1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/Support/ManagedStatic.h" 30 #include "llvm/Support/RWMutex.h" 31 #include "llvm/Support/StringPool.h" 32 #include "llvm/Support/Threading.h" 33 using namespace llvm; 34 35 // Explicit instantiations of SymbolTableListTraits since some of the methods 36 // are not in the public header file... 37 template class llvm::SymbolTableListTraits<Argument>; 38 template class llvm::SymbolTableListTraits<BasicBlock>; 39 40 //===----------------------------------------------------------------------===// 41 // Argument Implementation 42 //===----------------------------------------------------------------------===// 43 44 void Argument::anchor() { } 45 46 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 47 : Value(Ty, Value::ArgumentVal) { 48 Parent = nullptr; 49 50 if (Par) 51 Par->getArgumentList().push_back(this); 52 setName(Name); 53 } 54 55 void Argument::setParent(Function *parent) { 56 Parent = parent; 57 } 58 59 /// getArgNo - Return the index of this formal argument in its containing 60 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 61 unsigned Argument::getArgNo() const { 62 const Function *F = getParent(); 63 assert(F && "Argument is not in a function"); 64 65 Function::const_arg_iterator AI = F->arg_begin(); 66 unsigned ArgIdx = 0; 67 for (; &*AI != this; ++AI) 68 ++ArgIdx; 69 70 return ArgIdx; 71 } 72 73 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 74 /// it in its containing function. Also returns true if at least one byte is 75 /// known to be dereferenceable and the pointer is in addrspace(0). 76 bool Argument::hasNonNullAttr() const { 77 if (!getType()->isPointerTy()) return false; 78 if (getParent()->getAttributes(). 79 hasAttribute(getArgNo()+1, Attribute::NonNull)) 80 return true; 81 else if (getDereferenceableBytes() > 0 && 82 getType()->getPointerAddressSpace() == 0) 83 return true; 84 return false; 85 } 86 87 /// hasByValAttr - Return true if this argument has the byval attribute on it 88 /// in its containing function. 89 bool Argument::hasByValAttr() const { 90 if (!getType()->isPointerTy()) return false; 91 return hasAttribute(Attribute::ByVal); 92 } 93 94 bool Argument::hasSwiftSelfAttr() const { 95 return getParent()->getAttributes(). 96 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 97 } 98 99 bool Argument::hasSwiftErrorAttr() const { 100 return getParent()->getAttributes(). 101 hasAttribute(getArgNo()+1, Attribute::SwiftError); 102 } 103 104 /// \brief Return true if this argument has the inalloca attribute on it in 105 /// its containing function. 106 bool Argument::hasInAllocaAttr() const { 107 if (!getType()->isPointerTy()) return false; 108 return hasAttribute(Attribute::InAlloca); 109 } 110 111 bool Argument::hasByValOrInAllocaAttr() const { 112 if (!getType()->isPointerTy()) return false; 113 AttributeSet Attrs = getParent()->getAttributes(); 114 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 115 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 116 } 117 118 unsigned Argument::getParamAlignment() const { 119 assert(getType()->isPointerTy() && "Only pointers have alignments"); 120 return getParent()->getParamAlignment(getArgNo()+1); 121 122 } 123 124 uint64_t Argument::getDereferenceableBytes() const { 125 assert(getType()->isPointerTy() && 126 "Only pointers have dereferenceable bytes"); 127 return getParent()->getDereferenceableBytes(getArgNo()+1); 128 } 129 130 uint64_t Argument::getDereferenceableOrNullBytes() const { 131 assert(getType()->isPointerTy() && 132 "Only pointers have dereferenceable bytes"); 133 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 134 } 135 136 /// hasNestAttr - Return true if this argument has the nest attribute on 137 /// it in its containing function. 138 bool Argument::hasNestAttr() const { 139 if (!getType()->isPointerTy()) return false; 140 return hasAttribute(Attribute::Nest); 141 } 142 143 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 144 /// it in its containing function. 145 bool Argument::hasNoAliasAttr() const { 146 if (!getType()->isPointerTy()) return false; 147 return hasAttribute(Attribute::NoAlias); 148 } 149 150 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 151 /// on it in its containing function. 