1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallString.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringRef.h" 22 #include "llvm/IR/AbstractCallSite.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/IntrinsicsAArch64.h" 36 #include "llvm/IR/IntrinsicsAMDGPU.h" 37 #include "llvm/IR/IntrinsicsARM.h" 38 #include "llvm/IR/IntrinsicsBPF.h" 39 #include "llvm/IR/IntrinsicsDirectX.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsLoongArch.h" 42 #include "llvm/IR/IntrinsicsMips.h" 43 #include "llvm/IR/IntrinsicsNVPTX.h" 44 #include "llvm/IR/IntrinsicsPowerPC.h" 45 #include "llvm/IR/IntrinsicsR600.h" 46 #include "llvm/IR/IntrinsicsRISCV.h" 47 #include "llvm/IR/IntrinsicsS390.h" 48 #include "llvm/IR/IntrinsicsSPIRV.h" 49 #include "llvm/IR/IntrinsicsVE.h" 50 #include "llvm/IR/IntrinsicsWebAssembly.h" 51 #include "llvm/IR/IntrinsicsX86.h" 52 #include "llvm/IR/IntrinsicsXCore.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/MDBuilder.h" 55 #include "llvm/IR/Metadata.h" 56 #include "llvm/IR/Module.h" 57 #include "llvm/IR/Operator.h" 58 #include "llvm/IR/SymbolTableListTraits.h" 59 #include "llvm/IR/Type.h" 60 #include "llvm/IR/Use.h" 61 #include "llvm/IR/User.h" 62 #include "llvm/IR/Value.h" 63 #include "llvm/IR/ValueSymbolTable.h" 64 #include "llvm/Support/Casting.h" 65 #include "llvm/Support/CommandLine.h" 66 #include "llvm/Support/Compiler.h" 67 #include "llvm/Support/ErrorHandling.h" 68 #include "llvm/Support/ModRef.h" 69 #include <cassert> 70 #include <cstddef> 71 #include <cstdint> 72 #include <cstring> 73 #include <string> 74 75 using namespace llvm; 76 using ProfileCount = Function::ProfileCount; 77 78 // Explicit instantiations of SymbolTableListTraits since some of the methods 79 // are not in the public header file... 80 template class llvm::SymbolTableListTraits<BasicBlock>; 81 82 static cl::opt<unsigned> NonGlobalValueMaxNameSize( 83 "non-global-value-max-name-size", cl::Hidden, cl::init(1024), 84 cl::desc("Maximum size for the name of non-global values.")); 85 86 extern cl::opt<bool> UseNewDbgInfoFormat; 87 88 void Function::convertToNewDbgValues() { 89 IsNewDbgInfoFormat = true; 90 for (auto &BB : *this) { 91 BB.convertToNewDbgValues(); 92 } 93 } 94 95 void Function::convertFromNewDbgValues() { 96 IsNewDbgInfoFormat = false; 97 for (auto &BB : *this) { 98 BB.convertFromNewDbgValues(); 99 } 100 } 101 102 void Function::setIsNewDbgInfoFormat(bool NewFlag) { 103 if (NewFlag && !IsNewDbgInfoFormat) 104 convertToNewDbgValues(); 105 else if (!NewFlag && IsNewDbgInfoFormat) 106 convertFromNewDbgValues(); 107 } 108 void Function::setNewDbgInfoFormatFlag(bool NewFlag) { 109 for (auto &BB : *this) { 110 BB.setNewDbgInfoFormatFlag(NewFlag); 111 } 112 IsNewDbgInfoFormat = NewFlag; 113 } 114 115 //===----------------------------------------------------------------------===// 116 // Argument Implementation 117 //===----------------------------------------------------------------------===// 118 119 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 120 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 121 setName(Name); 122 } 123 124 void Argument::setParent(Function *parent) { 125 Parent = parent; 126 } 127 128 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 129 if (!getType()->isPointerTy()) return false; 130 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 131 (AllowUndefOrPoison || 132 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 133 return true; 134 else if (getDereferenceableBytes() > 0 && 135 !NullPointerIsDefined(getParent(), 136 getType()->getPointerAddressSpace())) 137 return true; 138 return false; 139 } 140 141 bool Argument::hasByValAttr() const { 142 if (!getType()->isPointerTy()) return false; 143 return hasAttribute(Attribute::ByVal); 144 } 145 146 bool Argument::hasByRefAttr() const { 147 if (!getType()->isPointerTy()) 148 return false; 149 return hasAttribute(Attribute::ByRef); 150 } 151 152 bool Argument::hasSwiftSelfAttr() const { 153 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 154 } 155 156 bool Argument::hasSwiftErrorAttr() const { 157 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 158 } 159 160 bool Argument::hasInAllocaAttr() const { 161 if (!getType()->isPointerTy()) return false; 162 return hasAttribute(Attribute::InAlloca); 163 } 164 165 bool Argument::hasPreallocatedAttr() const { 166 if (!getType()->isPointerTy()) 167 return false; 168 return hasAttribute(Attribute::Preallocated); 169 } 170 171 bool Argument::hasPassPointeeByValueCopyAttr() const { 172 if (!getType()->isPointerTy()) return false; 173 AttributeList Attrs = getParent()->getAttributes(); 174 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 175 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 176 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated); 177 } 178 179 bool Argument::hasPointeeInMemoryValueAttr() const { 180 if (!getType()->isPointerTy()) 181 return false; 182 AttributeList Attrs = getParent()->getAttributes(); 183 return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) || 184 Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) || 185 Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) || 186 Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) || 187 Attrs.hasParamAttr(getArgNo(), Attribute::ByRef); 188 } 189 190 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 191 /// parameter type. 192 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) { 193 // FIXME: All the type carrying attributes are mutually exclusive, so there 194 // should be a single query to get the stored type that handles any of them. 195 if (Type *ByValTy = ParamAttrs.getByValType()) 196 return ByValTy; 197 if (Type *ByRefTy = ParamAttrs.getByRefType()) 198 return ByRefTy; 199 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 200 return PreAllocTy; 201 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 202 return InAllocaTy; 203 if (Type *SRetTy = ParamAttrs.getStructRetType()) 204 return SRetTy; 205 206 return nullptr; 207 } 208 209 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 210 AttributeSet ParamAttrs = 211 getParent()->getAttributes().getParamAttrs(getArgNo()); 212 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs)) 213 return DL.getTypeAllocSize(MemTy); 214 return 0; 215 } 216 217 Type *Argument::getPointeeInMemoryValueType() const { 218 AttributeSet ParamAttrs = 219 getParent()->getAttributes().getParamAttrs(getArgNo()); 220 return getMemoryParamAllocType(ParamAttrs); 221 } 222 223 MaybeAlign Argument::getParamAlign() const { 224 assert(getType()->isPointerTy() && "Only pointers have alignments"); 225 return getParent()->getParamAlign(getArgNo()); 226 } 227 228 MaybeAlign Argument::getParamStackAlign() const { 229 return getParent()->getParamStackAlign(getArgNo()); 230 } 231 232 Type *Argument::getParamByValType() const { 233 assert(getType()->isPointerTy() && "Only pointers have byval types"); 234 return getParent()->getParamByValType(getArgNo()); 235 } 236 237 Type *Argument::getParamStructRetType() const { 238 assert(getType()->isPointerTy() && "Only pointers have sret types"); 239 return getParent()->getParamStructRetType(getArgNo()); 240 } 241 242 Type *Argument::getParamByRefType() const { 243 assert(getType()->isPointerTy() && "Only pointers have byref types"); 244 return getParent()->getParamByRefType(getArgNo()); 245 } 246 247 Type *Argument::getParamInAllocaType() const { 248 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 249 return getParent()->getParamInAllocaType(getArgNo()); 250 } 251 252 uint64_t Argument::getDereferenceableBytes() const { 253 assert(getType()->isPointerTy() && 254 "Only pointers have dereferenceable bytes"); 255 return getParent()->getParamDereferenceableBytes(getArgNo()); 256 } 257 258 uint64_t Argument::getDereferenceableOrNullBytes() const { 259 assert(getType()->isPointerTy() && 260 "Only pointers have dereferenceable bytes"); 261 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 262 } 263 264 FPClassTest Argument::getNoFPClass() const { 265 return getParent()->getParamNoFPClass(getArgNo()); 266 } 267 268 std::optional<ConstantRange> Argument::getRange() const { 269 const Attribute RangeAttr = getAttribute(llvm::Attribute::Range); 270 if (RangeAttr.isValid()) 271 return RangeAttr.getRange(); 272 return std::nullopt; 273 } 274 275 bool Argument::hasNestAttr() const { 276 if (!getType()->isPointerTy()) return false; 277 return hasAttribute(Attribute::Nest); 278 } 279 280 bool Argument::hasNoAliasAttr() const { 281 if (!getType()->isPointerTy()) return false; 282 return hasAttribute(Attribute::NoAlias); 283 } 284 285 bool Argument::hasNoCaptureAttr() const { 286 if (!getType()->isPointerTy()) return false; 287 return hasAttribute(Attribute::NoCapture); 288 } 289 290 bool Argument::hasNoFreeAttr() const { 291 if (!getType()->isPointerTy()) return