xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 302b69c9406b1c690db2e8faaf0a2211dfd46879)
1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/ValueTypes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InstIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/MDBuilder.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/IR/Module.h"
29 using namespace llvm;
30 
31 // Explicit instantiations of SymbolTableListTraits since some of the methods
32 // are not in the public header file...
33 template class llvm::SymbolTableListTraits<Argument>;
34 template class llvm::SymbolTableListTraits<BasicBlock>;
35 
36 //===----------------------------------------------------------------------===//
37 // Argument Implementation
38 //===----------------------------------------------------------------------===//
39 
40 void Argument::anchor() { }
41 
42 Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
43   : Value(Ty, Value::ArgumentVal) {
44   Parent = nullptr;
45 
46   if (Par)
47     Par->getArgumentList().push_back(this);
48   setName(Name);
49 }
50 
51 void Argument::setParent(Function *parent) {
52   Parent = parent;
53 }
54 
55 /// getArgNo - Return the index of this formal argument in its containing
56 /// function.  For example in "void foo(int a, float b)" a is 0 and b is 1.
57 unsigned Argument::getArgNo() const {
58   const Function *F = getParent();
59   assert(F && "Argument is not in a function");
60 
61   Function::const_arg_iterator AI = F->arg_begin();
62   unsigned ArgIdx = 0;
63   for (; &*AI != this; ++AI)
64     ++ArgIdx;
65 
66   return ArgIdx;
67 }
68 
69 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on
70 /// it in its containing function. Also returns true if at least one byte is
71 /// known to be dereferenceable and the pointer is in addrspace(0).
72 bool Argument::hasNonNullAttr() const {
73   if (!getType()->isPointerTy()) return false;
74   if (getParent()->getAttributes().
75         hasAttribute(getArgNo()+1, Attribute::NonNull))
76     return true;
77   else if (getDereferenceableBytes() > 0 &&
78            getType()->getPointerAddressSpace() == 0)
79     return true;
80   return false;
81 }
82 
83 /// hasByValAttr - Return true if this argument has the byval attribute on it
84 /// in its containing function.
85 bool Argument::hasByValAttr() const {
86   if (!getType()->isPointerTy()) return false;
87   return hasAttribute(Attribute::ByVal);
88 }
89 
90 bool Argument::hasSwiftSelfAttr() const {
91   return getParent()->getAttributes().
92     hasAttribute(getArgNo()+1, Attribute::SwiftSelf);
93 }
94 
95 bool Argument::hasSwiftErrorAttr() const {
96   return getParent()->getAttributes().
97     hasAttribute(getArgNo()+1, Attribute::SwiftError);
98 }
99 
100 /// \brief Return true if this argument has the inalloca attribute on it in
101 /// its containing function.
102 bool Argument::hasInAllocaAttr() const {
103   if (!getType()->isPointerTy()) return false;
104   return hasAttribute(Attribute::InAlloca);
105 }
106 
107 bool Argument::hasByValOrInAllocaAttr() const {
108   if (!getType()->isPointerTy()) return false;
109   AttributeSet Attrs = getParent()->getAttributes();
110   return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
111          Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
112 }
113 
114 unsigned Argument::getParamAlignment() const {
115   assert(getType()->isPointerTy() && "Only pointers have alignments");
116   return getParent()->getParamAlignment(getArgNo()+1);
117 
118 }
119 
120 uint64_t Argument::getDereferenceableBytes() const {
121   assert(getType()->isPointerTy() &&
122          "Only pointers have dereferenceable bytes");
123   return getParent()->getDereferenceableBytes(getArgNo()+1);
124 }
125 
126 uint64_t Argument::getDereferenceableOrNullBytes() const {
127   assert(getType()->isPointerTy() &&
128          "Only pointers have dereferenceable bytes");
129   return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
130 }
131 
132 /// hasNestAttr - Return true if this argument has the nest attribute on
133 /// it in its containing function.
134 bool Argument::hasNestAttr() const {
135   if (!getType()->isPointerTy()) return false;
136   return hasAttribute(Attribute::Nest);
137 }
138 
139 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on
140 /// it in its containing function.
141 bool Argument::hasNoAliasAttr() const {
142   if (!getType()->isPointerTy()) return false;
143   return hasAttribute(Attribute::NoAlias);
144 }
145 
146 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute
147 /// on it in its containing function.
148 bool Argument::hasNoCaptureAttr() const {
149   if (!getType()->isPointerTy()) return false;
150   return hasAttribute(Attribute::NoCapture);
151 }
152 
153 /// hasSRetAttr - Return true if this argument has the sret attribute on
154 /// it in its containing function.
155 bool Argument::hasStructRetAttr() const {
156   if (!getType()->isPointerTy()) return false;
157   return hasAttribute(Attribute::StructRet);
158 }
159 
160 /// hasReturnedAttr - Return true if this argument has the returned attribute on
161 /// it in its containing function.
162 bool Argument::hasReturnedAttr() const {
163   return hasAttribute(Attribute::Returned);
164 }
165 
166 /// hasZExtAttr - Return true if this argument has the zext attribute on it in
167 /// its containing function.
168 bool Argument::hasZExtAttr() const {
169   return hasAttribute(Attribute::ZExt);
170 }
171 
172 /// hasSExtAttr Return true if this argument has the sext attribute on it in its
173 /// containing function.
