1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 using namespace llvm; 30 31 // Explicit instantiations of SymbolTableListTraits since some of the methods 32 // are not in the public header file... 33 template class llvm::SymbolTableListTraits<Argument>; 34 template class llvm::SymbolTableListTraits<BasicBlock>; 35 36 //===----------------------------------------------------------------------===// 37 // Argument Implementation 38 //===----------------------------------------------------------------------===// 39 40 void Argument::anchor() { } 41 42 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 43 : Value(Ty, Value::ArgumentVal) { 44 Parent = nullptr; 45 46 if (Par) 47 Par->getArgumentList().push_back(this); 48 setName(Name); 49 } 50 51 void Argument::setParent(Function *parent) { 52 Parent = parent; 53 } 54 55 /// getArgNo - Return the index of this formal argument in its containing 56 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 57 unsigned Argument::getArgNo() const { 58 const Function *F = getParent(); 59 assert(F && "Argument is not in a function"); 60 61 Function::const_arg_iterator AI = F->arg_begin(); 62 unsigned ArgIdx = 0; 63 for (; &*AI != this; ++AI) 64 ++ArgIdx; 65 66 return ArgIdx; 67 } 68 69 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 70 /// it in its containing function. Also returns true if at least one byte is 71 /// known to be dereferenceable and the pointer is in addrspace(0). 72 bool Argument::hasNonNullAttr() const { 73 if (!getType()->isPointerTy()) return false; 74 if (getParent()->getAttributes(). 75 hasAttribute(getArgNo()+1, Attribute::NonNull)) 76 return true; 77 else if (getDereferenceableBytes() > 0 && 78 getType()->getPointerAddressSpace() == 0) 79 return true; 80 return false; 81 } 82 83 /// hasByValAttr - Return true if this argument has the byval attribute on it 84 /// in its containing function. 85 bool Argument::hasByValAttr() const { 86 if (!getType()->isPointerTy()) return false; 87 return hasAttribute(Attribute::ByVal); 88 } 89 90 bool Argument::hasSwiftSelfAttr() const { 91 return getParent()->getAttributes(). 92 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 93 } 94 95 bool Argument::hasSwiftErrorAttr() const { 96 return getParent()->getAttributes(). 97 hasAttribute(getArgNo()+1, Attribute::SwiftError); 98 } 99 100 /// \brief Return true if this argument has the inalloca attribute on it in 101 /// its containing function. 102 bool Argument::hasInAllocaAttr() const { 103 if (!getType()->isPointerTy()) return false; 104 return hasAttribute(Attribute::InAlloca); 105 } 106 107 bool Argument::hasByValOrInAllocaAttr() const { 108 if (!getType()->isPointerTy()) return false; 109 AttributeSet Attrs = getParent()->getAttributes(); 110 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 111 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 112 } 113 114 unsigned Argument::getParamAlignment() const { 115 assert(getType()->isPointerTy() && "Only pointers have alignments"); 116 return getParent()->getParamAlignment(getArgNo()+1); 117 118 } 119 120 uint64_t Argument::getDereferenceableBytes() const { 121 assert(getType()->isPointerTy() && 122 "Only pointers have dereferenceable bytes"); 123 return getParent()->getDereferenceableBytes(getArgNo()+1); 124 } 125 126 uint64_t Argument::getDereferenceableOrNullBytes() const { 127 assert(getType()->isPointerTy() && 128 "Only pointers have dereferenceable bytes"); 129 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 130 } 131 132 /// hasNestAttr - Return true if this argument has the nest attribute on 133 /// it in its containing function. 134 bool Argument::hasNestAttr() const { 135 if (!getType()->isPointerTy()) return false; 136 return hasAttribute(Attribute::Nest); 137 } 138 139 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 140 /// it in its containing function. 141 bool Argument::hasNoAliasAttr() const { 142 if (!getType()->isPointerTy()) return false; 143 return hasAttribute(Attribute::NoAlias); 144 } 145 146 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 147 /// on it in its containing function. 148 bool Argument::hasNoCaptureAttr() const { 149 if (!getType()->isPointerTy()) return false; 150 return hasAttribute(Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return hasAttribute(Attribute::StructRet); 158 } 159 160 /// hasReturnedAttr - Return true if this argument has the returned attribute on 161 /// it in its containing function. 162 bool Argument::hasReturnedAttr() const { 163 return hasAttribute(Attribute::Returned); 164 } 165 166 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 167 /// its containing function. 168 bool Argument::hasZExtAttr() const { 169 return hasAttribute(Attribute::ZExt); 170 } 171 172 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 173 /// containing function. 174 bool Argument::hasSExtAttr() const { 175 return hasAttribute(Attribute::SExt); 176 } 177 178 /// Return true if this argument has the readonly or readnone attribute on it 179 /// in its containing function. 180 bool Argument::onlyReadsMemory() const { 181 return getParent()->getAttributes(). 182 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 183 getParent()->getAttributes(). 184 hasAttribute(getArgNo()+1, Attribute::ReadNone); 185 } 186 187 /// addAttr - Add attributes to an argument. 