xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 2fa1436206177291edb2d78c84d5822bb6e58cc9)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/CallSite.h"
28 #include "llvm/IR/Constant.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/GlobalValue.h"
32 #include "llvm/IR/InstIterator.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/IntrinsicInst.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/MDBuilder.h"
39 #include "llvm/IR/Metadata.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/SymbolTableListTraits.h"
42 #include "llvm/IR/Type.h"
43 #include "llvm/IR/Use.h"
44 #include "llvm/IR/User.h"
45 #include "llvm/IR/Value.h"
46 #include "llvm/IR/ValueSymbolTable.h"
47 #include "llvm/Support/Casting.h"
48 #include "llvm/Support/Compiler.h"
49 #include "llvm/Support/ErrorHandling.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstddef>
53 #include <cstdint>
54 #include <cstring>
55 #include <string>
56 
57 using namespace llvm;
58 using ProfileCount = Function::ProfileCount;
59 
60 // Explicit instantiations of SymbolTableListTraits since some of the methods
61 // are not in the public header file...
62 template class llvm::SymbolTableListTraits<BasicBlock>;
63 
64 //===----------------------------------------------------------------------===//
65 // Argument Implementation
66 //===----------------------------------------------------------------------===//
67 
68 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
69     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
70   setName(Name);
71 }
72 
73 void Argument::setParent(Function *parent) {
74   Parent = parent;
75 }
76 
77 bool Argument::hasNonNullAttr() const {
78   if (!getType()->isPointerTy()) return false;
79   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
80     return true;
81   else if (getDereferenceableBytes() > 0 &&
82            getType()->getPointerAddressSpace() == 0)
83     return true;
84   return false;
85 }
86 
87 bool Argument::hasByValAttr() const {
88   if (!getType()->isPointerTy()) return false;
89   return hasAttribute(Attribute::ByVal);
90 }
91 
92 bool Argument::hasSwiftSelfAttr() const {
93   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
94 }
95 
96 bool Argument::hasSwiftErrorAttr() const {
97   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
98 }
99 
100 bool Argument::hasInAllocaAttr() const {
101   if (!getType()->isPointerTy()) return false;
102   return hasAttribute(Attribute::InAlloca);
103 }
104 
105 bool Argument::hasByValOrInAllocaAttr() const {
106   if (!getType()->isPointerTy()) return false;
107   AttributeList Attrs = getParent()->getAttributes();
108   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
109          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
110 }
111 
112 unsigned Argument::getParamAlignment() const {
113   assert(getType()->isPointerTy() && "Only pointers have alignments");
114   return getParent()->getParamAlignment(getArgNo());
115 }
116 
117 uint64_t Argument::getDereferenceableBytes() const {
118   assert(getType()->isPointerTy() &&
119          "Only pointers have dereferenceable bytes");
120   return getParent()->getParamDereferenceableBytes(getArgNo());
121 }
122 
123 uint64_t Argument::getDereferenceableOrNullBytes() const {
124   assert(getType()->isPointerTy() &&
125          "Only pointers have dereferenceable bytes");
126   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
127 }
128 
129 bool Argument::hasNestAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::Nest);
132 }
133 
134 bool Argument::hasNoAliasAttr() const {
135   if (!getType()->isPointerTy()) return false;
136   return hasAttribute(Attribute::NoAlias);
137 }
138 
139 bool Argument::hasNoCaptureAttr() const {
140   if (!getType()->isPointerTy()) return false;
141   return hasAttribute(Attribute::NoCapture);
142 }
143 
144 bool Argument::hasStructRetAttr() const {
145   if (!getType()->isPointerTy()) return false;
146   return hasAttribute(Attribute::StructRet);
147 }
148 
149 bool Argument::hasReturnedAttr() const {
150   return hasAttribute(Attribute::Returned);
151 }
152 
153 bool Argument::hasZExtAttr() const {
154   return hasAttribute(Attribute::ZExt);
155 }
156 
157 bool Argument::hasSExtAttr() const {
158   return hasAttribute(Attribute::SExt);
159 }
160 
161 bool Argument::onlyReadsMemory() const {
162   AttributeList Attrs = getParent()->getAttributes();
163   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
164          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
165 }
166 
167 void Argument::addAttrs(AttrBuilder &B) {
168   AttributeList AL = getParent()->getAttributes();
169   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
170   getParent()->setAttributes(AL);
171 }
172 
173 void Argument::addAttr(Attribute::AttrKind Kind) {
174   getParent()->addParamAttr(getArgNo(), Kind);
175 }
176 
177 void Argument::addAttr(Attribute Attr) {
178   getParent()->addParamAttr(getArgNo(), Attr);
179 }
180 
181 void Argument::removeAttr(Attribute::AttrKind Kind) {
182   getParent()->removeParamAttr(getArgNo(), Kind);
183 }
184 
185 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
186   return getParent()->hasParamAttribute(getArgNo(), Kind);
187 }
188 
189 //===----------------------------------------------------------------------===//
190 // Helper Methods in Function
191 //===----------------------------------------------------------------------===//
192 
193 LLVMContext &Function::getContext() const {
194   return getType()->getContext();
195 }
196 
197 void Function::removeFromParent() {
198   getParent()->getFunctionList().remove(getIterator());
199 }
200 
201 void Function::eraseFromParent() {
202   getParent()->getFunctionList().erase(getIterator());
203 }
204 
205 //===----------------------------------------------------------------------===//
206 // Function Implementation
207 //===----------------------------------------------------------------------===//
208 
209 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
210                    Module *ParentModule)
211     : GlobalObject(Ty, Value::FunctionVal,
212                    OperandTraits<Function>::op_begin(this), 0, Linkage, name),
213       NumArgs(Ty->getNumParams()) {
214   assert(FunctionType::isValidReturnType(getReturnType()) &&
215          "invalid return type");
216   setGlobalObjectSubClassData(0);
217 
218   // We only need a symbol table for a function if the context keeps value names
219   if (!getContext().shouldDiscardValueNames())
220     SymTab = make_unique<ValueSymbolTable>();
221 
222   // If the function has arguments, mark them as lazily built.
