRef<IITDescriptor> TableRef = Table; 1340 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1341 1342 SmallVector<Type*, 8> ArgTys; 1343 while (!TableRef.empty()) 1344 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1345 1346 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1347 // If we see void type as the type of the last argument, it is vararg intrinsic 1348 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1349 ArgTys.pop_back(); 1350 return FunctionType::get(ResultTy, ArgTys, true); 1351 } 1352 return FunctionType::get(ResultTy, ArgTys, false); 1353 } 1354 1355 bool Intrinsic::isOverloaded(ID id) { 1356 #define GET_INTRINSIC_OVERLOAD_TABLE 1357 #include "llvm/IR/IntrinsicImpl.inc" 1358 #undef GET_INTRINSIC_OVERLOAD_TABLE 1359 } 1360 1361 bool Intrinsic::isLeaf(ID id) { 1362 switch (id) { 1363 default: 1364 return true; 1365 1366 case Intrinsic::experimental_gc_statepoint: 1367 case Intrinsic::experimental_patchpoint_void: 1368 case Intrinsic::experimental_patchpoint_i64: 1369 return false; 1370 } 1371 } 1372 1373 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1374 #define GET_INTRINSIC_ATTRIBUTES 1375 #include "llvm/IR/IntrinsicImpl.inc" 1376 #undef GET_INTRINSIC_ATTRIBUTES 1377 1378 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1379 // There can never be multiple globals with the same name of different types, 1380 // because intrinsics must be a specific type. 1381 auto *FT = getType(M->getContext(), id, Tys); 1382 return cast<Function>( 1383 M->getOrInsertFunction(Tys.empty() ? getName(id) 1384 : getName(id, Tys, M, FT), 1385 getType(M->getContext(), id, Tys)) 1386 .getCallee()); 1387 } 1388 1389 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1390 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1391 #include "llvm/IR/IntrinsicImpl.inc" 1392 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1393 1394 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1395 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1396 #include "llvm/IR/IntrinsicImpl.inc" 1397 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1398 1399 using DeferredIntrinsicMatchPair = 1400 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1401 1402 static bool matchIntrinsicType( 1403 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1404 SmallVectorImpl<Type *> &ArgTys, 1405 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1406 bool IsDeferredCheck) { 1407 using namespace Intrinsic; 1408 1409 // If we ran out of descriptors, there are too many arguments. 1410 if (Infos.empty()) return true; 1411 1412 // Do this before slicing off the 'front' part 1413 auto InfosRef = Infos; 1414 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1415 DeferredChecks.emplace_back(T, InfosRef); 1416 return false; 1417 }; 1418 1419 IITDescriptor D = Infos.front(); 1420 Infos = Infos.slice(1); 1421 1422 switch (D.Kind) { 1423 case IITDescriptor::Void: return !Ty->isVoidTy(); 1424 case IITDescriptor::VarArg: return true; 1425 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1426 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1427 case IITDescriptor::Token: return !Ty->isTokenTy(); 1428 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1429 case IITDescriptor::Half: return !Ty->isHalfTy(); 1430 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1431 case IITDescriptor::Float: return !Ty->isFloatTy(); 1432 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1433 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1434 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1435 case IITDescriptor::Vector: { 1436 VectorType *VT = dyn_cast<VectorType>(Ty); 1437 return !VT || VT->getElementCount() != D.Vector_Width || 1438 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1439 DeferredChecks, IsDeferredCheck); 1440 } 1441 case IITDescriptor::Pointer: { 1442 PointerType *PT = dyn_cast<PointerType>(Ty); 1443 if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace) 1444 return true; 1445 if (!PT->isOpaque()) 1446 return matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1447 DeferredChecks, IsDeferredCheck); 1448 // If typed pointers are supported, do not allow using opaque pointer in 1449 // place of fixed pointer type. This would make the intrinsic signature 1450 // non-unique. 