188 void Argument::addAttr(AttributeSet AS) { 189 assert(AS.getNumSlots() <= 1 && 190 "Trying to add more than one attribute set to an argument!"); 191 AttrBuilder B(AS, AS.getSlotIndex(0)); 192 getParent()->addAttributes(getArgNo() + 1, 193 AttributeSet::get(Parent->getContext(), 194 getArgNo() + 1, B)); 195 } 196 197 /// removeAttr - Remove attributes from an argument. 198 void Argument::removeAttr(AttributeSet AS) { 199 assert(AS.getNumSlots() <= 1 && 200 "Trying to remove more than one attribute set from an argument!"); 201 AttrBuilder B(AS, AS.getSlotIndex(0)); 202 getParent()->removeAttributes(getArgNo() + 1, 203 AttributeSet::get(Parent->getContext(), 204 getArgNo() + 1, B)); 205 } 206 207 /// hasAttribute - Checks if an argument has a given attribute. 208 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 209 return getParent()->hasAttribute(getArgNo() + 1, Kind); 210 } 211 212 //===----------------------------------------------------------------------===// 213 // Helper Methods in Function 214 //===----------------------------------------------------------------------===// 215 216 bool Function::isMaterializable() const { 217 return getGlobalObjectSubClassData() & (1 << IsMaterializableBit); 218 } 219 220 void Function::setIsMaterializable(bool V) { 221 unsigned Mask = 1 << IsMaterializableBit; 222 setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) | 223 (V ? Mask : 0u)); 224 } 225 226 LLVMContext &Function::getContext() const { 227 return getType()->getContext(); 228 } 229 230 FunctionType *Function::getFunctionType() const { 231 return cast<FunctionType>(getValueType()); 232 } 233 234 bool Function::isVarArg() const { 235 return getFunctionType()->isVarArg(); 236 } 237 238 Type *Function::getReturnType() const { 239 return getFunctionType()->getReturnType(); 240 } 241 242 void Function::removeFromParent() { 243 getParent()->getFunctionList().remove(getIterator()); 244 } 245 246 void Function::eraseFromParent() { 247 getParent()->getFunctionList().erase(getIterator()); 248 } 249 250 //===----------------------------------------------------------------------===// 251 // Function Implementation 252 //===----------------------------------------------------------------------===// 253 254 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 255 Module *ParentModule) 256 : GlobalObject(Ty, Value::FunctionVal, 257 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 258 assert(FunctionType::isValidReturnType(getReturnType()) && 259 "invalid return type"); 260 setGlobalObjectSubClassData(0); 261 262 // We only need a symbol table for a function if the context keeps value names 263 if (!getContext().shouldDiscardValueNames()) 264 SymTab = make_unique<ValueSymbolTable>(); 265 266 // If the function has arguments, mark them as lazily built. 267 if (Ty->getNumParams()) 268 setValueSubclassData(1); // Set the "has lazy arguments" bit. 269 270 if (ParentModule) 271 ParentModule->getFunctionList().push_back(this); 272 273 // Ensure intrinsics have the right parameter attributes. 274 // Note, the IntID field will have been set in Value::setName if this function 275 // name is a valid intrinsic ID. 276 if (IntID) 277 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 278 } 279 280 Function::~Function() { 281 dropAllReferences(); // After this it is safe to delete instructions. 282 283 // Delete all of the method arguments and unlink from symbol table... 284 ArgumentList.clear(); 285 286 // Remove the function from the on-the-side GC table. 287 clearGC(); 288 } 289 290 void Function::BuildLazyArguments() const { 291 // Create the arguments vector, all arguments start out unnamed. 292 FunctionType *FT = getFunctionType(); 293 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 294 assert(!FT->getParamType(i)->isVoidTy() && 295 "Cannot have void typed arguments!"); 296 ArgumentList.push_back(new Argument(FT->getParamType(i))); 297 } 298 299 // Clear the lazy arguments bit. 300 unsigned SDC = getSubclassDataFromValue(); 301 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 302 } 303 304 void Function::stealArgumentListFrom(Function &Src) { 305 assert(isDeclaration() && "Expected no references to current arguments"); 306 307 // Drop the current arguments, if any, and set the lazy argument bit. 308 if (!hasLazyArguments()) { 309 assert(llvm::all_of(ArgumentList, 310 [](const Argument &A) { return A.use_empty(); }) && 311 "Expected arguments to be unused in declaration"); 312 ArgumentList.clear(); 313 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 314 } 315 316 // Nothing to steal if Src has lazy arguments. 317 if (Src.hasLazyArguments()) 318 return; 319 320 // Steal arguments from Src, and fix the lazy argument bits. 321 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList); 322 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 323 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 324 } 325 326 size_t Function::arg_size() const { 327 return getFunctionType()->getNumParams(); 328 } 329 bool Function::arg_empty() const { 330 return getFunctionType()->getNumParams() == 0; 331 } 332 333 void Function::setParent(Module *parent) { 334 Parent = parent; 335 } 336 337 // dropAllReferences() - This function causes all the subinstructions to "let 338 // go" of all references that they are maintaining. This allows one to 339 // 'delete' a whole class at a time, even though there may be circular 340 // references... first all references are dropped, and all use counts go to 341 // zero. Then everything is deleted for real. Note that no operations are 342 // valid on an object that has "dropped all references", except operator 343 // delete. 