152 bool Argument::hasNoCaptureAttr() const { 153 if (!getType()->isPointerTy()) return false; 154 return hasAttribute(Attribute::NoCapture); 155 } 156 157 /// hasSRetAttr - Return true if this argument has the sret attribute on 158 /// it in its containing function. 159 bool Argument::hasStructRetAttr() const { 160 if (!getType()->isPointerTy()) return false; 161 return hasAttribute(Attribute::StructRet); 162 } 163 164 /// hasReturnedAttr - Return true if this argument has the returned attribute on 165 /// it in its containing function. 166 bool Argument::hasReturnedAttr() const { 167 return hasAttribute(Attribute::Returned); 168 } 169 170 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 171 /// its containing function. 172 bool Argument::hasZExtAttr() const { 173 return hasAttribute(Attribute::ZExt); 174 } 175 176 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 177 /// containing function. 178 bool Argument::hasSExtAttr() const { 179 return hasAttribute(Attribute::SExt); 180 } 181 182 /// Return true if this argument has the readonly or readnone attribute on it 183 /// in its containing function. 184 bool Argument::onlyReadsMemory() const { 185 return getParent()->getAttributes(). 186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 187 getParent()->getAttributes(). 188 hasAttribute(getArgNo()+1, Attribute::ReadNone); 189 } 190 191 /// addAttr - Add attributes to an argument. 192 void Argument::addAttr(AttributeSet AS) { 193 assert(AS.getNumSlots() <= 1 && 194 "Trying to add more than one attribute set to an argument!"); 195 AttrBuilder B(AS, AS.getSlotIndex(0)); 196 getParent()->addAttributes(getArgNo() + 1, 197 AttributeSet::get(Parent->getContext(), 198 getArgNo() + 1, B)); 199 } 200 201 /// removeAttr - Remove attributes from an argument. 202 void Argument::removeAttr(AttributeSet AS) { 203 assert(AS.getNumSlots() <= 1 && 204 "Trying to remove more than one attribute set from an argument!"); 205 AttrBuilder B(AS, AS.getSlotIndex(0)); 206 getParent()->removeAttributes(getArgNo() + 1, 207 AttributeSet::get(Parent->getContext(), 208 getArgNo() + 1, B)); 209 } 210 211 /// hasAttribute - Checks if an argument has a given attribute. 212 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 213 return getParent()->hasAttribute(getArgNo() + 1, Kind); 214 } 215 216 //===----------------------------------------------------------------------===// 217 // Helper Methods in Function 218 //===----------------------------------------------------------------------===// 219 220 bool Function::isMaterializable() const { 221 return getGlobalObjectSubClassData() & (1 << IsMaterializableBit); 222 } 223 224 void Function::setIsMaterializable(bool V) { 225 unsigned Mask = 1 << IsMaterializableBit; 226 setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) | 227 (V ? Mask : 0u)); 228 } 229 230 LLVMContext &Function::getContext() const { 231 return getType()->getContext(); 232 } 233 234 FunctionType *Function::getFunctionType() const { 235 return cast<FunctionType>(getValueType()); 236 } 237 238 bool Function::isVarArg() const { 239 return getFunctionType()->isVarArg(); 240 } 241 242 Type *Function::getReturnType() const { 243 return getFunctionType()->getReturnType(); 244 } 245 246 void Function::removeFromParent() { 247 getParent()->getFunctionList().remove(getIterator()); 248 } 249 250 void Function::eraseFromParent() { 251 getParent()->getFunctionList().erase(getIterator()); 252 } 253 254 //===----------------------------------------------------------------------===// 255 // Function Implementation 256 //===----------------------------------------------------------------------===// 257 258 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 259 Module *ParentModule) 260 : GlobalObject(Ty, Value::FunctionVal, 261 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 262 assert(FunctionType::isValidReturnType(getReturnType()) && 263 "invalid return type"); 264 setGlobalObjectSubClassData(0); 265 SymTab = new ValueSymbolTable(); 266 267 // If the function has arguments, mark them as lazily built. 268 if (Ty->getNumParams()) 269 setValueSubclassData(1); // Set the "has lazy arguments" bit. 270 271 if (ParentModule) 272 ParentModule->getFunctionList().push_back(this); 273 274 // Ensure intrinsics have the right parameter attributes. 