xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 2f01fd99eb8c8ab3db9aba72c4f00e31e9e60a05)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsDirectX.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsLoongArch.h"
42 #include "llvm/IR/IntrinsicsMips.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/IntrinsicsPowerPC.h"
45 #include "llvm/IR/IntrinsicsR600.h"
46 #include "llvm/IR/IntrinsicsRISCV.h"
47 #include "llvm/IR/IntrinsicsS390.h"
48 #include "llvm/IR/IntrinsicsSPIRV.h"
49 #include "llvm/IR/IntrinsicsVE.h"
50 #include "llvm/IR/IntrinsicsWebAssembly.h"
51 #include "llvm/IR/IntrinsicsX86.h"
52 #include "llvm/IR/IntrinsicsXCore.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/SymbolTableListTraits.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/ValueSymbolTable.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ModRef.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <cstring>
73 #include <string>
74 
75 using namespace llvm;
76 using ProfileCount = Function::ProfileCount;
77 
78 // Explicit instantiations of SymbolTableListTraits since some of the methods
79 // are not in the public header file...
80 template class llvm::SymbolTableListTraits<BasicBlock>;
81 
82 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
83     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
84     cl::desc("Maximum size for the name of non-global values."));
85 
86 extern cl::opt<bool> UseNewDbgInfoFormat;
87 
88 void Function::convertToNewDbgValues() {
89   IsNewDbgInfoFormat = true;
90   for (auto &BB : *this) {
91     BB.convertToNewDbgValues();
92   }
93 }
94 
95 void Function::convertFromNewDbgValues() {
96   IsNewDbgInfoFormat = false;
97   for (auto &BB : *this) {
98     BB.convertFromNewDbgValues();
99   }
100 }
101 
102 void Function::setIsNewDbgInfoFormat(bool NewFlag) {
103   if (NewFlag && !IsNewDbgInfoFormat)
104     convertToNewDbgValues();
105   else if (!NewFlag && IsNewDbgInfoFormat)
106     convertFromNewDbgValues();
107 }
108 void Function::setNewDbgInfoFormatFlag(bool NewFlag) {
109   for (auto &BB : *this) {
110     BB.setNewDbgInfoFormatFlag(NewFlag);
111   }
112   IsNewDbgInfoFormat = NewFlag;
113 }
114 
115 //===----------------------------------------------------------------------===//
116 // Argument Implementation
117 //===----------------------------------------------------------------------===//
118 
119 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
120     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
121   setName(Name);
122 }
123 
124 void Argument::setParent(Function *parent) {
125   Parent = parent;
126 }
127 
128 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
129   if (!getType()->isPointerTy()) return false;
130   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
131       (AllowUndefOrPoison ||
132        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
133     return true;
134   else if (getDereferenceableBytes() > 0 &&
135            !NullPointerIsDefined(getParent(),
136                                  getType()->getPointerAddressSpace()))
137     return true;
138   return false;
139 }
140 
141 bool Argument::hasByValAttr() const {
142   if (!getType()->isPointerTy()) return false;
143   return hasAttribute(Attribute::ByVal);
144 }
145 
146 bool Argument::hasByRefAttr() const {
147   if (!getType()->isPointerTy())
148     return false;
149   return hasAttribute(Attribute::ByRef);
150 }
151 
152 bool Argument::hasSwiftSelfAttr() const {
153   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
154 }
155 
156 bool Argument::hasSwiftErrorAttr() const {
157   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
158 }
159 
160 bool Argument::hasInAllocaAttr() const {
161   if (!getType()->isPointerTy()) return false;
162   return hasAttribute(Attribute::InAlloca);
163 }
164 
165 bool Argument::hasPreallocatedAttr() const {
166   if (!getType()->isPointerTy())
167     return false;
168   return hasAttribute(Attribute::Preallocated);
169 }
170 
171 bool Argument::hasPassPointeeByValueCopyAttr() const {
172   if (!getType()->isPointerTy()) return false;
173   AttributeList Attrs = getParent()->getAttributes();
174   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
175          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
176          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
177 }
178 
179 bool Argument::hasPointeeInMemoryValueAttr() const {
180   if (!getType()->isPointerTy())
181     return false;
182   AttributeList Attrs = getParent()->getAttributes();
183   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
184          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
185          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
186          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
187          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
188 }
189 
190 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
191 /// parameter type.
192 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
193   // FIXME: All the type carrying attributes are mutually exclusive, so there
194   // should be a single query to get the stored type that handles any of them.
195   if (Type *ByValTy = ParamAttrs.getByValType())
196     return ByValTy;
197   if (Type *ByRefTy = ParamAttrs.getByRefType())
198     return ByRefTy;
199   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
200     return PreAllocTy;
201   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
202     return InAllocaTy;
203   if (Type *SRetTy = ParamAttrs.getStructRetType())
204     return SRetTy;
205 
206   return nullptr;
207 }
208 
209 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
210   AttributeSet ParamAttrs =
211       getParent()->getAttributes().getParamAttrs(getArgNo());
212   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
213     return DL.getTypeAllocSize(MemTy);
214   return 0;
215 }
216 
217 Type *Argument::getPointeeInMemoryValueType() const {
218   AttributeSet ParamAttrs =
219       getParent()->getAttributes().getParamAttrs(getArgNo());
220   return getMemoryParamAllocType(ParamAttrs);
221 }
222 
223 MaybeAlign Argument::getParamAlign() const {
224   assert(getType()->isPointerTy() && "Only pointers have alignments");
225   return getParent()->getParamAlign(getArgNo());
226 }
227 
228 MaybeAlign Argument::getParamStackAlign() const {
229   return getParent()->getParamStackAlign(getArgNo());
230 }
231 
232 Type *Argument::getParamByValType() const {
233   assert(getType()->isPointerTy() && "Only pointers have byval types");
234   return getParent()->getParamByValType(getArgNo());
235 }
236 
237 Type *Argument::getParamStructRetType() const {
238   assert(getType()->isPointerTy() && "Only pointers have sret types");
239   return getParent()->getParamStructRetType(getArgNo());
240 }
241 
242 Type *Argument::getParamByRefType() const {
243   assert(getType()->isPointerTy() && "Only pointers have byref types");
244   return getParent()->getParamByRefType(getArgNo());
245 }
246 
247 Type *Argument::getParamInAllocaType() const {
248   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
249   return getParent()->getParamInAllocaType(getArgNo());
250 }
251 
252 uint64_t Argument::getDereferenceableBytes() const {
253   assert(getType()->isPointerTy() &&
254          "Only pointers have dereferenceable bytes");
255   return getParent()->getParamDereferenceableBytes(getArgNo());
256 }
257 
258 uint64_t Argument::getDereferenceableOrNullBytes() const {
259   assert(getType()->isPointerTy() &&
260          "Only pointers have dereferenceable bytes");
261   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
262 }
263 
264 FPClassTest Argument::getNoFPClass() const {
265   return getParent()->getParamNoFPClass(getArgNo());
266 }
267 
268 std::optional<ConstantRange> Argument::getRange() const {
269   const Attribute RangeAttr = getAttribute(llvm::Attribute::Range);
270   if (RangeAttr.isValid())
271     return RangeAttr.getRange();
272   return std::nullopt;
273 }
274 
275 bool Argument::hasNestAttr() const {
276   if (!getType()->isPointerTy()) return false;
277   return hasAttribute(Attribute::Nest);
278 }
279 
280 bool Argument::hasNoAliasAttr() const {
281   if (!getType()->isPointerTy()) return false;
282   return hasAttribute(Attribute::NoAlias);
283 }
284 
285 bool Argument::hasNoCaptureAttr() const {
286   if (!getType()->isPointerTy()) return false;
287   return hasAttribute(Attribute::NoCapture);
288 }
289 
290 bool Argument::hasNoFreeAttr() const {
291   if (!getType()->isPointerTy()) return false;
292   return hasAttribute(Attribute::NoFree);
293 }
294 
295 bool Argument::hasStructRetAttr() const {
296   if (!getType()->isPointerTy()) return false;