false; 292 return hasAttribute(Attribute::NoFree); 293 } 294 295 bool Argument::hasStructRetAttr() const { 296 if (!getType()->isPointerTy()) return false; 297 return hasAttribute(Attribute::StructRet); 298 } 299 300 bool Argument::hasInRegAttr() const { 301 return hasAttribute(Attribute::InReg); 302 } 303 304 bool Argument::hasReturnedAttr() const { 305 return hasAttribute(Attribute::Returned); 306 } 307 308 bool Argument::hasZExtAttr() const { 309 return hasAttribute(Attribute::ZExt); 310 } 311 312 bool Argument::hasSExtAttr() const { 313 return hasAttribute(Attribute::SExt); 314 } 315 316 bool Argument::onlyReadsMemory() const { 317 AttributeList Attrs = getParent()->getAttributes(); 318 return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) || 319 Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone); 320 } 321 322 void Argument::addAttrs(AttrBuilder &B) { 323 AttributeList AL = getParent()->getAttributes(); 324 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 325 getParent()->setAttributes(AL); 326 } 327 328 void Argument::addAttr(Attribute::AttrKind Kind) { 329 getParent()->addParamAttr(getArgNo(), Kind); 330 } 331 332 void Argument::addAttr(Attribute Attr) { 333 getParent()->addParamAttr(getArgNo(), Attr); 334 } 335 336 void Argument::removeAttr(Attribute::AttrKind Kind) { 337 getParent()->removeParamAttr(getArgNo(), Kind); 338 } 339 340 void Argument::removeAttrs(const AttributeMask &AM) { 341 AttributeList AL = getParent()->getAttributes(); 342 AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM); 343 getParent()->setAttributes(AL); 344 } 345 346 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 347 return getParent()->hasParamAttribute(getArgNo(), Kind); 348 } 349 350 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 351 return getParent()->getParamAttribute(getArgNo(), Kind); 352 } 353 354 //===----------------------------------------------------------------------===// 355 // Helper Methods in Function 356 //===----------------------------------------------------------------------===// 357 358 LLVMContext &Function::getContext() const { 359 return getType()->getContext(); 360 } 361 362 unsigned Function::getInstructionCount() const { 363 unsigned NumInstrs = 0; 364 for (const BasicBlock &BB : BasicBlocks) 365 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 366 BB.instructionsWithoutDebug().end()); 367 return NumInstrs; 368 } 369 370 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 371 const Twine &N, Module &M) { 372 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 373 } 374 375 Function *Function::createWithDefaultAttr(FunctionType *Ty, 376 LinkageTypes Linkage, 377 unsigned AddrSpace, const Twine &N, 378 Module *M) { 379 auto *F = new Function(Ty, Linkage, AddrSpace, N, M); 380 AttrBuilder B(F->getContext()); 381 UWTableKind UWTable = M->getUwtable(); 382 if (UWTable != UWTableKind::None) 383 B.addUWTableAttr(UWTable); 384 switch (M->getFramePointer()) { 385 case FramePointerKind::None: 386 // 0 ("none") is the default. 387 break; 388 case FramePointerKind::NonLeaf: 389 B.addAttribute("frame-pointer", "non-leaf"); 390 break; 391 case FramePointerKind::All: 392 B.addAttribute("frame-pointer", "all"); 393 break; 394 } 395 if (M->getModuleFlag("function_return_thunk_extern")) 396 B.addAttribute(Attribute::FnRetThunkExtern); 397 F->addFnAttrs(B); 398 return F; 399 } 400 401 void Function::removeFromParent() { 402 getParent()->getFunctionList().remove(getIterator()); 403 } 404 405 void Function::eraseFromParent() { 406 getParent()->getFunctionList().erase(getIterator()); 407 } 408 409 void Function::splice(Function::iterator ToIt, Function *FromF, 410 Function::iterator FromBeginIt, 411 Function::iterator FromEndIt) { 412 #ifdef EXPENSIVE_CHECKS 413 // Check that FromBeginIt is before FromEndIt. 414 auto FromFEnd = FromF->end(); 415 for (auto It = FromBeginIt; It != FromEndIt; ++It) 416 assert(It != FromFEnd && "FromBeginIt not before FromEndIt!"); 417 #endif // EXPENSIVE_CHECKS 418 BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt); 419 } 420 421 Function::iterator Function::erase(Function::iterator FromIt, 422 Function::iterator ToIt) { 423 return BasicBlocks.erase(FromIt, ToIt); 424 } 425 426 //===----------------------------------------------------------------------===// 427 // Function Implementation 428 //===----------------------------------------------------------------------===// 429 430 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 431 // If AS == -1 and we are passed a valid module pointer we place the function 432 // in the program address space. Otherwise we default to AS0. 433 if (AddrSpace == static_cast<unsigned>(-1)) 434 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 435 return AddrSpace; 436 } 437 438 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 439 const Twine &name, Module *ParentModule) 440 : GlobalObject(Ty, Value::FunctionVal, 441 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 442 computeAddrSpace(AddrSpace, ParentModule)), 443 NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(UseNewDbgInfoFormat) { 444 assert(FunctionType::isValidReturnType(getReturnType()) && 445 "invalid return type"); 446 setGlobalObjectSubClassData(0); 447 448 // We only need a symbol table for a function if the context keeps value names 449 if (!getContext().shouldDiscardValueNames()) 450 SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize); 451 452 // If the function has arguments, mark them as lazily built. 453 if (Ty->getNumParams()) 454 setValueSubclassData(1); // Set the "has lazy arguments" bit. 455 456 if (ParentModule) { 457 ParentModule->getFunctionList().push_back(this); 458 IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat; 459 } 460 461 HasLLVMReservedName = getName().starts_with("llvm."); 462 // Ensure intrinsics have the right parameter attributes. 463 // Note, the IntID field will have been set in Value::setName if this function 464 // name is a valid intrinsic ID. 465 if (IntID) 466 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 467 } 468 469 Function::~Function() { 470 dropAllReferences(); // After this it is safe to delete instructions. 471 472 // Delete all of the method arguments and unlink from symbol table... 473 if (Arguments) 474 clearArguments(); 475 476 // Remove the function from the on-the-side GC table. 477 clearGC(); 478 } 479 480 void Function::BuildLazyArguments() const { 481 // Create the arguments vector, all arguments start out unnamed. 482 auto *FT = getFunctionType(); 483 if (NumArgs > 0) { 484 Arguments = std::allocator<Argument>().allocate(NumArgs); 485 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 486 Type *ArgTy = FT->getParamType(i); 487 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 488 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 489 } 490 } 491 492 // Clear the lazy arguments bit. 493 unsigned SDC = getSubclassDataFromValue(); 494 SDC &= ~(1 << 0); 495 const_cast<Function*>(this)->setValueSubclassData(SDC); 496 assert(!hasLazyArguments()); 497 } 498 499 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 500 return MutableArrayRef<Argument>(Args, Count); 501 } 502 503 bool Function::isConstrainedFPIntrinsic() const { 504 return Intrinsic::isConstrainedFPIntrinsic(getIntrinsicID()); 505 } 506 507 void Function::clearArguments() { 508 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 509 A.setName(""); 510 A.~Argument(); 511 } 512 std::allocator<Argument>().deallocate(Arguments, NumArgs); 513 Arguments = nullptr; 514 } 515 516 void Function::stealArgumentListFrom(Function &Src) { 517 assert(isDeclaration() && "Expected no references to current arguments"); 518 519 // Drop the current arguments, if any, and set the lazy argument bit. 520 if (!hasLazyArguments()) { 521 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 522 [](const Argument &A) { return A.use_empty(); }) && 523 "Expected arguments to be unused in declaration"); 524 clearArguments(); 525 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 526 } 527 528 // Nothing to steal if Src has lazy arguments. 529 if (Src.hasLazyArguments()) 530 return; 531 532 // Steal arguments from Src, and fix the lazy argument bits. 533 assert(arg_size() == Src.arg_size()); 534 Arguments = Src.Arguments; 535 Src.Arguments = nullptr; 536 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 537 // FIXME: This does the work of transferNodesFromList inefficiently. 538 SmallString<128> Name; 539 if (A.hasName()) 540 Name = A.getName(); 541 if (!Name.empty()) 542 A.setName(""); 543 A.setParent(this); 544 if (!Name.empty()) 545 A.setName(Name); 546 } 547 548 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 549 assert(!hasLazyArguments()); 550 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 551 } 552 553 void Function::deleteBodyImpl(bool ShouldDrop) { 554 setIsMaterializable(false); 555 556 for (BasicBlock &BB : *this) 557 BB.dropAllReferences(); 558 559 // Delete all basic blocks. They are now unused, except possibly by 560 // blockaddresses, but BasicBlock's destructor takes care of those. 