275 // Note, the IntID field will have been set in Value::setName if this function 276 // name is a valid intrinsic ID. 277 if (IntID) 278 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 279 } 280 281 Function::~Function() { 282 dropAllReferences(); // After this it is safe to delete instructions. 283 284 // Delete all of the method arguments and unlink from symbol table... 285 ArgumentList.clear(); 286 delete SymTab; 287 288 // Remove the function from the on-the-side GC table. 289 clearGC(); 290 } 291 292 void Function::BuildLazyArguments() const { 293 // Create the arguments vector, all arguments start out unnamed. 294 FunctionType *FT = getFunctionType(); 295 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 296 assert(!FT->getParamType(i)->isVoidTy() && 297 "Cannot have void typed arguments!"); 298 ArgumentList.push_back(new Argument(FT->getParamType(i))); 299 } 300 301 // Clear the lazy arguments bit. 302 unsigned SDC = getSubclassDataFromValue(); 303 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 304 } 305 306 void Function::stealArgumentListFrom(Function &Src) { 307 assert(isDeclaration() && "Expected no references to current arguments"); 308 309 // Drop the current arguments, if any, and set the lazy argument bit. 310 if (!hasLazyArguments()) { 311 assert(llvm::all_of(ArgumentList, 312 [](const Argument &A) { return A.use_empty(); }) && 313 "Expected arguments to be unused in declaration"); 314 ArgumentList.clear(); 315 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 316 } 317 318 // Nothing to steal if Src has lazy arguments. 319 if (Src.hasLazyArguments()) 320 return; 321 322 // Steal arguments from Src, and fix the lazy argument bits. 323 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList); 324 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 325 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 326 } 327 328 size_t Function::arg_size() const { 329 return getFunctionType()->getNumParams(); 330 } 331 bool Function::arg_empty() const { 332 return getFunctionType()->getNumParams() == 0; 333 } 334 335 void Function::setParent(Module *parent) { 336 Parent = parent; 337 } 338 339 // dropAllReferences() - This function causes all the subinstructions to "let 340 // go" of all references that they are maintaining. This allows one to 341 // 'delete' a whole class at a time, even though there may be circular 342 // references... first all references are dropped, and all use counts go to 343 // zero. Then everything is deleted for real. Note that no operations are 344 // valid on an object that has "dropped all references", except operator 345 // delete. 346 // 347 void Function::dropAllReferences() { 348 setIsMaterializable(false); 349 350 for (iterator I = begin(), E = end(); I != E; ++I) 351 I->dropAllReferences(); 352 353 // Delete all basic blocks. They are now unused, except possibly by 354 // blockaddresses, but BasicBlock's destructor takes care of those. 355 while (!BasicBlocks.empty()) 356 BasicBlocks.begin()->eraseFromParent(); 357 358 // Drop uses of any optional data (real or placeholder). 359 if (getNumOperands()) { 360 User::dropAllReferences(); 361 setNumHungOffUseOperands(0); 362 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 363 } 364 365 // Metadata is stored in a side-table. 366 clearMetadata(); 367 } 368 369 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 370 AttributeSet PAL = getAttributes(); 371 PAL = PAL.addAttribute(getContext(), i, Kind); 372 setAttributes(PAL); 373 } 374 375 void Function::addAttribute(unsigned i, Attribute Attr) { 376 AttributeSet PAL = getAttributes(); 377 PAL = PAL.addAttribute(getContext(), i, Attr); 378 setAttributes(PAL); 379 } 380 381 void Function::addAttributes(unsigned i, AttributeSet Attrs) { 382 AttributeSet PAL = getAttributes(); 383 PAL = PAL.addAttributes(getContext(), i, Attrs); 384 setAttributes(PAL); 385 } 386 387 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 388 AttributeSet PAL = getAttributes(); 389 PAL = PAL.removeAttribute(getContext(), i, Kind); 390 setAttributes(PAL); 391 } 392 393 void Function::removeAttributes(unsigned i, AttributeSet Attrs) { 394 AttributeSet PAL = getAttributes(); 395 PAL = PAL.removeAttributes(getContext(), i, Attrs); 