297   return hasAttribute(Attribute::StructRet);
298 }
299 
300 bool Argument::hasInRegAttr() const {
301   return hasAttribute(Attribute::InReg);
302 }
303 
304 bool Argument::hasReturnedAttr() const {
305   return hasAttribute(Attribute::Returned);
306 }
307 
308 bool Argument::hasZExtAttr() const {
309   return hasAttribute(Attribute::ZExt);
310 }
311 
312 bool Argument::hasSExtAttr() const {
313   return hasAttribute(Attribute::SExt);
314 }
315 
316 bool Argument::onlyReadsMemory() const {
317   AttributeList Attrs = getParent()->getAttributes();
318   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
319          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
320 }
321 
322 void Argument::addAttrs(AttrBuilder &B) {
323   AttributeList AL = getParent()->getAttributes();
324   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
325   getParent()->setAttributes(AL);
326 }
327 
328 void Argument::addAttr(Attribute::AttrKind Kind) {
329   getParent()->addParamAttr(getArgNo(), Kind);
330 }
331 
332 void Argument::addAttr(Attribute Attr) {
333   getParent()->addParamAttr(getArgNo(), Attr);
334 }
335 
336 void Argument::removeAttr(Attribute::AttrKind Kind) {
337   getParent()->removeParamAttr(getArgNo(), Kind);
338 }
339 
340 void Argument::removeAttrs(const AttributeMask &AM) {
341   AttributeList AL = getParent()->getAttributes();
342   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
343   getParent()->setAttributes(AL);
344 }
345 
346 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
347   return getParent()->hasParamAttribute(getArgNo(), Kind);
348 }
349 
350 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
351   return getParent()->getParamAttribute(getArgNo(), Kind);
352 }
353 
354 //===----------------------------------------------------------------------===//
355 // Helper Methods in Function
356 //===----------------------------------------------------------------------===//
357 
358 LLVMContext &Function::getContext() const {
359   return getType()->getContext();
360 }
361 
362 unsigned Function::getInstructionCount() const {
363   unsigned NumInstrs = 0;
364   for (const BasicBlock &BB : BasicBlocks)
365     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
366                                BB.instructionsWithoutDebug().end());
367   return NumInstrs;
368 }
369 
370 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
371                            const Twine &N, Module &M) {
372   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
373 }
374 
375 Function *Function::createWithDefaultAttr(FunctionType *Ty,
376                                           LinkageTypes Linkage,
377                                           unsigned AddrSpace, const Twine &N,
378                                           Module *M) {
379   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
380   AttrBuilder B(F->getContext());
381   UWTableKind UWTable = M->getUwtable();
382   if (UWTable != UWTableKind::None)
383     B.addUWTableAttr(UWTable);
384   switch (M->getFramePointer()) {
385   case FramePointerKind::None:
386     // 0 ("none") is the default.
387     break;
388   case FramePointerKind::NonLeaf:
389     B.addAttribute("frame-pointer", "non-leaf");
390     break;
391   case FramePointerKind::All:
392     B.addAttribute("frame-pointer", "all");
393     break;
394   }
395   if (M->getModuleFlag("function_return_thunk_extern"))
396     B.addAttribute(Attribute::FnRetThunkExtern);
397   F->addFnAttrs(B);
398   return F;
399 }
400 
401 void Function::removeFromParent() {
402   getParent()->getFunctionList().remove(getIterator());
403 }
404 
405 void Function::eraseFromParent() {
406   getParent()->getFunctionList().erase(getIterator());
407 }
408 
409 void Function::splice(Function::iterator ToIt, Function *FromF,
410                       Function::iterator FromBeginIt,
411                       Function::iterator FromEndIt) {
412 #ifdef EXPENSIVE_CHECKS
413   // Check that FromBeginIt is before FromEndIt.
414   auto FromFEnd = FromF->end();
415   for (auto It = FromBeginIt; It != FromEndIt; ++It)
416     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
417 #endif // EXPENSIVE_CHECKS
418   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
419 }
420 
421 Function::iterator Function::erase(Function::iterator FromIt,
422                                    Function::iterator ToIt) {
423   return BasicBlocks.erase(FromIt, ToIt);
424 }
425 
426 //===----------------------------------------------------------------------===//
427 // Function Implementation
428 //===----------------------------------------------------------------------===//
429 
430 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
431   // If AS == -1 and we are passed a valid module pointer we place the function
432   // in the program address space. Otherwise we default to AS0.
433   if (AddrSpace == static_cast<unsigned>(-1))
434     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
435   return AddrSpace;
436 }
437 
438 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
439                    const Twine &name, Module *ParentModule)
440     : GlobalObject(Ty, Value::FunctionVal,
441                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
442                    computeAddrSpace(AddrSpace, ParentModule)),
443       NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(UseNewDbgInfoFormat) {
444   assert(FunctionType::isValidReturnType(getReturnType()) &&
445          "invalid return type");
446   setGlobalObjectSubClassData(0);
447 
448   // We only need a symbol table for a function if the context keeps value names
449   if (!getContext().shouldDiscardValueNames())
450     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
451 
452   // If the function has arguments, mark them as lazily built.
453   if (Ty->getNumParams())
454     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
455 
456   if (ParentModule) {
457     ParentModule->getFunctionList().push_back(this);
458     IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat;
459   }
460 
461   HasLLVMReservedName = getName().starts_with("llvm.");
462   // Ensure intrinsics have the right parameter attributes.
463   // Note, the IntID field will have been set in Value::setName if this function
464   // name is a valid intrinsic ID.
465   if (IntID)
466     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
467 }
468 
469 Function::~Function() {
470   dropAllReferences();    // After this it is safe to delete instructions.
471 
472   // Delete all of the method arguments and unlink from symbol table...
473   if (Arguments)
474     clearArguments();
475 
476   // Remove the function from the on-the-side GC table.
477   clearGC();
478 }
479 
480 void Function::BuildLazyArguments() const {
481   // Create the arguments vector, all arguments start out unnamed.
482   auto *FT = getFunctionType();
483   if (NumArgs > 0) {
484     Arguments = std::allocator<Argument>().allocate(NumArgs);
485     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
486       Type *ArgTy = FT->getParamType(i);
487       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
488       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
489     }
490   }
491 
492   // Clear the lazy arguments bit.
493   unsigned SDC = getSubclassDataFromValue();
494   SDC &= ~(1 << 0);
495   const_cast<Function*>(this)->setValueSubclassData(SDC);
496   assert(!hasLazyArguments());
497 }
498 
499 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
500   return MutableArrayRef<Argument>(Args, Count);
501 }
502 
503 bool Function::isConstrainedFPIntrinsic() const {
504   return Intrinsic::isConstrainedFPIntrinsic(getIntrinsicID());
505 }
506 
507 void Function::clearArguments() {
508   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
509     A.setName("");
510     A.~Argument();
511   }
512   std::allocator<Argument>().deallocate(Arguments, NumArgs);
513   Arguments = nullptr;
514 }
515 
516 void Function::stealArgumentListFrom(Function &Src) {
517   assert(isDeclaration() && "Expected no references to current arguments");
518 
519   // Drop the current arguments, if any, and set the lazy argument bit.
520   if (!hasLazyArguments()) {
521     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
522                         [](const Argument &A) { return A.use_empty(); }) &&
523            "Expected arguments to be unused in declaration");
524     clearArguments();
525     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
526   }
527 
528   // Nothing to steal if Src has lazy arguments.
529   if (Src.hasLazyArguments())
530     return;
531 
532   // Steal arguments from Src, and fix the lazy argument bits.