223   if (Ty->getNumParams())
224     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
225 
226   if (ParentModule)
227     ParentModule->getFunctionList().push_back(this);
228 
229   HasLLVMReservedName = getName().startswith("llvm.");
230   // Ensure intrinsics have the right parameter attributes.
231   // Note, the IntID field will have been set in Value::setName if this function
232   // name is a valid intrinsic ID.
233   if (IntID)
234     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
235 }
236 
237 Function::~Function() {
238   dropAllReferences();    // After this it is safe to delete instructions.
239 
240   // Delete all of the method arguments and unlink from symbol table...
241   if (Arguments)
242     clearArguments();
243 
244   // Remove the function from the on-the-side GC table.
245   clearGC();
246 }
247 
248 void Function::BuildLazyArguments() const {
249   // Create the arguments vector, all arguments start out unnamed.
250   auto *FT = getFunctionType();
251   if (NumArgs > 0) {
252     Arguments = std::allocator<Argument>().allocate(NumArgs);
253     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
254       Type *ArgTy = FT->getParamType(i);
255       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
256       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
257     }
258   }
259 
260   // Clear the lazy arguments bit.
261   unsigned SDC = getSubclassDataFromValue();
262   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
263   assert(!hasLazyArguments());
264 }
265 
266 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
267   return MutableArrayRef<Argument>(Args, Count);
268 }
269 
270 void Function::clearArguments() {
271   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
272     A.setName("");
273     A.~Argument();
274   }
275   std::allocator<Argument>().deallocate(Arguments, NumArgs);
276   Arguments = nullptr;
277 }
278 
279 void Function::stealArgumentListFrom(Function &Src) {
280   assert(isDeclaration() && "Expected no references to current arguments");
281 
282   // Drop the current arguments, if any, and set the lazy argument bit.
283   if (!hasLazyArguments()) {
284     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
285                         [](const Argument &A) { return A.use_empty(); }) &&
286            "Expected arguments to be unused in declaration");
287     clearArguments();
288     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
289   }
290 
291   // Nothing to steal if Src has lazy arguments.
292   if (Src.hasLazyArguments())
293     return;
294 
295   // Steal arguments from Src, and fix the lazy argument bits.
296   assert(arg_size() == Src.arg_size());
297   Arguments = Src.Arguments;
298   Src.Arguments = nullptr;
299   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
300     // FIXME: This does the work of transferNodesFromList inefficiently.
301     SmallString<128> Name;
302     if (A.hasName())
303       Name = A.getName();
304     if (!Name.empty())
305       A.setName("");
306     A.setParent(this);
307     if (!Name.empty())
308       A.setName(Name);
309   }
310 
311   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
312   assert(!hasLazyArguments());
313   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
314 }
315 
316 // dropAllReferences() - This function causes all the subinstructions to "let
317 // go" of all references that they are maintaining.  This allows one to
318 // 'delete' a whole class at a time, even though there may be circular
319 // references... first all references are dropped, and all use counts go to
320 // zero.  Then everything is deleted for real.  Note that no operations are
321 // valid on an object that has "dropped all references", except operator
322 // delete.
323 //
324 void Function::dropAllReferences() {
325   setIsMaterializable(false);
326 
327   for (BasicBlock &BB : *this)
328     BB.dropAllReferences();
329 
330   // Delete all basic blocks. They are now unused, except possibly by
331   // blockaddresses, but BasicBlock's destructor takes care of those.
332   while (!BasicBlocks.empty())
333     BasicBlocks.begin()->eraseFromParent();
334 
335   // Drop uses of any optional data (real or placeholder).
336   if (getNumOperands()) {
337     User::dropAllReferences();
338     setNumHungOffUseOperands(0);
339     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
340   }
341 
342   // Metadata is stored in a side-table.