174 bool Argument::hasSExtAttr() const {
175   return hasAttribute(Attribute::SExt);
176 }
177 
178 /// Return true if this argument has the readonly or readnone attribute on it
179 /// in its containing function.
180 bool Argument::onlyReadsMemory() const {
181   return getParent()->getAttributes().
182       hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
183       getParent()->getAttributes().
184       hasAttribute(getArgNo()+1, Attribute::ReadNone);
185 }
186 
187 /// addAttr - Add attributes to an argument.
188 void Argument::addAttr(AttributeSet AS) {
189   assert(AS.getNumSlots() <= 1 &&
190          "Trying to add more than one attribute set to an argument!");
191   AttrBuilder B(AS, AS.getSlotIndex(0));
192   getParent()->addAttributes(getArgNo() + 1,
193                              AttributeSet::get(Parent->getContext(),
194                                                getArgNo() + 1, B));
195 }
196 
197 /// removeAttr - Remove attributes from an argument.
198 void Argument::removeAttr(AttributeSet AS) {
199   assert(AS.getNumSlots() <= 1 &&
200          "Trying to remove more than one attribute set from an argument!");
201   AttrBuilder B(AS, AS.getSlotIndex(0));
202   getParent()->removeAttributes(getArgNo() + 1,
203                                 AttributeSet::get(Parent->getContext(),
204                                                   getArgNo() + 1, B));
205 }
206 
207 /// hasAttribute - Checks if an argument has a given attribute.
208 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
209   return getParent()->hasAttribute(getArgNo() + 1, Kind);
210 }
211 
212 //===----------------------------------------------------------------------===//
213 // Helper Methods in Function
214 //===----------------------------------------------------------------------===//
215 
216 bool Function::isMaterializable() const {
217   return getGlobalObjectSubClassData() & (1 << IsMaterializableBit);
218 }
219 
220 void Function::setIsMaterializable(bool V) {
221   unsigned Mask = 1 << IsMaterializableBit;
222   setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) |
223                               (V ? Mask : 0u));
224 }
225 
226 LLVMContext &Function::getContext() const {
227   return getType()->getContext();
228 }
229 
230 FunctionType *Function::getFunctionType() const {
231   return cast<FunctionType>(getValueType());
232 }
233 
234 bool Function::isVarArg() const {
235   return getFunctionType()->isVarArg();
236 }
237 
238 Type *Function::getReturnType() const {
239   return getFunctionType()->getReturnType();
240 }
241 
242 void Function::removeFromParent() {
243   getParent()->getFunctionList().remove(getIterator());
244 }
245 
246 void Function::eraseFromParent() {
247   getParent()->getFunctionList().erase(getIterator());
248 }
249 
250 //===----------------------------------------------------------------------===//
251 // Function Implementation
252 //===----------------------------------------------------------------------===//
253 
254 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
255                    Module *ParentModule)
256     : GlobalObject(Ty, Value::FunctionVal,
257                    OperandTraits<Function>::op_begin(this), 0, Linkage, name) {
258   assert(FunctionType::isValidReturnType(getReturnType()) &&
259          "invalid return type");
260   setGlobalObjectSubClassData(0);
261 
262   // We only need a symbol table for a function if the context keeps value names
263   if (!getContext().shouldDiscardValueNames())
264     SymTab = make_unique<ValueSymbolTable>();
265 
266   // If the function has arguments, mark them as lazily built.
267   if (Ty->getNumParams())
268     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
269 
270   if (ParentModule)
271     ParentModule->getFunctionList().push_back(this);
272 
273   // Ensure intrinsics have the right parameter attributes.
274   // Note, the IntID field will have been set in Value::setName if this function
275   // name is a valid intrinsic ID.
276   if (IntID)
277     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
278 }
279 
280 Function::~Function() {
281   dropAllReferences();    // After this it is safe to delete instructions.
282 
283   // Delete all of the method arguments and unlink from symbol table...
284   ArgumentList.clear();
285 
286   // Remove the function from the on-the-side GC table.
287   clearGC();
288 }
289 
290 void Function::BuildLazyArguments() const {
291   // Create the arguments vector, all arguments start out unnamed.
292   FunctionType *FT = getFunctionType();
293   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
294     assert(!FT->getParamType(i)->isVoidTy() &&
295            "Cannot have void typed arguments!");
296     ArgumentList.push_back(new Argument(FT->getParamType(i)));
297   }
298 
299   // Clear the lazy arguments bit.
300   unsigned SDC = getSubclassDataFromValue();
301   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
302 }
303 
304 void Function::stealArgumentListFrom(Function &Src) {
305   assert(isDeclaration() && "Expected no references to current arguments");
306 
307   // Drop the current arguments, if any, and set the lazy argument bit.
308   if (!hasLazyArguments()) {
309     assert(llvm::all_of(ArgumentList,
310                         [](const Argument &A) { return A.use_empty(); }) &&
311            "Expected arguments to be unused in declaration");
312     ArgumentList.clear();
313     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
314   }
315 
316   // Nothing to steal if Src has lazy arguments.
317   if (Src.hasLazyArguments())
318     return;
319 
320   // Steal arguments from Src, and fix the lazy argument bits.
