xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 2946cd701067404b99c39fb29dc9c74bd7193eb3)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/SymbolTableListTraits.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <string>
54 
55 using namespace llvm;
56 using ProfileCount = Function::ProfileCount;
57 
58 // Explicit instantiations of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class llvm::SymbolTableListTraits<BasicBlock>;
61 
62 //===----------------------------------------------------------------------===//
63 // Argument Implementation
64 //===----------------------------------------------------------------------===//
65 
66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
67     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
68   setName(Name);
69 }
70 
71 void Argument::setParent(Function *parent) {
72   Parent = parent;
73 }
74 
75 bool Argument::hasNonNullAttr() const {
76   if (!getType()->isPointerTy()) return false;
77   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
78     return true;
79   else if (getDereferenceableBytes() > 0 &&
80            !NullPointerIsDefined(getParent(),
81                                  getType()->getPointerAddressSpace()))
82     return true;
83   return false;
84 }
85 
86 bool Argument::hasByValAttr() const {
87   if (!getType()->isPointerTy()) return false;
88   return hasAttribute(Attribute::ByVal);
89 }
90 
91 bool Argument::hasSwiftSelfAttr() const {
92   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
93 }
94 
95 bool Argument::hasSwiftErrorAttr() const {
96   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
97 }
98 
99 bool Argument::hasInAllocaAttr() const {
100   if (!getType()->isPointerTy()) return false;
101   return hasAttribute(Attribute::InAlloca);
102 }
103 
104 bool Argument::hasByValOrInAllocaAttr() const {
105   if (!getType()->isPointerTy()) return false;
106   AttributeList Attrs = getParent()->getAttributes();
107   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
108          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
109 }
110 
111 unsigned Argument::getParamAlignment() const {
112   assert(getType()->isPointerTy() && "Only pointers have alignments");
113   return getParent()->getParamAlignment(getArgNo());
114 }
115 
116 uint64_t Argument::getDereferenceableBytes() const {
117   assert(getType()->isPointerTy() &&
118          "Only pointers have dereferenceable bytes");
119   return getParent()->getParamDereferenceableBytes(getArgNo());
120 }
121 
122 uint64_t Argument::getDereferenceableOrNullBytes() const {
123   assert(getType()->isPointerTy() &&
124          "Only pointers have dereferenceable bytes");
125   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
126 }
127 
128 bool Argument::hasNestAttr() const {
129   if (!getType()->isPointerTy()) return false;
130   return hasAttribute(Attribute::Nest);
131 }
132 
133 bool Argument::hasNoAliasAttr() const {
134   if (!getType()->isPointerTy()) return false;
135   return hasAttribute(Attribute::NoAlias);
136 }
137 
138 bool Argument::hasNoCaptureAttr() const {
139   if (!getType()->isPointerTy()) return false;
140   return hasAttribute(Attribute::NoCapture);
141 }
142 
143 bool Argument::hasStructRetAttr() const {
144   if (!getType()->isPointerTy()) return false;
145   return hasAttribute(Attribute::StructRet);
146 }
147 
148 bool Argument::hasReturnedAttr() const {
149   return hasAttribute(Attribute::Returned);
150 }
151 
152 bool Argument::hasZExtAttr() const {
153   return hasAttribute(Attribute::ZExt);
154 }
155 
156 bool Argument::hasSExtAttr() const {
157   return hasAttribute(Attribute::SExt);
158 }
159 
160 bool Argument::onlyReadsMemory() const {
161   AttributeList Attrs = getParent()->getAttributes();
162   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
163          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
164 }
165 
166 void Argument::addAttrs(AttrBuilder &B) {
167   AttributeList AL = getParent()->getAttributes();
168   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
169   getParent()->setAttributes(AL);
170 }
171 
172 void Argument::addAttr(Attribute::AttrKind Kind) {
173   getParent()->addParamAttr(getArgNo(), Kind);
174 }
175 
176 void Argument::addAttr(Attribute Attr) {
177   getParent()->addParamAttr(getArgNo(), Attr);
178 }
179 
180 void Argument::removeAttr(Attribute::AttrKind Kind) {
181   getParent()->removeParamAttr(getArgNo(), Kind);
182 }
183 
184 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
185   return getParent()->hasParamAttribute(getArgNo(), Kind);
186 }
187 
188 //===----------------------------------------------------------------------===//
189 // Helper Methods in Function
190 //===----------------------------------------------------------------------===//
191 
192 LLVMContext &Function::getContext() const {
193   return getType()->getContext();
194 }
195 
196 unsigned Function::getInstructionCount() const {
197   unsigned NumInstrs = 0;
198   for (const BasicBlock &BB : BasicBlocks)
199     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
200                                BB.instructionsWithoutDebug().end());
201   return NumInstrs;
202 }
203 
204 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
205                            const Twine &N, Module &M) {
206   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
207 }
208 
209 void Function::removeFromParent() {
210   getParent()->getFunctionList().remove(getIterator());
211 }
212 
213 void Function::eraseFromParent() {
214   getParent()->getFunctionList().erase(getIterator());
215 }
216 
217 //===----------------------------------------------------------------------===//
218 // Function Implementation
219 //===----------------------------------------------------------------------===//
220 
221 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
222   // If AS == -1 and we are passed a valid module pointer we place the function
223   // in the program address space. Otherwise we default to AS0.