343   clearMetadata();
344 }
345 
346 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
347   AttributeList PAL = getAttributes();
348   PAL = PAL.addAttribute(getContext(), i, Kind);
349   setAttributes(PAL);
350 }
351 
352 void Function::addAttribute(unsigned i, Attribute Attr) {
353   AttributeList PAL = getAttributes();
354   PAL = PAL.addAttribute(getContext(), i, Attr);
355   setAttributes(PAL);
356 }
357 
358 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
359   AttributeList PAL = getAttributes();
360   PAL = PAL.addAttributes(getContext(), i, Attrs);
361   setAttributes(PAL);
362 }
363 
364 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
365   AttributeList PAL = getAttributes();
366   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
367   setAttributes(PAL);
368 }
369 
370 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
371   AttributeList PAL = getAttributes();
372   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
373   setAttributes(PAL);
374 }
375 
376 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
377   AttributeList PAL = getAttributes();
378   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
379   setAttributes(PAL);
380 }
381 
382 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
383   AttributeList PAL = getAttributes();
384   PAL = PAL.removeAttribute(getContext(), i, Kind);
385   setAttributes(PAL);
386 }
387 
388 void Function::removeAttribute(unsigned i, StringRef Kind) {
389   AttributeList PAL = getAttributes();
390   PAL = PAL.removeAttribute(getContext(), i, Kind);
391   setAttributes(PAL);
392 }
393 
394 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
395   AttributeList PAL = getAttributes();
396   PAL = PAL.removeAttributes(getContext(), i, Attrs);
397   setAttributes(PAL);
398 }
399 
400 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
401   AttributeList PAL = getAttributes();
402   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
403   setAttributes(PAL);
404 }
405 
406 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
407   AttributeList PAL = getAttributes();
408   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
409   setAttributes(PAL);
410 }
411 
412 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
413   AttributeList PAL = getAttributes();
414   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
415   setAttributes(PAL);
416 }
417 
418 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
419   AttributeList PAL = getAttributes();
420   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
421   setAttributes(PAL);
422 }
423 
424 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
425   AttributeList PAL = getAttributes();
426   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
427   setAttributes(PAL);
428 }
429 
430 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
431   AttributeList PAL = getAttributes();
432   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
433   setAttributes(PAL);
434 }
435 
436 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
437                                                  uint64_t Bytes) {
438   AttributeList PAL = getAttributes();
439   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
440   setAttributes(PAL);
441 }
442 
443 const std::string &Function::getGC() const {
444   assert(hasGC() && "Function has no collector");
445   return getContext().getGC(*this);
446 }
447 
448 void Function::setGC(std::string Str) {
449   setValueSubclassDataBit(14, !Str.empty());
450   getContext().setGC(*this, std::move(Str));
451 }
452 
453 void Function::clearGC() {
454   if (!hasGC())
455     return;
456   getContext().deleteGC(*this);
457   setValueSubclassDataBit(14, false);
458 }
459 
460 /// Copy all additional attributes (those not needed to create a Function) from
461 /// the Function Src to this one.
462 void Function::copyAttributesFrom(const Function *Src) {
463   GlobalObject::copyAttributesFrom(Src);
464   setCallingConv(Src->getCallingConv());
465   setAttributes(Src->getAttributes());
466   if (Src->hasGC())
467     setGC(Src->getGC());
468   else
469     clearGC();
470   if (Src->hasPersonalityFn())
471     setPersonalityFn(Src->getPersonalityFn());
472   if (Src->hasPrefixData())
473     setPrefixData(Src->getPrefixData());
474   if (Src->hasPrologueData())
475     setPrologueData(Src->getPrologueData());
476 }
477 
478 /// Table of string intrinsic names indexed by enum value.
479 static const char * const IntrinsicNameTable[] = {
480   "not_intrinsic",
481 #define GET_INTRINSIC_NAME_TABLE
482 #include "llvm/IR/Intrinsics.gen"
483 #undef GET_INTRINSIC_NAME_TABLE
484 };
485 
486 /// Table of per-target intrinsic name tables.
487 #define GET_INTRINSIC_TARGET_DATA
488 #include "llvm/IR/Intrinsics.gen"
489 #undef GET_INTRINSIC_TARGET_DATA
490 
491 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
492 /// target as \c Name, or the generic table if \c Name is not target specific.
493 ///
494 /// Returns the relevant slice of \c IntrinsicNameTable
495 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
496   assert(Name.startswith("llvm."));
497 
498   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
499   // Drop "llvm." and take the first dotted component. That will be the target
500   // if this is target specific.
501   StringRef Target = Name.drop_front(5).split('.').first;
502   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
503                              [](const IntrinsicTargetInfo &TI,
504                                 StringRef Target) { return TI.Name < Target; });
505   // We've either found the target or just fall back to the generic set, which
506   // is always first.
507   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
508   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
509 }
510 
511 /// \brief This does the actual lookup of an intrinsic ID which
512 /// matches the given function name.
513 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
514   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
515   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
516   if (Idx == -1)
517     return Intrinsic::not_intrinsic;
518 
519   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
520   // an index into a sub-table.
521   int Adjust = NameTable.data() - IntrinsicNameTable;
522   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
523 
524   // If the intrinsic is not overloaded, require an exact match. If it is
525   // overloaded, require either exact or prefix match.
526   const auto MatchSize = strlen(NameTable[Idx]);
527   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
528   bool IsExactMatch = Name.size() == MatchSize;
529   return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
530 }
531 
532 void Function::recalculateIntrinsicID() {
533   StringRef Name = getName();
534   if (!Name.startswith("llvm.")) {
535     HasLLVMReservedName = false;
536     IntID = Intrinsic::not_intrinsic;
537     return;
538   }
539   HasLLVMReservedName = true;
540   IntID = lookupIntrinsicID(Name);
541 }
542 
543 /// Returns a stable mangling for the type specified for use in the name
544 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
545 /// of named types is simply their name.  Manglings for unnamed types consist
546 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
547 /// combined with the mangling of their component types.  A vararg function
548 /// type will have a suffix of 'vararg'.  Since function types can contain
549 /// other function types, we close a function type mangling with suffix 'f'
550 /// which can't be confused with it's prefix.  This ensures we don't have
551 /// collisions between two unrelated function types. Otherwise, you might
552 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
553 ///
554 static std::string getMangledTypeStr(Type* Ty) {
555   std::string Result;
556   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
557     Result += "p" + utostr(PTyp->getAddressSpace()) +
558       getMangledTypeStr(PTyp->getElementType());
559   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
560     Result += "a" + utostr(ATyp->getNumElements()) +
561       getMangledTypeStr(ATyp->getElementType());
562   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
563     if (!STyp->isLiteral()) {
564       Result += "s_";
565       Result += STyp->getName();
566     } else {
567       Result += "sl_";
568       for (auto Elem : STyp->elements())
569         Result += getMangledTypeStr(Elem);
570     }
571     // Ensure nested structs are distinguishable.