533   assert(arg_size() == Src.arg_size());
534   Arguments = Src.Arguments;
535   Src.Arguments = nullptr;
536   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
537     // FIXME: This does the work of transferNodesFromList inefficiently.
538     SmallString<128> Name;
539     if (A.hasName())
540       Name = A.getName();
541     if (!Name.empty())
542       A.setName("");
543     A.setParent(this);
544     if (!Name.empty())
545       A.setName(Name);
546   }
547 
548   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
549   assert(!hasLazyArguments());
550   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
551 }
552 
553 void Function::deleteBodyImpl(bool ShouldDrop) {
554   setIsMaterializable(false);
555 
556   for (BasicBlock &BB : *this)
557     BB.dropAllReferences();
558 
559   // Delete all basic blocks. They are now unused, except possibly by
560   // blockaddresses, but BasicBlock's destructor takes care of those.
561   while (!BasicBlocks.empty())
562     BasicBlocks.begin()->eraseFromParent();
563 
564   if (getNumOperands()) {
565     if (ShouldDrop) {
566       // Drop uses of any optional data (real or placeholder).
567       User::dropAllReferences();
568       setNumHungOffUseOperands(0);
569     } else {
570       // The code needs to match Function::allocHungoffUselist().
571       auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
572       Op<0>().set(CPN);
573       Op<1>().set(CPN);
574       Op<2>().set(CPN);
575     }
576     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
577   }
578 
579   // Metadata is stored in a side-table.
580   clearMetadata();
581 }
582 
583 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
584   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
585 }
586 
587 void Function::addFnAttr(Attribute::AttrKind Kind) {
588   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
589 }
590 
591 void Function::addFnAttr(StringRef Kind, StringRef Val) {
592   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
593 }
594 
595 void Function::addFnAttr(Attribute Attr) {
596   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
597 }
598 
599 void Function::addFnAttrs(const AttrBuilder &Attrs) {
600   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
601 }
602 
603 void Function::addRetAttr(Attribute::AttrKind Kind) {
604   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
605 }
606 
607 void Function::addRetAttr(Attribute Attr) {
608   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
609 }
610 
611 void Function::addRetAttrs(const AttrBuilder &Attrs) {
612   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
613 }
614 
615 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
616   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
617 }
618 
619 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
620   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
621 }
622 
623 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
624   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
625 }
626 
627 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
628   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
629 }
630 
631 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
632   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
633 }
634 
635 void Function::removeFnAttr(Attribute::AttrKind Kind) {
636   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
637 }
638 
639 void Function::removeFnAttr(StringRef Kind) {
640   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
641 }
642 
643 void Function::removeFnAttrs(const AttributeMask &AM) {
644   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
645 }
646 
647 void Function::removeRetAttr(Attribute::AttrKind Kind) {
648   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
649 }
650 
651 void Function::removeRetAttr(StringRef Kind) {
652   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
653 }
654 
655 void Function::removeRetAttrs(const AttributeMask &Attrs) {
656   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
657 }
658 
659 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
660   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
661 }
662 
663 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
664   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
665 }
666 
667 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
668   AttributeSets =
669       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
670 }
671 
672 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
673   AttributeSets =
674       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
675 }
676 
677 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
678   return AttributeSets.hasFnAttr(Kind);
679 }
680 
681 bool Function::hasFnAttribute(StringRef Kind) const {
682   return AttributeSets.hasFnAttr(Kind);
683 }
684 
685 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
686   return AttributeSets.hasRetAttr(Kind);
687 }
688 
689 bool Function::hasParamAttribute(unsigned ArgNo,
690                                  Attribute::AttrKind Kind) const {
691   return AttributeSets.hasParamAttr(ArgNo, Kind);
692 }
693 
694 Attribute Function::getAttributeAtIndex(unsigned i,
695                                         Attribute::AttrKind Kind) const {
696   return AttributeSets.getAttributeAtIndex(i, Kind);
697 }
698 
699 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
700   return AttributeSets.getAttributeAtIndex(i, Kind);
701 }
702 
703 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
704   return AttributeSets.getFnAttr(Kind);
705 }
706 
707 Attribute Function::getFnAttribute(StringRef Kind) const {
708   return AttributeSets.getFnAttr(Kind);
709 }
710 
711 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const {
712   return AttributeSets.getRetAttr(Kind);
713 }
714 
715 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
716                                                  uint64_t Default) const {
717   Attribute A = getFnAttribute(Name);
718   uint64_t Result = Default;
719   if (A.isStringAttribute()) {
720     StringRef Str = A.getValueAsString();
721     if (Str.getAsInteger(0, Result))
722       getContext().emitError("cannot parse integer attribute " + Name);
723   }
724 
725   return Result;
726 }
727 
728 /// gets the specified attribute from the list of attributes.
729 Attribute Function::getParamAttribute(unsigned ArgNo,
730                                       Attribute::AttrKind Kind) const {
731   return AttributeSets.getParamAttr(ArgNo, Kind);
732 }
733 
734 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
735                                                  uint64_t Bytes) {
736   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
737                                                                   ArgNo, Bytes);
738 }
739 
740 void Function::addRangeRetAttr(const ConstantRange &CR) {
741   AttributeSets = AttributeSets.addRangeRetAttr(getContext(), CR);
742 }
743 
744 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
745   if (&FPType == &APFloat::IEEEsingle()) {
746     DenormalMode Mode = getDenormalModeF32Raw();
747     // If the f32 variant of the attribute isn't specified, try to use the
748     // generic one.
749     if (Mode.isValid())
750       return Mode;
751   }
752 
753   return getDenormalModeRaw();
754 }
755 
756 DenormalMode Function::getDenormalModeRaw() const {
757   Attribute Attr = getFnAttribute("denormal-fp-math");
758   StringRef Val = Attr.getValueAsString();
759   return parseDenormalFPAttribute(Val);
760 }
761 
762 DenormalMode Function::getDenormalModeF32Raw() const {
763   Attribute Attr = getFnAttribute("denormal-fp-math-f32");
764   if (Attr.isValid()) {
765     StringRef Val = Attr.getValueAsString();
766     return parseDenormalFPAttribute(Val);
767   }
768 
769   return DenormalMode::getInvalid();
770 }
771 
772 const std::string &Function::getGC() const {
773   assert(hasGC() && "Function has no collector");
774   return getContext().getGC(*this);
775 }
776 
777 void Function::setGC(std::string Str) {
778   setValueSubclassDataBit(14, !Str.empty());
779   getContext().setGC(*this, std::move(Str));
780 }
781 
782 void Function::clearGC() {
783   if (!hasGC())
784     return;
785   getContext().deleteGC(*this);
786   setValueSubclassDataBit(14, false);
787 }
788 
789 bool Function::hasStackProtectorFnAttr() const {
790   return hasFnAttribute(Attribute::StackProtect) ||
791          hasFnAttribute(Attribute::StackProtectStrong) ||
792          hasFnAttribute(Attribute::StackProtectReq);
793 }
794 
795 /// Copy all additional attributes (those not needed to create a Function) from
796 /// the Function Src to this one.
797 void Function::copyAttributesFrom(const Function *Src) {
798   GlobalObject::copyAttributesFrom(Src);
799   setCallingConv(Src->getCallingConv());
800   setAttributes(Src->getAttributes());
801   if (Src->hasGC())
802     setGC(Src->getGC());
803   else
804     clearGC();
805   if (Src->hasPersonalityFn())
806     setPersonalityFn(Src->getPersonalityFn());
807   if (Src->hasPrefixData())
808     setPrefixData(Src->getPrefixData());
809   if (Src->hasPrologueData())
810     setPrologueData(Src->getPrologueData());
811 }
812 
813 MemoryEffects Function::getMemoryEffects() const {
814   return getAttributes().getMemoryEffects();
815 }
816 void Function::setMemoryEffects(MemoryEffects ME) {
817   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
818 }
819 
820 /// Determine if the function does not access memory.