561 while (!BasicBlocks.empty()) 562 BasicBlocks.begin()->eraseFromParent(); 563 564 if (getNumOperands()) { 565 if (ShouldDrop) { 566 // Drop uses of any optional data (real or placeholder). 567 User::dropAllReferences(); 568 setNumHungOffUseOperands(0); 569 } else { 570 // The code needs to match Function::allocHungoffUselist(). 571 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 572 Op<0>().set(CPN); 573 Op<1>().set(CPN); 574 Op<2>().set(CPN); 575 } 576 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 577 } 578 579 // Metadata is stored in a side-table. 580 clearMetadata(); 581 } 582 583 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) { 584 AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr); 585 } 586 587 void Function::addFnAttr(Attribute::AttrKind Kind) { 588 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind); 589 } 590 591 void Function::addFnAttr(StringRef Kind, StringRef Val) { 592 AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val); 593 } 594 595 void Function::addFnAttr(Attribute Attr) { 596 AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr); 597 } 598 599 void Function::addFnAttrs(const AttrBuilder &Attrs) { 600 AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs); 601 } 602 603 void Function::addRetAttr(Attribute::AttrKind Kind) { 604 AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind); 605 } 606 607 void Function::addRetAttr(Attribute Attr) { 608 AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr); 609 } 610 611 void Function::addRetAttrs(const AttrBuilder &Attrs) { 612 AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs); 613 } 614 615 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 616 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind); 617 } 618 619 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 620 AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr); 621 } 622 623 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 624 AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs); 625 } 626 627 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) { 628 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 629 } 630 631 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) { 632 AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind); 633 } 634 635 void Function::removeFnAttr(Attribute::AttrKind Kind) { 636 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 637 } 638 639 void Function::removeFnAttr(StringRef Kind) { 640 AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind); 641 } 642 643 void Function::removeFnAttrs(const AttributeMask &AM) { 644 AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM); 645 } 646 647 void Function::removeRetAttr(Attribute::AttrKind Kind) { 648 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 649 } 650 651 void Function::removeRetAttr(StringRef Kind) { 652 AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind); 653 } 654 655 void Function::removeRetAttrs(const AttributeMask &Attrs) { 656 AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs); 657 } 658 659 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 660 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 661 } 662 663 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 664 AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind); 665 } 666 667 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) { 668 AttributeSets = 669 AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs); 670 } 671 672 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 673 AttributeSets = 674 AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 675 } 676 677 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const { 678 return AttributeSets.hasFnAttr(Kind); 679 } 680 681 bool Function::hasFnAttribute(StringRef Kind) const { 682 return AttributeSets.hasFnAttr(Kind); 683 } 684 685 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const { 686 return AttributeSets.hasRetAttr(Kind); 687 } 688 689 bool Function::hasParamAttribute(unsigned ArgNo, 690 Attribute::AttrKind Kind) const { 691 return AttributeSets.hasParamAttr(ArgNo, Kind); 692 } 693 694 Attribute Function::getAttributeAtIndex(unsigned i, 695 Attribute::AttrKind Kind) const { 696 return AttributeSets.getAttributeAtIndex(i, Kind); 697 } 698 699 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const { 700 return AttributeSets.getAttributeAtIndex(i, Kind); 701 } 702 703 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const { 704 return AttributeSets.getFnAttr(Kind); 705 } 706 707 Attribute Function::getFnAttribute(StringRef Kind) const { 708 return AttributeSets.getFnAttr(Kind); 709 } 710 711 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const { 712 return AttributeSets.getRetAttr(Kind); 713 } 714 715 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name, 716 uint64_t Default) const { 717 Attribute A = getFnAttribute(Name); 718 uint64_t Result = Default; 719 if (A.isStringAttribute()) { 720 StringRef Str = A.getValueAsString(); 721 if (Str.getAsInteger(0, Result)) 722 getContext().emitError("cannot parse integer attribute " + Name); 723 } 724 725 return Result; 726 } 727 728 /// gets the specified attribute from the list of attributes. 729 Attribute Function::getParamAttribute(unsigned ArgNo, 730 Attribute::AttrKind Kind) const { 731 return AttributeSets.getParamAttr(ArgNo, Kind); 732 } 733 734 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 735 uint64_t Bytes) { 736 AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(), 737 ArgNo, Bytes); 738 } 739 740 void Function::addRangeRetAttr(const ConstantRange &CR) { 741 AttributeSets = AttributeSets.addRangeRetAttr(getContext(), CR); 742 } 743 744 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 745 if (&FPType == &APFloat::IEEEsingle()) { 746 DenormalMode Mode = getDenormalModeF32Raw(); 747 // If the f32 variant of the attribute isn't specified, try to use the 748 // generic one. 749 if (Mode.isValid()) 750 return Mode; 751 } 752 753 return getDenormalModeRaw(); 754 } 755 756 DenormalMode Function::getDenormalModeRaw() const { 757 Attribute Attr = getFnAttribute("denormal-fp-math"); 758 StringRef Val = Attr.getValueAsString(); 759 return parseDenormalFPAttribute(Val); 760 } 761 762 DenormalMode Function::getDenormalModeF32Raw() const { 763 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 764 if (Attr.isValid()) { 765 StringRef Val = Attr.getValueAsString(); 766 return parseDenormalFPAttribute(Val); 767 } 768 769 return DenormalMode::getInvalid(); 770 } 771 772 const std::string &Function::getGC() const { 773 assert(hasGC() && "Function has no collector"); 774 return getContext().getGC(*this); 775 } 776 777 void Function::setGC(std::string Str) { 778 setValueSubclassDataBit(14, !Str.empty()); 779 getContext().setGC(*this, std::move(Str)); 780 } 781 782 void Function::clearGC() { 783 if (!hasGC()) 784 return; 785 getContext().deleteGC(*this); 786 setValueSubclassDataBit(14, false); 787 } 788 789 bool Function::hasStackProtectorFnAttr() const { 790 return hasFnAttribute(Attribute::StackProtect) || 791 hasFnAttribute(Attribute::StackProtectStrong) || 792 hasFnAttribute(Attribute::StackProtectReq); 793 } 794 795 /// Copy all additional attributes (those not needed to create a Function) from 796 /// the Function Src to this one. 797 void Function::copyAttributesFrom(const Function *Src) { 798 GlobalObject::copyAttributesFrom(Src); 799 setCallingConv(Src->getCallingConv()); 800 setAttributes(Src->getAttributes()); 801 if (Src->hasGC()) 802 setGC(Src->getGC()); 803 else 804 clearGC(); 805 if (Src->hasPersonalityFn()) 806 setPersonalityFn(Src->getPersonalityFn()); 807 if (Src->hasPrefixData()) 808 setPrefixData(Src->getPrefixData()); 809 if (Src->hasPrologueData()) 810 setPrologueData(Src->getPrologueData()); 811 } 812 813 MemoryEffects Function::getMemoryEffects() const { 814 return getAttributes().getMemoryEffects(); 815 } 816 void Function::setMemoryEffects(MemoryEffects ME) { 817 addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME)); 818 } 819 820 /// Determine if the function does not access memory. 821 bool Function::doesNotAccessMemory() const { 822 return getMemoryEffects().doesNotAccessMemory(); 823 } 824 void Function::setDoesNotAccessMemory() { 825 setMemoryEffects(MemoryEffects::none()); 826 } 827 828 /// Determine if the function does not access or only reads memory. 829 bool Function::onlyReadsMemory() const { 830 return getMemoryEffects().onlyReadsMemory(); 831 } 832 void Function::setOnlyReadsMemory() { 833 setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly()); 834 } 835 836 /// Determine if the function does not access or only writes memory. 