572     Result += "s";
573   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
574     Result += "f_" + getMangledTypeStr(FT->getReturnType());
575     for (size_t i = 0; i < FT->getNumParams(); i++)
576       Result += getMangledTypeStr(FT->getParamType(i));
577     if (FT->isVarArg())
578       Result += "vararg";
579     // Ensure nested function types are distinguishable.
580     Result += "f";
581   } else if (isa<VectorType>(Ty)) {
582     Result += "v" + utostr(Ty->getVectorNumElements()) +
583       getMangledTypeStr(Ty->getVectorElementType());
584   } else if (Ty) {
585     switch (Ty->getTypeID()) {
586     default: llvm_unreachable("Unhandled type");
587     case Type::VoidTyID:      Result += "isVoid";   break;
588     case Type::MetadataTyID:  Result += "Metadata"; break;
589     case Type::HalfTyID:      Result += "f16";      break;
590     case Type::FloatTyID:     Result += "f32";      break;
591     case Type::DoubleTyID:    Result += "f64";      break;
592     case Type::X86_FP80TyID:  Result += "f80";      break;
593     case Type::FP128TyID:     Result += "f128";     break;
594     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
595     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
596     case Type::IntegerTyID:
597       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
598       break;
599     }
600   }
601   return Result;
602 }
603 
604 StringRef Intrinsic::getName(ID id) {
605   assert(id < num_intrinsics && "Invalid intrinsic ID!");
606   assert(!isOverloaded(id) &&
607          "This version of getName does not support overloading");
608   return IntrinsicNameTable[id];
609 }
610 
611 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
612   assert(id < num_intrinsics && "Invalid intrinsic ID!");
613   std::string Result(IntrinsicNameTable[id]);
614   for (Type *Ty : Tys) {
615     Result += "." + getMangledTypeStr(Ty);
616   }
617   return Result;
618 }
619 
620 /// IIT_Info - These are enumerators that describe the entries returned by the
621 /// getIntrinsicInfoTableEntries function.
622 ///
623 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
624 enum IIT_Info {
625   // Common values should be encoded with 0-15.
626   IIT_Done = 0,
627   IIT_I1   = 1,
628   IIT_I8   = 2,
629   IIT_I16  = 3,
630   IIT_I32  = 4,
631   IIT_I64  = 5,
632   IIT_F16  = 6,
633   IIT_F32  = 7,
634   IIT_F64  = 8,
635   IIT_V2   = 9,
636   IIT_V4   = 10,
637   IIT_V8   = 11,
638   IIT_V16  = 12,
639   IIT_V32  = 13,
640   IIT_PTR  = 14,
641   IIT_ARG  = 15,
642 
643   // Values from 16+ are only encodable with the inefficient encoding.
644   IIT_V64  = 16,
645   IIT_MMX  = 17,
646   IIT_TOKEN = 18,
647   IIT_METADATA = 19,
648   IIT_EMPTYSTRUCT = 20,
649   IIT_STRUCT2 = 21,
650   IIT_STRUCT3 = 22,
651   IIT_STRUCT4 = 23,
652   IIT_STRUCT5 = 24,
653   IIT_EXTEND_ARG = 25,
654   IIT_TRUNC_ARG = 26,
655   IIT_ANYPTR = 27,
656   IIT_V1   = 28,
657   IIT_VARARG = 29,
658   IIT_HALF_VEC_ARG = 30,
659   IIT_SAME_VEC_WIDTH_ARG = 31,
660   IIT_PTR_TO_ARG = 32,
661   IIT_PTR_TO_ELT = 33,
662   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
663   IIT_I128 = 35,
664   IIT_V512 = 36,
665   IIT_V1024 = 37,
666   IIT_STRUCT6 = 38,
667   IIT_STRUCT7 = 39,
668   IIT_STRUCT8 = 40
669 };
670 
671 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
672                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
673   using namespace Intrinsic;
674 
675   IIT_Info Info = IIT_Info(Infos[NextElt++]);
676   unsigned StructElts = 2;
677 
678   switch (Info) {
679   case IIT_Done:
680     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
681     return;
682   case IIT_VARARG:
683     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
684     return;
685   case IIT_MMX:
686     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
687     return;
688   case IIT_TOKEN:
689     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
690     return;
691   case IIT_METADATA:
692     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
693     return;
694   case IIT_F16:
695     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
696     return;
697   case IIT_F32:
698     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
699     return;
700   case IIT_F64:
701     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
702     return;
703   case IIT_I1:
704     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
705     return;
706   case IIT_I8:
707     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
708     return;
709   case IIT_I16:
710     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
711     return;
712   case IIT_I32:
713     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
714     return;
715   case IIT_I64:
716     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
717     return;
718   case IIT_I128:
719     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
720     return;
721   case IIT_V1:
722     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
723     DecodeIITType(NextElt, Infos, OutputTable);
724     return;
725   case IIT_V2:
726     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
727     DecodeIITType(NextElt, Infos, OutputTable);
728     return;
729   case IIT_V4:
730     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
731     DecodeIITType(NextElt, Infos, OutputTable);
732     return;
733   case IIT_V8:
734     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
735     DecodeIITType(NextElt, Infos, OutputTable);
736     return;
737   case IIT_V16:
738     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
739     DecodeIITType(NextElt, Infos, OutputTable);
740     return;
741   case IIT_V32:
742     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
743     DecodeIITType(NextElt, Infos, OutputTable);
744     return;
745   case IIT_V64:
746     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
747     DecodeIITType(NextElt, Infos, OutputTable);
748     return;
749   case IIT_V512:
750     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
751     DecodeIITType(NextElt, Infos, OutputTable);
752     return;
753   case IIT_V1024:
754     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