821 bool Function::doesNotAccessMemory() const {
822   return getMemoryEffects().doesNotAccessMemory();
823 }
824 void Function::setDoesNotAccessMemory() {
825   setMemoryEffects(MemoryEffects::none());
826 }
827 
828 /// Determine if the function does not access or only reads memory.
829 bool Function::onlyReadsMemory() const {
830   return getMemoryEffects().onlyReadsMemory();
831 }
832 void Function::setOnlyReadsMemory() {
833   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
834 }
835 
836 /// Determine if the function does not access or only writes memory.
837 bool Function::onlyWritesMemory() const {
838   return getMemoryEffects().onlyWritesMemory();
839 }
840 void Function::setOnlyWritesMemory() {
841   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
842 }
843 
844 /// Determine if the call can access memmory only using pointers based
845 /// on its arguments.
846 bool Function::onlyAccessesArgMemory() const {
847   return getMemoryEffects().onlyAccessesArgPointees();
848 }
849 void Function::setOnlyAccessesArgMemory() {
850   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
851 }
852 
853 /// Determine if the function may only access memory that is
854 ///  inaccessible from the IR.
855 bool Function::onlyAccessesInaccessibleMemory() const {
856   return getMemoryEffects().onlyAccessesInaccessibleMem();
857 }
858 void Function::setOnlyAccessesInaccessibleMemory() {
859   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
860 }
861 
862 /// Determine if the function may only access memory that is
863 ///  either inaccessible from the IR or pointed to by its arguments.
864 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
865   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
866 }
867 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
868   setMemoryEffects(getMemoryEffects() &
869                    MemoryEffects::inaccessibleOrArgMemOnly());
870 }
871 
872 /// Table of string intrinsic names indexed by enum value.
873 static const char * const IntrinsicNameTable[] = {
874   "not_intrinsic",
875 #define GET_INTRINSIC_NAME_TABLE
876 #include "llvm/IR/IntrinsicImpl.inc"
877 #undef GET_INTRINSIC_NAME_TABLE
878 };
879 
880 /// Table of per-target intrinsic name tables.
881 #define GET_INTRINSIC_TARGET_DATA
882 #include "llvm/IR/IntrinsicImpl.inc"
883 #undef GET_INTRINSIC_TARGET_DATA
884 
885 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
886   return IID > TargetInfos[0].Count;
887 }
888 
889 bool Function::isTargetIntrinsic() const {
890   return isTargetIntrinsic(IntID);
891 }
892 
893 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
894 /// target as \c Name, or the generic table if \c Name is not target specific.
895 ///
896 /// Returns the relevant slice of \c IntrinsicNameTable
897 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
898   assert(Name.starts_with("llvm."));
899 
900   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
901   // Drop "llvm." and take the first dotted component. That will be the target
902   // if this is target specific.
903   StringRef Target = Name.drop_front(5).split('.').first;
904   auto It = partition_point(
905       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
906   // We've either found the target or just fall back to the generic set, which
907   // is always first.
908   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
909   return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
910 }
911 
912 /// This does the actual lookup of an intrinsic ID which
913 /// matches the given function name.
914 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
915   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
916   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
917   if (Idx == -1)
918     return Intrinsic::not_intrinsic;
919 
920   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
921   // an index into a sub-table.
922   int Adjust = NameTable.data() - IntrinsicNameTable;
923   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
924 
925   // If the intrinsic is not overloaded, require an exact match. If it is
926   // overloaded, require either exact or prefix match.
927   const auto MatchSize = strlen(NameTable[Idx]);
928   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
929   bool IsExactMatch = Name.size() == MatchSize;
930   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
931                                                      : Intrinsic::not_intrinsic;
932 }
933 
934 void Function::updateAfterNameChange() {
935   LibFuncCache = UnknownLibFunc;
936   StringRef Name = getName();
937   if (!Name.starts_with("llvm.")) {
938     HasLLVMReservedName = false;
939     IntID = Intrinsic::not_intrinsic;
940     return;
941   }
942   HasLLVMReservedName = true;
943   IntID = lookupIntrinsicID(Name);
944 }
945 
946 /// Returns a stable mangling for the type specified for use in the name
947 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
948 /// of named types is simply their name.  Manglings for unnamed types consist
949 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
950 /// combined with the mangling of their component types.  A vararg function
951 /// type will have a suffix of 'vararg'.  Since function types can contain
952 /// other function types, we close a function type mangling with suffix 'f'
953 /// which can't be confused with it's prefix.  This ensures we don't have
954 /// collisions between two unrelated function types. Otherwise, you might
955 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
956 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
957 /// indicating that extra care must be taken to ensure a unique name.
958 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
959   std::string Result;
960   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
961     Result += "p" + utostr(PTyp->getAddressSpace());
962   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
963     Result += "a" + utostr(ATyp->getNumElements()) +
964               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
965   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
966     if (!STyp->isLiteral()) {
967       Result += "s_";
968       if (STyp->hasName())
969         Result += STyp->getName();
970       else
971         HasUnnamedType = true;
972     } else {
973       Result += "sl_";
974       for (auto *Elem : STyp->elements())
975         Result += getMangledTypeStr(Elem, HasUnnamedType);
976     }
977     // Ensure nested structs are distinguishable.
978     Result += "s";
979   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
980     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
981     for (size_t i = 0; i < FT->getNumParams(); i++)
982       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
983     if (FT->isVarArg())
984       Result += "vararg";
985     // Ensure nested function types are distinguishable.
986     Result += "f";
987   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
988     ElementCount EC = VTy->getElementCount();
989     if (EC.isScalable())
990       Result += "nx";
991     Result += "v" + utostr(EC.getKnownMinValue()) +
992               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
993   } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
994     Result += "t";
995     Result += TETy->getName();
996     for (Type *ParamTy : TETy->type_params())
997       Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
998     for (unsigned IntParam : TETy->int_params())
999       Result += "_" + utostr(IntParam);
1000     // Ensure nested target extension types are distinguishable.
1001     Result += "t";
1002   } else if (Ty) {
1003     switch (Ty->getTypeID()) {
1004     default: llvm_unreachable("Unhandled type");
1005     case Type::VoidTyID:      Result += "isVoid";   break;
1006     case Type::MetadataTyID:  Result += "Metadata"; break;
1007     case Type::HalfTyID:      Result += "f16";      break;
1008     case Type::BFloatTyID:    Result += "bf16";     break;
1009     case Type::FloatTyID:     Result += "f32";      break;
1010     case Type::DoubleTyID:    Result += "f64";      break;
1011     case Type::X86_FP80TyID:  Result += "f80";      break;
1012     case Type::FP128TyID:     Result += "f128";     break;
1013     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
1014     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
1015     case Type::X86_AMXTyID:   Result += "x86amx";   break;
1016     case Type::IntegerTyID:
1017       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
1018       break;
1019     }
1020   }
1021   return Result;
1022 }
1023 
1024 StringRef Intrinsic::getBaseName(ID id) {
1025   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1026   return IntrinsicNameTable[id];
1027 }
1028 
1029 StringRef Intrinsic::getName(ID id) {
1030   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1031   assert(!Intrinsic::isOverloaded(id) &&
1032          "This version of getName does not support overloading");
1033   return getBaseName(id);
1034 }
1035 
1036 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
1037                                         Module *M, FunctionType *FT,
1038                                         bool EarlyModuleCheck) {
1039 
1040   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
1041   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
1042          "This version of getName is for overloaded intrinsics only");
1043   (void)EarlyModuleCheck;
1044   assert((!EarlyModuleCheck || M ||
1045           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
1046          "Intrinsic overloading on pointer types need to provide a Module");
1047   bool HasUnnamedType = false;
1048   std::string Result(Intrinsic::getBaseName(Id));
1049   for (Type *Ty : Tys)
1050     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1051   if (HasUnnamedType) {
1052     assert(M && "unnamed types need a module");
1053     if (!FT)
1054       FT = Intrinsic::getType(M->getContext(), Id, Tys);
1055     else
1056       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1057              "Provided FunctionType must match arguments");
1058     return M->getUniqueIntrinsicName(Result, Id, FT);
1059   }
1060   return Result;
1061 }
1062 
1063 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1064                                FunctionType *FT) {
1065   assert(M && "We need to have a Module");
1066   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1067 }
1068 
1069 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1070   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1071 }
1072 
1073 /// IIT_Info - These are enumerators that describe the entries returned by the
1074 /// getIntrinsicInfoTableEntries function.