396 setAttributes(PAL); 397 } 398 399 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 400 AttributeSet PAL = getAttributes(); 401 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 402 setAttributes(PAL); 403 } 404 405 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 406 AttributeSet PAL = getAttributes(); 407 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 408 setAttributes(PAL); 409 } 410 411 const std::string &Function::getGC() const { 412 assert(hasGC() && "Function has no collector"); 413 return getContext().getGC(*this); 414 } 415 416 void Function::setGC(std::string Str) { 417 setValueSubclassDataBit(14, !Str.empty()); 418 getContext().setGC(*this, std::move(Str)); 419 } 420 421 void Function::clearGC() { 422 if (!hasGC()) 423 return; 424 getContext().deleteGC(*this); 425 setValueSubclassDataBit(14, false); 426 } 427 428 /// Copy all additional attributes (those not needed to create a Function) from 429 /// the Function Src to this one. 430 void Function::copyAttributesFrom(const GlobalValue *Src) { 431 GlobalObject::copyAttributesFrom(Src); 432 const Function *SrcF = dyn_cast<Function>(Src); 433 if (!SrcF) 434 return; 435 436 setCallingConv(SrcF->getCallingConv()); 437 setAttributes(SrcF->getAttributes()); 438 if (SrcF->hasGC()) 439 setGC(SrcF->getGC()); 440 else 441 clearGC(); 442 if (SrcF->hasPersonalityFn()) 443 setPersonalityFn(SrcF->getPersonalityFn()); 444 if (SrcF->hasPrefixData()) 445 setPrefixData(SrcF->getPrefixData()); 446 if (SrcF->hasPrologueData()) 447 setPrologueData(SrcF->getPrologueData()); 448 } 449 450 /// Table of string intrinsic names indexed by enum value. 451 static const char * const IntrinsicNameTable[] = { 452 "not_intrinsic", 453 #define GET_INTRINSIC_NAME_TABLE 454 #include "llvm/IR/Intrinsics.gen" 455 #undef GET_INTRINSIC_NAME_TABLE 456 }; 457 458 /// \brief This does the actual lookup of an intrinsic ID which 459 /// matches the given function name. 460 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) { 461 StringRef Name = ValName->getKey(); 462 463 ArrayRef<const char *> NameTable(&IntrinsicNameTable[1], 464 std::end(IntrinsicNameTable)); 465 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 466 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + 1); 467 if (ID == Intrinsic::not_intrinsic) 468 return ID; 469 470 // If the intrinsic is not overloaded, require an exact match. If it is 471 // overloaded, require a prefix match. 472 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 473 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 474 } 475 476 void Function::recalculateIntrinsicID() { 477 const ValueName *ValName = this->getValueName(); 478 if (!ValName || !isIntrinsic()) { 479 IntID = Intrinsic::not_intrinsic; 480 return; 481 } 482 IntID = lookupIntrinsicID(ValName); 483 } 484 485 /// Returns a stable mangling for the type specified for use in the name 486 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 487 /// of named types is simply their name. Manglings for unnamed types consist 488 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 489 /// combined with the mangling of their component types. A vararg function 490 /// type will have a suffix of 'vararg'. Since function types can contain 491 /// other function types, we close a function type mangling with suffix 'f' 492 /// which can't be confused with it's prefix. This ensures we don't have 493 /// collisions between two unrelated function types. Otherwise, you might 494 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 495 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 496 /// cases) fall back to the MVT codepath, where they could be mangled to 497 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 498 /// everything. 499 static std::string getMangledTypeStr(Type* Ty) { 500 std::string Result; 501 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 502 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 503 getMangledTypeStr(PTyp->getElementType()); 504 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 505 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 506 getMangledTypeStr(ATyp->getElementType()); 507 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 508 assert(!STyp->isLiteral() && "TODO: implement literal types"); 509 Result += STyp->getName(); 510 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 511 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 512 for (size_t i = 0; i < FT->getNumParams(); i++) 513 Result += getMangledTypeStr(FT->getParamType(i)); 514 if (FT->isVarArg()) 515 Result += "vararg"; 516 // Ensure nested function types are distinguishable. 