837 bool Function::onlyWritesMemory() const { 838 return getMemoryEffects().onlyWritesMemory(); 839 } 840 void Function::setOnlyWritesMemory() { 841 setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly()); 842 } 843 844 /// Determine if the call can access memmory only using pointers based 845 /// on its arguments. 846 bool Function::onlyAccessesArgMemory() const { 847 return getMemoryEffects().onlyAccessesArgPointees(); 848 } 849 void Function::setOnlyAccessesArgMemory() { 850 setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly()); 851 } 852 853 /// Determine if the function may only access memory that is 854 /// inaccessible from the IR. 855 bool Function::onlyAccessesInaccessibleMemory() const { 856 return getMemoryEffects().onlyAccessesInaccessibleMem(); 857 } 858 void Function::setOnlyAccessesInaccessibleMemory() { 859 setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly()); 860 } 861 862 /// Determine if the function may only access memory that is 863 /// either inaccessible from the IR or pointed to by its arguments. 864 bool Function::onlyAccessesInaccessibleMemOrArgMem() const { 865 return getMemoryEffects().onlyAccessesInaccessibleOrArgMem(); 866 } 867 void Function::setOnlyAccessesInaccessibleMemOrArgMem() { 868 setMemoryEffects(getMemoryEffects() & 869 MemoryEffects::inaccessibleOrArgMemOnly()); 870 } 871 872 /// Table of string intrinsic names indexed by enum value. 873 static const char * const IntrinsicNameTable[] = { 874 "not_intrinsic", 875 #define GET_INTRINSIC_NAME_TABLE 876 #include "llvm/IR/IntrinsicImpl.inc" 877 #undef GET_INTRINSIC_NAME_TABLE 878 }; 879 880 /// Table of per-target intrinsic name tables. 881 #define GET_INTRINSIC_TARGET_DATA 882 #include "llvm/IR/IntrinsicImpl.inc" 883 #undef GET_INTRINSIC_TARGET_DATA 884 885 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 886 return IID > TargetInfos[0].Count; 887 } 888 889 bool Function::isTargetIntrinsic() const { 890 return isTargetIntrinsic(IntID); 891 } 892 893 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 894 /// target as \c Name, or the generic table if \c Name is not target specific. 895 /// 896 /// Returns the relevant slice of \c IntrinsicNameTable 897 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 898 assert(Name.starts_with("llvm.")); 899 900 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 901 // Drop "llvm." and take the first dotted component. That will be the target 902 // if this is target specific. 903 StringRef Target = Name.drop_front(5).split('.').first; 904 auto It = partition_point( 905 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 906 // We've either found the target or just fall back to the generic set, which 907 // is always first. 908 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 909 return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 910 } 911 912 /// This does the actual lookup of an intrinsic ID which 913 /// matches the given function name. 914 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 915 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 916 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 917 if (Idx == -1) 918 return Intrinsic::not_intrinsic; 919 920 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 921 // an index into a sub-table. 922 int Adjust = NameTable.data() - IntrinsicNameTable; 923 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 924 925 // If the intrinsic is not overloaded, require an exact match. If it is 926 // overloaded, require either exact or prefix match. 927 const auto MatchSize = strlen(NameTable[Idx]); 928 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 929 bool IsExactMatch = Name.size() == MatchSize; 930 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 931 : Intrinsic::not_intrinsic; 932 } 933 934 void Function::updateAfterNameChange() { 935 LibFuncCache = UnknownLibFunc; 936 StringRef Name = getName(); 937 if (!Name.starts_with("llvm.")) { 938 HasLLVMReservedName = false; 939 IntID = Intrinsic::not_intrinsic; 940 return; 941 } 942 HasLLVMReservedName = true; 943 IntID = lookupIntrinsicID(Name); 944 } 945 946 /// Returns a stable mangling for the type specified for use in the name 947 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 948 /// of named types is simply their name. Manglings for unnamed types consist 949 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 950 /// combined with the mangling of their component types. A vararg function 951 /// type will have a suffix of 'vararg'. Since function types can contain 952 /// other function types, we close a function type mangling with suffix 'f' 953 /// which can't be confused with it's prefix. This ensures we don't have 954 /// collisions between two unrelated function types. Otherwise, you might 955 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 956 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 957 /// indicating that extra care must be taken to ensure a unique name. 958 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 959 std::string Result; 960 if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) { 961 Result += "p" + utostr(PTyp->getAddressSpace()); 962 } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) { 963 Result += "a" + utostr(ATyp->getNumElements()) + 964 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 965 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 966 if (!STyp->isLiteral()) { 967 Result += "s_"; 968 if (STyp->hasName()) 969 Result += STyp->getName(); 970 else 971 HasUnnamedType = true; 972 } else { 973 Result += "sl_"; 974 for (auto *Elem : STyp->elements()) 975 Result += getMangledTypeStr(Elem, HasUnnamedType); 976 } 977 // Ensure nested structs are distinguishable. 978 Result += "s"; 979 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 980 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 981 for (size_t i = 0; i < FT->getNumParams(); i++) 982 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 983 if (FT->isVarArg()) 984 Result += "vararg"; 985 // Ensure nested function types are distinguishable. 986 Result += "f"; 987 } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 988 ElementCount EC = VTy->getElementCount(); 989 if (EC.isScalable()) 990 Result += "nx"; 991 Result += "v" + utostr(EC.getKnownMinValue()) + 992 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 993 } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) { 994 Result += "t"; 995 Result += TETy->getName(); 996 for (Type *ParamTy : TETy->type_params()) 997 Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType); 998 for (unsigned IntParam : TETy->int_params()) 999 Result += "_" + utostr(IntParam); 1000 // Ensure nested target extension types are distinguishable. 1001 Result += "t"; 1002 } else if (Ty) { 1003 switch (Ty->getTypeID()) { 1004 default: llvm_unreachable("Unhandled type"); 1005 case Type::VoidTyID: Result += "isVoid"; break; 1006 case Type::MetadataTyID: Result += "Metadata"; break; 1007 case Type::HalfTyID: Result += "f16"; break; 1008 case Type::BFloatTyID: Result += "bf16"; break; 1009 case Type::FloatTyID: Result += "f32"; break; 1010 case Type::DoubleTyID: Result += "f64"; break; 1011 case Type::X86_FP80TyID: Result += "f80"; break; 1012 case Type::FP128TyID: Result += "f128"; break; 1013 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 1014 case Type::X86_MMXTyID: Result += "x86mmx"; break; 1015 case Type::X86_AMXTyID: Result += "x86amx"; break; 1016 case Type::IntegerTyID: 1017 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 1018 break; 1019 } 1020 } 1021 return Result; 1022 } 1023 1024 StringRef Intrinsic::getBaseName(ID id) { 1025 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1026 return IntrinsicNameTable[id]; 1027 } 1028 1029 StringRef Intrinsic::getName(ID id) { 1030 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 1031 assert(!Intrinsic::isOverloaded(id) && 1032 "This version of getName does not support overloading"); 1033 return getBaseName(id); 1034 } 1035 1036 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys, 1037 Module *M, FunctionType *FT, 1038 bool EarlyModuleCheck) { 1039 1040 assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!"); 1041 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 1042 "This version of getName is for overloaded intrinsics only"); 1043 (void)EarlyModuleCheck; 1044 assert((!EarlyModuleCheck || M || 1045 !