1075 ///
1076 /// Defined in Intrinsics.td.
1077 enum IIT_Info {
1078 #define GET_INTRINSIC_IITINFO
1079 #include "llvm/IR/IntrinsicImpl.inc"
1080 #undef GET_INTRINSIC_IITINFO
1081 };
1082 
1083 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1084                       IIT_Info LastInfo,
1085                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1086   using namespace Intrinsic;
1087 
1088   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1089 
1090   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1091   unsigned StructElts = 2;
1092 
1093   switch (Info) {
1094   case IIT_Done:
1095     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1096     return;
1097   case IIT_VARARG:
1098     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1099     return;
1100   case IIT_MMX:
1101     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1102     return;
1103   case IIT_AMX:
1104     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1105     return;
1106   case IIT_TOKEN:
1107     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1108     return;
1109   case IIT_METADATA:
1110     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1111     return;
1112   case IIT_F16:
1113     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1114     return;
1115   case IIT_BF16:
1116     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1117     return;
1118   case IIT_F32:
1119     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1120     return;
1121   case IIT_F64:
1122     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1123     return;
1124   case IIT_F128:
1125     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1126     return;
1127   case IIT_PPCF128:
1128     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1129     return;
1130   case IIT_I1:
1131     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1132     return;
1133   case IIT_I2:
1134     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1135     return;
1136   case IIT_I4:
1137     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1138     return;
1139   case IIT_AARCH64_SVCOUNT:
1140     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
1141     return;
1142   case IIT_I8:
1143     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1144     return;
1145   case IIT_I16:
1146     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1147     return;
1148   case IIT_I32:
1149     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1150     return;
1151   case IIT_I64:
1152     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1153     return;
1154   case IIT_I128:
1155     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1156     return;
1157   case IIT_V1:
1158     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1159     DecodeIITType(NextElt, Infos, Info, OutputTable);
1160     return;
1161   case IIT_V2:
1162     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1163     DecodeIITType(NextElt, Infos, Info, OutputTable);
1164     return;
1165   case IIT_V3:
1166     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1167     DecodeIITType(NextElt, Infos, Info, OutputTable);
1168     return;
1169   case IIT_V4:
1170     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1171     DecodeIITType(NextElt, Infos, Info, OutputTable);
1172     return;
1173   case IIT_V6:
1174     OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector));
1175     DecodeIITType(NextElt, Infos, Info, OutputTable);
1176     return;
1177   case IIT_V8:
1178     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1179     DecodeIITType(NextElt, Infos, Info, OutputTable);
1180     return;
1181   case IIT_V10:
1182     OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector));
1183     DecodeIITType(NextElt, Infos, Info, OutputTable);
1184     return;
1185   case IIT_V16:
1186     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1187     DecodeIITType(NextElt, Infos, Info, OutputTable);
1188     return;
1189   case IIT_V32:
1190     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1191     DecodeIITType(NextElt, Infos, Info, OutputTable);
1192     return;
1193   case IIT_V64:
1194     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1195     DecodeIITType(NextElt, Infos, Info, OutputTable);
1196     return;
1197   case IIT_V128:
1198     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1199     DecodeIITType(NextElt, Infos, Info, OutputTable);
1200     return;
1201   case IIT_V256:
1202     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1203     DecodeIITType(NextElt, Infos, Info, OutputTable);
1204     return;
1205   case IIT_V512:
1206     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1207     DecodeIITType(NextElt, Infos, Info, OutputTable);
1208     return;
1209   case IIT_V1024:
1210     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1211     DecodeIITType(NextElt, Infos, Info, OutputTable);
1212     return;
1213   case IIT_EXTERNREF:
1214     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1215     return;
1216   case IIT_FUNCREF:
1217     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1218     return;
1219   case IIT_PTR:
1220     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1221     return;
1222   case IIT_ANYPTR: // [ANYPTR addrspace]
1223     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1224                                              Infos[NextElt++]));
1225     return;
1226   case IIT_ARG: {
1227     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1228     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1229     return;
1230   }
1231   case IIT_EXTEND_ARG: {
1232     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1233     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1234                                              ArgInfo));
1235     return;
1236   }
1237   case IIT_TRUNC_ARG: {
1238     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1239     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1240                                              ArgInfo));
1241     return;
1242   }
1243   case IIT_HALF_VEC_ARG: {
1244     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1245     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1246                                              ArgInfo));
1247     return;
1248   }
1249   case IIT_SAME_VEC_WIDTH_ARG: {
1250     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1251     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1252                                              ArgInfo));
1253     return;
1254   }
1255   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1256     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1257     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1258     OutputTable.push_back(
1259         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1260     return;
1261   }
1262   case IIT_EMPTYSTRUCT:
1263     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1264     return;
1265   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1266   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1267   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1268   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1269   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1270   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1271   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1272   case IIT_STRUCT2: {
1273     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1274 
1275     for (unsigned i = 0; i != StructElts; ++i)
1276       DecodeIITType(NextElt, Infos, Info, OutputTable);
1277     return;
1278   }
1279   case IIT_SUBDIVIDE2_ARG: {
1280     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1281     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1282                                              ArgInfo));
1283     return;
1284   }
1285   case IIT_SUBDIVIDE4_ARG: {
1286     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1287     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1288                                              ArgInfo));
1289     return;
1290   }
1291   case IIT_VEC_ELEMENT: {
1292     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1293     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1294                                              ArgInfo));
1295     return;
1296   }
1297   case IIT_SCALABLE_VEC: {
1298     DecodeIITType(NextElt, Infos, Info, OutputTable);
1299     return;
1300   }
1301   case IIT_VEC_OF_BITCASTS_TO_INT: {
1302     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1303     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1304                                              ArgInfo));
1305     return;
1306   }
1307   }
1308   llvm_unreachable("unhandled");
1309 }
1310 
1311 #define GET_INTRINSIC_GENERATOR_GLOBAL
1312 #include "llvm/IR/IntrinsicImpl.inc"
1313 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1314 
1315 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1316                                              SmallVectorImpl<IITDescriptor> &T){
1317   // Check to see if the intrinsic's type was expressible by the table.
1318   unsigned TableVal = IIT_Table[id-1];
1319 
1320   // Decode the TableVal into an array of IITValues.
1321   SmallVector<unsigned char, 8> IITValues;
1322   ArrayRef<unsigned char> IITEntries;
1323   unsigned NextElt = 0;
1324   if ((TableVal >> 31) != 0) {
1325     // This is an offset into the IIT_LongEncodingTable.
1326     IITEntries = IIT_LongEncodingTable;
1327 
1328     // Strip sentinel bit.
1329     NextElt = (TableVal << 1) >> 1;
1330   } else {
1331     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1332     // into a single word in the table itself, decode it now.
1333     do {
1334       IITValues.push_back(TableVal & 0xF);
1335       TableVal >>= 4;
1336     } while (TableVal);
1337 
1338     IITEntries = IITValues;
1339     NextElt = 0;
1340   }
1341 
1342   // Okay, decode the table into the output vector of IITDescriptors.