755     DecodeIITType(NextElt, Infos, OutputTable);
756     return;
757   case IIT_PTR:
758     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
759     DecodeIITType(NextElt, Infos, OutputTable);
760     return;
761   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
762     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
763                                              Infos[NextElt++]));
764     DecodeIITType(NextElt, Infos, OutputTable);
765     return;
766   }
767   case IIT_ARG: {
768     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
769     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
770     return;
771   }
772   case IIT_EXTEND_ARG: {
773     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
774     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
775                                              ArgInfo));
776     return;
777   }
778   case IIT_TRUNC_ARG: {
779     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
780     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
781                                              ArgInfo));
782     return;
783   }
784   case IIT_HALF_VEC_ARG: {
785     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
786     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
787                                              ArgInfo));
788     return;
789   }
790   case IIT_SAME_VEC_WIDTH_ARG: {
791     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
792     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
793                                              ArgInfo));
794     return;
795   }
796   case IIT_PTR_TO_ARG: {
797     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
798     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
799                                              ArgInfo));
800     return;
801   }
802   case IIT_PTR_TO_ELT: {
803     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
804     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
805     return;
806   }
807   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
808     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
809     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
810     OutputTable.push_back(
811         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
812     return;
813   }
814   case IIT_EMPTYSTRUCT:
815     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
816     return;
817   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
818   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
819   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
820   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
821   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
822   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
823   case IIT_STRUCT2: {
824     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
825 
826     for (unsigned i = 0; i != StructElts; ++i)
827       DecodeIITType(NextElt, Infos, OutputTable);
828     return;
829   }
830   }
831   llvm_unreachable("unhandled");
832 }
833 
834 #define GET_INTRINSIC_GENERATOR_GLOBAL
835 #include "llvm/IR/Intrinsics.gen"
836 #undef GET_INTRINSIC_GENERATOR_GLOBAL
837 
838 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
839                                              SmallVectorImpl<IITDescriptor> &T){
840   // Check to see if the intrinsic's type was expressible by the table.
841   unsigned TableVal = IIT_Table[id-1];
842 
843   // Decode the TableVal into an array of IITValues.
844   SmallVector<unsigned char, 8> IITValues;
845   ArrayRef<unsigned char> IITEntries;
846   unsigned NextElt = 0;
847   if ((TableVal >> 31) != 0) {
848     // This is an offset into the IIT_LongEncodingTable.
849     IITEntries = IIT_LongEncodingTable;
850 
851     // Strip sentinel bit.
852     NextElt = (TableVal << 1) >> 1;
853   } else {
854     // Decode the TableVal into an array of IITValues.  If the entry was encoded
855     // into a single word in the table itself, decode it now.
856     do {
857       IITValues.push_back(TableVal & 0xF);
858       TableVal >>= 4;
859     } while (TableVal);
860 
861     IITEntries = IITValues;
862     NextElt = 0;
863   }
864 
865   // Okay, decode the table into the output vector of IITDescriptors.
866   DecodeIITType(NextElt, IITEntries, T);
867   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
868     DecodeIITType(NextElt, IITEntries, T);
869 }
870 
871 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
872                              ArrayRef<Type*> Tys, LLVMContext &Context) {
873   using namespace Intrinsic;
874 
875   IITDescriptor D = Infos.front();
876   Infos = Infos.slice(1);
877 
878   switch (D.Kind) {
879   case IITDescriptor::Void: return Type::getVoidTy(Context);
880   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
881   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
882   case IITDescriptor::Token: return Type::getTokenTy(Context);
883   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
884   case IITDescriptor::Half: return Type::getHalfTy(Context);
885   case IITDescriptor::Float: return Type::getFloatTy(Context);
886   case IITDescriptor::Double: return Type::getDoubleTy(Context);
887 
888   case IITDescriptor::Integer:
889     return IntegerType::get(Context, D.Integer_Width);
890   case IITDescriptor::Vector:
891     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
892   case IITDescriptor::Pointer:
893     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
894                             D.Pointer_AddressSpace);
895   case IITDescriptor::Struct: {
896     SmallVector<Type *, 8> Elts;
897     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
898       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
899     return StructType::get(Context, Elts);
900   }
901   case IITDescriptor::Argument:
902     return Tys[D.getArgumentNumber()];
903   case IITDescriptor::ExtendArgument: {
904     Type *Ty = Tys[D.getArgumentNumber()];
905     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
906       return VectorType::getExtendedElementVectorType(VTy);
907 
908     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
