1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/IntrinsicsAArch64.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsARM.h" 38 #include "llvm/IR/IntrinsicsBPF.h" 39 #include "llvm/IR/IntrinsicsDirectX.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsLoongArch.h" 42 #include "llvm/IR/IntrinsicsMips.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/IntrinsicsPowerPC.h" 45 #include "llvm/IR/IntrinsicsR600.h" 46 #include "llvm/IR/IntrinsicsRISCV.h" 47 #include "llvm/IR/IntrinsicsS390.h" 48 #include "llvm/IR/IntrinsicsSPIRV.h" 49 #include "llvm/IR/IntrinsicsVE.h" 50 #include "llvm/IR/IntrinsicsWebAssembly.h" 51 #include "llvm/IR/IntrinsicsX86.h" 52 #include "llvm/IR/IntrinsicsXCore.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/SymbolTableListTraits.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/ValueSymbolTable.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ModRef.h" 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <cstring> 73 #include <string> 74 75 using namespace llvm; 76 using ProfileCount = Function::ProfileCount; 77 78 // Explicit instantiations of SymbolTableListTraits since some of the methods 79 // are not in the public header file... 80 template class llvm::SymbolTableListTraits<BasicBlock>; 81 82 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 83 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 84 cl::desc("Maximum size for the name of non-global values.")); 85 86 void Function::convertToNewDbgValues() { 87 IsNewDbgInfoFormat = true; 88 for (auto &BB : *this) { 89 BB.convertToNewDbgValues(); 90 } 91 } 92 93 void Function::convertFromNewDbgValues() { 94 IsNewDbgInfoFormat = false; 95 for (auto &BB : *this) { 96 BB.convertFromNewDbgValues(); 97 } 98 } 99 100 void Function::setIsNewDbgInfoFormat(bool NewFlag) { 101 if (NewFlag && !IsNewDbgInfoFormat) 102 convertToNewDbgValues(); 103 else if (!NewFlag && IsNewDbgInfoFormat) 104 convertFromNewDbgValues(); 105 } 106 void Function::setNewDbgInfoFormatFlag(bool NewFlag) { 107 for (auto &BB : *this) { 108 BB.setNewDbgInfoFormatFlag(NewFlag); 109 } 110 IsNewDbgInfoFormat = NewFlag; 111 } 112 113 //===----------------------------------------------------------------------===// 114 // Argument Implementation 115 //===----------------------------------------------------------------------===// 116 117 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 118 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 119 setName(Name); 120 } 121 122 void Argument::setParent(Function *parent) { 123 Parent = parent; 124 } 125 126 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 127 if (!getType()->isPointerTy()) return false; 128 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 129 (AllowUndefOrPoison || 130 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 131 return true; 132 else if (getDereferenceableBytes() > 0 && 133 !NullPointerIsDefined(getParent(), 134 getType()->getPointerAddressSpace())) 135 return true; 136 return false; 137 } 138 139 bool Argument::hasByValAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return hasAttribute(Attribute::ByVal); 142 } 143 144 bool Argument::hasByRefAttr() const { 145 if (!getType()->isPointerTy()) 146 return false; 147 return hasAttribute(Attribute::ByRef); 148 } 149 150 bool Argument::hasSwiftSelfAttr() const { 151 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 152 } 153 154 bool Argument::hasSwiftErrorAttr() const { 155 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 156 } 157 158 bool Argument::hasInAllocaAttr() const { 159 if (!getType()->isPointerTy()) return false; 160 return hasAttribute(Attribute::InAlloca); 161 } 162 163 bool Argument::hasPreallocatedAttr() const { 164 if (!getType()->isPointerTy()) 165 return false; 166 return hasAttribute(Attribute::Preallocated); 167 } 168 169 bool Argument::hasPassPointeeByValueCopyAttr() const { 170 if (!getType()->isPointerTy()) return false; 171 AttributeList Attrs = getParent()->getAttributes(); 172 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 173 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 174 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 175 } 176 177 bool Argument::hasPointeeInMemoryValueAttr() const { 178 if (!getType()->isPointerTy()) 179 return false; 180 AttributeList Attrs = getParent()->getAttributes(); 181 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 182 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 183 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 184 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 185 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 186 } 187 188 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 189 /// parameter type. 190 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 191 // FIXME: All the type carrying attributes are mutually exclusive, so there 192 // should be a single query to get the stored type that handles any of them. 193 if (Type *ByValTy = ParamAttrs.getByValType()) 194 return ByValTy; 195 if (Type *ByRefTy = ParamAttrs.getByRefType()) 196 return ByRefTy; 197 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 198 return PreAllocTy; 199 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 200 return InAllocaTy; 201 if (Type *SRetTy = ParamAttrs.getStructRetType()) 202 return SRetTy; 203 204 return nullptr; 205 } 206 207 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 208 AttributeSet ParamAttrs = 209 getParent()->getAttributes().getParamAttrs(getArgNo()); 210 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 211 return DL.getTypeAllocSize(MemTy); 212 return 0; 213 } 214 215 Type *Argument::getPointeeInMemoryValueType() const { 216 AttributeSet ParamAttrs = 217 getParent()->getAttributes().getParamAttrs(getArgNo()); 218 return getMemoryParamAllocType(ParamAttrs); 219 } 220 221 MaybeAlign Argument::getParamAlign() const { 222 assert(getType()->isPointerTy() && "Only pointers have alignments"); 223 return getParent()->getParamAlign(getArgNo()); 224 } 225 226 MaybeAlign Argument::getParamStackAlign() const { 227 return getParent()->getParamStackAlign(getArgNo()); 228 } 229 230 Type *Argument::getParamByValType() const { 231 assert(getType()->isPointerTy() && "Only pointers have byval types"); 232 return getParent()->getParamByValType(getArgNo()); 233 } 234 235 Type *Argument::getParamStructRetType() const { 236 assert(getType()->isPointerTy() && "Only pointers have sret types"); 237 return getParent()->getParamStructRetType(getArgNo()); 238 } 239 240 Type *Argument::getParamByRefType() const { 241 assert(getType()->isPointerTy() && "Only pointers have byref types"); 242 return getParent()->getParamByRefType(getArgNo()); 243 } 244 245 Type *Argument::getParamInAllocaType() const { 246 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 247 return getParent()->getParamInAllocaType(getArgNo()); 248 } 249 250 uint64_t Argument::getDereferenceableBytes() const { 251 assert(getType()->isPointerTy() && 252 "Only pointers have dereferenceable bytes"); 253 return getParent()->getParamDereferenceableBytes(getArgNo()); 254 } 255 256 uint64_t Argument::getDereferenceableOrNullBytes() const { 257 assert(getType()->isPointerTy() && 258 "Only pointers have dereferenceable bytes"); 259 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 260 } 261 262 FPClassTest Argument::getNoFPClass() const { 263 return getParent()->getParamNoFPClass(getArgNo()); 264 } 265 266 std::optional<ConstantRange> Argument::getRange() const { 267 const Attribute RangeAttr = getAttribute(llvm::Attribute::Range); 268 if (RangeAttr.isValid()) 269 return RangeAttr.getRange(); 270 return std::nullopt; 271 } 272 273 bool Argument::hasNestAttr() const { 274 if (!getType()->isPointerTy()) return false; 275 return hasAttribute(Attribute::Nest); 276 } 277 278 bool Argument::hasNoAliasAttr() const { 279 if (!getType()->isPointerTy()) return false; 280 return hasAttribute(Attribute::NoAlias); 281 } 282 283 bool Argument::hasNoCaptureAttr() const { 284 if (!getType()->isPointerTy()) return false; 285 return hasAttribute(Attribute::NoCapture); 286 } 287 288 bool Argument::hasNoFreeAttr() const { 289 if (!getType()->isPointerTy()) return false; 290 return hasAttribute(Attribute::NoFree); 291 } 292 293 bool Argument::hasStructRetAttr() const { 294 if (!getType()->isPointerTy()) return false; 295 return hasAttribute(Attribute::StructRet); 296 } 297 298 bool Argument::hasInRegAttr() const { 299 return hasAttribute(Attribute::InReg); 300 } 301 302 bool Argument::hasReturnedAttr() const { 303 return hasAttribute(Attribute::Returned); 304 } 305 306 bool Argument::hasZExtAttr() const { 307 return hasAttribute(Attribute::ZExt); 308 } 309 310 bool Argument::hasSExtAttr() const { 311 return hasAttribute(Attribute::SExt); 312 } 313 314 bool Argument::onlyReadsMemory() const { 315 AttributeList Attrs = getParent()->getAttributes(); 316 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 317 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 318 } 319 320 void Argument::addAttrs(AttrBuilder &B) { 321 AttributeList AL = getParent()->getAttributes(); 322 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 323 getParent()->setAttributes(AL); 324 } 325 326 void Argument::addAttr(Attribute::AttrKind Kind) { 327 getParent()->addParamAttr(getArgNo(), Kind); 328 } 329 330 void Argument::addAttr(Attribute Attr) { 331 getParent()->addParamAttr(getArgNo(), Attr); 332 } 333 334 void Argument::removeAttr(Attribute::AttrKind Kind) { 335 getParent()->removeParamAttr(getArgNo(), Kind); 336 } 337 338 void Argument::removeAttrs(const AttributeMask &AM) { 339 AttributeList AL = getParent()->getAttributes(); 340 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 341 getParent()->setAttributes(AL); 342 } 343 344 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 345 return getParent()->hasParamAttribute(getArgNo(), Kind); 346 } 347 348 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 349 return getParent()->getParamAttribute(getArgNo(), Kind); 350 } 351 352 //===----------------------------------------------------------------------===// 353 // Helper Methods in Function 354 //===----------------------------------------------------------------------===// 355 356 LLVMContext &Function::getContext() const { 357 return getType()->getContext(); 358 } 359 360 unsigned Function::getInstructionCount() const { 361 unsigned NumInstrs = 0; 362 for (const BasicBlock &BB : BasicBlocks) 363 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 364 BB.instructionsWithoutDebug().end()); 365 return NumInstrs; 366 } 367 368 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 369 const Twine &N, Module &M) { 370 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 371 } 372 373 Function *Function::createWithDefaultAttr(FunctionType *Ty, 374 LinkageTypes Linkage, 375 unsigned AddrSpace, const Twine &N, 376 Module *M) { 377 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 378 AttrBuilder B(F->getContext()); 379 UWTableKind UWTable = M->getUwtable(); 380 if (UWTable != UWTableKind::None) 381 B.addUWTableAttr(UWTable); 382 switch (M->getFramePointer()) { 383 case FramePointerKind::None: 384 // 0 ("none") is the default. 385 break; 386 case FramePointerKind::NonLeaf: 387 B.addAttribute("frame-pointer", "non-leaf"); 388 break; 389 case FramePointerKind::All: 390 B.addAttribute("frame-pointer", "all"); 391 break; 392 } 393 if (M->getModuleFlag("function_return_thunk_extern")) 394 B.addAttribute(Attribute::FnRetThunkExtern); 395 F->addFnAttrs(B); 396 return F; 397 } 398 399 void Function::removeFromParent() { 400 getParent()->getFunctionList().remove(getIterator()); 401 } 402 403 void Function::eraseFromParent() { 404 getParent()->getFunctionList().erase(getIterator()); 405 } 406 407 void Function::splice(Function::iterator ToIt, Function *FromF, 408 Function::iterator FromBeginIt, 409 Function::iterator FromEndIt) { 410 #ifdef EXPENSIVE_CHECKS 411 // Check that FromBeginIt is before FromEndIt. 412 auto FromFEnd = FromF->end(); 413 for (auto It = FromBeginIt; It != FromEndIt; ++It) 414 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 415 #endif // EXPENSIVE_CHECKS 416 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 417 } 418 419 Function::iterator Function::erase(Function::iterator FromIt, 420 Function::iterator ToIt) { 421 return BasicBlocks.erase(FromIt, ToIt); 422 } 423 424 //===----------------------------------------------------------------------===// 425 // Function Implementation 426 //===----------------------------------------------------------------------===// 427 428 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 429 // If AS == -1 and we are passed a valid module pointer we place the function 430 // in the program address space. Otherwise we default to AS0. 431 if (AddrSpace == static_cast<unsigned>(-1)) 432 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 433 return AddrSpace; 434 } 435 436 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 437 const Twine &name, Module *ParentModule) 438 : GlobalObject(Ty, Value::FunctionVal, 439 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 440 computeAddrSpace(AddrSpace, ParentModule)), 441 NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(false) { 442 assert(FunctionType::isValidReturnType(getReturnType()) && 443 "invalid return type"); 444 setGlobalObjectSubClassData(0); 445 446 // We only need a symbol table for a function if the context keeps value names 447 if (!getContext().shouldDiscardValueNames()) 448 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 449 450 // If the function has arguments, mark them as lazily built. 451 if (Ty->getNumParams()) 452 setValueSubclassData(1); // Set the "has lazy arguments" bit. 453 454 if (ParentModule) { 455 ParentModule->getFunctionList().push_back(this); 456 IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat; 457 } 458 459 HasLLVMReservedName = getName().starts_with("llvm."); 460 // Ensure intrinsics have the right parameter attributes. 461 // Note, the IntID field will have been set in Value::setName if this function 462 // name is a valid intrinsic ID. 463 if (IntID) 464 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 465 } 466 467 Function::~Function() { 468 dropAllReferences(); // After this it is safe to delete instructions. 469 470 // Delete all of the method arguments and unlink from symbol table... 471 if (Arguments) 472 clearArguments(); 473 474 // Remove the function from the on-the-side GC table. 475 clearGC(); 476 } 477 478 void Function::BuildLazyArguments() const { 479 // Create the arguments vector, all arguments start out unnamed. 480 auto *FT = getFunctionType(); 481 if (NumArgs > 0) { 482 Arguments = std::allocator<Argument>().allocate(NumArgs); 483 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 484 Type *ArgTy = FT->getParamType(i); 485 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 486 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 487 } 488 } 489 490 // Clear the lazy arguments bit. 491 unsigned SDC = getSubclassDataFromValue(); 492 SDC &= ~(1 << 0); 493 const_cast<Function*>(this)->setValueSubclassData(SDC); 494 assert(!hasLazyArguments()); 495 } 496 497 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 498 return MutableArrayRef<Argument>(Args, Count); 499 } 500 501 bool Function::isConstrainedFPIntrinsic() const { 502 switch (getIntrinsicID()) { 503 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 504 case Intrinsic::INTRINSIC: 505 #include "llvm/IR/ConstrainedOps.def" 506 return true; 507 #undef INSTRUCTION 508 default: 509 return false; 510 } 511 } 512 513 void Function::clearArguments() { 514 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 515 A.setName(""); 516 A.~Argument(); 517 } 518 std::allocator<Argument>().deallocate(Arguments, NumArgs); 519 Arguments = nullptr; 520 } 521 522 void Function::stealArgumentListFrom(Function &Src) { 523 assert(isDeclaration() && "Expected no references to current arguments"); 524 525 // Drop the current arguments, if any, and set the lazy argument bit. 526 if (!hasLazyArguments()) { 527 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 528 [](const Argument &A) { return A.use_empty(); }) && 529 "Expected arguments to be unused in declaration"); 530 clearArguments(); 531 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 532 } 533 534 // Nothing to steal if Src has lazy arguments. 535 if (Src.hasLazyArguments()) 536 return; 537 538 // Steal arguments from Src, and fix the lazy argument bits. 539 assert(arg_size() == Src.arg_size()); 540 Arguments = Src.Arguments; 541 Src.Arguments = nullptr; 542 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 543 // FIXME: This does the work of transferNodesFromList inefficiently. 544 SmallString<128> Name; 545 if (A.hasName()) 546 Name = A.getName(); 547 if (!Name.empty()) 548 A.setName(""); 549 A.setParent(this); 550 if (!Name.empty()) 551 A.setName(Name); 552 } 553 554 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 555 assert(!hasLazyArguments()); 556 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 557 } 558 559 void Function::deleteBodyImpl(bool ShouldDrop) { 560 setIsMaterializable(false); 561 562 for (BasicBlock &BB : *this) 563 BB.dropAllReferences(); 564 565 // Delete all basic blocks. They are now unused, except possibly by 566 // blockaddresses, but BasicBlock's destructor takes care of those. 