344 // 345 void Function::dropAllReferences() { 346 setIsMaterializable(false); 347 348 for (BasicBlock &BB : *this) 349 BB.dropAllReferences(); 350 351 // Delete all basic blocks. They are now unused, except possibly by 352 // blockaddresses, but BasicBlock's destructor takes care of those. 353 while (!BasicBlocks.empty()) 354 BasicBlocks.begin()->eraseFromParent(); 355 356 // Drop uses of any optional data (real or placeholder). 357 if (getNumOperands()) { 358 User::dropAllReferences(); 359 setNumHungOffUseOperands(0); 360 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 361 } 362 363 // Metadata is stored in a side-table. 364 clearMetadata(); 365 } 366 367 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 368 AttributeSet PAL = getAttributes(); 369 PAL = PAL.addAttribute(getContext(), i, Kind); 370 setAttributes(PAL); 371 } 372 373 void Function::addAttribute(unsigned i, Attribute Attr) { 374 AttributeSet PAL = getAttributes(); 375 PAL = PAL.addAttribute(getContext(), i, Attr); 376 setAttributes(PAL); 377 } 378 379 void Function::addAttributes(unsigned i, AttributeSet Attrs) { 380 AttributeSet PAL = getAttributes(); 381 PAL = PAL.addAttributes(getContext(), i, Attrs); 382 setAttributes(PAL); 383 } 384 385 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 386 AttributeSet PAL = getAttributes(); 387 PAL = PAL.removeAttribute(getContext(), i, Kind); 388 setAttributes(PAL); 389 } 390 391 void Function::removeAttribute(unsigned i, StringRef Kind) { 392 AttributeSet PAL = getAttributes(); 393 PAL = PAL.removeAttribute(getContext(), i, Kind); 394 setAttributes(PAL); 395 } 396 397 void Function::removeAttributes(unsigned i, AttributeSet Attrs) { 398 AttributeSet PAL = getAttributes(); 399 PAL = PAL.removeAttributes(getContext(), i, Attrs); 400 setAttributes(PAL); 401 } 402 403 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 404 AttributeSet PAL = getAttributes(); 405 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 406 setAttributes(PAL); 407 } 408 409 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 410 AttributeSet PAL = getAttributes(); 411 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 412 setAttributes(PAL); 413 } 414 415 const std::string &Function::getGC() const { 416 assert(hasGC() && "Function has no collector"); 417 return getContext().getGC(*this); 418 } 419 420 void Function::setGC(std::string Str) { 421 setValueSubclassDataBit(14, !Str.empty()); 422 getContext().setGC(*this, std::move(Str)); 423 } 424 425 void Function::clearGC() { 426 if (!hasGC()) 427 return; 428 getContext().deleteGC(*this); 429 setValueSubclassDataBit(14, false); 430 } 431 432 /// Copy all additional attributes (those not needed to create a Function) from 433 /// the Function Src to this one. 434 void Function::copyAttributesFrom(const GlobalValue *Src) { 435 GlobalObject::copyAttributesFrom(Src); 436 const Function *SrcF = dyn_cast<Function>(Src); 437 if (!SrcF) 438 return; 439 440 setCallingConv(SrcF->getCallingConv()); 441 setAttributes(SrcF->getAttributes()); 442 if (SrcF->hasGC()) 443 setGC(SrcF->getGC()); 444 else 445 clearGC(); 446 if (SrcF->hasPersonalityFn()) 447 setPersonalityFn(SrcF->getPersonalityFn()); 448 if (SrcF->hasPrefixData()) 449 setPrefixData(SrcF->getPrefixData()); 450 if (SrcF->hasPrologueData()) 451 setPrologueData(SrcF->getPrologueData()); 452 } 453 454 /// Table of string intrinsic names indexed by enum value. 455 static const char * const IntrinsicNameTable[] = { 456 "not_intrinsic", 457 #define GET_INTRINSIC_NAME_TABLE 458 #include "llvm/IR/Intrinsics.gen" 459 #undef GET_INTRINSIC_NAME_TABLE 460 }; 461 462 /// Table of per-target intrinsic name tables. 463 #define GET_INTRINSIC_TARGET_DATA 464 #include "llvm/IR/Intrinsics.gen" 465 #undef GET_INTRINSIC_TARGET_DATA 466 467 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 468 /// target as \c Name, or the generic table if \c Name is not target specific. 469 /// 470 /// Returns the relevant slice of \c IntrinsicNameTable 471 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 472 assert(Name.startswith("llvm.")); 473 474 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 475 // Drop "llvm." and take the first dotted component. That will be the target 476 // if this is target specific. 477 StringRef Target = Name.drop_front(5).split('.').first; 478 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 479 [](const IntrinsicTargetInfo &TI, 480 StringRef Target) { return TI.Name < Target; }); 481 // We've either found the target or just fall back to the generic set, which 482 // is always first. 483 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 484 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 485 } 486 487 /// \brief This does the actual lookup of an intrinsic ID which 488 /// matches the given function name. 489 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 490 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 491 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 492 if (Idx == -1) 493 return Intrinsic::not_intrinsic; 494 495 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 496 // an index into a sub-table. 