1343   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1344   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1345     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1346 }
1347 
1348 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1349                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1350   using namespace Intrinsic;
1351 
1352   IITDescriptor D = Infos.front();
1353   Infos = Infos.slice(1);
1354 
1355   switch (D.Kind) {
1356   case IITDescriptor::Void: return Type::getVoidTy(Context);
1357   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1358   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1359   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1360   case IITDescriptor::Token: return Type::getTokenTy(Context);
1361   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1362   case IITDescriptor::Half: return Type::getHalfTy(Context);
1363   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1364   case IITDescriptor::Float: return Type::getFloatTy(Context);
1365   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1366   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1367   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1368   case IITDescriptor::AArch64Svcount:
1369     return TargetExtType::get(Context, "aarch64.svcount");
1370 
1371   case IITDescriptor::Integer:
1372     return IntegerType::get(Context, D.Integer_Width);
1373   case IITDescriptor::Vector:
1374     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1375                            D.Vector_Width);
1376   case IITDescriptor::Pointer:
1377     return PointerType::get(Context, D.Pointer_AddressSpace);
1378   case IITDescriptor::Struct: {
1379     SmallVector<Type *, 8> Elts;
1380     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1381       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1382     return StructType::get(Context, Elts);
1383   }
1384   case IITDescriptor::Argument:
1385     return Tys[D.getArgumentNumber()];
1386   case IITDescriptor::ExtendArgument: {
1387     Type *Ty = Tys[D.getArgumentNumber()];
1388     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1389       return VectorType::getExtendedElementVectorType(VTy);
1390 
1391     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1392   }
1393   case IITDescriptor::TruncArgument: {
1394     Type *Ty = Tys[D.getArgumentNumber()];
1395     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1396       return VectorType::getTruncatedElementVectorType(VTy);
1397 
1398     IntegerType *ITy = cast<IntegerType>(Ty);
1399     assert(ITy->getBitWidth() % 2 == 0);
1400     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1401   }
1402   case IITDescriptor::Subdivide2Argument:
1403   case IITDescriptor::Subdivide4Argument: {
1404     Type *Ty = Tys[D.getArgumentNumber()];
1405     VectorType *VTy = dyn_cast<VectorType>(Ty);
1406     assert(VTy && "Expected an argument of Vector Type");
1407     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1408     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1409   }
1410   case IITDescriptor::HalfVecArgument:
1411     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1412                                                   Tys[D.getArgumentNumber()]));
1413   case IITDescriptor::SameVecWidthArgument: {
1414     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1415     Type *Ty = Tys[D.getArgumentNumber()];
1416     if (auto *VTy = dyn_cast<VectorType>(Ty))
1417       return VectorType::get(EltTy, VTy->getElementCount());
1418     return EltTy;
1419   }
1420   case IITDescriptor::VecElementArgument: {
1421     Type *Ty = Tys[D.getArgumentNumber()];
1422     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1423       return VTy->getElementType();
1424     llvm_unreachable("Expected an argument of Vector Type");
1425   }
1426   case IITDescriptor::VecOfBitcastsToInt: {
1427     Type *Ty = Tys[D.getArgumentNumber()];
1428     VectorType *VTy = dyn_cast<VectorType>(Ty);
1429     assert(VTy && "Expected an argument of Vector Type");
1430     return VectorType::getInteger(VTy);
1431   }
1432   case IITDescriptor::VecOfAnyPtrsToElt:
1433     // Return the overloaded type (which determines the pointers address space)
1434     return Tys[D.getOverloadArgNumber()];
1435   }
1436   llvm_unreachable("unhandled");
1437 }
1438 
1439 FunctionType *Intrinsic::getType(LLVMContext &Context,
1440                                  ID id, ArrayRef<Type*> Tys) {
1441   SmallVector<IITDescriptor, 8> Table;
1442   getIntrinsicInfoTableEntries(id, Table);
1443 
1444   ArrayRef<IITDescriptor> TableRef = Table;
1445   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1446 
1447   SmallVector<Type*, 8> ArgTys;
1448   while (!TableRef.empty())
1449     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1450 
1451   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1452   // If we see void type as the type of the last argument, it is vararg intrinsic
1453   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1454     ArgTys.pop_back();
1455     return FunctionType::get(ResultTy, ArgTys, true);
1456   }
1457   return FunctionType::get(ResultTy, ArgTys, false);
1458 }
1459 
1460 bool Intrinsic::isOverloaded(ID id) {
1461 #define GET_INTRINSIC_OVERLOAD_TABLE
1462 #include "llvm/IR/IntrinsicImpl.inc"
1463 #undef GET_INTRINSIC_OVERLOAD_TABLE
1464 }
1465 
1466 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1467 #define GET_INTRINSIC_ATTRIBUTES
1468 #include "llvm/IR/IntrinsicImpl.inc"
1469 #undef GET_INTRINSIC_ATTRIBUTES
1470 
1471 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1472   // There can never be multiple globals with the same name of different types,
1473   // because intrinsics must be a specific type.
1474   auto *FT = getType(M->getContext(), id, Tys);
1475   return cast<Function>(
1476       M->getOrInsertFunction(
1477            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1478           .getCallee());
1479 }
1480 
1481 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1482 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1483 #include "llvm/IR/IntrinsicImpl.inc"
1484 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1485 
1486 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1487 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1488 #include "llvm/IR/IntrinsicImpl.inc"
1489 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1490 
1491 bool Intrinsic::isConstrainedFPIntrinsic(ID QID) {
1492   switch (QID) {
1493 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
1494   case Intrinsic::INTRINSIC:
1495 #include "llvm/IR/ConstrainedOps.def"
1496     return true;
1497 #undef INSTRUCTION
1498   default:
1499     return false;
1500   }
1501 }
1502 
1503 using DeferredIntrinsicMatchPair =
1504     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1505 
1506 static bool matchIntrinsicType(
1507     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1508     SmallVectorImpl<Type *> &ArgTys,
1509     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1510     bool IsDeferredCheck) {
1511   using namespace Intrinsic;
1512 
1513   // If we ran out of descriptors, there are too many arguments.
1514   if (Infos.empty()) return true;
1515 
1516   // Do this before slicing off the 'front' part
1517   auto InfosRef = Infos;
1518   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1519     DeferredChecks.emplace_back(T, InfosRef);
1520     return false;
1521   };
1522 
1523   IITDescriptor D = Infos.front();
1524   Infos = Infos.slice(1);
1525 
1526   switch (D.Kind) {
1527     case IITDescriptor::Void: return !Ty->isVoidTy();
1528     case IITDescriptor::VarArg: return true;
1529     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1530     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1531     case IITDescriptor::Token: return !Ty->isTokenTy();
1532     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1533     case IITDescriptor::Half: return !Ty->isHalfTy();
1534     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1535     case IITDescriptor::Float: return !Ty->isFloatTy();
1536     case IITDescriptor::Double: return !Ty->isDoubleTy();
1537     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1538     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1539     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1540     case IITDescriptor::AArch64Svcount:
1541       return !isa<TargetExtType>(Ty) ||
1542              cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
1543     case IITDescriptor::Vector: {
1544       VectorType *VT = dyn_cast<VectorType>(Ty);
1545       return !VT || VT->getElementCount() != D.Vector_Width ||
1546              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1547                                 DeferredChecks, IsDeferredCheck);
1548     }
1549     case IITDescriptor::Pointer: {
1550       PointerType *PT = dyn_cast<PointerType>(Ty);
1551       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
1552     }
1553 
1554     case IITDescriptor::Struct: {
1555       StructType *ST = dyn_cast<StructType>(Ty);
1556       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1557           ST->getNumElements() != D.Struct_NumElements)
1558         return true;
1559 
1560       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1561         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1562                                DeferredChecks, IsDeferredCheck))
1563           return true;
1564       return false;
1565     }
1566 
1567     case IITDescriptor::Argument:
1568       // If this is the second occurrence of an argument,
1569       // verify that the later instance matches the previous instance.