567 while (!BasicBlocks.empty()) 568 BasicBlocks.begin()->eraseFromParent(); 569 570 if (getNumOperands()) { 571 if (ShouldDrop) { 572 // Drop uses of any optional data (real or placeholder). 573 User::dropAllReferences(); 574 setNumHungOffUseOperands(0); 575 } else { 576 // The code needs to match Function::allocHungoffUselist(). 577 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 578 Op<0>().set(CPN); 579 Op<1>().set(CPN); 580 Op<2>().set(CPN); 581 } 582 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 583 } 584 585 // Metadata is stored in a side-table. 586 clearMetadata(); 587 } 588 589 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 590 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 591 } 592 593 void Function::addFnAttr(Attribute::AttrKind Kind) { 594 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 595 } 596 597 void Function::addFnAttr(StringRef Kind, StringRef Val) { 598 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 599 } 600 601 void Function::addFnAttr(Attribute Attr) { 602 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 603 } 604 605 void Function::addFnAttrs(const AttrBuilder &Attrs) { 606 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 607 } 608 609 void Function::addRetAttr(Attribute::AttrKind Kind) { 610 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 611 } 612 613 void Function::addRetAttr(Attribute Attr) { 614 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 615 } 616 617 void Function::addRetAttrs(const AttrBuilder &Attrs) { 618 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 619 } 620 621 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 622 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 623 } 624 625 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 626 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 627 } 628 629 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 630 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 631 } 632 633 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 634 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 635 } 636 637 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 638 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 639 } 640 641 void Function::removeFnAttr(Attribute::AttrKind Kind) { 642 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 643 } 644 645 void Function::removeFnAttr(StringRef Kind) { 646 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 647 } 648 649 void Function::removeFnAttrs(const AttributeMask &AM) { 650 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 651 } 652 653 void Function::removeRetAttr(Attribute::AttrKind Kind) { 654 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 655 } 656 657 void Function::removeRetAttr(StringRef Kind) { 658 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 659 } 660 661 void Function::removeRetAttrs(const AttributeMask &Attrs) { 662 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 663 } 664 665 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 666 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 667 } 668 669 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 670 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 671 } 672 673 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 674 AttributeSets = 675 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 676 } 677 678 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 679 AttributeSets = 680 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 681 } 682 683 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 684 return AttributeSets.hasFnAttr(Kind); 685 } 686 687 bool Function::hasFnAttribute(StringRef Kind) const { 688 return AttributeSets.hasFnAttr(Kind); 689 } 690 691 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 692 return AttributeSets.hasRetAttr(Kind); 693 } 694 695 bool Function::hasParamAttribute(unsigned ArgNo, 696 Attribute::AttrKind Kind) const { 697 return AttributeSets.hasParamAttr(ArgNo, Kind); 698 } 699 700 Attribute Function::getAttributeAtIndex(unsigned i, 701 Attribute::AttrKind Kind) const { 702 return AttributeSets.getAttributeAtIndex(i, Kind); 703 } 704 705 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 706 return AttributeSets.getAttributeAtIndex(i, Kind); 707 } 708 709 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 710 return AttributeSets.getFnAttr(Kind); 711 } 712 713 Attribute Function::getFnAttribute(StringRef Kind) const { 714 return AttributeSets.getFnAttr(Kind); 715 } 716 717 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const { 718 return AttributeSets.getRetAttr(Kind); 719 } 720 721 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 722 uint64_t Default) const { 723 Attribute A = getFnAttribute(Name); 724 uint64_t Result = Default; 725 if (A.isStringAttribute()) { 726 StringRef Str = A.getValueAsString(); 727 if (Str.getAsInteger(0, Result)) 728 getContext().emitError("cannot parse integer attribute " + Name); 729 } 730 731 return Result; 732 } 733 734 /// gets the specified attribute from the list of attributes. 735 Attribute Function::getParamAttribute(unsigned ArgNo, 736 Attribute::AttrKind Kind) const { 737 return AttributeSets.getParamAttr(ArgNo, Kind); 738 } 739 740 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 741 uint64_t Bytes) { 742 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 743 ArgNo, Bytes); 744 } 745 746 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 747 if (&FPType == &APFloat::IEEEsingle()) { 748 DenormalMode Mode = getDenormalModeF32Raw(); 749 // If the f32 variant of the attribute isn't specified, try to use the 750 // generic one. 751 if (Mode.isValid()) 752 return Mode; 753 } 754 755 return getDenormalModeRaw(); 756 } 757 758 DenormalMode Function::getDenormalModeRaw() const { 759 Attribute Attr = getFnAttribute("denormal-fp-math"); 760 StringRef Val = Attr.getValueAsString(); 761 return parseDenormalFPAttribute(Val); 762 } 763 764 DenormalMode Function::getDenormalModeF32Raw() const { 765 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 766 if (Attr.isValid()) { 767 StringRef Val = Attr.getValueAsString(); 768 return parseDenormalFPAttribute(Val); 769 } 770 771 return DenormalMode::getInvalid(); 772 } 773 774 const std::string &Function::getGC() const { 775 assert(hasGC() && "Function has no collector"); 776 return getContext().getGC(*this); 777 } 778 779 void Function::setGC(std::string Str) { 780 setValueSubclassDataBit(14, !Str.empty()); 781 getContext().setGC(*this, std::move(Str)); 782 } 783 784 void Function::clearGC() { 785 if (!hasGC()) 786 return; 787 getContext().deleteGC(*this); 788 setValueSubclassDataBit(14, false); 789 } 790 791 bool Function::hasStackProtectorFnAttr() const { 792 return hasFnAttribute(Attribute::StackProtect) || 793 hasFnAttribute(Attribute::StackProtectStrong) || 794 hasFnAttribute(Attribute::StackProtectReq); 795 } 796 797 /// Copy all additional attributes (those not needed to create a Function) from 798 /// the Function Src to this one. 799 void Function::copyAttributesFrom(const Function *Src) { 800 GlobalObject::copyAttributesFrom(Src); 801 setCallingConv(Src->getCallingConv()); 802 setAttributes(Src->getAttributes()); 803 if (Src->hasGC()) 804 setGC(Src->getGC()); 805 else 806 clearGC(); 807 if (Src->hasPersonalityFn()) 808 setPersonalityFn(Src->getPersonalityFn()); 809 if (Src->hasPrefixData()) 810 setPrefixData(Src->getPrefixData()); 811 if (Src->hasPrologueData()) 812 setPrologueData(Src->getPrologueData()); 813 } 814 815 MemoryEffects Function::getMemoryEffects() const { 816 return getAttributes().getMemoryEffects(); 817 } 818 void Function::setMemoryEffects(MemoryEffects ME) { 819 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 820 } 821 822 /// Determine if the function does not access memory. 823 bool Function::doesNotAccessMemory() const { 824 return getMemoryEffects().doesNotAccessMemory(); 825 } 826 void Function::setDoesNotAccessMemory() { 827 setMemoryEffects(MemoryEffects::none()); 828 } 829 830 /// Determine if the function does not access or only reads memory. 831 bool Function::onlyReadsMemory() const { 832 return getMemoryEffects().onlyReadsMemory(); 833 } 834 void Function::setOnlyReadsMemory() { 835 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 836 } 837 838 /// Determine if the function does not access or only writes memory. 