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) && 1046 "Intrinsic overloading on pointer types need to provide a Module"); 1047 bool HasUnnamedType = false; 1048 std::string Result(Intrinsic::getBaseName(Id)); 1049 for (Type *Ty : Tys) 1050 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 1051 if (HasUnnamedType) { 1052 assert(M && "unnamed types need a module"); 1053 if (!FT) 1054 FT = Intrinsic::getType(M->getContext(), Id, Tys); 1055 else 1056 assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) && 1057 "Provided FunctionType must match arguments"); 1058 return M->getUniqueIntrinsicName(Result, Id, FT); 1059 } 1060 return Result; 1061 } 1062 1063 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 1064 FunctionType *FT) { 1065 assert(M && "We need to have a Module"); 1066 return getIntrinsicNameImpl(Id, Tys, M, FT, true); 1067 } 1068 1069 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) { 1070 return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false); 1071 } 1072 1073 /// IIT_Info - These are enumerators that describe the entries returned by the 1074 /// getIntrinsicInfoTableEntries function. 1075 /// 1076 /// Defined in Intrinsics.td. 1077 enum IIT_Info { 1078 #define GET_INTRINSIC_IITINFO 1079 #include "llvm/IR/IntrinsicImpl.inc" 1080 #undef GET_INTRINSIC_IITINFO 1081 }; 1082 1083 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 1084 IIT_Info LastInfo, 1085 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 1086 using namespace Intrinsic; 1087 1088 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 1089 1090 IIT_Info Info = IIT_Info(Infos[NextElt++]); 1091 unsigned StructElts = 2; 1092 1093 switch (Info) { 1094 case IIT_Done: 1095 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 1096 return; 1097 case IIT_VARARG: 1098 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 1099 return; 1100 case IIT_MMX: 1101 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 1102 return; 1103 case IIT_AMX: 1104 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 1105 return; 1106 case IIT_TOKEN: 1107 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 1108 return; 1109 case IIT_METADATA: 1110 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 1111 return; 1112 case IIT_F16: 1113 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 1114 return; 1115 case IIT_BF16: 1116 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 1117 return; 1118 case IIT_F32: 1119 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 1120 return; 1121 case IIT_F64: 1122 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 1123 return; 1124 case IIT_F128: 1125 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 1126 return; 1127 case IIT_PPCF128: 1128 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0)); 1129 return; 1130 case IIT_I1: 1131 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 1132 return; 1133 case IIT_I2: 1134 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2)); 1135 return; 1136 case IIT_I4: 1137 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4)); 1138 return; 1139 case IIT_AARCH64_SVCOUNT: 1140 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0)); 1141 return; 1142 case IIT_I8: 1143 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 1144 return; 1145 case IIT_I16: 1146 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 1147 return; 1148 case IIT_I32: 1149 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 1150 return; 1151 case IIT_I64: 1152 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 1153 return; 1154 case IIT_I128: 1155 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 1156 return; 1157 case IIT_V1: 1158 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 1159 DecodeIITType(NextElt, Infos, Info, OutputTable); 1160 return; 1161 case IIT_V2: 1162 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 1163 DecodeIITType(NextElt, Infos, Info, OutputTable); 1164 return; 1165 case IIT_V3: 1166 OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector)); 1167 DecodeIITType(NextElt, Infos, Info, OutputTable); 1168 return; 1169 case IIT_V4: 1170 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 1171 DecodeIITType(NextElt, Infos, Info, OutputTable); 1172 return; 1173 case IIT_V6: 1174 OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector)); 1175 DecodeIITType(NextElt, Infos, Info, OutputTable); 1176 return; 1177 case IIT_V8: 1178 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 1179 DecodeIITType(NextElt, Infos, Info, OutputTable); 1180 return; 1181 case IIT_V10: 1182 OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector)); 1183 DecodeIITType(NextElt, Infos, Info, OutputTable); 1184 return; 1185 case IIT_V16: 1186 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 1187 DecodeIITType(NextElt, Infos, Info, OutputTable); 1188 return; 1189 case IIT_V32: 1190 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 1191 DecodeIITType(NextElt, Infos, Info, OutputTable); 1192 return; 1193 case IIT_V64: 1194 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 1195 DecodeIITType(NextElt, Infos, Info, OutputTable); 1196 return; 1197 case IIT_V128: 1198 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 1199 DecodeIITType(NextElt, Infos, Info, OutputTable); 1200 return; 1201 case IIT_V256: 1202 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 1203 DecodeIITType(NextElt, Infos, Info, OutputTable); 1204 return; 1205 case IIT_V512: 1206 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 1207 DecodeIITType(NextElt, Infos, Info, OutputTable); 1208 return; 1209 case IIT_V1024: 1210 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1211 DecodeIITType(NextElt, Infos, Info, OutputTable); 1212 return; 1213 case IIT_EXTERNREF: 1214 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10)); 1215 return; 1216 case IIT_FUNCREF: 1217 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20)); 1218 return; 1219 case IIT_PTR: 1220 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1221 return; 1222 case IIT_ANYPTR: // [ANYPTR addrspace] 1223 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1224 Infos[NextElt++])); 1225 return; 1226 case IIT_ARG: { 1227 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1228 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1229 return; 1230 } 1231 case IIT_EXTEND_ARG: { 1232 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1233 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1234 ArgInfo)); 1235 return; 1236 } 1237 case IIT_TRUNC_ARG: { 1238 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1239 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1240 ArgInfo)); 1241 return; 1242 } 1243 case IIT_HALF_VEC_ARG: { 1244 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1245 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1246 ArgInfo)); 1247 return; 1248 } 1249 case IIT_SAME_VEC_WIDTH_ARG: { 1250 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1251 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1252 ArgInfo)); 1253 return; 1254 } 1255 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1256 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1257 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1258 OutputTable.push_back( 1259 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1260 return; 1261 } 1262 case IIT_EMPTYSTRUCT: 1263 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1264 return; 1265 case IIT_STRUCT9: ++StructElts; [[fallthrough]]; 1266 case IIT_STRUCT8: ++StructElts; [[fallthrough]]; 1267 case IIT_STRUCT7: ++StructElts; [[fallthrough]]; 1268 case IIT_STRUCT6: ++StructElts; [[fallthrough]]; 1269 case IIT_STRUCT5: ++StructElts; [[fallthrough]]; 1270 case IIT_STRUCT4: ++StructElts; [[fallthrough]]; 1271 case IIT_STRUCT3: ++StructElts; [[fallthrough]]; 1272 case IIT_STRUCT2: { 1273 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1274 1275 for (unsigned i = 0; i != StructElts; ++i) 1276 DecodeIITType(NextElt, Infos, Info, OutputTable); 1277 return; 1278 } 1279 case IIT_SUBDIVIDE2_ARG: { 1280 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1281 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1282 ArgInfo)); 1283 return; 1284 } 1285 case IIT_SUBDIVIDE4_ARG: { 1286 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1287 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1288 ArgInfo)); 1289 return; 1290 } 1291 case IIT_VEC_ELEMENT: { 1292 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1293 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1294 ArgInfo)); 1295 return; 1296 } 1297 case IIT_SCALABLE_VEC: { 1298 DecodeIITType(NextElt, Infos, Info, OutputTable); 1299 return; 1300 } 1301 case IIT_VEC_OF_BITCASTS_TO_INT: { 1302 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1303 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1304 ArgInfo)); 1305 return; 1306 } 1307 } 1308 llvm_unreachable("unhandled"); 1309 } 1310 1311 #define GET_INTRINSIC_GENERATOR_GLOBAL 1312 #include "llvm/IR/IntrinsicImpl.inc" 1313 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1314 1315 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1316 SmallVectorImpl<IITDescriptor> &T){ 1317 // Check to see if the intrinsic's type was expressible by the table. 