321   ArgumentList.splice(ArgumentList.end(), Src.ArgumentList);
322   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
323   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
324 }
325 
326 size_t Function::arg_size() const {
327   return getFunctionType()->getNumParams();
328 }
329 bool Function::arg_empty() const {
330   return getFunctionType()->getNumParams() == 0;
331 }
332 
333 void Function::setParent(Module *parent) {
334   Parent = parent;
335 }
336 
337 // dropAllReferences() - This function causes all the subinstructions to "let
338 // go" of all references that they are maintaining.  This allows one to
339 // 'delete' a whole class at a time, even though there may be circular
340 // references... first all references are dropped, and all use counts go to
341 // zero.  Then everything is deleted for real.  Note that no operations are
342 // valid on an object that has "dropped all references", except operator
343 // delete.
344 //
345 void Function::dropAllReferences() {
346   setIsMaterializable(false);
347 
348   for (BasicBlock &BB : *this)
349     BB.dropAllReferences();
350 
351   // Delete all basic blocks. They are now unused, except possibly by
352   // blockaddresses, but BasicBlock's destructor takes care of those.
353   while (!BasicBlocks.empty())
354     BasicBlocks.begin()->eraseFromParent();
355 
356   // Drop uses of any optional data (real or placeholder).
357   if (getNumOperands()) {
358     User::dropAllReferences();
359     setNumHungOffUseOperands(0);
360     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
361   }
362 
363   // Metadata is stored in a side-table.
364   clearMetadata();
365 }
366 
367 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
368   AttributeSet PAL = getAttributes();
369   PAL = PAL.addAttribute(getContext(), i, Kind);
370   setAttributes(PAL);
371 }
372 
373 void Function::addAttribute(unsigned i, Attribute Attr) {
374   AttributeSet PAL = getAttributes();
375   PAL = PAL.addAttribute(getContext(), i, Attr);
376   setAttributes(PAL);
377 }
378 
379 void Function::addAttributes(unsigned i, AttributeSet Attrs) {
380   AttributeSet PAL = getAttributes();
381   PAL = PAL.addAttributes(getContext(), i, Attrs);
382   setAttributes(PAL);
383 }
384 
385 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
386   AttributeSet PAL = getAttributes();
387   PAL = PAL.removeAttribute(getContext(), i, Kind);
388   setAttributes(PAL);
389 }
390 
391 void Function::removeAttribute(unsigned i, StringRef Kind) {
392   AttributeSet PAL = getAttributes();
393   PAL = PAL.removeAttribute(getContext(), i, Kind);
394   setAttributes(PAL);
395 }
396 
397 void Function::removeAttributes(unsigned i, AttributeSet Attrs) {
398   AttributeSet PAL = getAttributes();
399   PAL = PAL.removeAttributes(getContext(), i, Attrs);
400   setAttributes(PAL);
401 }
402 
403 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
404   AttributeSet PAL = getAttributes();
405   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
406   setAttributes(PAL);
407 }
408 
409 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
410   AttributeSet PAL = getAttributes();
411   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
412   setAttributes(PAL);
413 }
414 
415 const std::string &Function::getGC() const {
416   assert(hasGC() && "Function has no collector");
417   return getContext().getGC(*this);
418 }
419 
420 void Function::setGC(std::string Str) {
421   setValueSubclassDataBit(14, !Str.empty());
422   getContext().setGC(*this, std::move(Str));
423 }
424 
425 void Function::clearGC() {
426   if (!hasGC())
427     return;
428   getContext().deleteGC(*this);
429   setValueSubclassDataBit(14, false);
430 }
431 
432 /// Copy all additional attributes (those not needed to create a Function) from
433 /// the Function Src to this one.
434 void Function::copyAttributesFrom(const GlobalValue *Src) {
435   GlobalObject::copyAttributesFrom(Src);
436   const Function *SrcF = dyn_cast<Function>(Src);
437   if (!SrcF)
438     return;
439 
440   setCallingConv(SrcF->getCallingConv());
441   setAttributes(SrcF->getAttributes());
442   if (SrcF->hasGC())
443     setGC(SrcF->getGC());
444   else
445     clearGC();
446   if (SrcF->hasPersonalityFn())
447     setPersonalityFn(SrcF->getPersonalityFn());
448   if (SrcF->hasPrefixData())
449     setPrefixData(SrcF->getPrefixData());
450   if (SrcF->hasPrologueData())
451     setPrologueData(SrcF->getPrologueData());
452 }
453 
454 /// Table of string intrinsic names indexed by enum value.
455 static const char * const IntrinsicNameTable[] = {
456   "not_intrinsic",
457 #define GET_INTRINSIC_NAME_TABLE
458 #include "llvm/IR/Intrinsics.gen"
459 #undef GET_INTRINSIC_NAME_TABLE
460 };
461 
462 /// Table of per-target intrinsic name tables.
463 #define GET_INTRINSIC_TARGET_DATA
464 #include "llvm/IR/Intrinsics.gen"
465 #undef GET_INTRINSIC_TARGET_DATA
466 
467 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
468 /// target as \c Name, or the generic table if \c Name is not target specific.