839 bool Function::onlyWritesMemory() const { 840 return getMemoryEffects().onlyWritesMemory(); 841 } 842 void Function::setOnlyWritesMemory() { 843 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 844 } 845 846 /// Determine if the call can access memmory only using pointers based 847 /// on its arguments. 848 bool Function::onlyAccessesArgMemory() const { 849 return getMemoryEffects().onlyAccessesArgPointees(); 850 } 851 void Function::setOnlyAccessesArgMemory() { 852 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 853 } 854 855 /// Determine if the function may only access memory that is 856 /// inaccessible from the IR. 857 bool Function::onlyAccessesInaccessibleMemory() const { 858 return getMemoryEffects().onlyAccessesInaccessibleMem(); 859 } 860 void Function::setOnlyAccessesInaccessibleMemory() { 861 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 862 } 863 864 /// Determine if the function may only access memory that is 865 /// either inaccessible from the IR or pointed to by its arguments. 866 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 867 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 868 } 869 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 870 setMemoryEffects(getMemoryEffects() & 871 MemoryEffects::inaccessibleOrArgMemOnly()); 872 } 873 874 /// Table of string intrinsic names indexed by enum value. 875 static const char * const IntrinsicNameTable[] = { 876 "not_intrinsic", 877 #define GET_INTRINSIC_NAME_TABLE 878 #include "llvm/IR/IntrinsicImpl.inc" 879 #undef GET_INTRINSIC_NAME_TABLE 880 }; 881 882 /// Table of per-target intrinsic name tables. 883 #define GET_INTRINSIC_TARGET_DATA 884 #include "llvm/IR/IntrinsicImpl.inc" 885 #undef GET_INTRINSIC_TARGET_DATA 886 887 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 888 return IID > TargetInfos[0].Count; 889 } 890 891 bool Function::isTargetIntrinsic() const { 892 return isTargetIntrinsic(IntID); 893 } 894 895 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 896 /// target as \c Name, or the generic table if \c Name is not target specific. 897 /// 898 /// Returns the relevant slice of \c IntrinsicNameTable 899 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 900 assert(Name.starts_with("llvm.")); 901 902 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 903 // Drop "llvm." and take the first dotted component. That will be the target 904 // if this is target specific. 905 StringRef Target = Name.drop_front(5).split('.').first; 906 auto It = partition_point( 907 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 908 // We've either found the target or just fall back to the generic set, which 909 // is always first. 910 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 911 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 912 } 913 914 /// This does the actual lookup of an intrinsic ID which 915 /// matches the given function name. 916 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 917 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 918 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 919 if (Idx == -1) 920 return Intrinsic::not_intrinsic; 921 922 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 923 // an index into a sub-table. 924 int Adjust = NameTable.data() - IntrinsicNameTable; 925 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 926 927 // If the intrinsic is not overloaded, require an exact match. If it is 928 // overloaded, require either exact or prefix match. 929 const auto MatchSize = strlen(NameTable[Idx]); 930 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 931 bool IsExactMatch = Name.size() == MatchSize; 932 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 933 : Intrinsic::not_intrinsic; 934 } 935 936 void Function::updateAfterNameChange() { 937 LibFuncCache = UnknownLibFunc; 938 StringRef Name = getName(); 939 if (!Name.starts_with("llvm.")) { 940 HasLLVMReservedName = false; 941 IntID = Intrinsic::not_intrinsic; 942 return; 943 } 944 HasLLVMReservedName = true; 945 IntID = lookupIntrinsicID(Name); 946 } 947 948 /// Returns a stable mangling for the type specified for use in the name 949 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 950 /// of named types is simply their name. Manglings for unnamed types consist 951 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 952 /// combined with the mangling of their component types. A vararg function 953 /// type will have a suffix of 'vararg'. Since function types can contain 954 /// other function types, we close a function type mangling with suffix 'f' 955 /// which can't be confused with it's prefix. This ensures we don't have 956 /// collisions between two unrelated function types. Otherwise, you might 957 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 958 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 959 /// indicating that extra care must be taken to ensure a unique name. 960 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 961 std::string Result; 962 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 963 Result += "p" + utostr(PTyp->getAddressSpace()); 964 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 965 Result += "a" + utostr(ATyp->getNumElements()) + 966 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 967 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 968 if (!STyp->isLiteral()) { 969 Result += "s_"; 970 if (STyp->hasName()) 971 Result += STyp->getName(); 972 else 973 HasUnnamedType = true; 974 } else { 975 Result += "sl_"; 976 for (auto *Elem : STyp->elements()) 977 Result += getMangledTypeStr(Elem, HasUnnamedType); 978 } 979 // Ensure nested structs are distinguishable. 980 Result += "s"; 981 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 982 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 983 for (size_t i = 0; i < FT->getNumParams(); i++) 984 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 985 if (FT->isVarArg()) 986 Result += "vararg"; 987 // Ensure nested function types are distinguishable. 988 Result += "f"; 989 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 990 ElementCount EC = VTy->getElementCount(); 991 if (EC.isScalable()) 992 Result += "nx"; 993 Result += "v" + utostr(EC.getKnownMinValue()) + 994 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 995 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 996 Result += "t"; 997 Result += TETy->getName(); 998 for (Type *ParamTy : TETy->type_params()) 999 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 1000 for (unsigned IntParam : TETy->int_params()) 1001 Result += "_" + utostr(IntParam); 1002 // Ensure nested target extension types are distinguishable. 1003 Result += "t"; 1004 } else if (Ty) { 1005 switch (Ty->getTypeID()) { 1006 default: llvm_unreachable("Unhandled type"); 1007 case Type::VoidTyID: Result += "isVoid"; break; 1008 case Type::MetadataTyID: Result += "Metadata"; break; 1009 case Type::HalfTyID: Result += "f16"; break; 1010 case Type::BFloatTyID: Result += "bf16"; break; 1011 case Type::FloatTyID: Result += "f32"; break; 1012 case Type::DoubleTyID: Result += "f64"; break; 1013 case Type::X86_FP80TyID: Result += "f80"; break; 1014 case Type::FP128TyID: Result += "f128"; break; 1015 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 1016 case Type::X86_MMXTyID: Result += "x86mmx"; break; 1017 case Type::X86_AMXTyID: Result += "x86amx"; break; 1018 case Type::IntegerTyID: 1019 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 1020 break; 1021 } 1022 } 1023 return Result; 1024 } 1025 1026 StringRef Intrinsic::getBaseName(ID id) { 1027 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1028 return IntrinsicNameTable[id]; 1029 } 1030 1031 StringRef Intrinsic::getName(ID id) { 1032 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1033 assert(!Intrinsic::isOverloaded(id) && 1034 "This version of getName does not support overloading"); 1035 return getBaseName(id); 1036 } 1037 1038 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 1039 Module *M, FunctionType *FT, 1040 bool EarlyModuleCheck) { 1041 1042 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 1043 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 1044 "This version of getName is for overloaded intrinsics only"); 1045 (void)EarlyModuleCheck; 1046 assert((!EarlyModuleCheck || M || 1047 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 1048 "Intrinsic overloading on pointer types need to provide a Module"); 1049 bool HasUnnamedType = false; 1050 std::string Result(Intrinsic::getBaseName(Id)); 1051 for (Type *Ty : Tys) 1052 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1053 if (HasUnnamedType) { 1054 assert(M && "unnamed types need a module"); 1055 if (!FT) 1056 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1057 else 1058 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1059 "Provided FunctionType must match arguments"); 1060 return M->getUniqueIntrinsicName(Result, Id, FT); 1061 } 1062 return Result; 1063 } 1064 1065 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1066 FunctionType *FT) { 1067 assert(M && "We need to have a Module"); 1068 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1069 } 1070 1071 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1072 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1073 } 1074 1075 /// IIT_Info - These are enumerators that describe the entries returned by the 1076 /// getIntrinsicInfoTableEntries function. 