1318 unsigned TableVal = IIT_Table[id-1]; 1319 1320 // Decode the TableVal into an array of IITValues. 1321 SmallVector<unsigned char, 8> IITValues; 1322 ArrayRef<unsigned char> IITEntries; 1323 unsigned NextElt = 0; 1324 if ((TableVal >> 31) != 0) { 1325 // This is an offset into the IIT_LongEncodingTable. 1326 IITEntries = IIT_LongEncodingTable; 1327 1328 // Strip sentinel bit. 1329 NextElt = (TableVal << 1) >> 1; 1330 } else { 1331 // Decode the TableVal into an array of IITValues. If the entry was encoded 1332 // into a single word in the table itself, decode it now. 1333 do { 1334 IITValues.push_back(TableVal & 0xF); 1335 TableVal >>= 4; 1336 } while (TableVal); 1337 1338 IITEntries = IITValues; 1339 NextElt = 0; 1340 } 1341 1342 // Okay, decode the table into the output vector of IITDescriptors. 1343 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1344 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1345 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1346 } 1347 1348 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1349 ArrayRef<Type*> Tys, LLVMContext &Context) { 1350 using namespace Intrinsic; 1351 1352 IITDescriptor D = Infos.front(); 1353 Infos = Infos.slice(1); 1354 1355 switch (D.Kind) { 1356 case IITDescriptor::Void: return Type::getVoidTy(Context); 1357 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1358 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1359 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1360 case IITDescriptor::Token: return Type::getTokenTy(Context); 1361 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1362 case IITDescriptor::Half: return Type::getHalfTy(Context); 1363 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1364 case IITDescriptor::Float: return Type::getFloatTy(Context); 1365 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1366 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1367 case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context); 1368 case IITDescriptor::AArch64Svcount: 1369 return TargetExtType::get(Context, "aarch64.svcount"); 1370 1371 case IITDescriptor::Integer: 1372 return IntegerType::get(Context, D.Integer_Width); 1373 case IITDescriptor::Vector: 1374 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1375 D.Vector_Width); 1376 case IITDescriptor::Pointer: 1377 return PointerType::get(Context, D.Pointer_AddressSpace); 1378 case IITDescriptor::Struct: { 1379 SmallVector<Type *, 8> Elts; 1380 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1381 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1382 return StructType::get(Context, Elts); 1383 } 1384 case IITDescriptor::Argument: 1385 return Tys[D.getArgumentNumber()]; 1386 case IITDescriptor::ExtendArgument: { 1387 Type *Ty = Tys[D.getArgumentNumber()]; 1388 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1389 return VectorType::getExtendedElementVectorType(VTy); 1390 1391 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1392 } 1393 case IITDescriptor::TruncArgument: { 1394 Type *Ty = Tys[D.getArgumentNumber()]; 1395 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1396 return VectorType::getTruncatedElementVectorType(VTy); 1397 1398 IntegerType *ITy = cast<IntegerType>(Ty); 1399 assert(ITy->getBitWidth() % 2 == 0); 1400 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1401 } 1402 case IITDescriptor::Subdivide2Argument: 1403 case IITDescriptor::Subdivide4Argument: { 1404 Type *Ty = Tys[D.getArgumentNumber()]; 1405 VectorType *VTy = dyn_cast<VectorType>(Ty); 1406 assert(VTy && "Expected an argument of Vector Type"); 1407 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1408 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1409 } 1410 case IITDescriptor::HalfVecArgument: 1411 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1412 Tys[D.getArgumentNumber()])); 1413 case IITDescriptor::SameVecWidthArgument: { 1414 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1415 Type *Ty = Tys[D.getArgumentNumber()]; 1416 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1417 return VectorType::get(EltTy, VTy->getElementCount()); 1418 return EltTy; 1419 } 1420 case IITDescriptor::VecElementArgument: { 1421 Type *Ty = Tys[D.getArgumentNumber()]; 1422 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1423 return VTy->getElementType(); 1424 llvm_unreachable("Expected an argument of Vector Type"); 1425 } 1426 case IITDescriptor::VecOfBitcastsToInt: { 1427 Type *Ty = Tys[D.getArgumentNumber()]; 1428 VectorType *VTy = dyn_cast<VectorType>(Ty); 1429 assert(VTy && "Expected an argument of Vector Type"); 1430 return VectorType::getInteger(VTy); 1431 } 1432 case IITDescriptor::VecOfAnyPtrsToElt: 1433 // Return the overloaded type (which determines the pointers address space) 1434 return Tys[D.getOverloadArgNumber()]; 1435 } 1436 llvm_unreachable("unhandled"); 1437 } 1438 1439 FunctionType *Intrinsic::getType(LLVMContext &Context, 1440 ID id, ArrayRef<Type*> Tys) { 1441 SmallVector<IITDescriptor, 8> Table; 1442 getIntrinsicInfoTableEntries(id, Table); 1443 1444 ArrayRef<IITDescriptor> TableRef = Table; 1445 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1446 1447 SmallVector<Type*, 8> ArgTys; 1448 while (!TableRef.empty()) 1449 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1450 1451 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1452 // If we see void type as the type of the last argument, it is vararg intrinsic 1453 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1454 ArgTys.pop_back(); 1455 return FunctionType::get(ResultTy, ArgTys, true); 1456 } 1457 return FunctionType::get(ResultTy, ArgTys, false); 1458 } 1459 1460 bool Intrinsic::isOverloaded(ID id) { 1461 #define GET_INTRINSIC_OVERLOAD_TABLE 1462 #include "llvm/IR/IntrinsicImpl.inc" 1463 #undef GET_INTRINSIC_OVERLOAD_TABLE 1464 } 1465 1466 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1467 #define GET_INTRINSIC_ATTRIBUTES 1468 #include "llvm/IR/IntrinsicImpl.inc" 1469 #undef GET_INTRINSIC_ATTRIBUTES 1470 1471 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1472 // There can never be multiple globals with the same name of different types, 1473 // because intrinsics must be a specific type. 1474 auto *FT = getType(M->getContext(), id, Tys); 1475 return cast<Function>( 1476 M->getOrInsertFunction( 1477 Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT) 1478 .getCallee()); 1479 } 1480 1481 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method. 1482 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1483 #include "llvm/IR/IntrinsicImpl.inc" 1484 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN 1485 1486 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1487 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1488 #include "llvm/IR/IntrinsicImpl.inc" 1489 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1490 1491 bool Intrinsic::isConstrainedFPIntrinsic(ID QID) { 1492 switch (QID) { 1493 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 1494 case Intrinsic::INTRINSIC: 1495 #include "llvm/IR/ConstrainedOps.def" 1496 return true; 1497 #undef INSTRUCTION 1498 default: 1499 return false; 1500 } 1501 } 1502 1503 using DeferredIntrinsicMatchPair = 1504 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1505 1506 static bool matchIntrinsicType( 1507 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1508 SmallVectorImpl<Type *> &ArgTys, 1509 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1510 bool IsDeferredCheck) { 1511 using namespace Intrinsic; 1512 1513 // If we ran out of descriptors, there are too many arguments. 1514 if (Infos.empty()) return true; 1515 1516 // Do this before slicing off the 'front' part 1517 auto InfosRef = Infos; 1518 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1519 DeferredChecks.emplace_back(T, InfosRef); 1520 return false; 1521 }; 1522 1523 IITDescriptor D = Infos.front(); 1524 Infos = Infos.slice(1); 1525 1526 switch (D.Kind) { 1527 case IITDescriptor::Void: return !Ty->isVoidTy(); 1528 case IITDescriptor::VarArg: return true; 1529 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1530 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1531 case IITDescriptor::Token: return !Ty->isTokenTy(); 1532 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1533 case IITDescriptor::Half: return !Ty->isHalfTy(); 1534 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1535 case IITDescriptor::Float: return !Ty->isFloatTy(); 1536 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1537 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1538 case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty(); 1539 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1540 case IITDescriptor::AArch64Svcount: 1541 return !isa<TargetExtType>(Ty) || 1542 cast<TargetExtType>(Ty)->getName() != "aarch64.svcount"; 1543 case IITDescriptor::Vector: { 1544 VectorType *VT = dyn_cast<VectorType>(Ty); 1545 return !VT || VT->getElementCount() != D.Vector_Width || 1546 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1547 DeferredChecks, IsDeferredCheck); 1548 } 1549 case IITDescriptor::Pointer: { 1550 PointerType *PT = dyn_cast<PointerType>(Ty); 1551 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace; 1552 } 1553 1554 case IITDescriptor::Struct: { 1555 StructType *ST = dyn_cast<StructType>(Ty); 1556 if (!ST || !ST->isLiteral() || ST->isPacked() || 1557 ST->getNumElements() != D.Struct_NumElements) 1558 return true; 1559 1560 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1561 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1562 DeferredChecks, IsDeferredCheck)) 1563 return true; 1564 return false; 1565 } 1566 1567 case IITDescriptor::Argument: 1568 // If this is the second occurrence of an argument, 1569 // verify that the later instance matches the previous instance. 