224   if (AddrSpace == static_cast<unsigned>(-1))
225     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
226   return AddrSpace;
227 }
228 
229 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
230                    const Twine &name, Module *ParentModule)
231     : GlobalObject(Ty, Value::FunctionVal,
232                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
233                    computeAddrSpace(AddrSpace, ParentModule)),
234       NumArgs(Ty->getNumParams()) {
235   assert(FunctionType::isValidReturnType(getReturnType()) &&
236          "invalid return type");
237   setGlobalObjectSubClassData(0);
238 
239   // We only need a symbol table for a function if the context keeps value names
240   if (!getContext().shouldDiscardValueNames())
241     SymTab = make_unique<ValueSymbolTable>();
242 
243   // If the function has arguments, mark them as lazily built.
244   if (Ty->getNumParams())
245     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
246 
247   if (ParentModule)
248     ParentModule->getFunctionList().push_back(this);
249 
250   HasLLVMReservedName = getName().startswith("llvm.");
251   // Ensure intrinsics have the right parameter attributes.
252   // Note, the IntID field will have been set in Value::setName if this function
253   // name is a valid intrinsic ID.
254   if (IntID)
255     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
256 }
257 
258 Function::~Function() {
259   dropAllReferences();    // After this it is safe to delete instructions.
260 
261   // Delete all of the method arguments and unlink from symbol table...
262   if (Arguments)
263     clearArguments();
264 
265   // Remove the function from the on-the-side GC table.
266   clearGC();
267 }
268 
269 void Function::BuildLazyArguments() const {
270   // Create the arguments vector, all arguments start out unnamed.
271   auto *FT = getFunctionType();
272   if (NumArgs > 0) {
273     Arguments = std::allocator<Argument>().allocate(NumArgs);
274     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
275       Type *ArgTy = FT->getParamType(i);
276       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
277       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
278     }
279   }
280 
281   // Clear the lazy arguments bit.
282   unsigned SDC = getSubclassDataFromValue();
283   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
284   assert(!hasLazyArguments());
285 }
286 
287 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
288   return MutableArrayRef<Argument>(Args, Count);
289 }
290 
291 void Function::clearArguments() {
292   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
293     A.setName("");
294     A.~Argument();
295   }
296   std::allocator<Argument>().deallocate(Arguments, NumArgs);
297   Arguments = nullptr;
298 }
299 
300 void Function::stealArgumentListFrom(Function &Src) {
301   assert(isDeclaration() && "Expected no references to current arguments");
302 
303   // Drop the current arguments, if any, and set the lazy argument bit.
304   if (!hasLazyArguments()) {
305     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
306                         [](const Argument &A) { return A.use_empty(); }) &&
307            "Expected arguments to be unused in declaration");
308     clearArguments();
309     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
310   }
311 
312   // Nothing to steal if Src has lazy arguments.
313   if (Src.hasLazyArguments())
314     return;
315 
316   // Steal arguments from Src, and fix the lazy argument bits.
317   assert(arg_size() == Src.arg_size());
318   Arguments = Src.Arguments;
319   Src.Arguments = nullptr;
320   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
321     // FIXME: This does the work of transferNodesFromList inefficiently.
322     SmallString<128> Name;
323     if (A.hasName())
324       Name = A.getName();
325     if (!Name.empty())
326       A.setName("");
327     A.setParent(this);
328     if (!Name.empty())
329       A.setName(Name);
330   }
331 
332   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
333   assert(!hasLazyArguments());
334   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
335 }
336 
337 // dropAllReferences() - This function causes all the subinstructions to "let
338 // go" of all references that they are maintaining.  This allows one to
339 // 'delete' a whole class at a time, even though there may be circular
340 // references... first all references are dropped, and all use counts go to
341 // zero.  Then everything is deleted for real.  Note that no operations are
342 // valid on an object that has "dropped all references", except operator
343 // delete.
344 //
345 void Function::dropAllReferences() {
346   setIsMaterializable(false);
347 
348   for (BasicBlock &BB : *this)
349     BB.dropAllReferences();
350 
351   // Delete all basic blocks. They are now unused, except possibly by
352   // blockaddresses, but BasicBlock's destructor takes care of those.
353   while (!BasicBlocks.empty())
354     BasicBlocks.begin()->eraseFromParent();
355 
356   // Drop uses of any optional data (real or placeholder).
357   if (getNumOperands()) {
358     User::dropAllReferences();
359     setNumHungOffUseOperands(0);
360     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
361   }
362 
363   // Metadata is stored in a side-table.