469 ///
470 /// Returns the relevant slice of \c IntrinsicNameTable
471 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
472   assert(Name.startswith("llvm."));
473 
474   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
475   // Drop "llvm." and take the first dotted component. That will be the target
476   // if this is target specific.
477   StringRef Target = Name.drop_front(5).split('.').first;
478   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
479                              [](const IntrinsicTargetInfo &TI,
480                                 StringRef Target) { return TI.Name < Target; });
481   // We've either found the target or just fall back to the generic set, which
482   // is always first.
483   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
484   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
485 }
486 
487 /// \brief This does the actual lookup of an intrinsic ID which
488 /// matches the given function name.
489 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
490   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
491   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
492   if (Idx == -1)
493     return Intrinsic::not_intrinsic;
494 
495   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
496   // an index into a sub-table.
497   int Adjust = NameTable.data() - IntrinsicNameTable;
498   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
499 
500   // If the intrinsic is not overloaded, require an exact match. If it is
501   // overloaded, require a prefix match.
502   bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]);
503   return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
504 }
505 
506 void Function::recalculateIntrinsicID() {
507   const ValueName *ValName = this->getValueName();
508   if (!ValName || !isIntrinsic()) {
509     IntID = Intrinsic::not_intrinsic;
510     return;
511   }
512   IntID = lookupIntrinsicID(ValName->getKey());
513 }
514 
515 /// Returns a stable mangling for the type specified for use in the name
516 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
517 /// of named types is simply their name.  Manglings for unnamed types consist
518 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
519 /// combined with the mangling of their component types.  A vararg function
520 /// type will have a suffix of 'vararg'.  Since function types can contain
521 /// other function types, we close a function type mangling with suffix 'f'
522 /// which can't be confused with it's prefix.  This ensures we don't have
523 /// collisions between two unrelated function types. Otherwise, you might
524 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
525 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
526 /// cases) fall back to the MVT codepath, where they could be mangled to
527 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
528 /// everything.
529 static std::string getMangledTypeStr(Type* Ty) {
530   std::string Result;
531   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
532     Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
533       getMangledTypeStr(PTyp->getElementType());
534   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
535     Result += "a" + llvm::utostr(ATyp->getNumElements()) +
536       getMangledTypeStr(ATyp->getElementType());
537   } else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
538     assert(!STyp->isLiteral() && "TODO: implement literal types");
539     Result += STyp->getName();
540   } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
541     Result += "f_" + getMangledTypeStr(FT->getReturnType());
542     for (size_t i = 0; i < FT->getNumParams(); i++)
543       Result += getMangledTypeStr(FT->getParamType(i));
544     if (FT->isVarArg())
545       Result += "vararg";
546     // Ensure nested function types are distinguishable.
547     Result += "f";
548   } else if (isa<VectorType>(Ty))
549     Result += "v" + utostr(Ty->getVectorNumElements()) +
550       getMangledTypeStr(Ty->getVectorElementType());
551   else if (Ty)
552     Result += EVT::getEVT(Ty).getEVTString();
553   return Result;
554 }
555 
556 StringRef Intrinsic::getName(ID id) {
557   assert(id < num_intrinsics && "Invalid intrinsic ID!");
558   assert(!isOverloaded(id) &&
559          "This version of getName does not support overloading");
560   return IntrinsicNameTable[id];
561 }
562 
563 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
564   assert(id < num_intrinsics && "Invalid intrinsic ID!");
565   std::string Result(IntrinsicNameTable[id]);
566   for (Type *Ty : Tys) {
567     Result += "." + getMangledTypeStr(Ty);
568   }
569   return Result;
570 }
571 
572 
573 /// IIT_Info - These are enumerators that describe the entries returned by the
574 /// getIntrinsicInfoTableEntries function.
575 ///
576 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
577 enum IIT_Info {
578   // Common values should be encoded with 0-15.
579   IIT_Done = 0,
580   IIT_I1   = 1,
581   IIT_I8   = 2,
582   IIT_I16  = 3,
583   IIT_I32  = 4,
584   IIT_I64  = 5,
585   IIT_F16  = 6,
586   IIT_F32  = 7,
587   IIT_F64  = 8,
588   IIT_V2   = 9,
589   IIT_V4   = 10,
590   IIT_V8   = 11,
591   IIT_V16  = 12,
592   IIT_V32  = 13,
593   IIT_PTR  = 14,
594   IIT_ARG  = 15,
595 
596   // Values from 16+ are only encodable with the inefficient encoding.