517 Result += "f"; 518 } else if (isa<VectorType>(Ty)) 519 Result += "v" + utostr(Ty->getVectorNumElements()) + 520 getMangledTypeStr(Ty->getVectorElementType()); 521 else if (Ty) 522 Result += EVT::getEVT(Ty).getEVTString(); 523 return Result; 524 } 525 526 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 527 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 528 if (Tys.empty()) 529 return IntrinsicNameTable[id]; 530 std::string Result(IntrinsicNameTable[id]); 531 for (unsigned i = 0; i < Tys.size(); ++i) { 532 Result += "." + getMangledTypeStr(Tys[i]); 533 } 534 return Result; 535 } 536 537 538 /// IIT_Info - These are enumerators that describe the entries returned by the 539 /// getIntrinsicInfoTableEntries function. 540 /// 541 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 542 enum IIT_Info { 543 // Common values should be encoded with 0-15. 544 IIT_Done = 0, 545 IIT_I1 = 1, 546 IIT_I8 = 2, 547 IIT_I16 = 3, 548 IIT_I32 = 4, 549 IIT_I64 = 5, 550 IIT_F16 = 6, 551 IIT_F32 = 7, 552 IIT_F64 = 8, 553 IIT_V2 = 9, 554 IIT_V4 = 10, 555 IIT_V8 = 11, 556 IIT_V16 = 12, 557 IIT_V32 = 13, 558 IIT_PTR = 14, 559 IIT_ARG = 15, 560 561 // Values from 16+ are only encodable with the inefficient encoding. 562 IIT_V64 = 16, 563 IIT_MMX = 17, 564 IIT_TOKEN = 18, 565 IIT_METADATA = 19, 566 IIT_EMPTYSTRUCT = 20, 567 IIT_STRUCT2 = 21, 568 IIT_STRUCT3 = 22, 569 IIT_STRUCT4 = 23, 570 IIT_STRUCT5 = 24, 571 IIT_EXTEND_ARG = 25, 572 IIT_TRUNC_ARG = 26, 573 IIT_ANYPTR = 27, 574 IIT_V1 = 28, 575 IIT_VARARG = 29, 576 IIT_HALF_VEC_ARG = 30, 577 IIT_SAME_VEC_WIDTH_ARG = 31, 578 IIT_PTR_TO_ARG = 32, 579 IIT_VEC_OF_PTRS_TO_ELT = 33, 580 IIT_I128 = 34, 581 IIT_V512 = 35, 582 IIT_V1024 = 36 583 }; 584 585 586 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 587 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 588 IIT_Info Info = IIT_Info(Infos[NextElt++]); 589 unsigned StructElts = 2; 590 using namespace Intrinsic; 591 592 switch (Info) { 593 case IIT_Done: 594 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 595 return; 596 case IIT_VARARG: 597 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 598 return; 599 case IIT_MMX: 600 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 601 return; 602 case IIT_TOKEN: 603 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 604 return; 605 case IIT_METADATA: 606 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 607 return; 608 case IIT_F16: 609 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 610 return; 611 case IIT_F32: 612 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 613 return; 614 case IIT_F64: 615 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 616 return; 617 case IIT_I1: 618 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 619 return; 620 case IIT_I8: 621 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 622 return; 623 case IIT_I16: 624 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 625 return; 626 case IIT_I32: 627 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 628 return; 629 case IIT_I64: 630 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 631 return; 632 case IIT_I128: 633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 634 return; 635 case IIT_V1: 636 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 637 DecodeIITType(NextElt, Infos, OutputTable); 638 return; 639 case IIT_V2: 640 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 641 DecodeIITType(NextElt, Infos, OutputTable); 642 return; 643 case IIT_V4: 644 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 645 DecodeIITType(NextElt, Infos, OutputTable); 646 return; 647 case IIT_V8: 648 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 649 DecodeIITType(NextElt, Infos, OutputTable); 650 return; 651 case IIT_V16: 652 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 653 DecodeIITType(NextElt, Infos, OutputTable); 654 return; 655 case IIT_V32: 656 