1451 if (Ty->getContext().supportsTypedPointers()) 1452 return true; 1453 // Consume IIT descriptors relating to the pointer element type. 1454 while (Infos.front().Kind == IITDescriptor::Pointer) 1455 Infos = Infos.slice(1); 1456 Infos = Infos.slice(1); 1457 return false; 1458 } 1459 1460 case IITDescriptor::Struct: { 1461 StructType *ST = dyn_cast<StructType>(Ty); 1462 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1463 return true; 1464 1465 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1466 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1467 DeferredChecks, IsDeferredCheck)) 1468 return true; 1469 return false; 1470 } 1471 1472 case IITDescriptor::Argument: 1473 // If this is the second occurrence of an argument, 1474 // verify that the later instance matches the previous instance. 1475 if (D.getArgumentNumber() < ArgTys.size()) 1476 return Ty != ArgTys[D.getArgumentNumber()]; 1477 1478 if (D.getArgumentNumber() > ArgTys.size() || 1479 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1480 return IsDeferredCheck || DeferCheck(Ty); 1481 1482 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1483 "Table consistency error"); 1484 ArgTys.push_back(Ty); 1485 1486 switch (D.getArgumentKind()) { 1487 case IITDescriptor::AK_Any: return false; // Success 1488 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1489 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1490 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1491 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1492 default: break; 1493 } 1494 llvm_unreachable("all argument kinds not covered"); 1495 1496 case IITDescriptor::ExtendArgument: { 1497 // If this is a forward reference, defer the check for later. 1498 if (D.getArgumentNumber() >= ArgTys.size()) 1499 return IsDeferredCheck || DeferCheck(Ty); 1500 1501 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1502 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1503 NewTy = VectorType::getExtendedElementVectorType(VTy); 1504 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1505 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1506 else 1507 return true; 1508 1509 return Ty != NewTy; 1510 } 1511 case IITDescriptor::TruncArgument: { 1512 // If this is a forward reference, defer the check for later. 1513 if (D.getArgumentNumber() >= ArgTys.size()) 1514 return IsDeferredCheck || DeferCheck(Ty); 1515 1516 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1517 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1518 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1519 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1520 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1521 else 1522 return true; 1523 1524 return Ty != NewTy; 1525 } 1526 case IITDescriptor::HalfVecArgument: 1527 // If this is a forward reference, defer the check for later. 1528 if (D.getArgumentNumber() >= ArgTys.size()) 1529 return IsDeferredCheck || DeferCheck(Ty); 1530 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1531 VectorType::getHalfElementsVectorType( 1532 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1533 case IITDescriptor::SameVecWidthArgument: { 1534 if (D.getArgumentNumber() >= ArgTys.size()) { 1535 // Defer check and subsequent check for the vector element type. 1536 Infos = Infos.slice(1); 1537 return IsDeferredCheck || DeferCheck(Ty); 1538 } 1539 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1540 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1541 // Both must be vectors of the same number of elements or neither. 1542 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1543 return true; 1544 Type *EltTy = Ty; 1545 if (ThisArgType) { 1546 if (ReferenceType->getElementCount() != 1547 ThisArgType->getElementCount()) 1548 return true; 1549 EltTy = ThisArgType->getElementType(); 1550 } 1551 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1552 IsDeferredCheck); 1553 } 1554 case IITDescriptor::PtrToArgument: { 1555 if (D.getArgumentNumber() >= ArgTys.size()) 1556 return IsDeferredCheck || DeferCheck(Ty); 1557 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1558 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1559 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1560 } 1561 case IITDescriptor::PtrToElt: { 1562 if (D.getArgumentNumber() >= ArgTys.size()) 1563 return IsDeferredCheck || DeferCheck(Ty); 1564 VectorType * ReferenceType = 1565 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1566 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1567 1568 if (!ThisArgType || !ReferenceType) 1569 return true; 1570 if (!ThisArgType->isOpaque()) 1571 return ThisArgType->getElementType() != ReferenceType->getElementType(); 1572 // If typed pointers are supported, do not allow opaque pointer to ensure 1573 // uniqueness. 