1570       if (D.getArgumentNumber() < ArgTys.size())
1571         return Ty != ArgTys[D.getArgumentNumber()];
1572 
1573       if (D.getArgumentNumber() > ArgTys.size() ||
1574           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1575         return IsDeferredCheck || DeferCheck(Ty);
1576 
1577       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1578              "Table consistency error");
1579       ArgTys.push_back(Ty);
1580 
1581       switch (D.getArgumentKind()) {
1582         case IITDescriptor::AK_Any:        return false; // Success
1583         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1584         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1585         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1586         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1587         default:                           break;
1588       }
1589       llvm_unreachable("all argument kinds not covered");
1590 
1591     case IITDescriptor::ExtendArgument: {
1592       // If this is a forward reference, defer the check for later.
1593       if (D.getArgumentNumber() >= ArgTys.size())
1594         return IsDeferredCheck || DeferCheck(Ty);
1595 
1596       Type *NewTy = ArgTys[D.getArgumentNumber()];
1597       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1598         NewTy = VectorType::getExtendedElementVectorType(VTy);
1599       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1600         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1601       else
1602         return true;
1603 
1604       return Ty != NewTy;
1605     }
1606     case IITDescriptor::TruncArgument: {
1607       // If this is a forward reference, defer the check for later.
1608       if (D.getArgumentNumber() >= ArgTys.size())
1609         return IsDeferredCheck || DeferCheck(Ty);
1610 
1611       Type *NewTy = ArgTys[D.getArgumentNumber()];
1612       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1613         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1614       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1615         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1616       else
1617         return true;
1618 
1619       return Ty != NewTy;
1620     }
1621     case IITDescriptor::HalfVecArgument:
1622       // If this is a forward reference, defer the check for later.
1623       if (D.getArgumentNumber() >= ArgTys.size())
1624         return IsDeferredCheck || DeferCheck(Ty);
1625       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1626              VectorType::getHalfElementsVectorType(
1627                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1628     case IITDescriptor::SameVecWidthArgument: {
1629       if (D.getArgumentNumber() >= ArgTys.size()) {
1630         // Defer check and subsequent check for the vector element type.
1631         Infos = Infos.slice(1);
1632         return IsDeferredCheck || DeferCheck(Ty);
1633       }
1634       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1635       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1636       // Both must be vectors of the same number of elements or neither.
1637       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1638         return true;
1639       Type *EltTy = Ty;
1640       if (ThisArgType) {
1641         if (ReferenceType->getElementCount() !=
1642             ThisArgType->getElementCount())
1643           return true;
1644         EltTy = ThisArgType->getElementType();
1645       }
1646       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1647                                 IsDeferredCheck);
1648     }
1649     case IITDescriptor::VecOfAnyPtrsToElt: {
1650       unsigned RefArgNumber = D.getRefArgNumber();
1651       if (RefArgNumber >= ArgTys.size()) {
1652         if (IsDeferredCheck)
1653           return true;
1654         // If forward referencing, already add the pointer-vector type and
1655         // defer the checks for later.
1656         ArgTys.push_back(Ty);
1657         return DeferCheck(Ty);
1658       }
1659 
1660       if (!IsDeferredCheck){
1661         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1662                "Table consistency error");
1663         ArgTys.push_back(Ty);
1664       }
1665 
1666       // Verify the overloaded type "matches" the Ref type.
1667       // i.e. Ty is a vector with the same width as Ref.
1668       // Composed of pointers to the same element type as Ref.
1669       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1670       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1671       if (!ThisArgVecTy || !ReferenceType ||
1672           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1673         return true;
1674       return !ThisArgVecTy->getElementType()->isPointerTy();
1675     }
1676     case IITDescriptor::VecElementArgument: {
1677       if (D.getArgumentNumber() >= ArgTys.size())
1678         return IsDeferredCheck ? true : DeferCheck(Ty);
1679       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1680       return !ReferenceType || Ty != ReferenceType->getElementType();
1681     }
1682     case IITDescriptor::Subdivide2Argument:
1683     case IITDescriptor::Subdivide4Argument: {
1684       // If this is a forward reference, defer the check for later.
1685       if (D.getArgumentNumber() >= ArgTys.size())
1686         return IsDeferredCheck || DeferCheck(Ty);
1687 
1688       Type *NewTy = ArgTys[D.getArgumentNumber()];
1689       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1690         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1691         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1692         return Ty != NewTy;
1693       }
1694       return true;
1695     }
1696     case IITDescriptor::VecOfBitcastsToInt: {
1697       if (D.getArgumentNumber() >= ArgTys.size())
1698         return IsDeferredCheck || DeferCheck(Ty);
1699       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1700       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1701       if (!ThisArgVecTy || !ReferenceType)
1702         return true;
1703       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1704     }
1705   }
1706   llvm_unreachable("unhandled");
1707 }
1708 
1709 Intrinsic::MatchIntrinsicTypesResult
1710 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1711                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1712                                    SmallVectorImpl<Type *> &ArgTys) {
1713   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1714   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1715                          false))
1716     return MatchIntrinsicTypes_NoMatchRet;
1717 
1718   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1719 
1720   for (auto *Ty : FTy->params())
1721     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1722       return MatchIntrinsicTypes_NoMatchArg;
1723 
1724   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1725     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1726     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1727                            true))
1728       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1729                                          : MatchIntrinsicTypes_NoMatchArg;
1730   }
1731 
1732   return MatchIntrinsicTypes_Match;
1733 }
1734 
1735 bool
1736 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1737                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1738   // If there are no descriptors left, then it can't be a vararg.
1739   if (Infos.empty())
1740     return isVarArg;
1741 
1742   // There should be only one descriptor remaining at this point.
1743   if (Infos.size() != 1)
1744     return true;
1745 
1746   // Check and verify the descriptor.
1747   IITDescriptor D = Infos.front();
1748   Infos = Infos.slice(1);
1749   if (D.Kind == IITDescriptor::VarArg)
1750     return !isVarArg;
1751 
1752   return true;
1753 }
1754 
1755 bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT,
1756                                       SmallVectorImpl<Type *> &ArgTys) {
1757   if (!ID)
1758     return false;
1759 
1760   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1761   getIntrinsicInfoTableEntries(ID, Table);
1762   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1763 
1764   if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) !=
1765       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1766     return false;
1767   }
1768   if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef))
1769     return false;
1770   return true;
1771 }
1772 
1773 bool Intrinsic::getIntrinsicSignature(Function *F,
1774                                       SmallVectorImpl<Type *> &ArgTys) {
1775   return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(),
1776                                ArgTys);
1777 }
1778 
1779 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1780   SmallVector<Type *, 4> ArgTys;
1781   if (!getIntrinsicSignature(F, ArgTys))
1782     return std::nullopt;
1783 
1784   Intrinsic::ID ID = F->getIntrinsicID();
1785   StringRef Name = F->getName();
1786   std::string WantedName =
1787       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1788   if (Name == WantedName)
1789     return std::nullopt;
1790 
1791   Function *NewDecl = [&] {
1792     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1793       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1794         if (ExistingF->getFunctionType() == F->getFunctionType())
1795           return ExistingF;
1796 
1797       // The name already exists, but is not a function or has the wrong
1798       // prototype. Make place for the new one by renaming the old version.
1799       // Either this old version will be removed later on or the module is
1800       // invalid and we'll get an error.
1801       ExistingGV->setName(WantedName + ".renamed");
1802     }
1803     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1804   }();
1805 
1806   NewDecl->setCallingConv(F->getCallingConv());
1807   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1808          "Shouldn't change the signature");
1809   return NewDecl;
1810 }
1811 
1812 /// hasAddressTaken - returns true if there are any uses of this function
1813 /// other than direct calls or invokes to it. Optionally ignores callback
1814 /// uses, assume like pointer annotation calls, and references in llvm.used
1815 /// and llvm.compiler.used variables.