1570 if (D.getArgumentNumber() < ArgTys.size()) 1571 return Ty != ArgTys[D.getArgumentNumber()]; 1572 1573 if (D.getArgumentNumber() > ArgTys.size() || 1574 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1575 return IsDeferredCheck || DeferCheck(Ty); 1576 1577 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1578 "Table consistency error"); 1579 ArgTys.push_back(Ty); 1580 1581 switch (D.getArgumentKind()) { 1582 case IITDescriptor::AK_Any: return false; // Success 1583 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1584 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1585 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1586 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1587 default: break; 1588 } 1589 llvm_unreachable("all argument kinds not covered"); 1590 1591 case IITDescriptor::ExtendArgument: { 1592 // If this is a forward reference, defer the check for later. 1593 if (D.getArgumentNumber() >= ArgTys.size()) 1594 return IsDeferredCheck || DeferCheck(Ty); 1595 1596 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1597 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1598 NewTy = VectorType::getExtendedElementVectorType(VTy); 1599 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1600 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1601 else 1602 return true; 1603 1604 return Ty != NewTy; 1605 } 1606 case IITDescriptor::TruncArgument: { 1607 // If this is a forward reference, defer the check for later. 1608 if (D.getArgumentNumber() >= ArgTys.size()) 1609 return IsDeferredCheck || DeferCheck(Ty); 1610 1611 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1612 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1613 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1614 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1615 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1616 else 1617 return true; 1618 1619 return Ty != NewTy; 1620 } 1621 case IITDescriptor::HalfVecArgument: 1622 // If this is a forward reference, defer the check for later. 1623 if (D.getArgumentNumber() >= ArgTys.size()) 1624 return IsDeferredCheck || DeferCheck(Ty); 1625 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1626 VectorType::getHalfElementsVectorType( 1627 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1628 case IITDescriptor::SameVecWidthArgument: { 1629 if (D.getArgumentNumber() >= ArgTys.size()) { 1630 // Defer check and subsequent check for the vector element type. 1631 Infos = Infos.slice(1); 1632 return IsDeferredCheck || DeferCheck(Ty); 1633 } 1634 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1635 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1636 // Both must be vectors of the same number of elements or neither. 1637 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1638 return true; 1639 Type *EltTy = Ty; 1640 if (ThisArgType) { 1641 if (ReferenceType->getElementCount() != 1642 ThisArgType->getElementCount()) 1643 return true; 1644 EltTy = ThisArgType->getElementType(); 1645 } 1646 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1647 IsDeferredCheck); 1648 } 1649 case IITDescriptor::VecOfAnyPtrsToElt: { 1650 unsigned RefArgNumber = D.getRefArgNumber(); 1651 if (RefArgNumber >= ArgTys.size()) { 1652 if (IsDeferredCheck) 1653 return true; 1654 // If forward referencing, already add the pointer-vector type and 1655 // defer the checks for later. 1656 ArgTys.push_back(Ty); 1657 return DeferCheck(Ty); 1658 } 1659 1660 if (!IsDeferredCheck){ 1661 assert(D.getOverloadArgNumber() == ArgTys.size() && 1662 "Table consistency error"); 1663 ArgTys.push_back(Ty); 1664 } 1665 1666 // Verify the overloaded type "matches" the Ref type. 1667 // i.e. Ty is a vector with the same width as Ref. 1668 // Composed of pointers to the same element type as Ref. 1669 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1670 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1671 if (!ThisArgVecTy || !ReferenceType || 1672 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1673 return true; 1674 return !ThisArgVecTy->getElementType()->isPointerTy(); 1675 } 1676 case IITDescriptor::VecElementArgument: { 1677 if (D.getArgumentNumber() >= ArgTys.size()) 1678 return IsDeferredCheck ? true : DeferCheck(Ty); 1679 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1680 return !ReferenceType || Ty != ReferenceType->getElementType(); 1681 } 1682 case IITDescriptor::Subdivide2Argument: 1683 case IITDescriptor::Subdivide4Argument: { 1684 // If this is a forward reference, defer the check for later. 1685 if (D.getArgumentNumber() >= ArgTys.size()) 1686 return IsDeferredCheck || DeferCheck(Ty); 1687 1688 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1689 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1690 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1691 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1692 return Ty != NewTy; 1693 } 1694 return true; 1695 } 1696 case IITDescriptor::VecOfBitcastsToInt: { 1697 if (D.getArgumentNumber() >= ArgTys.size()) 1698 return IsDeferredCheck || DeferCheck(Ty); 1699 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1700 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1701 if (!ThisArgVecTy || !ReferenceType) 1702 return true; 1703 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1704 } 1705 } 1706 llvm_unreachable("unhandled"); 1707 } 1708 1709 Intrinsic::MatchIntrinsicTypesResult 1710 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1711 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1712 SmallVectorImpl<Type *> &ArgTys) { 1713 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1714 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1715 false)) 1716 return MatchIntrinsicTypes_NoMatchRet; 1717 1718 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1719 1720 for (auto *Ty : FTy->params()) 1721 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1722 return MatchIntrinsicTypes_NoMatchArg; 1723 1724 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1725 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1726 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1727 true)) 1728 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1729 : MatchIntrinsicTypes_NoMatchArg; 1730 } 1731 1732 return MatchIntrinsicTypes_Match; 1733 } 1734 1735 bool 1736 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1737 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1738 // If there are no descriptors left, then it can't be a vararg. 1739 if (Infos.empty()) 1740 return isVarArg; 1741 1742 // There should be only one descriptor remaining at this point. 1743 if (Infos.size() != 1) 1744 return true; 1745 1746 // Check and verify the descriptor. 1747 IITDescriptor D = Infos.front(); 1748 Infos = Infos.slice(1); 1749 if (D.Kind == IITDescriptor::VarArg) 1750 return !isVarArg; 1751 1752 return true; 1753 } 1754 1755 bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT, 1756 SmallVectorImpl<Type *> &ArgTys) { 1757 if (!ID) 1758 return false; 1759 1760 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1761 getIntrinsicInfoTableEntries(ID, Table); 1762 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1763 1764 if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) != 1765 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1766 return false; 1767 } 1768 if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef)) 1769 return false; 1770 return true; 1771 } 1772 1773 bool Intrinsic::getIntrinsicSignature(Function *F, 1774 SmallVectorImpl<Type *> &ArgTys) { 1775 return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(), 1776 ArgTys); 1777 } 1778 1779 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1780 SmallVector<Type *, 4> ArgTys; 1781 if (!getIntrinsicSignature(F, ArgTys)) 1782 return std::nullopt; 1783 1784 Intrinsic::ID ID = F->getIntrinsicID(); 1785 StringRef Name = F->getName(); 1786 std::string WantedName = 1787 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()); 1788 if (Name == WantedName) 1789 return std::nullopt; 1790 1791 Function *NewDecl = [&] { 1792 if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) { 1793 if (auto *ExistingF = dyn_cast<Function>(ExistingGV)) 1794 if (ExistingF->getFunctionType() == F->getFunctionType()) 1795 return ExistingF; 1796 1797 // The name already exists, but is not a function or has the wrong 1798 // prototype. Make place for the new one by renaming the old version. 