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 657 DecodeIITType(NextElt, Infos, OutputTable); 658 return; 659 case IIT_V64: 660 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 661 DecodeIITType(NextElt, Infos, OutputTable); 662 return; 663 case IIT_V512: 664 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 665 DecodeIITType(NextElt, Infos, OutputTable); 666 return; 667 case IIT_V1024: 668 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 669 DecodeIITType(NextElt, Infos, OutputTable); 670 return; 671 case IIT_PTR: 672 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 673 DecodeIITType(NextElt, Infos, OutputTable); 674 return; 675 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 676 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 677 Infos[NextElt++])); 678 DecodeIITType(NextElt, Infos, OutputTable); 679 return; 680 } 681 case IIT_ARG: { 682 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 683 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 684 return; 685 } 686 case IIT_EXTEND_ARG: { 687 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 688 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 689 ArgInfo)); 690 return; 691 } 692 case IIT_TRUNC_ARG: { 693 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 694 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 695 ArgInfo)); 696 return; 697 } 698 case IIT_HALF_VEC_ARG: { 699 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 700 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 701 ArgInfo)); 702 return; 703 } 704 case IIT_SAME_VEC_WIDTH_ARG: { 705 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 706 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 707 ArgInfo)); 708 return; 709 } 710 case IIT_PTR_TO_ARG: { 711 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 712 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 713 ArgInfo)); 714 return; 715 } 716 case IIT_VEC_OF_PTRS_TO_ELT: { 717 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 719 ArgInfo)); 720 return; 721 } 722 case IIT_EMPTYSTRUCT: 723 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 724 return; 725 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 726 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 727 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 728 case IIT_STRUCT2: { 729 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 730 731 for (unsigned i = 0; i != StructElts; ++i) 732 DecodeIITType(NextElt, Infos, OutputTable); 733 return; 734 } 735 } 736 llvm_unreachable("unhandled"); 737 } 738 739 740 #define GET_INTRINSIC_GENERATOR_GLOBAL 741 #include "llvm/IR/Intrinsics.gen" 742 #undef GET_INTRINSIC_GENERATOR_GLOBAL 743 744 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 745 SmallVectorImpl<IITDescriptor> &T){ 746 // Check to see if the intrinsic's type was expressible by the table. 747 unsigned TableVal = IIT_Table[id-1]; 748 749 // Decode the TableVal into an array of IITValues. 750 SmallVector<unsigned char, 8> IITValues; 751 ArrayRef<unsigned char> IITEntries; 752 unsigned NextElt = 0; 753 if ((TableVal >> 31) != 0) { 754 // This is an offset into the IIT_LongEncodingTable. 755 IITEntries = IIT_LongEncodingTable; 756 757 // Strip sentinel bit. 758 NextElt = (TableVal << 1) >> 1; 759 } else { 760 // Decode the TableVal into an array of IITValues. If the entry was encoded 761 // into a single word in the table itself, decode it now. 762 do { 763 IITValues.push_back(TableVal & 0xF); 764 TableVal >>= 4; 765 } while (TableVal); 766 767 IITEntries = IITValues; 768 NextElt = 0; 769 } 770 771 // Okay, decode the table into the output vector of IITDescriptors. 