1574 return Ty->getContext().supportsTypedPointers(); 1575 } 1576 case IITDescriptor::VecOfAnyPtrsToElt: { 1577 unsigned RefArgNumber = D.getRefArgNumber(); 1578 if (RefArgNumber >= ArgTys.size()) { 1579 if (IsDeferredCheck) 1580 return true; 1581 // If forward referencing, already add the pointer-vector type and 1582 // defer the checks for later. 1583 ArgTys.push_back(Ty); 1584 return DeferCheck(Ty); 1585 } 1586 1587 if (!IsDeferredCheck){ 1588 assert(D.getOverloadArgNumber() == ArgTys.size() && 1589 "Table consistency error"); 1590 ArgTys.push_back(Ty); 1591 } 1592 1593 // Verify the overloaded type "matches" the Ref type. 1594 // i.e. Ty is a vector with the same width as Ref. 1595 // Composed of pointers to the same element type as Ref. 1596 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1597 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1598 if (!ThisArgVecTy || !ReferenceType || 1599 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1600 return true; 1601 PointerType *ThisArgEltTy = 1602 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1603 if (!ThisArgEltTy) 1604 return true; 1605 return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches( 1606 ReferenceType->getElementType()); 1607 } 1608 case IITDescriptor::VecElementArgument: { 1609 if (D.getArgumentNumber() >= ArgTys.size()) 1610 return IsDeferredCheck ? true : DeferCheck(Ty); 1611 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1612 return !ReferenceType || Ty != ReferenceType->getElementType(); 1613 } 1614 case IITDescriptor::Subdivide2Argument: 1615 case IITDescriptor::Subdivide4Argument: { 1616 // If this is a forward reference, defer the check for later. 1617 if (D.getArgumentNumber() >= ArgTys.size()) 1618 return IsDeferredCheck || DeferCheck(Ty); 1619 1620 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1621 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1622 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1623 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1624 return Ty != NewTy; 1625 } 1626 return true; 1627 } 1628 case IITDescriptor::VecOfBitcastsToInt: { 1629 if (D.getArgumentNumber() >= ArgTys.size()) 1630 return IsDeferredCheck || DeferCheck(Ty); 1631 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1632 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1633 if (!ThisArgVecTy || !ReferenceType) 1634 return true; 1635 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1636 } 1637 } 1638 llvm_unreachable("unhandled"); 1639 } 1640 1641 Intrinsic::MatchIntrinsicTypesResult 1642 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1643 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1644 SmallVectorImpl<Type *> &ArgTys) { 1645 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1646 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1647 false)) 1648 return MatchIntrinsicTypes_NoMatchRet; 1649 1650 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1651 1652 for (auto Ty : FTy->params()) 1653 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1654 return MatchIntrinsicTypes_NoMatchArg; 1655 1656 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1657 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1658 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1659 true)) 1660 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1661 : MatchIntrinsicTypes_NoMatchArg; 1662 } 1663 1664 return MatchIntrinsicTypes_Match; 1665 } 1666 1667 bool 1668 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1669 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1670 // If there are no descriptors left, then it can't be a vararg. 1671 if (Infos.empty()) 1672 return isVarArg; 1673 1674 // There should be only one descriptor remaining at this point. 1675 if (Infos.size() != 1) 1676 return true; 1677 1678 // Check and verify the descriptor. 