364   clearMetadata();
365 }
366 
367 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
368   AttributeList PAL = getAttributes();
369   PAL = PAL.addAttribute(getContext(), i, Kind);
370   setAttributes(PAL);
371 }
372 
373 void Function::addAttribute(unsigned i, Attribute Attr) {
374   AttributeList PAL = getAttributes();
375   PAL = PAL.addAttribute(getContext(), i, Attr);
376   setAttributes(PAL);
377 }
378 
379 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
380   AttributeList PAL = getAttributes();
381   PAL = PAL.addAttributes(getContext(), i, Attrs);
382   setAttributes(PAL);
383 }
384 
385 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
386   AttributeList PAL = getAttributes();
387   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
388   setAttributes(PAL);
389 }
390 
391 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
392   AttributeList PAL = getAttributes();
393   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
394   setAttributes(PAL);
395 }
396 
397 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
398   AttributeList PAL = getAttributes();
399   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
400   setAttributes(PAL);
401 }
402 
403 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
404   AttributeList PAL = getAttributes();
405   PAL = PAL.removeAttribute(getContext(), i, Kind);
406   setAttributes(PAL);
407 }
408 
409 void Function::removeAttribute(unsigned i, StringRef Kind) {
410   AttributeList PAL = getAttributes();
411   PAL = PAL.removeAttribute(getContext(), i, Kind);
412   setAttributes(PAL);
413 }
414 
415 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
416   AttributeList PAL = getAttributes();
417   PAL = PAL.removeAttributes(getContext(), i, Attrs);
418   setAttributes(PAL);
419 }
420 
421 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
422   AttributeList PAL = getAttributes();
423   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
424   setAttributes(PAL);
425 }
426 
427 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
428   AttributeList PAL = getAttributes();
429   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
430   setAttributes(PAL);
431 }
432 
433 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
434   AttributeList PAL = getAttributes();
435   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
436   setAttributes(PAL);
437 }
438 
439 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
440   AttributeList PAL = getAttributes();
441   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
442   setAttributes(PAL);
443 }
444 
445 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
446   AttributeList PAL = getAttributes();
447   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
448   setAttributes(PAL);
449 }
450 
451 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
452   AttributeList PAL = getAttributes();
453   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
454   setAttributes(PAL);
455 }
456 
457 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
458                                                  uint64_t Bytes) {
459   AttributeList PAL = getAttributes();
460   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
461   setAttributes(PAL);
462 }
463 
464 const std::string &Function::getGC() const {
465   assert(hasGC() && "Function has no collector");
466   return getContext().getGC(*this);
467 }
468 
469 void Function::setGC(std::string Str) {
470   setValueSubclassDataBit(14, !Str.empty());
471   getContext().setGC(*this, std::move(Str));
472 }
473 
474 void Function::clearGC() {
475   if (!hasGC())
476     return;
477   getContext().deleteGC(*this);
478   setValueSubclassDataBit(14, false);
479 }
480 
481 /// Copy all additional attributes (those not needed to create a Function) from
482 /// the Function Src to this one.
483 void Function::copyAttributesFrom(const Function *Src) {
484   GlobalObject::copyAttributesFrom(Src);
485   setCallingConv(Src->getCallingConv());
486   setAttributes(Src->getAttributes());
487   if (Src->hasGC())
488     setGC(Src->getGC());
489   else
490     clearGC();
491   if (Src->hasPersonalityFn())
492     setPersonalityFn(Src->getPersonalityFn());
493   if (Src->hasPrefixData())
494     setPrefixData(Src->getPrefixData());
495   if (Src->hasPrologueData())
496     setPrologueData(Src->getPrologueData());
497 }
498 
499 /// Table of string intrinsic names indexed by enum value.
500 static const char * const IntrinsicNameTable[] = {
501   "not_intrinsic",
502 #define GET_INTRINSIC_NAME_TABLE
503 #include "llvm/IR/IntrinsicImpl.inc"
504 #undef GET_INTRINSIC_NAME_TABLE
505 };
506 
507 /// Table of per-target intrinsic name tables.
508 #define GET_INTRINSIC_TARGET_DATA
509 #include "llvm/IR/IntrinsicImpl.inc"
510 #undef GET_INTRINSIC_TARGET_DATA
511 
512 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
513 /// target as \c Name, or the generic table if \c Name is not target specific.
514 ///
515 /// Returns the relevant slice of \c IntrinsicNameTable
516 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
517   assert(Name.startswith("llvm."));
518 
519   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
520   // Drop "llvm." and take the first dotted component. That will be the target
521   // if this is target specific.
522   StringRef Target = Name.drop_front(5).split('.').first;
523   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
524                              [](const IntrinsicTargetInfo &TI,
525                                 StringRef Target) { return TI.Name < Target; });
526   // We've either found the target or just fall back to the generic set, which
527   // is always first.
528   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
529   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
530 }
531 
532 /// This does the actual lookup of an intrinsic ID which
533 /// matches the given function name.
534 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
535   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
536   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
537   if (Idx == -1)
538     return Intrinsic::not_intrinsic;
539 
540   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
541   // an index into a sub-table.
542   int Adjust = NameTable.data() - IntrinsicNameTable;
543   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
544 
545   // If the intrinsic is not overloaded, require an exact match. If it is
546   // overloaded, require either exact or prefix match.
547   const auto MatchSize = strlen(NameTable[Idx]);
548   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
549   bool IsExactMatch = Name.size() == MatchSize;
550   return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
551 }
552 
553 void Function::recalculateIntrinsicID() {
554   StringRef Name = getName();
555   if (!Name.startswith("llvm.")) {
556     HasLLVMReservedName = false;
557     IntID = Intrinsic::not_intrinsic;
558     return;
559   }
560   HasLLVMReservedName = true;
561   IntID = lookupIntrinsicID(Name);
562 }
563 
564 /// Returns a stable mangling for the type specified for use in the name
565 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
566 /// of named types is simply their name.  Manglings for unnamed types consist
567 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
568 /// combined with the mangling of their component types.  A vararg function
569 /// type will have a suffix of 'vararg'.  Since function types can contain
570 /// other function types, we close a function type mangling with suffix 'f'
571 /// which can't be confused with it's prefix.  This ensures we don't have
572 /// collisions between two unrelated function types. Otherwise, you might
573 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
574 ///
575 static std::string getMangledTypeStr(Type* Ty) {
576   std::string Result;
577   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
578     Result += "p" + utostr(PTyp->getAddressSpace()) +
579       getMangledTypeStr(PTyp->getElementType());
580   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
581     Result += "a" + utostr(ATyp->getNumElements()) +
582       getMangledTypeStr(ATyp->getElementType());
583   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
584     if (!STyp->isLiteral()) {
585       Result += "s_";
586       Result += STyp->getName();
587     } else {
588       Result += "sl_";
589       for (auto Elem : STyp->elements())
590         Result += getMangledTypeStr(Elem);
591     }
592     // Ensure nested structs are distinguishable.