497 int Adjust = NameTable.data() - IntrinsicNameTable; 498 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 499 500 // If the intrinsic is not overloaded, require an exact match. If it is 501 // overloaded, require a prefix match. 502 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 503 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 504 } 505 506 void Function::recalculateIntrinsicID() { 507 const ValueName *ValName = this->getValueName(); 508 if (!ValName || !isIntrinsic()) { 509 IntID = Intrinsic::not_intrinsic; 510 return; 511 } 512 IntID = lookupIntrinsicID(ValName->getKey()); 513 } 514 515 /// Returns a stable mangling for the type specified for use in the name 516 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 517 /// of named types is simply their name. Manglings for unnamed types consist 518 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 519 /// combined with the mangling of their component types. A vararg function 520 /// type will have a suffix of 'vararg'. Since function types can contain 521 /// other function types, we close a function type mangling with suffix 'f' 522 /// which can't be confused with it's prefix. This ensures we don't have 523 /// collisions between two unrelated function types. Otherwise, you might 524 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 525 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 526 /// cases) fall back to the MVT codepath, where they could be mangled to 527 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 528 /// everything. 529 static std::string getMangledTypeStr(Type* Ty) { 530 std::string Result; 531 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 532 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 533 getMangledTypeStr(PTyp->getElementType()); 534 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 535 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 536 getMangledTypeStr(ATyp->getElementType()); 537 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 538 assert(!STyp->isLiteral() && "TODO: implement literal types"); 539 Result += STyp->getName(); 540 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 541 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 542 for (size_t i = 0; i < FT->getNumParams(); i++) 543 Result += getMangledTypeStr(FT->getParamType(i)); 544 if (FT->isVarArg()) 545 Result += "vararg"; 546 // Ensure nested function types are distinguishable. 547 Result += "f"; 548 } else if (isa<VectorType>(Ty)) 549 Result += "v" + utostr(Ty->getVectorNumElements()) + 550 getMangledTypeStr(Ty->getVectorElementType()); 551 else if (Ty) 552 Result += EVT::getEVT(Ty).getEVTString(); 553 return Result; 554 } 555 556 StringRef Intrinsic::getName(ID id) { 557 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 558 assert(!isOverloaded(id) && 559 "This version of getName does not support overloading"); 560 return IntrinsicNameTable[id]; 561 } 562 563 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 564 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 565 std::string Result(IntrinsicNameTable[id]); 566 for (Type *Ty : Tys) { 567 Result += "." + getMangledTypeStr(Ty); 568 } 569 return Result; 570 } 571 572 573 /// IIT_Info - These are enumerators that describe the entries returned by the 574 /// getIntrinsicInfoTableEntries function. 575 /// 576 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 577 enum IIT_Info { 578 // Common values should be encoded with 0-15. 579 IIT_Done = 0, 580 IIT_I1 = 1, 581 IIT_I8 = 2, 582 IIT_I16 = 3, 583 IIT_I32 = 4, 584 IIT_I64 = 5, 585 IIT_F16 = 6, 586 IIT_F32 = 7, 587 IIT_F64 = 8, 588 IIT_V2 = 9, 589 IIT_V4 = 10, 590 IIT_V8 = 11, 591 IIT_V16 = 12, 592 IIT_V32 = 13, 593 IIT_PTR = 14, 594 IIT_ARG = 15, 595 596 // Values from 16+ are only encodable with the inefficient encoding. 597 IIT_V64 = 16, 598 IIT_MMX = 17, 599 IIT_TOKEN = 18, 600 IIT_METADATA = 19, 601 IIT_EMPTYSTRUCT = 20, 602 IIT_STRUCT2 = 21, 603 IIT_STRUCT3 = 22, 604 IIT_STRUCT4 = 23, 605 IIT_STRUCT5 = 24, 606 IIT_EXTEND_ARG = 25, 607 IIT_TRUNC_ARG = 26, 608 IIT_ANYPTR = 27, 609 IIT_V1 = 28, 610 IIT_VARARG = 29, 611 IIT_HALF_VEC_ARG = 30, 612 IIT_SAME_VEC_WIDTH_ARG = 31, 613 IIT_PTR_TO_ARG = 32, 614 IIT_VEC_OF_PTRS_TO_ELT = 33, 615 IIT_I128 = 34, 616 IIT_V512 = 35, 617 IIT_V1024 = 36 618 }; 619 620 621 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 622 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 623 IIT_Info Info = IIT_Info(Infos[NextElt++]); 624 unsigned StructElts = 2; 625 using namespace Intrinsic; 626 627 switch (Info) { 628 case IIT_Done: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 630 return; 631 case IIT_VARARG: 632 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 633 return; 634 case IIT_MMX: 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 636 return; 637 case IIT_TOKEN: 638 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 639 return; 640 case IIT_METADATA: 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 642 return; 643 case IIT_F16: 644 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 645 return; 646 case IIT_F32: 647 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 648 return; 649 case IIT_F64: 650 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 651 return; 652 case IIT_I1: 653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 654 return; 655 case IIT_I8: 656 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 657 return; 658 case IIT_I16: 659 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 