1816 bool Function::hasAddressTaken(const User **PutOffender,
1817                                bool IgnoreCallbackUses,
1818                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1819                                bool IgnoreARCAttachedCall,
1820                                bool IgnoreCastedDirectCall) const {
1821   for (const Use &U : uses()) {
1822     const User *FU = U.getUser();
1823     if (isa<BlockAddress>(FU))
1824       continue;
1825 
1826     if (IgnoreCallbackUses) {
1827       AbstractCallSite ACS(&U);
1828       if (ACS && ACS.isCallbackCall())
1829         continue;
1830     }
1831 
1832     const auto *Call = dyn_cast<CallBase>(FU);
1833     if (!Call) {
1834       if (IgnoreAssumeLikeCalls &&
1835           isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1836           all_of(FU->users(), [](const User *U) {
1837             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1838               return I->isAssumeLikeIntrinsic();
1839             return false;
1840           })) {
1841         continue;
1842       }
1843 
1844       if (IgnoreLLVMUsed && !FU->user_empty()) {
1845         const User *FUU = FU;
1846         if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1847             FU->hasOneUse() && !FU->user_begin()->user_empty())
1848           FUU = *FU->user_begin();
1849         if (llvm::all_of(FUU->users(), [](const User *U) {
1850               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1851                 return GV->hasName() &&
1852                        (GV->getName() == "llvm.compiler.used" ||
1853                         GV->getName() == "llvm.used");
1854               return false;
1855             }))
1856           continue;
1857       }
1858       if (PutOffender)
1859         *PutOffender = FU;
1860       return true;
1861     }
1862 
1863     if (IgnoreAssumeLikeCalls) {
1864       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1865         if (I->isAssumeLikeIntrinsic())
1866           continue;
1867     }
1868 
1869     if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall &&
1870                                 Call->getFunctionType() != getFunctionType())) {
1871       if (IgnoreARCAttachedCall &&
1872           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1873                                       U.getOperandNo()))
1874         continue;
1875 
1876       if (PutOffender)
1877         *PutOffender = FU;
1878       return true;
1879     }
1880   }
1881   return false;
1882 }
1883 
1884 bool Function::isDefTriviallyDead() const {
1885   // Check the linkage
1886   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1887       !hasAvailableExternallyLinkage())
1888     return false;
1889 
1890   // Check if the function is used by anything other than a blockaddress.
1891   for (const User *U : users())
1892     if (!isa<BlockAddress>(U))
1893       return false;
1894 
1895   return true;
1896 }
1897 
1898 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1899 /// setjmp or other function that gcc recognizes as "returning twice".
1900 bool Function::callsFunctionThatReturnsTwice() const {
1901   for (const Instruction &I : instructions(this))
1902     if (const auto *Call = dyn_cast<CallBase>(&I))
1903       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1904         return true;
1905 
1906   return false;
1907 }
1908 
1909 Constant *Function::getPersonalityFn() const {
1910   assert(hasPersonalityFn() && getNumOperands());
1911   return cast<Constant>(Op<0>());
1912 }
1913 
1914 void Function::setPersonalityFn(Constant *Fn) {
1915   setHungoffOperand<0>(Fn);
1916   setValueSubclassDataBit(3, Fn != nullptr);
1917 }
1918 
1919 Constant *Function::getPrefixData() const {
1920   assert(hasPrefixData() && getNumOperands());
1921   return cast<Constant>(Op<1>());
1922 }
1923 
1924 void Function::setPrefixData(Constant *PrefixData) {
1925   setHungoffOperand<1>(PrefixData);
1926   setValueSubclassDataBit(1, PrefixData != nullptr);
1927 }
1928 
1929 Constant *Function::getPrologueData() const {
1930   assert(hasPrologueData() && getNumOperands());
1931   return cast<Constant>(Op<2>());
1932 }
1933 
1934 void Function::setPrologueData(Constant *PrologueData) {
1935   setHungoffOperand<2>(PrologueData);
1936   setValueSubclassDataBit(2, PrologueData != nullptr);
1937 }
1938 
1939 void Function::allocHungoffUselist() {
1940   // If we've already allocated a uselist, stop here.
1941   if (getNumOperands())
1942     return;
1943 
1944   allocHungoffUses(3, /*IsPhi=*/ false);
1945   setNumHungOffUseOperands(3);
1946 
1947   // Initialize the uselist with placeholder operands to allow traversal.
1948   auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
1949   Op<0>().set(CPN);
1950   Op<1>().set(CPN);
1951   Op<2>().set(CPN);
1952 }
1953 
1954 template <int Idx>
1955 void Function::setHungoffOperand(Constant *C) {
1956   if (C) {
1957     allocHungoffUselist();
1958     Op<Idx>().set(C);
1959   } else if (getNumOperands()) {
1960     Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0)));
1961   }
1962 }
1963 
1964 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1965   assert(Bit < 16 && "SubclassData contains only 16 bits");
1966   if (On)
1967     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1968   else
1969     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1970 }
1971 
1972 void Function::setEntryCount(ProfileCount Count,
1973                              const DenseSet<GlobalValue::GUID> *S) {
1974 #if !defined(NDEBUG)
1975   auto PrevCount = getEntryCount();
1976   assert(!PrevCount || PrevCount->getType() == Count.getType());
1977 #endif
1978 
1979   auto ImportGUIDs = getImportGUIDs();
1980   if (S == nullptr && ImportGUIDs.size())
1981     S = &ImportGUIDs;
1982 
1983   MDBuilder MDB(getContext());
1984   setMetadata(
1985       LLVMContext::MD_prof,
1986       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1987 }
1988 
1989 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1990                              const DenseSet<GlobalValue::GUID> *Imports) {
1991   setEntryCount(ProfileCount(Count, Type), Imports);
1992 }
1993 
1994 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
1995   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1996   if (MD && MD->getOperand(0))
1997     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1998       if (MDS->getString() == "function_entry_count") {
1999         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2000         uint64_t Count = CI->getValue().getZExtValue();
2001         // A value of -1 is used for SamplePGO when there were no samples.
2002         // Treat this the same as unknown.
2003         if (Count == (uint64_t)-1)
2004           return std::nullopt;
2005         return ProfileCount(Count, PCT_Real);
2006       } else if (AllowSynthetic &&
2007                  MDS->getString() == "synthetic_function_entry_count") {
2008         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2009         uint64_t Count = CI->getValue().getZExtValue();
2010         return ProfileCount(Count, PCT_Synthetic);
2011       }
2012     }
2013   return std::nullopt;
2014 }
2015 
2016 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2017   DenseSet<GlobalValue::GUID> R;
2018   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2019     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2020       if (MDS->getString() == "function_entry_count")
2021         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2022           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2023                        ->getValue()
2024                        .getZExtValue());
2025   return R;
2026 }
2027 
2028 void Function::setSectionPrefix(StringRef Prefix) {
2029   MDBuilder MDB(getContext());
2030   setMetadata(LLVMContext::MD_section_prefix,
2031               MDB.createFunctionSectionPrefix(Prefix));
2032 }
2033 
2034 std::optional<StringRef> Function::getSectionPrefix() const {
2035   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2036     assert(cast<MDString>(MD->getOperand(0))->getString() ==
2037                "function_section_prefix" &&
2038            "Metadata not match");
2039     return cast<MDString>(MD->getOperand(1))->getString();
2040   }
2041   return std::nullopt;
2042 }
2043 
2044 bool Function::nullPointerIsDefined() const {
2045   return hasFnAttribute(Attribute::NullPointerIsValid);
2046 }
2047 
2048 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2049   if (F && F->nullPointerIsDefined())
2050     return true;
2051 
2052   if (AS != 0)
2053     return true;
2054 
2055   return false;
2056 }
2057