593     Result += "s";
594   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
595     Result += "f_" + getMangledTypeStr(FT->getReturnType());
596     for (size_t i = 0; i < FT->getNumParams(); i++)
597       Result += getMangledTypeStr(FT->getParamType(i));
598     if (FT->isVarArg())
599       Result += "vararg";
600     // Ensure nested function types are distinguishable.
601     Result += "f";
602   } else if (isa<VectorType>(Ty)) {
603     Result += "v" + utostr(Ty->getVectorNumElements()) +
604       getMangledTypeStr(Ty->getVectorElementType());
605   } else if (Ty) {
606     switch (Ty->getTypeID()) {
607     default: llvm_unreachable("Unhandled type");
608     case Type::VoidTyID:      Result += "isVoid";   break;
609     case Type::MetadataTyID:  Result += "Metadata"; break;
610     case Type::HalfTyID:      Result += "f16";      break;
611     case Type::FloatTyID:     Result += "f32";      break;
612     case Type::DoubleTyID:    Result += "f64";      break;
613     case Type::X86_FP80TyID:  Result += "f80";      break;
614     case Type::FP128TyID:     Result += "f128";     break;
615     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
616     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
617     case Type::IntegerTyID:
618       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
619       break;
620     }
621   }
622   return Result;
623 }
624 
625 StringRef Intrinsic::getName(ID id) {
626   assert(id < num_intrinsics && "Invalid intrinsic ID!");
627   assert(!isOverloaded(id) &&
628          "This version of getName does not support overloading");
629   return IntrinsicNameTable[id];
630 }
631 
632 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
633   assert(id < num_intrinsics && "Invalid intrinsic ID!");
634   std::string Result(IntrinsicNameTable[id]);
635   for (Type *Ty : Tys) {
636     Result += "." + getMangledTypeStr(Ty);
637   }
638   return Result;
639 }
640 
641 /// IIT_Info - These are enumerators that describe the entries returned by the
642 /// getIntrinsicInfoTableEntries function.
643 ///
644 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
645 enum IIT_Info {
646   // Common values should be encoded with 0-15.
647   IIT_Done = 0,
648   IIT_I1   = 1,
649   IIT_I8   = 2,
650   IIT_I16  = 3,
651   IIT_I32  = 4,
652   IIT_I64  = 5,
653   IIT_F16  = 6,
654   IIT_F32  = 7,
655   IIT_F64  = 8,
656   IIT_V2   = 9,
657   IIT_V4   = 10,
658   IIT_V8   = 11,
659   IIT_V16  = 12,
660   IIT_V32  = 13,
661   IIT_PTR  = 14,
662   IIT_ARG  = 15,
663 
664   // Values from 16+ are only encodable with the inefficient encoding.
665   IIT_V64  = 16,
666   IIT_MMX  = 17,
667   IIT_TOKEN = 18,
668   IIT_METADATA = 19,
669   IIT_EMPTYSTRUCT = 20,
670   IIT_STRUCT2 = 21,
671   IIT_STRUCT3 = 22,
672   IIT_STRUCT4 = 23,
673   IIT_STRUCT5 = 24,
674   IIT_EXTEND_ARG = 25,
675   IIT_TRUNC_ARG = 26,
676   IIT_ANYPTR = 27,
677   IIT_V1   = 28,
678   IIT_VARARG = 29,
679   IIT_HALF_VEC_ARG = 30,
680   IIT_SAME_VEC_WIDTH_ARG = 31,
681   IIT_PTR_TO_ARG = 32,
682   IIT_PTR_TO_ELT = 33,
683   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
684   IIT_I128 = 35,
685   IIT_V512 = 36,
686   IIT_V1024 = 37,
687   IIT_STRUCT6 = 38,
688   IIT_STRUCT7 = 39,
689   IIT_STRUCT8 = 40,
690   IIT_F128 = 41
691 };
692 
693 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
694                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
695   using namespace Intrinsic;
696 
697   IIT_Info Info = IIT_Info(Infos[NextElt++]);
698   unsigned StructElts = 2;
699 
700   switch (Info) {
701   case IIT_Done:
702     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
703     return;
704   case IIT_VARARG:
705     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
706     return;
707   case IIT_MMX:
708     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
709     return;
710   case IIT_TOKEN:
711     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
712     return;
713   case IIT_METADATA:
714     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
715     return;
716   case IIT_F16:
717     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
718     return;
719   case IIT_F32:
720     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
721     return;
722   case IIT_F64:
723     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
724     return;
725   case IIT_F128:
726     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
727     return;
728   case IIT_I1:
729     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
730     return;
731   case IIT_I8:
732     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
733     return;
734   case IIT_I16:
735     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
736     return;
737   case IIT_I32:
738     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
739     return;
740   case IIT_I64:
741     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
742     return;
743   case IIT_I128:
744     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
745     return;
746   case IIT_V1:
747     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
748     DecodeIITType(NextElt, Infos, OutputTable);
749     return;
750   case IIT_V2:
751     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
752     DecodeIITType(NextElt, Infos, OutputTable);
753     return;
754   case IIT_V4:
755     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
756     DecodeIITType(NextElt, Infos, OutputTable);
757     return;
758   case IIT_V8:
759     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
760     DecodeIITType(NextElt, Infos, OutputTable);
761     return;
762   case IIT_V16:
763     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
764     DecodeIITType(NextElt, Infos, OutputTable);
765     return;
766   case IIT_V32:
767     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
768     DecodeIITType(NextElt, Infos, OutputTable);
769     return;
770   case IIT_V64:
771     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
772     DecodeIITType(NextElt, Infos, OutputTable);
773     return;
774   case IIT_V512:
775     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
776     DecodeIITType(NextElt, Infos, OutputTable);
777     return;
778   case IIT_V1024:
779     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
780     DecodeIITType(NextElt, Infos, OutputTable);
781     return;
782   case IIT_PTR:
783     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
784     DecodeIITType(NextElt, Infos, OutputTable);