1077 /// 1078 /// Defined in Intrinsics.td. 1079 enum IIT_Info { 1080 #define GET_INTRINSIC_IITINFO 1081 #include "llvm/IR/IntrinsicImpl.inc" 1082 #undef GET_INTRINSIC_IITINFO 1083 }; 1084 1085 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1086 IIT_Info LastInfo, 1087 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1088 using namespace Intrinsic; 1089 1090 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1091 1092 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1093 unsigned StructElts = 2; 1094 1095 switch (Info) { 1096 case IIT_Done: 1097 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1098 return; 1099 case IIT_VARARG: 1100 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1101 return; 1102 case IIT_MMX: 1103 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1104 return; 1105 case IIT_AMX: 1106 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1107 return; 1108 case IIT_TOKEN: 1109 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1110 return; 1111 case IIT_METADATA: 1112 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1113 return; 1114 case IIT_F16: 1115 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1116 return; 1117 case IIT_BF16: 1118 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1119 return; 1120 case IIT_F32: 1121 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1122 return; 1123 case IIT_F64: 1124 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1125 return; 1126 case IIT_F128: 1127 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1128 return; 1129 case IIT_PPCF128: 1130 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1131 return; 1132 case IIT_I1: 1133 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1134 return; 1135 case IIT_I2: 1136 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1137 return; 1138 case IIT_I4: 1139 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1140 return; 1141 case IIT_AARCH64_SVCOUNT: 1142 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0)); 1143 return; 1144 case IIT_I8: 1145 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1146 return; 1147 case IIT_I16: 1148 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1149 return; 1150 case IIT_I32: 1151 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1152 return; 1153 case IIT_I64: 1154 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1155 return; 1156 case IIT_I128: 1157 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1158 return; 1159 case IIT_V1: 1160 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1161 DecodeIITType(NextElt, Infos, Info, OutputTable); 1162 return; 1163 case IIT_V2: 1164 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1165 DecodeIITType(NextElt, Infos, Info, OutputTable); 1166 return; 1167 case IIT_V3: 1168 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1169 DecodeIITType(NextElt, Infos, Info, OutputTable); 1170 return; 1171 case IIT_V4: 1172 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1173 DecodeIITType(NextElt, Infos, Info, OutputTable); 1174 return; 1175 case IIT_V8: 1176 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1177 DecodeIITType(NextElt, Infos, Info, OutputTable); 1178 return; 1179 case IIT_V16: 1180 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1181 DecodeIITType(NextElt, Infos, Info, OutputTable); 1182 return; 1183 case IIT_V32: 1184 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1185 DecodeIITType(NextElt, Infos, Info, OutputTable); 1186 return; 1187 case IIT_V64: 1188 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1189 DecodeIITType(NextElt, Infos, Info, OutputTable); 1190 return; 1191 case IIT_V128: 1192 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1193 DecodeIITType(NextElt, Infos, Info, OutputTable); 1194 return; 1195 case IIT_V256: 1196 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1197 DecodeIITType(NextElt, Infos, Info, OutputTable); 1198 return; 1199 case IIT_V512: 1200 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1201 DecodeIITType(NextElt, Infos, Info, OutputTable); 1202 return; 1203 case IIT_V1024: 1204 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1205 DecodeIITType(NextElt, Infos, Info, OutputTable); 1206 return; 1207 case IIT_EXTERNREF: 1208 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1209 return; 1210 case IIT_FUNCREF: 1211 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1212 return; 1213 case IIT_PTR: 1214 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1215 return; 1216 case IIT_ANYPTR: // [ANYPTR addrspace] 1217 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1218 Infos[NextElt++])); 1219 return; 1220 case IIT_ARG: { 1221 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1222 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1223 return; 1224 } 1225 case IIT_EXTEND_ARG: { 1226 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1227 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1228 ArgInfo)); 1229 return; 1230 } 1231 case IIT_TRUNC_ARG: { 1232 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1233 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1234 ArgInfo)); 1235 return; 1236 } 1237 case IIT_HALF_VEC_ARG: { 1238 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1239 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1240 ArgInfo)); 1241 return; 1242 } 1243 case IIT_SAME_VEC_WIDTH_ARG: { 1244 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1245 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1246 ArgInfo)); 1247 return; 1248 } 1249 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1250 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1251 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1252 OutputTable.push_back( 1253 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1254 return; 1255 } 1256 case IIT_EMPTYSTRUCT: 1257 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1258 return; 1259 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1260 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1261 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1262 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1263 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1264 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1265 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1266 case IIT_STRUCT2: { 1267 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1268 1269 for (unsigned i = 0; i != StructElts; ++i) 1270 DecodeIITType(NextElt, Infos, Info, OutputTable); 1271 return; 1272 } 1273 case IIT_SUBDIVIDE2_ARG: { 1274 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1275 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1276 ArgInfo)); 1277 return; 1278 } 1279 case IIT_SUBDIVIDE4_ARG: { 1280 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1281 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1282 ArgInfo)); 1283 return; 1284 } 1285 case IIT_VEC_ELEMENT: { 1286 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1287 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1288 ArgInfo)); 1289 return; 1290 } 1291 case IIT_SCALABLE_VEC: { 1292 DecodeIITType(NextElt, Infos, Info, OutputTable); 1293 return; 1294 } 1295 case IIT_VEC_OF_BITCASTS_TO_INT: { 1296 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1297 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1298 ArgInfo)); 1299 return; 1300 } 1301 } 1302 llvm_unreachable("unhandled"); 1303 } 1304 1305 #define GET_INTRINSIC_GENERATOR_GLOBAL 1306 #include "llvm/IR/IntrinsicImpl.inc" 1307 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1308 1309 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1310 SmallVectorImpl<IITDescriptor> &T){ 1311 // Check to see if the intrinsic's type was expressible by the table. 1312 unsigned TableVal = IIT_Table[id-1]; 1313 1314 // Decode the TableVal into an array of IITValues. 