597   IIT_V64  = 16,
598   IIT_MMX  = 17,
599   IIT_TOKEN = 18,
600   IIT_METADATA = 19,
601   IIT_EMPTYSTRUCT = 20,
602   IIT_STRUCT2 = 21,
603   IIT_STRUCT3 = 22,
604   IIT_STRUCT4 = 23,
605   IIT_STRUCT5 = 24,
606   IIT_EXTEND_ARG = 25,
607   IIT_TRUNC_ARG = 26,
608   IIT_ANYPTR = 27,
609   IIT_V1   = 28,
610   IIT_VARARG = 29,
611   IIT_HALF_VEC_ARG = 30,
612   IIT_SAME_VEC_WIDTH_ARG = 31,
613   IIT_PTR_TO_ARG = 32,
614   IIT_VEC_OF_PTRS_TO_ELT = 33,
615   IIT_I128 = 34,
616   IIT_V512 = 35,
617   IIT_V1024 = 36
618 };
619 
620 
621 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
622                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
623   IIT_Info Info = IIT_Info(Infos[NextElt++]);
624   unsigned StructElts = 2;
625   using namespace Intrinsic;
626 
627   switch (Info) {
628   case IIT_Done:
629     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
630     return;
631   case IIT_VARARG:
632     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
633     return;
634   case IIT_MMX:
635     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
636     return;
637   case IIT_TOKEN:
638     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
639     return;
640   case IIT_METADATA:
641     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
642     return;
643   case IIT_F16:
644     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
645     return;
646   case IIT_F32:
647     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
648     return;
649   case IIT_F64:
650     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
651     return;
652   case IIT_I1:
653     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
654     return;
655   case IIT_I8:
656     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
657     return;
658   case IIT_I16:
659     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
660     return;
661   case IIT_I32:
662     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
663     return;
664   case IIT_I64:
665     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
666     return;
667   case IIT_I128:
668     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
669     return;
670   case IIT_V1:
671     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
672     DecodeIITType(NextElt, Infos, OutputTable);
673     return;
674   case IIT_V2:
675     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
676     DecodeIITType(NextElt, Infos, OutputTable);
677     return;
678   case IIT_V4:
679     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
680     DecodeIITType(NextElt, Infos, OutputTable);
681     return;
682   case IIT_V8:
683     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
684     DecodeIITType(NextElt, Infos, OutputTable);
685     return;
686   case IIT_V16:
687     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
688     DecodeIITType(NextElt, Infos, OutputTable);
689     return;
690   case IIT_V32:
691     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
692     DecodeIITType(NextElt, Infos, OutputTable);
693     return;
694   case IIT_V64:
695     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
696     DecodeIITType(NextElt, Infos, OutputTable);
697     return;
698   case IIT_V512:
699     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
700     DecodeIITType(NextElt, Infos, OutputTable);
701     return;
702   case IIT_V1024:
703     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
704     DecodeIITType(NextElt, Infos, OutputTable);
705     return;
706   case IIT_PTR:
707     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
708     DecodeIITType(NextElt, Infos, OutputTable);
709     return;
710   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
711     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
712                                              Infos[NextElt++]));
713     DecodeIITType(NextElt, Infos, OutputTable);
714     return;
715   }
716   case IIT_ARG: {
717     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
718     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
719     return;
720   }
721   case IIT_EXTEND_ARG: {
722     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
723     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
724                                              ArgInfo));
725     return;
726   }
727   case IIT_TRUNC_ARG: {
728     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
729     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
730                                              ArgInfo));
731     return;
732   }
733   case IIT_HALF_VEC_ARG: {
734     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
735     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
736                                              ArgInfo));
737     return;
738   }
739   case IIT_SAME_VEC_WIDTH_ARG: {
740     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
741     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
742                                              ArgInfo));
743     return;
744   }
745   case IIT_PTR_TO_ARG: {
746     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
747     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
748                                              ArgInfo));
749     return;
750   }
751   case IIT_VEC_OF_PTRS_TO_ELT: {
752     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
753     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
754                                              ArgInfo));
755     return;
756   }
757   case IIT_EMPTYSTRUCT:
758     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
759     return;
760   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
761   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
762   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
763   case IIT_STRUCT2: {
764     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
765 
766     for (unsigned i = 0; i != StructElts; ++i)
767       DecodeIITType(NextElt, Infos, OutputTable);
768     return;
769   }
770   }
771   llvm_unreachable("unhandled");
772 }
773 
774 
775 #define GET_INTRINSIC_GENERATOR_GLOBAL
776 #include "llvm/IR/Intrinsics.gen"
777 #undef GET_INTRINSIC_GENERATOR_GLOBAL
778 
779 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
780                                              SmallVectorImpl<IITDescriptor> &T){
781   // Check to see if the intrinsic's type was expressible by the table.
782   unsigned TableVal = IIT_Table[id-1];
783 
784   // Decode the TableVal into an array of IITValues.
785   SmallVector<unsigned char, 8> IITValues;
786   ArrayRef<unsigned char> IITEntries;
787   unsigned NextElt = 0;
788   if ((TableVal >> 31) != 0) {
789     // This is an offset into the IIT_LongEncodingTable.
790     IITEntries = IIT_LongEncodingTable;
791 
792     // Strip sentinel bit.
793     NextElt = (TableVal << 1) >> 1;
794   } else {
795     // Decode the TableVal into an array of IITValues.  If the entry was encoded
796     // into a single word in the table itself, decode it now.
797     do {
798       IITValues.push_back(TableVal & 0xF);
799       TableVal >>= 4;
800     } while (TableVal);
801 
802     IITEntries = IITValues;
803     NextElt = 0;
804   }
805 
806   // Okay, decode the table into the output vector of IITDescriptors.