785     return;
786   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
787     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
788                                              Infos[NextElt++]));
789     DecodeIITType(NextElt, Infos, OutputTable);
790     return;
791   }
792   case IIT_ARG: {
793     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
794     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
795     return;
796   }
797   case IIT_EXTEND_ARG: {
798     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
799     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
800                                              ArgInfo));
801     return;
802   }
803   case IIT_TRUNC_ARG: {
804     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
805     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
806                                              ArgInfo));
807     return;
808   }
809   case IIT_HALF_VEC_ARG: {
810     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
811     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
812                                              ArgInfo));
813     return;
814   }
815   case IIT_SAME_VEC_WIDTH_ARG: {
816     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
817     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
818                                              ArgInfo));
819     return;
820   }
821   case IIT_PTR_TO_ARG: {
822     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
823     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
824                                              ArgInfo));
825     return;
826   }
827   case IIT_PTR_TO_ELT: {
828     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
829     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
830     return;
831   }
832   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
833     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
834     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
835     OutputTable.push_back(
836         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
837     return;
838   }
839   case IIT_EMPTYSTRUCT:
840     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
841     return;
842   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
843   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
844   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
845   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
846   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
847   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
848   case IIT_STRUCT2: {
849     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
850 
851     for (unsigned i = 0; i != StructElts; ++i)
852       DecodeIITType(NextElt, Infos, OutputTable);
853     return;
854   }
855   }
856   llvm_unreachable("unhandled");
857 }
858 
859 #define GET_INTRINSIC_GENERATOR_GLOBAL
860 #include "llvm/IR/IntrinsicImpl.inc"
861 #undef GET_INTRINSIC_GENERATOR_GLOBAL
862 
863 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
864                                              SmallVectorImpl<IITDescriptor> &T){
865   // Check to see if the intrinsic's type was expressible by the table.
866   unsigned TableVal = IIT_Table[id-1];
867 
868   // Decode the TableVal into an array of IITValues.
869   SmallVector<unsigned char, 8> IITValues;
870   ArrayRef<unsigned char> IITEntries;
871   unsigned NextElt = 0;
872   if ((TableVal >> 31) != 0) {
873     // This is an offset into the IIT_LongEncodingTable.
874     IITEntries = IIT_LongEncodingTable;
875 
876     // Strip sentinel bit.
877     NextElt = (TableVal << 1) >> 1;
878   } else {
879     // Decode the TableVal into an array of IITValues.  If the entry was encoded
880     // into a single word in the table itself, decode it now.
881     do {
882       IITValues.push_back(TableVal & 0xF);
883       TableVal >>= 4;
884     } while (TableVal);
885 
886     IITEntries = IITValues;
887     NextElt = 0;
888   }
889 
890   // Okay, decode the table into the output vector of IITDescriptors.
891   DecodeIITType(NextElt, IITEntries, T);
892   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
893     DecodeIITType(NextElt, IITEntries, T);
894 }
895 
896 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
897                              ArrayRef<Type*> Tys, LLVMContext &Context) {
898   using namespace Intrinsic;
899 
900   IITDescriptor D = Infos.front();
901   Infos = Infos.slice(1);
902 
903   switch (D.Kind) {
904   case IITDescriptor::Void: return Type::getVoidTy(Context);
905   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
906   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
907   case IITDescriptor::Token: return Type::getTokenTy(Context);
908   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
909   case IITDescriptor::Half: return Type::getHalfTy(Context);
910   case IITDescriptor::Float: return Type::getFloatTy(Context);
911   case IITDescriptor::Double: return Type::getDoubleTy(Context);
912   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
913 
914   case IITDescriptor::Integer:
915     return IntegerType::get(Context, D.Integer_Width);
916   case IITDescriptor::Vector:
917     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
918   case IITDescriptor::Pointer:
919     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
920                             D.Pointer_AddressSpace);
921   case IITDescriptor::Struct: {
922     SmallVector<Type *, 8> Elts;
923     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
924       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
925     return StructType::get(Context, Elts);
926   }
927   case IITDescriptor::Argument:
928     return Tys[D.getArgumentNumber()];
929   case IITDescriptor::ExtendArgument: {
930     Type *Ty = Tys[D.getArgumentNumber()];
931     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
932       return VectorType::getExtendedElementVectorType(VTy);
933 
934     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
935   }
936   case IITDescriptor::TruncArgument: {
937     Type *Ty = Tys[D.getArgumentNumber()];
938     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
939       return VectorType::getTruncatedElementVectorType(VTy);
940 
941     IntegerType *ITy = cast<IntegerType>(Ty);
942     assert(ITy->getBitWidth() % 2 == 0);
943     return IntegerType::get(Context, ITy->getBitWidth() / 2);
944   }
945   case IITDescriptor::HalfVecArgument:
946     return VectorType::getHalfElementsVectorType(cast<VectorType>(
947                                                   Tys[D.getArgumentNumber()]));
948   case IITDescriptor::SameVecWidthArgument: {
949     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
950     Type *Ty = Tys[D.getArgumentNumber()];
951     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
952       return VectorType::get(EltTy, VTy->getNumElements());
953     }
954     llvm_unreachable("unhandled");
955   }
956   case IITDescriptor::PtrToArgument: {
957     Type *Ty = Tys[D.getArgumentNumber()];
958     return PointerType::getUnqual(Ty);
959   }
960   case IITDescriptor::PtrToElt: {
961     Type *Ty = Tys[D.getArgumentNumber()];
962     VectorType *VTy = dyn_cast<VectorType>(Ty);
963     if (!VTy)
964       llvm_unreachable("Expected an argument of Vector Type");
965     Type *EltTy = VTy->getVectorElementType();
966     return PointerType::getUnqual(EltTy);
967   }
968   case IITDescriptor::VecOfAnyPtrsToElt:
969     // Return the overloaded type (which determines the pointers address space)
970     return Tys[D.getOverloadArgNumber()];
971   }
972   llvm_unreachable("unhandled");
973 }
974 
975 FunctionType *Intrinsic::getType(LLVMContext &Context,
976                                  ID id, ArrayRef<Type*> Tys) {
977   SmallVector<IITDescriptor, 8> Table;
978   getIntrinsicInfoTableEntries(id, Table);
979 
980   ArrayRef<IITDescriptor> TableRef = Table;
981   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
982 
983   SmallVector<Type*, 8> ArgTys;
984   while (!TableRef.empty())
985     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
986 
987   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
988   // If we see void type as the type of the last argument, it is vararg intrinsic
989   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
990     ArgTys.pop_back();
991     return FunctionType::get(ResultTy, ArgTys, true);
992   }
993   return FunctionType::get(ResultTy, ArgTys, false);
994 }
995 
996 bool Intrinsic::isOverloaded(ID id) {
997 #define GET_INTRINSIC_OVERLOAD_TABLE
998 #include "llvm/IR/IntrinsicImpl.inc"
999 #undef GET_INTRINSIC_OVERLOAD_TABLE
1000 }
1001 
1002 bool Intrinsic::isLeaf(ID id) {
1003   switch (id) {
1004   default:
1005     return true;
1006 
1007   case Intrinsic::experimental_gc_statepoint:
1008   case Intrinsic::experimental_patchpoint_void:
1009   case Intrinsic::experimental_patchpoint_i64:
1010     return false;
1011   }
1012 }
1013 
1014 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1015 #define GET_INTRINSIC_ATTRIBUTES
1016 #include "llvm/IR/IntrinsicImpl.inc"
1017 #undef GET_INTRINSIC_ATTRIBUTES
1018 
1019 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1020   // There can never be multiple globals with the same name of different types,
1021   // because intrinsics must be a specific type.
1022   return
1023     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
1024                                           getType(M->getContext(), id, Tys)));
1025 }
1026 
1027 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1028 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1029 #include "llvm/IR/IntrinsicImpl.inc"
1030 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1031 
1032 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1033 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1034 #include "llvm/IR/IntrinsicImpl.inc"
1035 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1036 
1037 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1038                                    SmallVectorImpl<Type*> &ArgTys) {
1039   using namespace Intrinsic;
1040 
1041   // If we ran out of descriptors, there are too many arguments.
1042   if (Infos.empty()) return true;
1043   IITDescriptor D = Infos.front();
1044   Infos = Infos.slice(1);
1045 
1046   switch (D.Kind) {
1047     case IITDescriptor::Void: return !Ty->isVoidTy();
1048     case IITDescriptor::VarArg: return true;
1049     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1050     case IITDescriptor::Token: return !Ty->isTokenTy();
1051     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1052     case IITDescriptor::Half: return !Ty->isHalfTy();
1053     case IITDescriptor::Float: return !Ty->isFloatTy();
1054     case IITDescriptor::Double: return !Ty->isDoubleTy();
1055     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1056     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1057     case IITDescriptor::Vector: {
1058       VectorType *VT = dyn_cast<VectorType>(Ty);
1059       return !VT || VT->getNumElements() != D.Vector_Width ||
1060              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
1061     }
1062     case IITDescriptor::Pointer: {
1063       PointerType *PT = dyn_cast<PointerType>(Ty);
1064       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1065              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
1066     }
1067 
1068     case IITDescriptor::Struct: {
1069       StructType *ST = dyn_cast<StructType>(Ty);
1070       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1071         return true;
1072 
1073       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1074         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1075           return true;
1076       return false;
1077     }
1078 
1079     case IITDescriptor::Argument:
1080       // Two cases here - If this is the second occurrence of an argument, verify
1081       // that the later instance matches the previous instance.
1082       if (D.getArgumentNumber() < ArgTys.size())
1083         return Ty != ArgTys[D.getArgumentNumber()];
1084 
1085           // Otherwise, if this is the first instance of an argument, record it and
1086           // verify the "Any" kind.
1087           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1088           ArgTys.push_back(Ty);
1089 
1090           switch (D.getArgumentKind()) {
1091             case IITDescriptor::AK_Any:        return false; // Success
1092             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1093             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1094             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1095             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1096           }
1097           llvm_unreachable("all argument kinds not covered");
1098 
1099     case IITDescriptor::ExtendArgument: {
1100       // This may only be used when referring to a previous vector argument.