660 return; 661 case IIT_I32: 662 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 663 return; 664 case IIT_I64: 665 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 666 return; 667 case IIT_I128: 668 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 669 return; 670 case IIT_V1: 671 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 672 DecodeIITType(NextElt, Infos, OutputTable); 673 return; 674 case IIT_V2: 675 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 676 DecodeIITType(NextElt, Infos, OutputTable); 677 return; 678 case IIT_V4: 679 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 680 DecodeIITType(NextElt, Infos, OutputTable); 681 return; 682 case IIT_V8: 683 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 684 DecodeIITType(NextElt, Infos, OutputTable); 685 return; 686 case IIT_V16: 687 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 688 DecodeIITType(NextElt, Infos, OutputTable); 689 return; 690 case IIT_V32: 691 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 692 DecodeIITType(NextElt, Infos, OutputTable); 693 return; 694 case IIT_V64: 695 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 696 DecodeIITType(NextElt, Infos, OutputTable); 697 return; 698 case IIT_V512: 699 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 700 DecodeIITType(NextElt, Infos, OutputTable); 701 return; 702 case IIT_V1024: 703 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 704 DecodeIITType(NextElt, Infos, OutputTable); 705 return; 706 case IIT_PTR: 707 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 708 DecodeIITType(NextElt, Infos, OutputTable); 709 return; 710 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 711 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 712 Infos[NextElt++])); 713 DecodeIITType(NextElt, Infos, OutputTable); 714 return; 715 } 716 case IIT_ARG: { 717 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 719 return; 720 } 721 case IIT_EXTEND_ARG: { 722 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 723 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 724 ArgInfo)); 725 return; 726 } 727 case IIT_TRUNC_ARG: { 728 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 729 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 730 ArgInfo)); 731 return; 732 } 733 case IIT_HALF_VEC_ARG: { 734 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 735 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 736 ArgInfo)); 737 return; 738 } 739 case IIT_SAME_VEC_WIDTH_ARG: { 740 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 741 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 742 ArgInfo)); 743 return; 744 } 745 case IIT_PTR_TO_ARG: { 746 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 747 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 748 ArgInfo)); 749 return; 750 } 751 case IIT_VEC_OF_PTRS_TO_ELT: { 752 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 753 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 754 ArgInfo)); 755 return; 756 } 757 case IIT_EMPTYSTRUCT: 758 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 759 return; 760 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 761 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 762 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 763 case IIT_STRUCT2: { 764 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 765 766 for (unsigned i = 0; i != StructElts; ++i) 767 DecodeIITType(NextElt, Infos, OutputTable); 768 return; 769 } 770 } 771 llvm_unreachable("unhandled"); 772 } 773 774 775 #define GET_INTRINSIC_GENERATOR_GLOBAL 776 #include "llvm/IR/Intrinsics.gen" 777 #undef GET_INTRINSIC_GENERATOR_GLOBAL 778 779 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 780 SmallVectorImpl<IITDescriptor> &T){ 781 // Check to see if the intrinsic's type was expressible by the table. 782 unsigned TableVal = IIT_Table[id-1]; 783 784 // Decode the TableVal into an array of IITValues. 785 SmallVector<unsigned char, 8> IITValues; 786 ArrayRef<unsigned char> IITEntries; 787 unsigned NextElt = 0; 788 if ((TableVal >> 31) != 0) { 789 // This is an offset into the IIT_LongEncodingTable. 790 IITEntries = IIT_LongEncodingTable; 791 792 // Strip sentinel bit. 793 NextElt = (TableVal << 1) >> 1; 794 } else { 795 // Decode the TableVal into an array of IITValues. If the entry was encoded 796 // into a single word in the table itself, decode it now. 797 do { 798 IITValues.push_back(TableVal & 0xF); 799 TableVal >>= 4; 800 } while (TableVal); 801 802 IITEntries = IITValues; 803 NextElt = 0; 804 } 805 806 // Okay, decode the table into the output vector of IITDescriptors. 