1799 // Either this old version will be removed later on or the module is 1800 // invalid and we'll get an error. 1801 ExistingGV->setName(WantedName + ".renamed"); 1802 } 1803 return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1804 }(); 1805 1806 NewDecl->setCallingConv(F->getCallingConv()); 1807 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1808 "Shouldn't change the signature"); 1809 return NewDecl; 1810 } 1811 1812 /// hasAddressTaken - returns true if there are any uses of this function 1813 /// other than direct calls or invokes to it. Optionally ignores callback 1814 /// uses, assume like pointer annotation calls, and references in llvm.used 1815 /// and llvm.compiler.used variables. 1816 bool Function::hasAddressTaken(const User **PutOffender, 1817 bool IgnoreCallbackUses, 1818 bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed, 1819 bool IgnoreARCAttachedCall, 1820 bool IgnoreCastedDirectCall) const { 1821 for (const Use &U : uses()) { 1822 const User *FU = U.getUser(); 1823 if (isa<BlockAddress>(FU)) 1824 continue; 1825 1826 if (IgnoreCallbackUses) { 1827 AbstractCallSite ACS(&U); 1828 if (ACS && ACS.isCallbackCall()) 1829 continue; 1830 } 1831 1832 const auto *Call = dyn_cast<CallBase>(FU); 1833 if (!Call) { 1834 if (IgnoreAssumeLikeCalls && 1835 isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1836 all_of(FU->users(), [](const User *U) { 1837 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1838 return I->isAssumeLikeIntrinsic(); 1839 return false; 1840 })) { 1841 continue; 1842 } 1843 1844 if (IgnoreLLVMUsed && !FU->user_empty()) { 1845 const User *FUU = FU; 1846 if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) && 1847 FU->hasOneUse() && !FU->user_begin()->user_empty()) 1848 FUU = *FU->user_begin(); 1849 if (llvm::all_of(FUU->users(), [](const User *U) { 1850 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1851 return GV->hasName() && 1852 (GV->getName() == "llvm.compiler.used" || 1853 GV->getName() == "llvm.used"); 1854 return false; 1855 })) 1856 continue; 1857 } 1858 if (PutOffender) 1859 *PutOffender = FU; 1860 return true; 1861 } 1862 1863 if (IgnoreAssumeLikeCalls) { 1864 if (const auto *I = dyn_cast<IntrinsicInst>(Call)) 1865 if (I->isAssumeLikeIntrinsic()) 1866 continue; 1867 } 1868 1869 if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall && 1870 Call->getFunctionType() != getFunctionType())) { 1871 if (IgnoreARCAttachedCall && 1872 Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall, 1873 U.getOperandNo())) 1874 continue; 1875 1876 if (PutOffender) 1877 *PutOffender = FU; 1878 return true; 1879 } 1880 } 1881 return false; 1882 } 1883 1884 bool Function::isDefTriviallyDead() const { 1885 // Check the linkage 1886 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1887 !hasAvailableExternallyLinkage()) 1888 return false; 1889 1890 // Check if the function is used by anything other than a blockaddress. 1891 for (const User *U : users()) 1892 if (!isa<BlockAddress>(U)) 1893 return false; 1894 1895 return true; 1896 } 1897 1898 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1899 /// setjmp or other function that gcc recognizes as "returning twice". 1900 bool Function::callsFunctionThatReturnsTwice() const { 1901 for (const Instruction &I : instructions(this)) 1902 if (const auto *Call = dyn_cast<CallBase>(&I)) 1903 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1904 return true; 1905 1906 return false; 1907 } 1908 1909 Constant *Function::getPersonalityFn() const { 1910 assert(hasPersonalityFn() && getNumOperands()); 1911 return cast<Constant>(Op<0>()); 1912 } 1913 1914 void Function::setPersonalityFn(Constant *Fn) { 1915 setHungoffOperand<0>(Fn); 1916 setValueSubclassDataBit(3, Fn != nullptr); 1917 } 1918 1919 Constant *Function::getPrefixData() const { 1920 assert(hasPrefixData() && getNumOperands()); 1921 return cast<Constant>(Op<1>()); 1922 } 1923 1924 void Function::setPrefixData(Constant *PrefixData) { 1925 setHungoffOperand<1>(PrefixData); 1926 setValueSubclassDataBit(1, PrefixData != nullptr); 1927 } 1928 1929 Constant *Function::getPrologueData() const { 1930 assert(hasPrologueData() && getNumOperands()); 1931 return cast<Constant>(Op<2>()); 1932 } 1933 1934 void Function::setPrologueData(Constant *PrologueData) { 1935 setHungoffOperand<2>(PrologueData); 1936 setValueSubclassDataBit(2, PrologueData != nullptr); 1937 } 1938 1939 void Function::allocHungoffUselist() { 1940 // If we've already allocated a uselist, stop here. 1941 if (getNumOperands()) 1942 return; 1943 1944 allocHungoffUses(3, /*IsPhi=*/ false); 1945 setNumHungOffUseOperands(3); 1946 1947 // Initialize the uselist with placeholder operands to allow traversal. 1948 auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0)); 1949 Op<0>().set(CPN); 1950 Op<1>().set(CPN); 1951 Op<2>().set(CPN); 1952 } 1953 1954 template <int Idx> 1955 void Function::setHungoffOperand(Constant *C) { 1956 if (C) { 1957 allocHungoffUselist(); 1958 Op<Idx>().set(C); 1959 } else if (getNumOperands()) { 1960 Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0))); 1961 } 1962 } 1963 1964 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1965 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1966 if (On) 1967 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1968 else 1969 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1970 } 1971 1972 void Function::setEntryCount(ProfileCount Count, 1973 const DenseSet<GlobalValue::GUID> *S) { 1974 #if !defined(NDEBUG) 1975 auto PrevCount = getEntryCount(); 1976 assert(!PrevCount || PrevCount->getType() == Count.getType()); 1977 #endif 1978 1979 auto ImportGUIDs = getImportGUIDs(); 1980 if (S == nullptr && ImportGUIDs.size()) 1981 S = &ImportGUIDs; 1982 1983 MDBuilder MDB(getContext()); 1984 setMetadata( 1985 LLVMContext::MD_prof, 1986 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1987 } 1988 1989 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1990 const DenseSet<GlobalValue::GUID> *Imports) { 1991 setEntryCount(ProfileCount(Count, Type), Imports); 1992 } 1993 1994 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const { 1995 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1996 if (MD && MD->getOperand(0)) 1997 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1998 if (MDS->getString() == "function_entry_count") { 1999 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2000 uint64_t Count = CI->getValue().getZExtValue(); 2001 // A value of -1 is used for SamplePGO when there were no samples. 2002 // Treat this the same as unknown. 2003 if (Count == (uint64_t)-1) 2004 return std::nullopt; 2005 return ProfileCount(Count, PCT_Real); 2006 } else if (AllowSynthetic && 2007 MDS->getString() == "synthetic_function_entry_count") { 2008 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 2009 uint64_t Count = CI->getValue().getZExtValue(); 2010 return ProfileCount(Count, PCT_Synthetic); 2011 } 2012 } 2013 return std::nullopt; 2014 } 2015 2016 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 2017 DenseSet<GlobalValue::GUID> R; 2018 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 2019 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 2020 if (MDS->getString() == "function_entry_count") 2021 for (unsigned i = 2; i < MD->getNumOperands(); i++) 2022 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 2023 ->getValue() 2024 .getZExtValue()); 2025 return R; 2026 } 2027 2028 void Function::setSectionPrefix(StringRef Prefix) { 2029 MDBuilder MDB(getContext()); 2030 setMetadata(LLVMContext::MD_section_prefix, 2031 MDB.createFunctionSectionPrefix(Prefix)); 2032 } 2033 2034 std::optional<StringRef> Function::getSectionPrefix() const { 2035 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 2036 assert(cast<MDString>(MD->getOperand(0))->getString() == 2037 "function_section_prefix" && 2038 "Metadata not match"); 2039 return cast<MDString>(MD->getOperand(1))->getString(); 2040 } 2041 return std::nullopt; 2042 } 2043 2044 bool Function::nullPointerIsDefined() const { 2045 return hasFnAttribute(Attribute::NullPointerIsValid); 2046 } 2047 2048 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 2049 if (F && F->nullPointerIsDefined()) 2050 return true; 2051 2052 if (AS != 0) 2053 return true; 2054 2055 return false; 2056 } 2057