1679 IITDescriptor D = Infos.front(); 1680 Infos = Infos.slice(1); 1681 if (D.Kind == IITDescriptor::VarArg) 1682 return !isVarArg; 1683 1684 return true; 1685 } 1686 1687 bool Intrinsic::getIntrinsicSignature(Function *F, 1688 SmallVectorImpl<Type *> &ArgTys) { 1689 Intrinsic::ID ID = F->getIntrinsicID(); 1690 if (!ID) 1691 return false; 1692 1693 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1694 getIntrinsicInfoTableEntries(ID, Table); 1695 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1696 1697 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1698 ArgTys) != 1699 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1700 return false; 1701 } 1702 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1703 TableRef)) 1704 return false; 1705 return true; 1706 } 1707 1708 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1709 SmallVector<Type *, 4> ArgTys; 1710 if (!getIntrinsicSignature(F, ArgTys)) 1711 return None; 1712 1713 Intrinsic::ID ID = F->getIntrinsicID(); 1714 StringRef Name = F->getName(); 1715 std::string WantedName = 1716 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1717 if (Name == WantedName) 1718 return None; 1719 1720 Function *NewDecl = [&] { 1721 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1722 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1723 if (ExistingF->getFunctionType() == F->getFunctionType()) 1724 return ExistingF; 1725 1726 // The name already exists, but is not a function or has the wrong 1727 // prototype. Make place for the new one by renaming the old version. 1728 // Either this old version will be removed later on or the module is 1729 // invalid and we'll get an error. 1730 ExistingGV->setName(WantedName + ".renamed"); 1731 } 1732 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1733 }(); 1734 1735 NewDecl->setCallingConv(F->getCallingConv()); 1736 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1737 "Shouldn't change the signature"); 1738 return NewDecl; 1739 } 1740 1741 /// hasAddressTaken - returns true if there are any uses of this function 1742 /// other than direct calls or invokes to it. Optionally ignores callback 1743 /// uses, assume like pointer annotation calls, and references in llvm.used 1744 /// and llvm.compiler.used variables. 1745 bool Function::hasAddressTaken(const User **PutOffender, 1746 bool IgnoreCallbackUses, 1747 bool IgnoreAssumeLikeCalls, 1748 bool IgnoreLLVMUsed) const { 1749 for (const Use &U : uses()) { 1750 const User *FU = U.getUser(); 1751 if (isa<BlockAddress>(FU)) 1752 continue; 1753 1754 if (IgnoreCallbackUses) { 1755 AbstractCallSite ACS(&U); 1756 if (ACS && ACS.isCallbackCall()) 1757 continue; 1758 } 1759 1760 const auto *Call = dyn_cast<CallBase>(FU); 1761 if (!Call) { 1762 if (IgnoreAssumeLikeCalls) { 1763 if (const auto *FI = dyn_cast<Instruction>(FU)) { 1764 if (FI->isCast() && !FI->user_empty() && 1765 llvm::all_of(FU->users(), [](const User *U) { 1766 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1767 return I->isAssumeLikeIntrinsic(); 1768 return false; 1769 })) 1770 continue; 1771 } 1772 } 1773 if (IgnoreLLVMUsed && !FU->user_empty()) { 1774 const User *FUU = FU; 1775 if (isa<BitCastOperator>(FU) && FU->hasOneUse() && 1776 !FU->user_begin()->user_empty()) 1777 FUU = *FU->user_begin(); 1778 if (llvm::all_of(FUU->users(), [](const User *U) { 1779 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1780 return GV->hasName() && 1781 (GV->getName().equals("llvm.compiler.used") || 1782 GV->getName().equals("llvm.used")); 1783 return false; 1784 })) 1785 continue; 1786 } 1787 if (PutOffender) 1788 *PutOffender = FU; 1789 return true; 1790 } 1791 if (!Call->isCallee(&U)) { 1792 if (PutOffender) 1793 *PutOffender = FU; 1794 return true; 1795 } 1796 } 1797 return false; 1798 } 1799 1800 bool Function::isDefTriviallyDead() const { 1801 // Check the linkage 1802 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1803 !hasAvailableExternallyLinkage()) 1804 return false; 1805 1806 // Check if the function is used by anything other than a blockaddress. 1807 for (const User *U : users()) 1808 if (!isa<BlockAddress>(U)) 1809 return false; 1810 1811 return true; 1812 } 1813 1814 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1815 /// setjmp or other function that gcc recognizes as "returning twice". 1816 bool Function::callsFunctionThatReturnsTwice() const { 1817 for (const Instruction &I : instructions(this)) 1818 if (const auto *Call = dyn_cast<CallBase>(&I)) 1819 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1820 return true; 1821 1822 return false; 1823 } 1824 1825 Constant *Function::getPersonalityFn() const { 1826 assert(hasPersonalityFn() && getNumOperands()); 1827 return cast<Constant>(Op<0>()); 1828 } 1829 1830 void Function::setPersonalityFn(Constant *Fn) { 1831 setHungoffOperand<0>(Fn); 1832 setValueSubclassDataBit(3, Fn != nullptr); 1833 } 1834 1835 Constant *Function::getPrefixData() const { 1836 assert(hasPrefixData() && getNumOperands()); 1837 return