807   DecodeIITType(NextElt, IITEntries, T);
808   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
809     DecodeIITType(NextElt, IITEntries, T);
810 }
811 
812 
813 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
814                              ArrayRef<Type*> Tys, LLVMContext &Context) {
815   using namespace Intrinsic;
816   IITDescriptor D = Infos.front();
817   Infos = Infos.slice(1);
818 
819   switch (D.Kind) {
820   case IITDescriptor::Void: return Type::getVoidTy(Context);
821   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
822   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
823   case IITDescriptor::Token: return Type::getTokenTy(Context);
824   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
825   case IITDescriptor::Half: return Type::getHalfTy(Context);
826   case IITDescriptor::Float: return Type::getFloatTy(Context);
827   case IITDescriptor::Double: return Type::getDoubleTy(Context);
828 
829   case IITDescriptor::Integer:
830     return IntegerType::get(Context, D.Integer_Width);
831   case IITDescriptor::Vector:
832     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
833   case IITDescriptor::Pointer:
834     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
835                             D.Pointer_AddressSpace);
836   case IITDescriptor::Struct: {
837     Type *Elts[5];
838     assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
839     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
840       Elts[i] = DecodeFixedType(Infos, Tys, Context);
841     return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
842   }
843 
844   case IITDescriptor::Argument:
845     return Tys[D.getArgumentNumber()];
846   case IITDescriptor::ExtendArgument: {
847     Type *Ty = Tys[D.getArgumentNumber()];
848     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
849       return VectorType::getExtendedElementVectorType(VTy);
850 
851     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
852   }
853   case IITDescriptor::TruncArgument: {
854     Type *Ty = Tys[D.getArgumentNumber()];
855     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
856       return VectorType::getTruncatedElementVectorType(VTy);
857 
858     IntegerType *ITy = cast<IntegerType>(Ty);
859     assert(ITy->getBitWidth() % 2 == 0);
860     return IntegerType::get(Context, ITy->getBitWidth() / 2);
861   }
862   case IITDescriptor::HalfVecArgument:
863     return VectorType::getHalfElementsVectorType(cast<VectorType>(
864                                                   Tys[D.getArgumentNumber()]));
865   case IITDescriptor::SameVecWidthArgument: {
866     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
867     Type *Ty = Tys[D.getArgumentNumber()];
868     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
869       return VectorType::get(EltTy, VTy->getNumElements());
870     }
871     llvm_unreachable("unhandled");
872   }
873   case IITDescriptor::PtrToArgument: {
874     Type *Ty = Tys[D.getArgumentNumber()];
875     return PointerType::getUnqual(Ty);
876   }
877   case IITDescriptor::VecOfPtrsToElt: {
878     Type *Ty = Tys[D.getArgumentNumber()];
879     VectorType *VTy = dyn_cast<VectorType>(Ty);
880     if (!VTy)
881       llvm_unreachable("Expected an argument of Vector Type");
882     Type *EltTy = VTy->getVectorElementType();
883     return VectorType::get(PointerType::getUnqual(EltTy),
884                            VTy->getNumElements());
885   }
886  }
887   llvm_unreachable("unhandled");
888 }
889 
890 
891 
892 FunctionType *Intrinsic::getType(LLVMContext &Context,
893                                  ID id, ArrayRef<Type*> Tys) {
894   SmallVector<IITDescriptor, 8> Table;
895   getIntrinsicInfoTableEntries(id, Table);
896 
897   ArrayRef<IITDescriptor> TableRef = Table;
898   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
899 
900   SmallVector<Type*, 8> ArgTys;
901   while (!TableRef.empty())
902     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
903 
904   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
905   // If we see void type as the type of the last argument, it is vararg intrinsic
906   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
907     ArgTys.pop_back();
908     return FunctionType::get(ResultTy, ArgTys, true);
909   }
910   return FunctionType::get(ResultTy, ArgTys, false);
911 }
912 
913 bool Intrinsic::isOverloaded(ID id) {
914 #define GET_INTRINSIC_OVERLOAD_TABLE
915 #include "llvm/IR/Intrinsics.gen"
916 #undef GET_INTRINSIC_OVERLOAD_TABLE
917 }
918 
919 bool Intrinsic::isLeaf(ID id) {
920   switch (id) {
921   default:
922     return true;
923 
924   case Intrinsic::experimental_gc_statepoint:
925   case Intrinsic::experimental_patchpoint_void:
926   case Intrinsic::experimental_patchpoint_i64:
927     return false;
928   }
929 }
930 
931 /// This defines the "Intrinsic::getAttributes(ID id)" method.
932 #define GET_INTRINSIC_ATTRIBUTES
933 #include "llvm/IR/Intrinsics.gen"
934 #undef GET_INTRINSIC_ATTRIBUTES
935 
936 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
937   // There can never be multiple globals with the same name of different types,
938   // because intrinsics must be a specific type.
939   return
940     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
941                                           getType(M->getContext(), id, Tys)));
942 }
943 
944 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
945 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
946 #include "llvm/IR/Intrinsics.gen"
947 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
948 
949 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
950 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
951 #include "llvm/IR/Intrinsics.gen"
952 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
953 
954 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
955                                    SmallVectorImpl<Type*> &ArgTys) {
956   using namespace Intrinsic;
957 
958   // If we ran out of descriptors, there are too many arguments.