1101       if (D.getArgumentNumber() >= ArgTys.size())
1102         return true;
1103 
1104       Type *NewTy = ArgTys[D.getArgumentNumber()];
1105       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1106         NewTy = VectorType::getExtendedElementVectorType(VTy);
1107       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1108         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1109       else
1110         return true;
1111 
1112       return Ty != NewTy;
1113     }
1114     case IITDescriptor::TruncArgument: {
1115       // This may only be used when referring to a previous vector argument.
1116       if (D.getArgumentNumber() >= ArgTys.size())
1117         return true;
1118 
1119       Type *NewTy = ArgTys[D.getArgumentNumber()];
1120       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1121         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1122       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1123         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1124       else
1125         return true;
1126 
1127       return Ty != NewTy;
1128     }
1129     case IITDescriptor::HalfVecArgument:
1130       // This may only be used when referring to a previous vector argument.
1131       return D.getArgumentNumber() >= ArgTys.size() ||
1132              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1133              VectorType::getHalfElementsVectorType(
1134                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1135     case IITDescriptor::SameVecWidthArgument: {
1136       if (D.getArgumentNumber() >= ArgTys.size())
1137         return true;
1138       VectorType * ReferenceType =
1139         dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1140       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1141       if (!ThisArgType || !ReferenceType ||
1142           (ReferenceType->getVectorNumElements() !=
1143            ThisArgType->getVectorNumElements()))
1144         return true;
1145       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1146                                 Infos, ArgTys);
1147     }
1148     case IITDescriptor::PtrToArgument: {
1149       if (D.getArgumentNumber() >= ArgTys.size())
1150         return true;
1151       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1152       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1153       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1154     }
1155     case IITDescriptor::PtrToElt: {
1156       if (D.getArgumentNumber() >= ArgTys.size())
1157         return true;
1158       VectorType * ReferenceType =
1159         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1160       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1161 
1162       return (!ThisArgType || !ReferenceType ||
1163               ThisArgType->getElementType() != ReferenceType->getElementType());
1164     }
1165     case IITDescriptor::VecOfAnyPtrsToElt: {
1166       unsigned RefArgNumber = D.getRefArgNumber();
1167 
1168       // This may only be used when referring to a previous argument.
1169       if (RefArgNumber >= ArgTys.size())
1170         return true;
1171 
1172       // Record the overloaded type
1173       assert(D.getOverloadArgNumber() == ArgTys.size() &&
1174              "Table consistency error");
1175       ArgTys.push_back(Ty);
1176 
1177       // Verify the overloaded type "matches" the Ref type.
1178       // i.e. Ty is a vector with the same width as Ref.
1179       // Composed of pointers to the same element type as Ref.
1180       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1181       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1182       if (!ThisArgVecTy || !ReferenceType ||
1183           (ReferenceType->getVectorNumElements() !=
1184            ThisArgVecTy->getVectorNumElements()))
1185         return true;
1186       PointerType *ThisArgEltTy =
1187               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1188       if (!ThisArgEltTy)
1189         return true;
1190       return ThisArgEltTy->getElementType() !=
1191              ReferenceType->getVectorElementType();
1192     }
1193   }
1194   llvm_unreachable("unhandled");
1195 }
1196 
1197 bool
1198 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1199                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1200   // If there are no descriptors left, then it can't be a vararg.
1201   if (Infos.empty())
1202     return isVarArg;
1203 
1204   // There should be only one descriptor remaining at this point.
1205   if (Infos.size() != 1)
1206     return true;
1207 
1208   // Check and verify the descriptor.
1209   IITDescriptor D = Infos.front();
1210   Infos = Infos.slice(1);
1211   if (D.Kind == IITDescriptor::VarArg)
1212     return !isVarArg;
1213 
1214   return true;
1215 }
1216 
1217 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1218   Intrinsic::ID ID = F->getIntrinsicID();
1219   if (!ID)
1220     return None;
1221 
1222   FunctionType *FTy = F->getFunctionType();
1223   // Accumulate an array of overloaded types for the given intrinsic
1224   SmallVector<Type *, 4> ArgTys;
1225   {
1226     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1227     getIntrinsicInfoTableEntries(ID, Table);
1228     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1229 
1230     // If we encounter any problems matching the signature with the descriptor
1231     // just give up remangling. It's up to verifier to report the discrepancy.
1232     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1233       return None;
1234     for (auto Ty : FTy->params())
1235       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1236         return None;
1237     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1238       return None;
1239   }
1240 
1241   StringRef Name = F->getName();
1242   if (Name == Intrinsic::getName(ID, ArgTys))
1243     return None;
1244 
1245   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1246   NewDecl->setCallingConv(F->getCallingConv());
1247   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1248   return NewDecl;
1249 }
1250 
1251 /// hasAddressTaken - returns true if there are any uses of this function
1252 /// other than direct calls or invokes to it.
1253 bool Function::hasAddressTaken(const User* *PutOffender) const {
1254   for (const Use &U : uses()) {
1255     const User *FU = U.getUser();
1256     if (isa<BlockAddress>(FU))
1257       continue;
1258     const auto *Call = dyn_cast<CallBase>(FU);
1259     if (!Call) {
1260       if (PutOffender)
1261         *PutOffender = FU;
1262       return true;
1263     }
1264     if (!Call->isCallee(&U)) {
1265       if (PutOffender)
1266         *PutOffender = FU;
1267       return true;
1268     }
1269   }
1270   return false;
1271 }
1272 
1273 bool Function::isDefTriviallyDead() const {
1274   // Check the linkage
1275   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1276       !hasAvailableExternallyLinkage())
1277     return false;
1278 
1279   // Check if the function is used by anything other than a blockaddress.