1315 SmallVector<unsigned char, 8> IITValues; 1316 ArrayRef<unsigned char> IITEntries; 1317 unsigned NextElt = 0; 1318 if ((TableVal >> 31) != 0) { 1319 // This is an offset into the IIT_LongEncodingTable. 1320 IITEntries = IIT_LongEncodingTable; 1321 1322 // Strip sentinel bit. 1323 NextElt = (TableVal << 1) >> 1; 1324 } else { 1325 // Decode the TableVal into an array of IITValues. If the entry was encoded 1326 // into a single word in the table itself, decode it now. 1327 do { 1328 IITValues.push_back(TableVal & 0xF); 1329 TableVal >>= 4; 1330 } while (TableVal); 1331 1332 IITEntries = IITValues; 1333 NextElt = 0; 1334 } 1335 1336 // Okay, decode the table into the output vector of IITDescriptors. 1337 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1338 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1339 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1340 } 1341 1342 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1343 ArrayRef<Type*> Tys, LLVMContext &Context) { 1344 using namespace Intrinsic; 1345 1346 IITDescriptor D = Infos.front(); 1347 Infos = Infos.slice(1); 1348 1349 switch (D.Kind) { 1350 case IITDescriptor::Void: return Type::getVoidTy(Context); 1351 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1352 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1353 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1354 case IITDescriptor::Token: return Type::getTokenTy(Context); 1355 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1356 case IITDescriptor::Half: return Type::getHalfTy(Context); 1357 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1358 case IITDescriptor::Float: return Type::getFloatTy(Context); 1359 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1360 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1361 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1362 case IITDescriptor::AArch64Svcount: 1363 return TargetExtType::get(Context, "aarch64.svcount"); 1364 1365 case IITDescriptor::Integer: 1366 return IntegerType::get(Context, D.Integer_Width); 1367 case IITDescriptor::Vector: 1368 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1369 D.Vector_Width); 1370 case IITDescriptor::Pointer: 1371 return PointerType::get(Context, D.Pointer_AddressSpace); 1372 case IITDescriptor::Struct: { 1373 SmallVector<Type *, 8> Elts; 1374 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1375 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1376 return StructType::get(Context, Elts); 1377 } 1378 case IITDescriptor::Argument: 1379 return Tys[D.getArgumentNumber()]; 1380 case IITDescriptor::ExtendArgument: { 1381 Type *Ty = Tys[D.getArgumentNumber()]; 1382 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1383 return VectorType::getExtendedElementVectorType(VTy); 1384 1385 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1386 } 1387 case IITDescriptor::TruncArgument: { 1388 Type *Ty = Tys[D.getArgumentNumber()]; 1389 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1390 return VectorType::getTruncatedElementVectorType(VTy); 1391 1392 IntegerType *ITy = cast<IntegerType>(Ty); 1393 assert(ITy->getBitWidth() % 2 == 0); 1394 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1395 } 1396 case IITDescriptor::Subdivide2Argument: 1397 case IITDescriptor::Subdivide4Argument: { 1398 Type *Ty = Tys[D.getArgumentNumber()]; 1399 VectorType *VTy = dyn_cast<VectorType>(Ty); 1400 assert(VTy && "Expected an argument of Vector Type"); 1401 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1402 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1403 } 1404 case IITDescriptor::HalfVecArgument: 1405 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1406 Tys[D.getArgumentNumber()])); 1407 case IITDescriptor::SameVecWidthArgument: { 1408 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1409 Type *Ty = Tys[D.getArgumentNumber()]; 1410 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1411 return VectorType::get(EltTy, VTy->getElementCount()); 1412 return EltTy; 1413 } 1414 case IITDescriptor::VecElementArgument: { 1415 Type *Ty = Tys[D.getArgumentNumber()]; 1416 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1417 return VTy->getElementType(); 1418 llvm_unreachable("Expected an argument of Vector Type"); 1419 } 1420 case IITDescriptor::VecOfBitcastsToInt: { 1421 Type *Ty = Tys[D.getArgumentNumber()]; 1422 VectorType *VTy = dyn_cast<VectorType>(Ty); 1423 assert(VTy && "Expected an argument of Vector Type"); 1424 return VectorType::getInteger(VTy); 1425 } 1426 case IITDescriptor::VecOfAnyPtrsToElt: 1427 // Return the overloaded type (which determines the pointers address space) 1428 return Tys[D.getOverloadArgNumber()]; 1429 } 1430 llvm_unreachable("unhandled"); 1431 } 1432 1433 FunctionType *Intrinsic::getType(LLVMContext &Context, 1434 ID id, ArrayRef<Type*> Tys) { 1435 SmallVector<IITDescriptor, 8> Table; 1436 getIntrinsicInfoTableEntries(id, Table); 1437 1438 ArrayRef<IITDescriptor> TableRef = Table; 1439 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1440 1441 SmallVector<Type*, 8> ArgTys; 1442 while (!TableRef.empty()) 1443 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1444 1445 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1446 // If we see void type as the type of the last argument, it is vararg intrinsic 1447 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1448 ArgTys.pop_back(); 1449 return FunctionType::get(ResultTy, ArgTys, true); 1450 } 1451 return FunctionType::get(ResultTy, ArgTys, false); 1452 } 1453 1454 bool Intrinsic::isOverloaded(ID id) { 1455 #define GET_INTRINSIC_OVERLOAD_TABLE 1456 #include "llvm/IR/IntrinsicImpl.inc" 1457 #undef GET_INTRINSIC_OVERLOAD_TABLE 1458 } 1459 1460 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1461 #define GET_INTRINSIC_ATTRIBUTES 1462 #include "llvm/IR/IntrinsicImpl.inc" 1463 #undef GET_INTRINSIC_ATTRIBUTES 1464 1465 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1466 // There can never be multiple globals with the same name of different types, 1467 // because intrinsics must be a specific type. 1468 auto *FT = getType(M->getContext(), id, Tys); 1469 return cast<Function>( 1470 M->getOrInsertFunction( 1471 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1472 .getCallee()); 1473 } 1474 1475 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1476 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1477 #include "llvm/IR/IntrinsicImpl.inc" 1478 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1479 1480 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1481 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1482 #include "llvm/IR/IntrinsicImpl.inc" 1483 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1484 1485 using DeferredIntrinsicMatchPair = 1486 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1487 1488 static bool matchIntrinsicType( 1489 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1490 SmallVectorImpl<Type *> &ArgTys, 1491 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1492 bool IsDeferredCheck) { 1493 using namespace Intrinsic; 1494 1495 // If we ran out of descriptors, there are too many arguments. 1496 if (Infos.empty()) return true; 1497 1498 // Do this before slicing off the 'front' part 1499 auto InfosRef = Infos; 1500 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1501 DeferredChecks.emplace_back(T, InfosRef); 1502 return false; 1503 }; 1504 1505 IITDescriptor D = Infos.front(); 1506 Infos = Infos.slice(1); 1507 1508 switch (D.Kind) { 1509 case IITDescriptor::Void: return !Ty->isVoidTy(); 1510 case IITDescriptor::VarArg: return true; 1511 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1512 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1513 case IITDescriptor::Token: return !Ty->isTokenTy(); 1514 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1515 case IITDescriptor::Half: return !Ty->isHalfTy(); 1516 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1517 case IITDescriptor::Float: return !Ty->isFloatTy(); 1518 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1519 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1520 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1521 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1522 case IITDescriptor::AArch64Svcount: 1523 return !isa<TargetExtType>(Ty) || 1524 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount"; 1525 case IITDescriptor::Vector: { 1526 VectorType *VT = dyn_cast<VectorType>(Ty); 1527 return !VT || VT->getElementCount() != D.Vector_Width || 1528 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1529 DeferredChecks, IsDeferredCheck); 1530 } 1531 case IITDescriptor::Pointer: { 1532 PointerType *PT = dyn_cast<PointerType>(Ty); 1533 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace; 1534 } 1535 1536 case IITDescriptor::Struct: { 1537 StructType *ST = dyn_cast<StructType>(Ty); 1538 if (!ST || !ST->isLiteral() || ST->isPacked() || 1539 ST->getNumElements() != D.Struct_NumElements) 1540 return true; 1541 1542 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1543 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1544 DeferredChecks, IsDeferredCheck)) 1545 return true; 1546 return false; 1547 } 1548 1549 case IITDescriptor::Argument: 1550 // If this is the second occurrence of an argument, 1551 // verify that the later instance matches the previous instance. 