959   if (Infos.empty()) return true;
960   IITDescriptor D = Infos.front();
961   Infos = Infos.slice(1);
962 
963   switch (D.Kind) {
964     case IITDescriptor::Void: return !Ty->isVoidTy();
965     case IITDescriptor::VarArg: return true;
966     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
967     case IITDescriptor::Token: return !Ty->isTokenTy();
968     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
969     case IITDescriptor::Half: return !Ty->isHalfTy();
970     case IITDescriptor::Float: return !Ty->isFloatTy();
971     case IITDescriptor::Double: return !Ty->isDoubleTy();
972     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
973     case IITDescriptor::Vector: {
974       VectorType *VT = dyn_cast<VectorType>(Ty);
975       return !VT || VT->getNumElements() != D.Vector_Width ||
976              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
977     }
978     case IITDescriptor::Pointer: {
979       PointerType *PT = dyn_cast<PointerType>(Ty);
980       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
981              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
982     }
983 
984     case IITDescriptor::Struct: {
985       StructType *ST = dyn_cast<StructType>(Ty);
986       if (!ST || ST->getNumElements() != D.Struct_NumElements)
987         return true;
988 
989       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
990         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
991           return true;
992       return false;
993     }
994 
995     case IITDescriptor::Argument:
996       // Two cases here - If this is the second occurrence of an argument, verify
997       // that the later instance matches the previous instance.
998       if (D.getArgumentNumber() < ArgTys.size())
999         return Ty != ArgTys[D.getArgumentNumber()];
1000 
1001           // Otherwise, if this is the first instance of an argument, record it and
1002           // verify the "Any" kind.
1003           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1004           ArgTys.push_back(Ty);
1005 
1006           switch (D.getArgumentKind()) {
1007             case IITDescriptor::AK_Any:        return false; // Success
1008             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1009             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1010             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1011             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1012           }
1013           llvm_unreachable("all argument kinds not covered");
1014 
1015     case IITDescriptor::ExtendArgument: {
1016       // This may only be used when referring to a previous vector argument.
1017       if (D.getArgumentNumber() >= ArgTys.size())
1018         return true;
1019 
1020       Type *NewTy = ArgTys[D.getArgumentNumber()];
1021       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1022         NewTy = VectorType::getExtendedElementVectorType(VTy);
1023       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1024         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1025       else
1026         return true;
1027 
1028       return Ty != NewTy;
1029     }
1030     case IITDescriptor::TruncArgument: {
1031       // This may only be used when referring to a previous vector argument.
1032       if (D.getArgumentNumber() >= ArgTys.size())
1033         return true;
1034 
1035       Type *NewTy = ArgTys[D.getArgumentNumber()];
1036       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1037         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1038       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1039         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1040       else
1041         return true;
1042 
1043       return Ty != NewTy;
1044     }
1045     case IITDescriptor::HalfVecArgument:
1046       // This may only be used when referring to a previous vector argument.
1047       return D.getArgumentNumber() >= ArgTys.size() ||
1048              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1049              VectorType::getHalfElementsVectorType(
1050                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1051     case IITDescriptor::SameVecWidthArgument: {
1052       if (D.getArgumentNumber() >= ArgTys.size())
1053         return true;
1054       VectorType * ReferenceType =
1055               dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1056       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1057       if (!ThisArgType || !ReferenceType ||
1058           (ReferenceType->getVectorNumElements() !=
1059            ThisArgType->getVectorNumElements()))
1060         return true;
1061       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1062                                 Infos, ArgTys);
1063     }
1064     case IITDescriptor::PtrToArgument: {
1065       if (D.getArgumentNumber() >= ArgTys.size())
1066         return true;
1067       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1068       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1069       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1070     }
1071     case IITDescriptor::VecOfPtrsToElt: {
1072       if (D.getArgumentNumber() >= ArgTys.size())
1073         return true;
1074       VectorType * ReferenceType =
1075               dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1076       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1077       if (!ThisArgVecTy || !ReferenceType ||
1078           (ReferenceType->getVectorNumElements() !=
1079            ThisArgVecTy->getVectorNumElements()))
1080         return true;
1081       PointerType *ThisArgEltTy =
1082               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1083       if (!ThisArgEltTy)
1084         return true;
1085       return ThisArgEltTy->getElementType() !=
1086              ReferenceType->getVectorElementType();
1087     }
1088   }
1089   llvm_unreachable("unhandled");
1090 }
1091 
1092 bool
1093 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1094                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1095   // If there are no descriptors left, then it can't be a vararg.
1096   if (Infos.empty())
1097     return isVarArg;
1098 
1099   // There should be only one descriptor remaining at this point.
1100   if (Infos.size() != 1)
1101     return true;
1102 
1103   // Check and verify the descriptor.
1104   IITDescriptor D = Infos.front();
1105   Infos = Infos.slice(1);
1106   if (D.Kind == IITDescriptor::VarArg)
1107     return !isVarArg;
1108 
1109   return true;
1110 }
1111 
1112 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1113   Intrinsic::ID ID = F->getIntrinsicID();
1114   if (!ID)
1115     return None;
1116 
1117   FunctionType *FTy = F->getFunctionType();
1118   // Accumulate an array of overloaded types for the given intrinsic
1119   SmallVector<Type *, 4> ArgTys;
1120   {
1121     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1122     getIntrinsicInfoTableEntries(ID, Table);
1123     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1124 
1125     // If we encounter any problems matching the signature with the descriptor
1126     // just give up remangling. It's up to verifier to report the discrepancy.