1280   for (const User *U : users())
1281     if (!isa<BlockAddress>(U))
1282       return false;
1283 
1284   return true;
1285 }
1286 
1287 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1288 /// setjmp or other function that gcc recognizes as "returning twice".
1289 bool Function::callsFunctionThatReturnsTwice() const {
1290   for (const Instruction &I : instructions(this))
1291     if (const auto *Call = dyn_cast<CallBase>(&I))
1292       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1293         return true;
1294 
1295   return false;
1296 }
1297 
1298 Constant *Function::getPersonalityFn() const {
1299   assert(hasPersonalityFn() && getNumOperands());
1300   return cast<Constant>(Op<0>());
1301 }
1302 
1303 void Function::setPersonalityFn(Constant *Fn) {
1304   setHungoffOperand<0>(Fn);
1305   setValueSubclassDataBit(3, Fn != nullptr);
1306 }
1307 
1308 Constant *Function::getPrefixData() const {
1309   assert(hasPrefixData() && getNumOperands());
1310   return cast<Constant>(Op<1>());
1311 }
1312 
1313 void Function::setPrefixData(Constant *PrefixData) {
1314   setHungoffOperand<1>(PrefixData);
1315   setValueSubclassDataBit(1, PrefixData != nullptr);
1316 }
1317 
1318 Constant *Function::getPrologueData() const {
1319   assert(hasPrologueData() && getNumOperands());
1320   return cast<Constant>(Op<2>());
1321 }
1322 
1323 void Function::setPrologueData(Constant *PrologueData) {
1324   setHungoffOperand<2>(PrologueData);
1325   setValueSubclassDataBit(2, PrologueData != nullptr);
1326 }
1327 
1328 void Function::allocHungoffUselist() {
1329   // If we've already allocated a uselist, stop here.
1330   if (getNumOperands())
1331     return;
1332 
1333   allocHungoffUses(3, /*IsPhi=*/ false);
1334   setNumHungOffUseOperands(3);
1335 
1336   // Initialize the uselist with placeholder operands to allow traversal.
1337   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1338   Op<0>().set(CPN);
1339   Op<1>().set(CPN);
1340   Op<2>().set(CPN);
1341 }
1342 
1343 template <int Idx>
1344 void Function::setHungoffOperand(Constant *C) {
1345   if (C) {
1346     allocHungoffUselist();
1347     Op<Idx>().set(C);
1348   } else if (getNumOperands()) {
1349     Op<Idx>().set(
1350         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1351   }
1352 }
1353 
1354 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1355   assert(Bit < 16 && "SubclassData contains only 16 bits");
1356   if (On)
1357     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1358   else
1359     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1360 }
1361 
1362 void Function::setEntryCount(ProfileCount Count,
1363                              const DenseSet<GlobalValue::GUID> *S) {
1364   assert(Count.hasValue());
1365 #if !defined(NDEBUG)
1366   auto PrevCount = getEntryCount();
1367   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1368 #endif
1369   MDBuilder MDB(getContext());
1370   setMetadata(
1371       LLVMContext::MD_prof,
1372       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1373 }
1374 
1375 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1376                              const DenseSet<GlobalValue::GUID> *Imports) {
1377   setEntryCount(ProfileCount(Count, Type), Imports);
1378 }
1379 
1380 ProfileCount Function::getEntryCount() const {
1381   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1382   if (MD && MD->getOperand(0))
1383     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1384       if (MDS->getString().equals("function_entry_count")) {
1385         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1386         uint64_t Count = CI->getValue().getZExtValue();
1387         // A value of -1 is used for SamplePGO when there were no samples.
1388         // Treat this the same as unknown.
1389         if (Count == (uint64_t)-1)
1390           return ProfileCount::getInvalid();
1391         return ProfileCount(Count, PCT_Real);
1392       } else if (MDS->getString().equals("synthetic_function_entry_count")) {
1393         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1394         uint64_t Count = CI->getValue().getZExtValue();
1395         return ProfileCount(Count, PCT_Synthetic);
1396       }
1397     }
1398   return ProfileCount::getInvalid();
1399 }
1400 
1401 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1402   DenseSet<GlobalValue::GUID> R;
1403   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1404     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1405       if (MDS->getString().equals("function_entry_count"))
1406         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1407           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1408                        ->getValue()
1409                        .getZExtValue());
1410   return R;
1411 }
1412 
1413 void Function::setSectionPrefix(StringRef Prefix) {
1414   MDBuilder MDB(getContext());
1415   setMetadata(LLVMContext::MD_section_prefix,
1416               MDB.createFunctionSectionPrefix(Prefix));
1417 }
1418 
1419 Optional<StringRef> Function::getSectionPrefix() const {
1420   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1421     assert(cast<MDString>(MD->getOperand(0))
1422                ->getString()
1423                .equals("function_section_prefix") &&
1424            "Metadata not match");
1425     return cast<MDString>(MD->getOperand(1))->getString();
1426   }
1427   return None;
1428 }
1429 
1430 bool Function::nullPointerIsDefined() const {
1431   return getFnAttribute("null-pointer-is-valid")
1432           .getValueAsString()
1433           .equals("true");
1434 }
1435 
1436 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1437   if (F && F->nullPointerIsDefined())
1438     return true;
1439 
1440   if (AS != 0)
1441     return true;
1442 
1443   return false;
1444 }
1445