1552 if (D.getArgumentNumber() < ArgTys.size()) 1553 return Ty != ArgTys[D.getArgumentNumber()]; 1554 1555 if (D.getArgumentNumber() > ArgTys.size() || 1556 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1557 return IsDeferredCheck || DeferCheck(Ty); 1558 1559 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1560 "Table consistency error"); 1561 ArgTys.push_back(Ty); 1562 1563 switch (D.getArgumentKind()) { 1564 case IITDescriptor::AK_Any: return false; // Success 1565 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1566 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1567 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1568 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1569 default: break; 1570 } 1571 llvm_unreachable("all argument kinds not covered"); 1572 1573 case IITDescriptor::ExtendArgument: { 1574 // If this is a forward reference, defer the check for later. 1575 if (D.getArgumentNumber() >= ArgTys.size()) 1576 return IsDeferredCheck || DeferCheck(Ty); 1577 1578 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1579 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1580 NewTy = VectorType::getExtendedElementVectorType(VTy); 1581 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1582 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1583 else 1584 return true; 1585 1586 return Ty != NewTy; 1587 } 1588 case IITDescriptor::TruncArgument: { 1589 // If this is a forward reference, defer the check for later. 1590 if (D.getArgumentNumber() >= ArgTys.size()) 1591 return IsDeferredCheck || DeferCheck(Ty); 1592 1593 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1594 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1595 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1596 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1597 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1598 else 1599 return true; 1600 1601 return Ty != NewTy; 1602 } 1603 case IITDescriptor::HalfVecArgument: 1604 // If this is a forward reference, defer the check for later. 1605 if (D.getArgumentNumber() >= ArgTys.size()) 1606 return IsDeferredCheck || DeferCheck(Ty); 1607 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1608 VectorType::getHalfElementsVectorType( 1609 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1610 case IITDescriptor::SameVecWidthArgument: { 1611 if (D.getArgumentNumber() >= ArgTys.size()) { 1612 // Defer check and subsequent check for the vector element type. 1613 Infos = Infos.slice(1); 1614 return IsDeferredCheck || DeferCheck(Ty); 1615 } 1616 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1617 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1618 // Both must be vectors of the same number of elements or neither. 1619 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1620 return true; 1621 Type *EltTy = Ty; 1622 if (ThisArgType) { 1623 if (ReferenceType->getElementCount() != 1624 ThisArgType->getElementCount()) 1625 return true; 1626 EltTy = ThisArgType->getElementType(); 1627 } 1628 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1629 IsDeferredCheck); 1630 } 1631 case IITDescriptor::VecOfAnyPtrsToElt: { 1632 unsigned RefArgNumber = D.getRefArgNumber(); 1633 if (RefArgNumber >= ArgTys.size()) { 1634 if (IsDeferredCheck) 1635 return true; 1636 // If forward referencing, already add the pointer-vector type and 1637 // defer the checks for later. 1638 ArgTys.push_back(Ty); 1639 return DeferCheck(Ty); 1640 } 1641 1642 if (!IsDeferredCheck){ 1643 assert(D.getOverloadArgNumber() == ArgTys.size() && 1644 "Table consistency error"); 1645 ArgTys.push_back(Ty); 1646 } 1647 1648 // Verify the overloaded type "matches" the Ref type. 1649 // i.e. Ty is a vector with the same width as Ref. 1650 // Composed of pointers to the same element type as Ref. 1651 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1652 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1653 if (!ThisArgVecTy || !ReferenceType || 1654 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1655 return true; 1656 return !ThisArgVecTy->getElementType()->isPointerTy(); 1657 } 1658 case IITDescriptor::VecElementArgument: { 1659 if (D.getArgumentNumber() >= ArgTys.size()) 1660 return IsDeferredCheck ? true : DeferCheck(Ty); 1661 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1662 return !ReferenceType || Ty != ReferenceType->getElementType(); 1663 } 1664 case IITDescriptor::Subdivide2Argument: 1665 case IITDescriptor::Subdivide4Argument: { 1666 // If this is a forward reference, defer the check for later. 1667 if (D.getArgumentNumber() >= ArgTys.size()) 1668 return IsDeferredCheck || DeferCheck(Ty); 1669 1670 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1671 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1672 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1673 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1674 return Ty != NewTy; 1675 } 1676 return true; 1677 } 1678 case IITDescriptor::VecOfBitcastsToInt: { 1679 if (D.getArgumentNumber() >= ArgTys.size()) 1680 return IsDeferredCheck || DeferCheck(Ty); 1681 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1682 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1683 if (!ThisArgVecTy || !ReferenceType) 1684 return true; 1685 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1686 } 1687 } 1688 llvm_unreachable("unhandled"); 1689 } 1690 1691 Intrinsic::MatchIntrinsicTypesResult 1692 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1693 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1694 SmallVectorImpl<Type *> &ArgTys) { 1695 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1696 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1697 false)) 1698 return MatchIntrinsicTypes_NoMatchRet; 1699 1700 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1701 1702 for (auto *Ty : FTy->params()) 1703 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1704 return MatchIntrinsicTypes_NoMatchArg; 1705 1706 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1707 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1708 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1709 true)) 1710 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1711 : MatchIntrinsicTypes_NoMatchArg; 1712 } 1713 1714 return MatchIntrinsicTypes_Match; 1715 } 1716 1717 bool 1718 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1719 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1720 // If there are no descriptors left, then it can't be a vararg. 1721 if (Infos.empty()) 1722 return isVarArg; 1723 1724 // There should be only one descriptor remaining at this point. 1725 if (Infos.size() != 1) 1726 return true; 1727 1728 // Check and verify the descriptor. 1729 IITDescriptor D = Infos.front(); 1730 Infos = Infos.slice(1); 1731 if (D.Kind == IITDescriptor::VarArg) 1732 return !isVarArg; 1733 1734 return true; 1735 } 1736 1737 bool Intrinsic::getIntrinsicSignature(Function *F, 1738 SmallVectorImpl<Type *> &ArgTys) { 1739 Intrinsic::ID ID = F->getIntrinsicID(); 1740 if (!ID) 1741 return false; 1742 1743 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1744 getIntrinsicInfoTableEntries(ID, Table); 1745 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1746 1747 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1748 ArgTys) != 1749 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1750 return false; 1751 } 1752 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1753 TableRef)) 1754 return false; 1755 return true; 1756 } 1757 1758 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1759 SmallVector<Type *, 4> ArgTys; 1760 if (!getIntrinsicSignature(F, ArgTys)) 1761 return std::nullopt; 1762 1763 Intrinsic::ID ID = F->getIntrinsicID(); 1764 StringRef Name = F->getName(); 1765 std::string WantedName = 1766 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1767 if (Name == WantedName) 1768 return std::nullopt; 1769 1770 Function *NewDecl = [&] { 1771 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1772 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1773 if (ExistingF->getFunctionType() == F->getFunctionType()) 1774 return ExistingF; 1775 1776 // The name already exists, but is not a function or has the wrong 1777 // prototype. Make place for the new one by renaming the old version. 