909   }
910   case IITDescriptor::TruncArgument: {
911     Type *Ty = Tys[D.getArgumentNumber()];
912     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
913       return VectorType::getTruncatedElementVectorType(VTy);
914 
915     IntegerType *ITy = cast<IntegerType>(Ty);
916     assert(ITy->getBitWidth() % 2 == 0);
917     return IntegerType::get(Context, ITy->getBitWidth() / 2);
918   }
919   case IITDescriptor::HalfVecArgument:
920     return VectorType::getHalfElementsVectorType(cast<VectorType>(
921                                                   Tys[D.getArgumentNumber()]));
922   case IITDescriptor::SameVecWidthArgument: {
923     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
924     Type *Ty = Tys[D.getArgumentNumber()];
925     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
926       return VectorType::get(EltTy, VTy->getNumElements());
927     }
928     llvm_unreachable("unhandled");
929   }
930   case IITDescriptor::PtrToArgument: {
931     Type *Ty = Tys[D.getArgumentNumber()];
932     return PointerType::getUnqual(Ty);
933   }
934   case IITDescriptor::PtrToElt: {
935     Type *Ty = Tys[D.getArgumentNumber()];
936     VectorType *VTy = dyn_cast<VectorType>(Ty);
937     if (!VTy)
938       llvm_unreachable("Expected an argument of Vector Type");
939     Type *EltTy = VTy->getVectorElementType();
940     return PointerType::getUnqual(EltTy);
941   }
942   case IITDescriptor::VecOfAnyPtrsToElt:
943     // Return the overloaded type (which determines the pointers address space)
944     return Tys[D.getOverloadArgNumber()];
945   }
946   llvm_unreachable("unhandled");
947 }
948 
949 FunctionType *Intrinsic::getType(LLVMContext &Context,
950                                  ID id, ArrayRef<Type*> Tys) {
951   SmallVector<IITDescriptor, 8> Table;
952   getIntrinsicInfoTableEntries(id, Table);
953 
954   ArrayRef<IITDescriptor> TableRef = Table;
955   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
956 
957   SmallVector<Type*, 8> ArgTys;
958   while (!TableRef.empty())
959     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
960 
961   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
962   // If we see void type as the type of the last argument, it is vararg intrinsic
963   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
964     ArgTys.pop_back();
965     return FunctionType::get(ResultTy, ArgTys, true);
966   }
967   return FunctionType::get(ResultTy, ArgTys, false);
968 }
969 
970 bool Intrinsic::isOverloaded(ID id) {
971 #define GET_INTRINSIC_OVERLOAD_TABLE
972 #include "llvm/IR/Intrinsics.gen"
973 #undef GET_INTRINSIC_OVERLOAD_TABLE
974 }
975 
976 bool Intrinsic::isLeaf(ID id) {
977   switch (id) {
978   default:
979     return true;
980 
981   case Intrinsic::experimental_gc_statepoint:
982   case Intrinsic::experimental_patchpoint_void:
983   case Intrinsic::experimental_patchpoint_i64:
984     return false;
985   }
986 }
987 
988 /// This defines the "Intrinsic::getAttributes(ID id)" method.
989 #define GET_INTRINSIC_ATTRIBUTES
990 #include "llvm/IR/Intrinsics.gen"
991 #undef GET_INTRINSIC_ATTRIBUTES
992 
993 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
994   // There can never be multiple globals with the same name of different types,
995   // because intrinsics must be a specific type.
996   return
997     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
998                                           getType(M->getContext(), id, Tys)));
999 }
1000 
1001 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1002 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1003 #include "llvm/IR/Intrinsics.gen"
1004 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1005 
1006 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1007 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1008 #include "llvm/IR/Intrinsics.gen"
1009 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1010 
1011 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1012                                    SmallVectorImpl<Type*> &ArgTys) {
1013   using namespace Intrinsic;
1014 
1015   // If we ran out of descriptors, there are too many arguments.
1016   if (Infos.empty()) return true;
1017   IITDescriptor D = Infos.front();
1018   Infos = Infos.slice(1);
1019 
1020   switch (D.Kind) {
1021     case IITDescriptor::Void: return !Ty->isVoidTy();
1022     case IITDescriptor::VarArg: return true;
1023     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1024     case IITDescriptor::Token: return !Ty->isTokenTy();
1025     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1026     case IITDescriptor::Half: return !Ty->isHalfTy();
1027     case IITDescriptor::Float: return !Ty->isFloatTy();
1028     case IITDescriptor::Double: return !Ty->isDoubleTy();
1029     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1030     case IITDescriptor::Vector: {
1031       VectorType *VT = dyn_cast<VectorType>(Ty);
1032       return !VT || VT->getNumElements() != D.Vector_Width ||
1033              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
1034     }
1035     case IITDescriptor::Pointer: {
1036       PointerType *PT = dyn_cast<PointerType>(Ty);
1037       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1038              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
1039     }
1040 
1041     case IITDescriptor::Struct: {
1042       StructType *ST = dyn_cast<StructType>(Ty);
1043       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1044         return true;
1045 
1046       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1047         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1048           return true;
1049       return false;
1050     }
1051 
1052     case IITDescriptor::Argument:
1053       // Two cases here - If this is the second occurrence of an argument, verify
1054       // that the later instance matches the previous instance.
1055       if (D.getArgumentNumber() < ArgTys.size())
1056         return Ty != ArgTys[D.getArgumentNumber()];
1057 
1058           // Otherwise, if this is the first instance of an argument, record it and
1059           // verify the "Any" kind.