cast<Constant>(Op<1>()); 1838 } 1839 1840 void Function::setPrefixData(Constant *PrefixData) { 1841 setHungoffOperand<1>(PrefixData); 1842 setValueSubclassDataBit(1, PrefixData != nullptr); 1843 } 1844 1845 Constant *Function::getPrologueData() const { 1846 assert(hasPrologueData() && getNumOperands()); 1847 return cast<Constant>(Op<2>()); 1848 } 1849 1850 void Function::setPrologueData(Constant *PrologueData) { 1851 setHungoffOperand<2>(PrologueData); 1852 setValueSubclassDataBit(2, PrologueData != nullptr); 1853 } 1854 1855 void Function::allocHungoffUselist() { 1856 // If we've already allocated a uselist, stop here. 1857 if (getNumOperands()) 1858 return; 1859 1860 allocHungoffUses(3, /*IsPhi=*/ false); 1861 setNumHungOffUseOperands(3); 1862 1863 // Initialize the uselist with placeholder operands to allow traversal. 1864 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1865 Op<0>().set(CPN); 1866 Op<1>().set(CPN); 1867 Op<2>().set(CPN); 1868 } 1869 1870 template <int Idx> 1871 void Function::setHungoffOperand(Constant *C) { 1872 if (C) { 1873 allocHungoffUselist(); 1874 Op<Idx>().set(C); 1875 } else if (getNumOperands()) { 1876 Op<Idx>().set( 1877 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1878 } 1879 } 1880 1881 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1882 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1883 if (On) 1884 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1885 else 1886 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1887 } 1888 1889 void Function::setEntryCount(ProfileCount Count, 1890 const DenseSet<GlobalValue::GUID> *S) { 1891 assert(Count.hasValue()); 1892 #if !defined(NDEBUG) 1893 auto PrevCount = getEntryCount(); 1894 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1895 #endif 1896 1897 auto ImportGUIDs = getImportGUIDs(); 1898 if (S == nullptr && ImportGUIDs.size()) 1899 S = &ImportGUIDs; 1900 1901 MDBuilder MDB(getContext()); 1902 setMetadata( 1903 LLVMContext::MD_prof, 1904 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1905 } 1906 1907 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1908 const DenseSet<GlobalValue::GUID> *Imports) { 1909 setEntryCount(ProfileCount(Count, Type), Imports); 1910 } 1911 1912 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1913 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1914 if (MD && MD->getOperand(0)) 1915 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1916 if (MDS->getString().equals("function_entry_count")) { 1917 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1918 uint64_t Count = CI->getValue().getZExtValue(); 1919 // A value of -1 is used for SamplePGO when there were no samples. 1920 // Treat this the same as unknown. 1921 if (Count == (uint64_t)-1) 1922 return ProfileCount::getInvalid(); 1923 return ProfileCount(Count, PCT_Real); 1924 } else if (AllowSynthetic && 1925 MDS->getString().equals("synthetic_function_entry_count")) { 1926 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1927 uint64_t Count = CI->getValue().getZExtValue(); 1928 return ProfileCount(Count, PCT_Synthetic); 1929 } 1930 } 1931 return ProfileCount::getInvalid(); 1932 } 1933 1934 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1935 DenseSet<GlobalValue::GUID> R; 1936 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1937 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1938 if (MDS->getString().equals("function_entry_count")) 1939 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1940 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1941 ->getValue() 1942 .getZExtValue()); 1943 return R; 1944 } 1945 1946 void Function::setSectionPrefix(StringRef Prefix) { 1947 MDBuilder MDB(getContext()); 1948 setMetadata(LLVMContext::MD_section_prefix, 1949 MDB.createFunctionSectionPrefix(Prefix)); 1950 } 1951 1952 Optional<StringRef> Function::getSectionPrefix() const { 1953 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1954 assert(cast<MDString>(MD->getOperand(0)) 1955 ->getString() 1956 .equals("function_section_prefix") && 1957 "Metadata not match"); 1958 return cast<MDString>(MD->getOperand(1))->getString(); 1959 } 1960 return None; 1961 } 1962 1963 bool Function::nullPointerIsDefined() const { 1964 return hasFnAttribute(Attribute::NullPointerIsValid); 1965 } 1966 1967 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1968 if (F && F->nullPointerIsDefined()) 1969 return true; 1970 1971 if (AS != 0) 1972 return true; 1973 1974 return false; 1975 } 1976