1778 // Either this old version will be removed later on or the module is 1779 // invalid and we'll get an error. 1780 ExistingGV->setName(WantedName + ".renamed"); 1781 } 1782 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1783 }(); 1784 1785 NewDecl->setCallingConv(F->getCallingConv()); 1786 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1787 "Shouldn't change the signature"); 1788 return NewDecl; 1789 } 1790 1791 /// hasAddressTaken - returns true if there are any uses of this function 1792 /// other than direct calls or invokes to it. Optionally ignores callback 1793 /// uses, assume like pointer annotation calls, and references in llvm.used 1794 /// and llvm.compiler.used variables. 1795 bool Function::hasAddressTaken(const User **PutOffender, 1796 bool IgnoreCallbackUses, 1797 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1798 bool IgnoreARCAttachedCall, 1799 bool IgnoreCastedDirectCall) const { 1800 for (const Use &U : uses()) { 1801 const User *FU = U.getUser(); 1802 if (isa<BlockAddress>(FU)) 1803 continue; 1804 1805 if (IgnoreCallbackUses) { 1806 AbstractCallSite ACS(&U); 1807 if (ACS && ACS.isCallbackCall()) 1808 continue; 1809 } 1810 1811 const auto *Call = dyn_cast<CallBase>(FU); 1812 if (!Call) { 1813 if (IgnoreAssumeLikeCalls && 1814 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1815 all_of(FU->users(), [](const User *U) { 1816 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1817 return I->isAssumeLikeIntrinsic(); 1818 return false; 1819 })) { 1820 continue; 1821 } 1822 1823 if (IgnoreLLVMUsed && !FU->user_empty()) { 1824 const User *FUU = FU; 1825 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1826 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1827 FUU = *FU->user_begin(); 1828 if (llvm::all_of(FUU->users(), [](const User *U) { 1829 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1830 return GV->hasName() && 1831 (GV->getName().equals("llvm.compiler.used") || 1832 GV->getName().equals("llvm.used")); 1833 return false; 1834 })) 1835 continue; 1836 } 1837 if (PutOffender) 1838 *PutOffender = FU; 1839 return true; 1840 } 1841 1842 if (IgnoreAssumeLikeCalls) { 1843 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1844 if (I->isAssumeLikeIntrinsic()) 1845 continue; 1846 } 1847 1848 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall && 1849 Call->getFunctionType() != getFunctionType())) { 1850 if (IgnoreARCAttachedCall && 1851 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1852 U.getOperandNo())) 1853 continue; 1854 1855 if (PutOffender) 1856 *PutOffender = FU; 1857 return true; 1858 } 1859 } 1860 return false; 1861 } 1862 1863 bool Function::isDefTriviallyDead() const { 1864 // Check the linkage 1865 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1866 !hasAvailableExternallyLinkage()) 1867 return false; 1868 1869 // Check if the function is used by anything other than a blockaddress. 1870 for (const User *U : users()) 1871 if (!isa<BlockAddress>(U)) 1872 return false; 1873 1874 return true; 1875 } 1876 1877 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1878 /// setjmp or other function that gcc recognizes as "returning twice". 1879 bool Function::callsFunctionThatReturnsTwice() const { 1880 for (const Instruction &I : instructions(this)) 1881 if (const auto *Call = dyn_cast<CallBase>(&I)) 1882 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1883 return true; 1884 1885 return false; 1886 } 1887 1888 Constant *Function::getPersonalityFn() const { 1889 assert(hasPersonalityFn() && getNumOperands()); 1890 return cast<Constant>(Op<0>()); 1891 } 1892 1893 void Function::setPersonalityFn(Constant *Fn) { 1894 setHungoffOperand<0>(Fn); 1895 setValueSubclassDataBit(3, Fn != nullptr); 1896 } 1897 1898 Constant *Function::getPrefixData() const { 1899 assert(hasPrefixData() && getNumOperands()); 1900 return cast<Constant>(Op<1>()); 1901 } 1902 1903 void Function::setPrefixData(Constant *PrefixData) { 1904 setHungoffOperand<1>(PrefixData); 1905 setValueSubclassDataBit(1, PrefixData != nullptr); 1906 } 1907 1908 Constant *Function::getPrologueData() const { 1909 assert(hasPrologueData() && getNumOperands()); 1910 return cast<Constant>(Op<2>()); 1911 } 1912 1913 void Function::setPrologueData(Constant *PrologueData) { 1914 setHungoffOperand<2>(PrologueData); 1915 setValueSubclassDataBit(2, PrologueData != nullptr); 1916 } 1917 1918 void Function::allocHungoffUselist() { 1919 // If we've already allocated a uselist, stop here. 1920 if (getNumOperands()) 1921 return; 1922 1923 allocHungoffUses(3, /*IsPhi=*/ false); 1924 setNumHungOffUseOperands(3); 1925 1926 // Initialize the uselist with placeholder operands to allow traversal. 1927 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 1928 Op<0>().set(CPN); 1929 Op<1>().set(CPN); 1930 Op<2>().set(CPN); 1931 } 1932 1933 template <int Idx> 1934 void Function::setHungoffOperand(Constant *C) { 1935 if (C) { 1936 allocHungoffUselist(); 1937 Op<Idx>().set(C); 1938 } else if (getNumOperands()) { 1939 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0))); 1940 } 1941 } 1942 1943 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1944 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1945 if (On) 1946 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1947 else 1948 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1949 } 1950 1951 void Function::setEntryCount(ProfileCount Count, 1952 const DenseSet<GlobalValue::GUID> *S) { 1953 #if !defined(NDEBUG) 1954 auto PrevCount = getEntryCount(); 1955 assert(!PrevCount || PrevCount->getType() == Count.getType()); 1956 #endif 1957 1958 auto ImportGUIDs = getImportGUIDs(); 1959 if (S == nullptr && ImportGUIDs.size()) 1960 S = &ImportGUIDs; 1961 1962 MDBuilder MDB(getContext()); 1963 setMetadata( 1964 LLVMContext::MD_prof, 1965 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1966 } 1967 1968 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1969 const DenseSet<GlobalValue::GUID> *Imports) { 1970 setEntryCount(ProfileCount(Count, Type), Imports); 1971 } 1972 1973 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 1974 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1975 if (MD && MD->getOperand(0)) 1976 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1977 if (MDS->getString().equals("function_entry_count")) { 1978 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1979 uint64_t Count = CI->getValue().getZExtValue(); 1980 // A value of -1 is used for SamplePGO when there were no samples. 1981 // Treat this the same as unknown. 1982 if (Count == (uint64_t)-1) 1983 return std::nullopt; 1984 return ProfileCount(Count, PCT_Real); 1985 } else if (AllowSynthetic && 1986 MDS->getString().equals("synthetic_function_entry_count")) { 1987 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1988 uint64_t Count = CI->getValue().getZExtValue(); 1989 return ProfileCount(Count, PCT_Synthetic); 1990 } 1991 } 1992 return std::nullopt; 1993 } 1994 1995 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1996 DenseSet<GlobalValue::GUID> R; 1997 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1998 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1999 if (MDS->getString().equals("function_entry_count")) 2000 for (unsigned i = 2; i < MD->getNumOperands(); i++) 2001 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 2002 ->getValue() 2003 .getZExtValue()); 2004 return R; 2005 } 2006 2007 void Function::setSectionPrefix(StringRef Prefix) { 2008 MDBuilder MDB(getContext()); 2009 setMetadata(LLVMContext::MD_section_prefix, 2010 MDB.createFunctionSectionPrefix(Prefix)); 2011 } 2012 2013 std::optional<StringRef> Function::getSectionPrefix() const { 2014 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 2015 assert(cast<MDString>(MD->getOperand(0)) 2016 ->getString() 2017 .equals("function_section_prefix") && 2018 "Metadata not match"); 2019 return cast<MDString>(MD->getOperand(1))->getString(); 2020 } 2021 return std::nullopt; 2022 } 2023 2024 bool Function::nullPointerIsDefined() const { 2025 return hasFnAttribute(Attribute::NullPointerIsValid); 2026 } 2027 2028 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2029 if (F && F->nullPointerIsDefined()) 2030 return true; 2031 2032 if (AS != 0) 2033 return true; 2034 2035 return false; 2036 } 2037