1060           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1061           ArgTys.push_back(Ty);
1062 
1063           switch (D.getArgumentKind()) {
1064             case IITDescriptor::AK_Any:        return false; // Success
1065             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1066             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1067             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1068             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1069           }
1070           llvm_unreachable("all argument kinds not covered");
1071 
1072     case IITDescriptor::ExtendArgument: {
1073       // This may only be used when referring to a previous vector argument.
1074       if (D.getArgumentNumber() >= ArgTys.size())
1075         return true;
1076 
1077       Type *NewTy = ArgTys[D.getArgumentNumber()];
1078       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1079         NewTy = VectorType::getExtendedElementVectorType(VTy);
1080       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1081         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1082       else
1083         return true;
1084 
1085       return Ty != NewTy;
1086     }
1087     case IITDescriptor::TruncArgument: {
1088       // This may only be used when referring to a previous vector argument.
1089       if (D.getArgumentNumber() >= ArgTys.size())
1090         return true;
1091 
1092       Type *NewTy = ArgTys[D.getArgumentNumber()];
1093       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1094         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1095       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1096         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1097       else
1098         return true;
1099 
1100       return Ty != NewTy;
1101     }
1102     case IITDescriptor::HalfVecArgument:
1103       // This may only be used when referring to a previous vector argument.
1104       return D.getArgumentNumber() >= ArgTys.size() ||
1105              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1106              VectorType::getHalfElementsVectorType(
1107                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1108     case IITDescriptor::SameVecWidthArgument: {
1109       if (D.getArgumentNumber() >= ArgTys.size())
1110         return true;
1111       VectorType * ReferenceType =
1112         dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1113       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1114       if (!ThisArgType || !ReferenceType ||
1115           (ReferenceType->getVectorNumElements() !=
1116            ThisArgType->getVectorNumElements()))
1117         return true;
1118       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1119                                 Infos, ArgTys);
1120     }
1121     case IITDescriptor::PtrToArgument: {
1122       if (D.getArgumentNumber() >= ArgTys.size())
1123         return true;
1124       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1125       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1126       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1127     }
1128     case IITDescriptor::PtrToElt: {
1129       if (D.getArgumentNumber() >= ArgTys.size())
1130         return true;
1131       VectorType * ReferenceType =
1132         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1133       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1134 
1135       return (!ThisArgType || !ReferenceType ||
1136               ThisArgType->getElementType() != ReferenceType->getElementType());
1137     }
1138     case IITDescriptor::VecOfAnyPtrsToElt: {
1139       unsigned RefArgNumber = D.getRefArgNumber();
1140 
1141       // This may only be used when referring to a previous argument.
1142       if (RefArgNumber >= ArgTys.size())
1143         return true;
1144 
1145       // Record the overloaded type
1146       assert(D.getOverloadArgNumber() == ArgTys.size() &&
1147              "Table consistency error");
1148       ArgTys.push_back(Ty);
1149 
1150       // Verify the overloaded type "matches" the Ref type.
1151       // i.e. Ty is a vector with the same width as Ref.
1152       // Composed of pointers to the same element type as Ref.
1153       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1154       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1155       if (!ThisArgVecTy || !ReferenceType ||
1156           (ReferenceType->getVectorNumElements() !=
1157            ThisArgVecTy->getVectorNumElements()))
1158         return true;
1159       PointerType *ThisArgEltTy =
1160               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1161       if (!ThisArgEltTy)
1162         return true;
1163       return ThisArgEltTy->getElementType() !=
1164              ReferenceType->getVectorElementType();
1165     }
1166   }
1167   llvm_unreachable("unhandled");
1168 }
1169 
1170 bool
1171 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1172                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1173   // If there are no descriptors left, then it can't be a vararg.
1174   if (Infos.empty())
1175     return isVarArg;
1176 
1177   // There should be only one descriptor remaining at this point.
1178   if (Infos.size() != 1)
1179     return true;
1180 
1181   // Check and verify the descriptor.
1182   IITDescriptor D = Infos.front();
1183   Infos = Infos.slice(1);
1184   if (D.Kind == IITDescriptor::VarArg)
1185     return !isVarArg;
1186 
1187   return true;
1188 }
1189 
1190 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1191   Intrinsic::ID ID = F->getIntrinsicID();
1192   if (!ID)
1193     return None;
1194 
1195   FunctionType *FTy = F->getFunctionType();
1196   // Accumulate an array of overloaded types for the given intrinsic
1197   SmallVector<Type *, 4> ArgTys;
1198   {
1199     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1200     getIntrinsicInfoTableEntries(ID, Table);
1201     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1202 
1203     // If we encounter any problems matching the signature with the descriptor
1204     // just give up remangling. It's up to verifier to report the discrepancy.
1205     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1206       return None;
1207     for (auto Ty : FTy->params())
1208       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1209         return None;
1210     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1211       return None;
1212   }
1213 
1214   StringRef Name = F->getName();
1215   if (Name == Intrinsic::getName(ID, ArgTys))
1216     return None;
1217 
1218   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1219   NewDecl->setCallingConv(F->getCallingConv());
1220   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1221   return NewDecl;
1222 }
1223 
1224 /// hasAddressTaken - returns true if there are any uses of this function
1225 /// other than direct calls or invokes to it.