772 DecodeIITType(NextElt, IITEntries, T); 773 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 774 DecodeIITType(NextElt, IITEntries, T); 775 } 776 777 778 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 779 ArrayRef<Type*> Tys, LLVMContext &Context) { 780 using namespace Intrinsic; 781 IITDescriptor D = Infos.front(); 782 Infos = Infos.slice(1); 783 784 switch (D.Kind) { 785 case IITDescriptor::Void: return Type::getVoidTy(Context); 786 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 787 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 788 case IITDescriptor::Token: return Type::getTokenTy(Context); 789 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 790 case IITDescriptor::Half: return Type::getHalfTy(Context); 791 case IITDescriptor::Float: return Type::getFloatTy(Context); 792 case IITDescriptor::Double: return Type::getDoubleTy(Context); 793 794 case IITDescriptor::Integer: 795 return IntegerType::get(Context, D.Integer_Width); 796 case IITDescriptor::Vector: 797 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 798 case IITDescriptor::Pointer: 799 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 800 D.Pointer_AddressSpace); 801 case IITDescriptor::Struct: { 802 Type *Elts[5]; 803 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 804 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 805 Elts[i] = DecodeFixedType(Infos, Tys, Context); 806 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 807 } 808 809 case IITDescriptor::Argument: 810 return Tys[D.getArgumentNumber()]; 811 case IITDescriptor::ExtendArgument: { 812 Type *Ty = Tys[D.getArgumentNumber()]; 813 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 814 return VectorType::getExtendedElementVectorType(VTy); 815 816 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 817 } 818 case IITDescriptor::TruncArgument: { 819 Type *Ty = Tys[D.getArgumentNumber()]; 820 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 821 return VectorType::getTruncatedElementVectorType(VTy); 822 823 IntegerType *ITy = cast<IntegerType>(Ty); 824 assert(ITy->getBitWidth() % 2 == 0); 825 return IntegerType::get(Context, ITy->getBitWidth() / 2); 826 } 827 case IITDescriptor::HalfVecArgument: 828 return VectorType::getHalfElementsVectorType(cast<VectorType>( 829 Tys[D.getArgumentNumber()])); 830 case IITDescriptor::SameVecWidthArgument: { 831 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 832 Type *Ty = Tys[D.getArgumentNumber()]; 833 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 834 return VectorType::get(EltTy, VTy->getNumElements()); 835 } 836 llvm_unreachable("unhandled"); 837 } 838 case IITDescriptor::PtrToArgument: { 839 Type *Ty = Tys[D.getArgumentNumber()]; 840 return PointerType::getUnqual(Ty); 841 } 842 case IITDescriptor::VecOfPtrsToElt: { 843 Type *Ty = Tys[D.getArgumentNumber()]; 844 VectorType *VTy = dyn_cast<VectorType>(Ty); 845 if (!VTy) 846 llvm_unreachable("Expected an argument of Vector Type"); 847 Type *EltTy = VTy->getVectorElementType(); 848 return VectorType::get(PointerType::getUnqual(EltTy), 849 VTy->getNumElements()); 850 } 851 } 852 llvm_unreachable("unhandled"); 853 } 854 855 856 857 FunctionType *Intrinsic::getType(LLVMContext &Context, 858 ID id, ArrayRef<Type*> Tys) { 859 SmallVector<IITDescriptor, 8> Table; 860 getIntrinsicInfoTableEntries(id, Table); 861 862 ArrayRef<IITDescriptor> TableRef = Table; 863 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 864 865 SmallVector<Type*, 8> ArgTys; 866 while (!TableRef.empty()) 867 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 868 869 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 870 // If we see void type as the type of the last argument, it is vararg intrinsic 871 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 872 ArgTys.pop_back(); 873 return FunctionType::get(ResultTy, ArgTys, true); 874 } 875 return FunctionType::get(ResultTy, ArgTys, false); 876 } 877 878 bool Intrinsic::isOverloaded(ID id) { 879 #define GET_INTRINSIC_OVERLOAD_TABLE 880 #include "llvm/IR/Intrinsics.gen" 881 #undef GET_INTRINSIC_OVERLOAD_TABLE 882 } 883 884 bool Intrinsic::isLeaf(ID id) { 885 switch (id) { 886 default: 887 return true; 888 889 case Intrinsic::experimental_gc_statepoint: 890 case Intrinsic::experimental_patchpoint_void: 891 case Intrinsic::experimental_patchpoint_i64: 892 return false; 893 } 894 } 895 896 /// This defines the "Intrinsic::getAttributes(ID id)" method. 