1127     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1128       return None;
1129     for (auto Ty : FTy->params())
1130       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1131         return None;
1132     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1133       return None;
1134   }
1135 
1136   StringRef Name = F->getName();
1137   if (Name == Intrinsic::getName(ID, ArgTys))
1138     return None;
1139 
1140   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1141   NewDecl->setCallingConv(F->getCallingConv());
1142   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1143   return NewDecl;
1144 }
1145 
1146 /// hasAddressTaken - returns true if there are any uses of this function
1147 /// other than direct calls or invokes to it.
1148 bool Function::hasAddressTaken(const User* *PutOffender) const {
1149   for (const Use &U : uses()) {
1150     const User *FU = U.getUser();
1151     if (isa<BlockAddress>(FU))
1152       continue;
1153     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1154       if (PutOffender)
1155         *PutOffender = FU;
1156       return true;
1157     }
1158     ImmutableCallSite CS(cast<Instruction>(FU));
1159     if (!CS.isCallee(&U)) {
1160       if (PutOffender)
1161         *PutOffender = FU;
1162       return true;
1163     }
1164   }
1165   return false;
1166 }
1167 
1168 bool Function::isDefTriviallyDead() const {
1169   // Check the linkage
1170   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1171       !hasAvailableExternallyLinkage())
1172     return false;
1173 
1174   // Check if the function is used by anything other than a blockaddress.
1175   for (const User *U : users())
1176     if (!isa<BlockAddress>(U))
1177       return false;
1178 
1179   return true;
1180 }
1181 
1182 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1183 /// setjmp or other function that gcc recognizes as "returning twice".
1184 bool Function::callsFunctionThatReturnsTwice() const {
1185   for (const_inst_iterator
1186          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1187     ImmutableCallSite CS(&*I);
1188     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1189       return true;
1190   }
1191 
1192   return false;
1193 }
1194 
1195 Constant *Function::getPersonalityFn() const {
1196   assert(hasPersonalityFn() && getNumOperands());
1197   return cast<Constant>(Op<0>());
1198 }
1199 
1200 void Function::setPersonalityFn(Constant *Fn) {
1201   setHungoffOperand<0>(Fn);
1202   setValueSubclassDataBit(3, Fn != nullptr);
1203 }
1204 
1205 Constant *Function::getPrefixData() const {
1206   assert(hasPrefixData() && getNumOperands());
1207   return cast<Constant>(Op<1>());
1208 }
1209 
1210 void Function::setPrefixData(Constant *PrefixData) {
1211   setHungoffOperand<1>(PrefixData);
1212   setValueSubclassDataBit(1, PrefixData != nullptr);
1213 }
1214 
1215 Constant *Function::getPrologueData() const {
1216   assert(hasPrologueData() && getNumOperands());
1217   return cast<Constant>(Op<2>());
1218 }
1219 
1220 void Function::setPrologueData(Constant *PrologueData) {
1221   setHungoffOperand<2>(PrologueData);
1222   setValueSubclassDataBit(2, PrologueData != nullptr);
1223 }
1224 
1225 void Function::allocHungoffUselist() {
1226   // If we've already allocated a uselist, stop here.
1227   if (getNumOperands())
1228     return;
1229 
1230   allocHungoffUses(3, /*IsPhi=*/ false);
1231   setNumHungOffUseOperands(3);
1232 
1233   // Initialize the uselist with placeholder operands to allow traversal.
1234   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1235   Op<0>().set(CPN);
1236   Op<1>().set(CPN);
1237   Op<2>().set(CPN);
1238 }
1239 
1240 template <int Idx>
1241 void Function::setHungoffOperand(Constant *C) {
1242   if (C) {
1243     allocHungoffUselist();
1244     Op<Idx>().set(C);
1245   } else if (getNumOperands()) {
1246     Op<Idx>().set(
1247         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1248   }
1249 }
1250 
1251 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1252   assert(Bit < 16 && "SubclassData contains only 16 bits");
1253   if (On)
1254     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1255   else
1256     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1257 }
1258 
1259 void Function::setEntryCount(uint64_t Count) {
1260   MDBuilder MDB(getContext());
1261   setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count));
1262 }
1263 
1264 Optional<uint64_t> Function::getEntryCount() const {
1265   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1266   if (MD && MD->getOperand(0))
1267     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1268       if (MDS->getString().equals("function_entry_count")) {
1269         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1270         uint64_t Count = CI->getValue().getZExtValue();
1271         if (Count == 0)
1272           return None;
1273         return Count;
1274       }
1275   return None;
1276 }
1277 
1278 void Function::setSectionPrefix(StringRef Prefix) {
1279   MDBuilder MDB(getContext());
1280   setMetadata(LLVMContext::MD_section_prefix,
1281               MDB.createFunctionSectionPrefix(Prefix));
1282 }
1283 
1284 Optional<StringRef> Function::getSectionPrefix() const {
1285   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1286     assert(dyn_cast<MDString>(MD->getOperand(0))
1287                ->getString()
1288                .equals("function_section_prefix") &&
1289            "Metadata not match");
1290     return dyn_cast<MDString>(MD->getOperand(1))->getString();
1291   }
1292   return None;
1293 }
1294