807 DecodeIITType(NextElt, IITEntries, T); 808 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 809 DecodeIITType(NextElt, IITEntries, T); 810 } 811 812 813 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 814 ArrayRef<Type*> Tys, LLVMContext &Context) { 815 using namespace Intrinsic; 816 IITDescriptor D = Infos.front(); 817 Infos = Infos.slice(1); 818 819 switch (D.Kind) { 820 case IITDescriptor::Void: return Type::getVoidTy(Context); 821 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 822 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 823 case IITDescriptor::Token: return Type::getTokenTy(Context); 824 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 825 case IITDescriptor::Half: return Type::getHalfTy(Context); 826 case IITDescriptor::Float: return Type::getFloatTy(Context); 827 case IITDescriptor::Double: return Type::getDoubleTy(Context); 828 829 case IITDescriptor::Integer: 830 return IntegerType::get(Context, D.Integer_Width); 831 case IITDescriptor::Vector: 832 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 833 case IITDescriptor::Pointer: 834 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 835 D.Pointer_AddressSpace); 836 case IITDescriptor::Struct: { 837 Type *Elts[5]; 838 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 839 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 840 Elts[i] = DecodeFixedType(Infos, Tys, Context); 841 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 842 } 843 844 case IITDescriptor::Argument: 845 return Tys[D.getArgumentNumber()]; 846 case IITDescriptor::ExtendArgument: { 847 Type *Ty = Tys[D.getArgumentNumber()]; 848 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 849 return VectorType::getExtendedElementVectorType(VTy); 850 851 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 852 } 853 case IITDescriptor::TruncArgument: { 854 Type *Ty = Tys[D.getArgumentNumber()]; 855 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 856 return VectorType::getTruncatedElementVectorType(VTy); 857 858 IntegerType *ITy = cast<IntegerType>(Ty); 859 assert(ITy->getBitWidth() % 2 == 0); 860 return IntegerType::get(Context, ITy->getBitWidth() / 2); 861 } 862 case IITDescriptor::HalfVecArgument: 863 return VectorType::getHalfElementsVectorType(cast<VectorType>( 864 Tys[D.getArgumentNumber()])); 865 case IITDescriptor::SameVecWidthArgument: { 866 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 867 Type *Ty = Tys[D.getArgumentNumber()]; 868 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 869 return VectorType::get(EltTy, VTy->getNumElements()); 870 } 871 llvm_unreachable("unhandled"); 872 } 873 case IITDescriptor::PtrToArgument: { 874 Type *Ty = Tys[D.getArgumentNumber()]; 875 return PointerType::getUnqual(Ty); 876 } 877 case IITDescriptor::VecOfPtrsToElt: { 878 Type *Ty = Tys[D.getArgumentNumber()]; 879 VectorType *VTy = dyn_cast<VectorType>(Ty); 880 if (!VTy) 881 llvm_unreachable("Expected an argument of Vector Type"); 882 Type *EltTy = VTy->getVectorElementType(); 883 return VectorType::get(PointerType::getUnqual(EltTy), 884 VTy->getNumElements()); 885 } 886 } 887 llvm_unreachable("unhandled"); 888 } 889 890 891 892 FunctionType *Intrinsic::getType(LLVMContext &Context, 893 ID id, ArrayRef<Type*> Tys) { 894 SmallVector<IITDescriptor, 8> Table; 895 getIntrinsicInfoTableEntries(id, Table); 896 897 ArrayRef<IITDescriptor> TableRef = Table; 898 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 899 900 SmallVector<Type*, 8> ArgTys; 901 while (!TableRef.empty()) 902 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 903 904 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 905 // If we see void type as the type of the last argument, it is vararg intrinsic 906 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 907 ArgTys.pop_back(); 908 return FunctionType::get(ResultTy, ArgTys, true); 909 } 910 return FunctionType::get(ResultTy, ArgTys, false); 911 } 912 913 bool Intrinsic::isOverloaded(ID id) { 914 #define GET_INTRINSIC_OVERLOAD_TABLE 915 #include "llvm/IR/Intrinsics.gen" 916 #undef GET_INTRINSIC_OVERLOAD_TABLE 917 } 918 919 bool Intrinsic::isLeaf(ID id) { 920 switch (id) { 921 default: 922 return true; 923 924 case Intrinsic::experimental_gc_statepoint: 925 case Intrinsic::experimental_patchpoint_void: 926 case Intrinsic::experimental_patchpoint_i64: 927 return false; 928 } 929 } 930 931 /// This defines the "Intrinsic::getAttributes(ID id)" method. 932 #define GET_INTRINSIC_ATTRIBUTES 933 #include "llvm/IR/Intrinsics.gen" 934 #undef GET_INTRINSIC_ATTRIBUTES 935 936 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 937 // There can never be multiple globals with the same name of different types, 938 // because intrinsics must be a specific type. 939 return 940 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 941 getType(M->getContext(), id, Tys))); 942 } 943 944 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 945 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 946 #include "llvm/IR/Intrinsics.gen" 947 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 948 949 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 950 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 951 #include "llvm/IR/Intrinsics.gen" 952 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 953 954 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 955 SmallVectorImpl<Type*> &ArgTys) { 956 using namespace Intrinsic; 957 958 // If we ran out of descriptors, there are too many arguments. 