1226 bool Function::hasAddressTaken(const User* *PutOffender) const {
1227   for (const Use &U : uses()) {
1228     const User *FU = U.getUser();
1229     if (isa<BlockAddress>(FU))
1230       continue;
1231     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1232       if (PutOffender)
1233         *PutOffender = FU;
1234       return true;
1235     }
1236     ImmutableCallSite CS(cast<Instruction>(FU));
1237     if (!CS.isCallee(&U)) {
1238       if (PutOffender)
1239         *PutOffender = FU;
1240       return true;
1241     }
1242   }
1243   return false;
1244 }
1245 
1246 bool Function::isDefTriviallyDead() const {
1247   // Check the linkage
1248   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1249       !hasAvailableExternallyLinkage())
1250     return false;
1251 
1252   // Check if the function is used by anything other than a blockaddress.
1253   for (const User *U : users())
1254     if (!isa<BlockAddress>(U))
1255       return false;
1256 
1257   return true;
1258 }
1259 
1260 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1261 /// setjmp or other function that gcc recognizes as "returning twice".
1262 bool Function::callsFunctionThatReturnsTwice() const {
1263   for (const_inst_iterator
1264          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1265     ImmutableCallSite CS(&*I);
1266     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1267       return true;
1268   }
1269 
1270   return false;
1271 }
1272 
1273 Constant *Function::getPersonalityFn() const {
1274   assert(hasPersonalityFn() && getNumOperands());
1275   return cast<Constant>(Op<0>());
1276 }
1277 
1278 void Function::setPersonalityFn(Constant *Fn) {
1279   setHungoffOperand<0>(Fn);
1280   setValueSubclassDataBit(3, Fn != nullptr);
1281 }
1282 
1283 Constant *Function::getPrefixData() const {
1284   assert(hasPrefixData() && getNumOperands());
1285   return cast<Constant>(Op<1>());
1286 }
1287 
1288 void Function::setPrefixData(Constant *PrefixData) {
1289   setHungoffOperand<1>(PrefixData);
1290   setValueSubclassDataBit(1, PrefixData != nullptr);
1291 }
1292 
1293 Constant *Function::getPrologueData() const {
1294   assert(hasPrologueData() && getNumOperands());
1295   return cast<Constant>(Op<2>());
1296 }
1297 
1298 void Function::setPrologueData(Constant *PrologueData) {
1299   setHungoffOperand<2>(PrologueData);
1300   setValueSubclassDataBit(2, PrologueData != nullptr);
1301 }
1302 
1303 void Function::allocHungoffUselist() {
1304   // If we've already allocated a uselist, stop here.
1305   if (getNumOperands())
1306     return;
1307 
1308   allocHungoffUses(3, /*IsPhi=*/ false);
1309   setNumHungOffUseOperands(3);
1310 
1311   // Initialize the uselist with placeholder operands to allow traversal.
1312   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1313   Op<0>().set(CPN);
1314   Op<1>().set(CPN);
1315   Op<2>().set(CPN);
1316 }
1317 
1318 template <int Idx>
1319 void Function::setHungoffOperand(Constant *C) {
1320   if (C) {
1321     allocHungoffUselist();
1322     Op<Idx>().set(C);
1323   } else if (getNumOperands()) {
1324     Op<Idx>().set(
1325         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1326   }
1327 }
1328 
1329 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1330   assert(Bit < 16 && "SubclassData contains only 16 bits");
1331   if (On)
1332     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1333   else
1334     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1335 }
1336 
1337 void Function::setEntryCount(ProfileCount Count,
1338                              const DenseSet<GlobalValue::GUID> *S) {
1339   assert(Count.hasValue());
1340 #if !defined(NDEBUG)
1341   auto PrevCount = getEntryCount();
1342   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1343 #endif
1344   MDBuilder MDB(getContext());
1345   setMetadata(
1346       LLVMContext::MD_prof,
1347       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1348 }
1349 
1350 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1351                              const DenseSet<GlobalValue::GUID> *Imports) {
1352   setEntryCount(ProfileCount(Count, Type), Imports);
1353 }
1354 
1355 ProfileCount Function::getEntryCount() const {
1356   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1357   if (MD && MD->getOperand(0))
1358     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1359       if (MDS->getString().equals("function_entry_count")) {
1360         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1361         uint64_t Count = CI->getValue().getZExtValue();
1362         // A value of -1 is used for SamplePGO when there were no samples.
1363         // Treat this the same as unknown.
1364         if (Count == (uint64_t)-1)
1365           return ProfileCount::getInvalid();
1366         return ProfileCount(Count, PCT_Real);
1367       } else if (MDS->getString().equals("synthetic_function_entry_count")) {
1368         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1369         uint64_t Count = CI->getValue().getZExtValue();
1370         return ProfileCount(Count, PCT_Synthetic);
1371       }
1372     }
1373   return ProfileCount::getInvalid();
1374 }
1375 
1376 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1377   DenseSet<GlobalValue::GUID> R;
1378   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1379     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1380       if (MDS->getString().equals("function_entry_count"))
1381         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1382           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1383                        ->getValue()
1384                        .getZExtValue());
1385   return R;
1386 }
1387 
1388 void Function::setSectionPrefix(StringRef Prefix) {
1389   MDBuilder MDB(getContext());
1390   setMetadata(LLVMContext::MD_section_prefix,
1391               MDB.createFunctionSectionPrefix(Prefix));
1392 }
1393 
1394 Optional<StringRef> Function::getSectionPrefix() const {
1395   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1396     assert(dyn_cast<MDString>(MD->getOperand(0))
1397                ->getString()
1398                .equals("function_section_prefix") &&
1399            "Metadata not match");
1400     return dyn_cast<MDString>(MD->getOperand(1))->getString();
1401   }
1402   return None;
1403 }
1404