897 #define GET_INTRINSIC_ATTRIBUTES 898 #include "llvm/IR/Intrinsics.gen" 899 #undef GET_INTRINSIC_ATTRIBUTES 900 901 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 902 // There can never be multiple globals with the same name of different types, 903 // because intrinsics must be a specific type. 904 return 905 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 906 getType(M->getContext(), id, Tys))); 907 } 908 909 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 910 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 911 #include "llvm/IR/Intrinsics.gen" 912 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 913 914 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 915 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 916 #include "llvm/IR/Intrinsics.gen" 917 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 918 919 /// hasAddressTaken - returns true if there are any uses of this function 920 /// other than direct calls or invokes to it. 921 bool Function::hasAddressTaken(const User* *PutOffender) const { 922 for (const Use &U : uses()) { 923 const User *FU = U.getUser(); 924 if (isa<BlockAddress>(FU)) 925 continue; 926 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 927 if (PutOffender) 928 *PutOffender = FU; 929 return true; 930 } 931 ImmutableCallSite CS(cast<Instruction>(FU)); 932 if (!CS.isCallee(&U)) { 933 if (PutOffender) 934 *PutOffender = FU; 935 return true; 936 } 937 } 938 return false; 939 } 940 941 bool Function::isDefTriviallyDead() const { 942 // Check the linkage 943 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 944 !hasAvailableExternallyLinkage()) 945 return false; 946 947 // Check if the function is used by anything other than a blockaddress. 948 for (const User *U : users()) 949 if (!isa<BlockAddress>(U)) 950 return false; 951 952 return true; 953 } 954 955 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 956 /// setjmp or other function that gcc recognizes as "returning twice". 957 bool Function::callsFunctionThatReturnsTwice() const { 958 for (const_inst_iterator 959 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 960 ImmutableCallSite CS(&*I); 961 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 962 return true; 963 } 964 965 return false; 966 } 967 968 Constant *Function::getPersonalityFn() const { 969 assert(hasPersonalityFn() && getNumOperands()); 970 return cast<Constant>(Op<0>()); 971 } 972 973 void Function::setPersonalityFn(Constant *Fn) { 974 setHungoffOperand<0>(Fn); 975 setValueSubclassDataBit(3, Fn != nullptr); 976 } 977 978 Constant *Function::getPrefixData() const { 979 assert(hasPrefixData() && getNumOperands()); 980 return cast<Constant>(Op<1>()); 981 } 982 983 void Function::setPrefixData(Constant *PrefixData) { 984 setHungoffOperand<1>(PrefixData); 985 setValueSubclassDataBit(1, PrefixData != nullptr); 986 } 987 988 Constant *Function::getPrologueData() const { 989 assert(hasPrologueData() && getNumOperands()); 990 return cast<Constant>(Op<2>()); 991 } 992 993 void Function::setPrologueData(Constant *PrologueData) { 994 setHungoffOperand<2>(PrologueData); 995 setValueSubclassDataBit(2, PrologueData != nullptr); 996 } 997 998 void Function::allocHungoffUselist() { 999 // If we've already allocated a uselist, stop here. 1000 if (getNumOperands()) 1001 return; 1002 1003 allocHungoffUses(3, /*IsPhi=*/ false); 1004 setNumHungOffUseOperands(3); 1005 1006 // Initialize the uselist with placeholder operands to allow traversal. 1007 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1008 Op<0>().set(CPN); 1009 Op<1>().set(CPN); 1010 Op<2>().set(CPN); 1011 } 1012 1013 template <int Idx> 1014 void Function::setHungoffOperand(Constant *C) { 1015 if (C) { 1016 allocHungoffUselist(); 1017 Op<Idx>().set(C); 1018 } else if (getNumOperands()) { 1019 Op<Idx>().set( 1020 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1021 } 1022 } 1023 1024 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1025 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1026 if (On) 1027 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1028 else 1029 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1030 } 1031 1032 void Function::setEntryCount(uint64_t Count) { 1033 MDBuilder MDB(getContext()); 1034 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1035 } 1036 1037 Optional<uint64_t> Function::getEntryCount() const { 1038 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1039 if (MD && MD->getOperand(0)) 1040 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1041 if (MDS->getString().equals("function_entry_count")) { 1042 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1043 return CI->getValue().getZExtValue(); 1044 } 1045 return None; 1046 } 1047