959 if (Infos.empty()) return true; 960 IITDescriptor D = Infos.front(); 961 Infos = Infos.slice(1); 962 963 switch (D.Kind) { 964 case IITDescriptor::Void: return !Ty->isVoidTy(); 965 case IITDescriptor::VarArg: return true; 966 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 967 case IITDescriptor::Token: return !Ty->isTokenTy(); 968 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 969 case IITDescriptor::Half: return !Ty->isHalfTy(); 970 case IITDescriptor::Float: return !Ty->isFloatTy(); 971 case IITDescriptor::Double: return !Ty->isDoubleTy(); 972 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 973 case IITDescriptor::Vector: { 974 VectorType *VT = dyn_cast<VectorType>(Ty); 975 return !VT || VT->getNumElements() != D.Vector_Width || 976 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 977 } 978 case IITDescriptor::Pointer: { 979 PointerType *PT = dyn_cast<PointerType>(Ty); 980 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 981 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 982 } 983 984 case IITDescriptor::Struct: { 985 StructType *ST = dyn_cast<StructType>(Ty); 986 if (!ST || ST->getNumElements() != D.Struct_NumElements) 987 return true; 988 989 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 990 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 991 return true; 992 return false; 993 } 994 995 case IITDescriptor::Argument: 996 // Two cases here - If this is the second occurrence of an argument, verify 997 // that the later instance matches the previous instance. 998 if (D.getArgumentNumber() < ArgTys.size()) 999 return Ty != ArgTys[D.getArgumentNumber()]; 1000 1001 // Otherwise, if this is the first instance of an argument, record it and 1002 // verify the "Any" kind. 1003 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1004 ArgTys.push_back(Ty); 1005 1006 switch (D.getArgumentKind()) { 1007 case IITDescriptor::AK_Any: return false; // Success 1008 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1009 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1010 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1011 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1012 } 1013 llvm_unreachable("all argument kinds not covered"); 1014 1015 case IITDescriptor::ExtendArgument: { 1016 // This may only be used when referring to a previous vector argument. 1017 if (D.getArgumentNumber() >= ArgTys.size()) 1018 return true; 1019 1020 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1021 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1022 NewTy = VectorType::getExtendedElementVectorType(VTy); 1023 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1024 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1025 else 1026 return true; 1027 1028 return Ty != NewTy; 1029 } 1030 case IITDescriptor::TruncArgument: { 1031 // This may only be used when referring to a previous vector argument. 1032 if (D.getArgumentNumber() >= ArgTys.size()) 1033 return true; 1034 1035 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1036 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1037 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1038 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1039 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1040 else 1041 return true; 1042 1043 return Ty != NewTy; 1044 } 1045 case IITDescriptor::HalfVecArgument: 1046 // This may only be used when referring to a previous vector argument. 1047 return D.getArgumentNumber() >= ArgTys.size() || 1048 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1049 VectorType::getHalfElementsVectorType( 1050 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1051 case IITDescriptor::SameVecWidthArgument: { 1052 if (D.getArgumentNumber() >= ArgTys.size()) 1053 return true; 1054 VectorType * ReferenceType = 1055 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1056 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1057 if (!ThisArgType || !ReferenceType || 1058 (ReferenceType->getVectorNumElements() != 1059 ThisArgType->getVectorNumElements())) 1060 return true; 1061 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1062 Infos, ArgTys); 1063 } 1064 case IITDescriptor::PtrToArgument: { 1065 if (D.getArgumentNumber() >= ArgTys.size()) 1066 return true; 1067 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1068 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1069 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1070 } 1071 case IITDescriptor::VecOfPtrsToElt: { 1072 if (D.getArgumentNumber() >= ArgTys.size()) 1073 return true; 1074 VectorType * ReferenceType = 1075 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1076 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1077 if (!ThisArgVecTy || !ReferenceType || 1078 (ReferenceType->getVectorNumElements() != 1079 ThisArgVecTy->getVectorNumElements())) 1080 return true; 1081 PointerType *ThisArgEltTy = 1082 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1083 if (!ThisArgEltTy) 1084 return true; 1085 return ThisArgEltTy->getElementType() != 1086 ReferenceType->getVectorElementType(); 1087 } 1088 } 1089 llvm_unreachable("unhandled"); 1090 } 1091 1092 bool 1093 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1094 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1095 // If there are no descriptors left, then it can't be a vararg. 1096 if (Infos.empty()) 1097 return isVarArg; 1098 1099 // There should be only one descriptor remaining at this point. 1100 if (Infos.size() != 1) 1101 return true; 1102 1103 // Check and verify the descriptor. 1104 IITDescriptor D = Infos.front(); 1105 Infos = Infos.slice(1); 1106 if (D.Kind == IITDescriptor::VarArg) 1107 return !isVarArg; 1108 1109 return true; 1110 } 1111 1112 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1113 Intrinsic::ID ID = F->getIntrinsicID(); 1114 if (!ID) 1115 return None; 1116 1117 FunctionType *FTy = F->getFunctionType(); 1118 // Accumulate an array of overloaded types for the given intrinsic 1119 SmallVector<Type *, 4> ArgTys; 1120 { 1121 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1122 getIntrinsicInfoTableEntries(ID, Table); 1123 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1124 1125 // If we encounter any problems matching the signature with the descriptor 1126 // just give up remangling. It's up to verifier to report the discrepancy. 1127 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1128 return None; 1129 for (auto Ty : FTy->params()) 1130 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1131 return None; 1132 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1133 return None; 1134 } 1135 1136 StringRef Name = F->getName(); 1137 if (Name == Intrinsic::getName(ID, ArgTys)) 1138 return None; 1139 1140 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1141 NewDecl->setCallingConv(F->getCallingConv()); 1142 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1143 return NewDecl; 1144 } 1145 1146 /// hasAddressTaken - returns true if there are any uses of this function 1147 /// other than direct calls or invokes to it. 1148 bool Function::hasAddressTaken(const User* *PutOffender) const { 1149 for (const Use &U : uses()) { 1150 const User *FU = U.getUser(); 1151 if (isa<BlockAddress>(FU)) 1152 continue; 1153 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1154 if (PutOffender) 1155 *PutOffender = FU; 1156 return true; 1157 } 1158 ImmutableCallSite CS(cast<Instruction>(FU)); 1159 if (!CS.isCallee(&U)) { 1160 if (PutOffender) 1161 *PutOffender = FU; 1162 return true; 1163 } 1164 } 1165 return false; 1166 } 1167 1168 bool Function::isDefTriviallyDead() const { 1169 // Check the linkage 1170 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1171 !hasAvailableExternallyLinkage()) 1172 return false; 1173 1174 // Check if the function is used by anything other than a blockaddress. 1175 for (const User *U : users()) 1176 if (!isa<BlockAddress>(U)) 1177 return false; 1178 1179 return true; 1180 } 1181 1182 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1183 /// setjmp or other function that gcc recognizes as "returning twice". 1184 bool Function::callsFunctionThatReturnsTwice() const { 1185 for (const_inst_iterator 1186 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1187 ImmutableCallSite CS(&*I); 1188 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1189 return true; 1190 } 1191 1192 return false; 1193 } 1194 1195 Constant *Function::getPersonalityFn() const { 1196 assert(hasPersonalityFn() && getNumOperands()); 1197 return cast<Constant>(Op<0>()); 1198 } 1199 1200 void Function::setPersonalityFn(Constant *Fn) { 1201 setHungoffOperand<0>(Fn); 1202 setValueSubclassDataBit(3, Fn != nullptr); 1203 } 1204 1205 Constant *Function::getPrefixData() const { 1206 assert(hasPrefixData() && getNumOperands()); 1207 return cast<Constant>(Op<1>()); 1208 } 1209 1210 void Function::setPrefixData(Constant *PrefixData) { 1211 setHungoffOperand<1>(PrefixData); 1212 setValueSubclassDataBit(1, PrefixData != nullptr); 1213 } 1214 1215 Constant *Function::getPrologueData() const { 1216 assert(hasPrologueData() && getNumOperands()); 1217 return cast<Constant>(Op<2>()); 1218 } 1219 1220 void Function::setPrologueData(Constant *PrologueData) { 1221 setHungoffOperand<2>(PrologueData); 1222 setValueSubclassDataBit(2, PrologueData != nullptr); 1223 } 1224 1225 void Function::allocHungoffUselist() { 1226 // If we've already allocated a uselist, stop here. 1227 if (getNumOperands()) 1228 return; 1229 1230 allocHungoffUses(3, /*IsPhi=*/ false); 1231 setNumHungOffUseOperands(3); 1232 1233 // Initialize the uselist with placeholder operands to allow traversal. 1234 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1235 Op<0>().set(CPN); 1236 Op<1>().set(CPN); 1237 Op<2>().set(CPN); 1238 } 1239 1240 template <int Idx> 1241 void Function::setHungoffOperand(Constant *C) { 1242 if (C) { 1243 allocHungoffUselist(); 1244 Op<Idx>().set(C); 1245 } else if (getNumOperands()) { 1246 Op<Idx>().set( 1247 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1248 } 1249 } 1250 1251 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1252 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1253 if (On) 1254 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1255 else 1256 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1257 } 1258 1259 void Function::setEntryCount(uint64_t Count) { 1260 MDBuilder MDB(getContext()); 1261 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1262 } 1263 1264 Optional<uint64_t> Function::getEntryCount() const { 1265 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1266 if (MD && MD->getOperand(0)) 1267 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1268 if (MDS->getString().equals("function_entry_count")) { 1269 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1270 uint64_t Count = CI->getValue().getZExtValue(); 1271 if (Count == 0) 1272 return None; 1273 return Count; 1274 } 1275 return None; 1276 } 1277 1278 void Function::setSectionPrefix(StringRef Prefix) { 1279 MDBuilder MDB(getContext()); 1280 setMetadata(LLVMContext::MD_section_prefix, 1281 MDB.createFunctionSectionPrefix(Prefix)); 1282 } 1283 1284 Optional<StringRef> Function::getSectionPrefix() const { 1285 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1286 assert(dyn_cast<MDString>(MD->getOperand(0)) 1287 ->getString() 1288 .equals("function_section_prefix") && 1289 "Metadata not match"); 1290 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1291 } 1292 return None; 1293 } 1294