1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/CodeGen/ValueTypes.h" 20 #include "llvm/IR/CallSite.h" 21 #include "llvm/IR/Constants.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/MDBuilder.h" 27 #include "llvm/IR/Metadata.h" 28 #include "llvm/IR/Module.h" 29 using namespace llvm; 30 31 // Explicit instantiations of SymbolTableListTraits since some of the methods 32 // are not in the public header file... 33 template class llvm::SymbolTableListTraits<Argument>; 34 template class llvm::SymbolTableListTraits<BasicBlock>; 35 36 //===----------------------------------------------------------------------===// 37 // Argument Implementation 38 //===----------------------------------------------------------------------===// 39 40 void Argument::anchor() { } 41 42 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 43 : Value(Ty, Value::ArgumentVal) { 44 Parent = nullptr; 45 46 if (Par) 47 Par->getArgumentList().push_back(this); 48 setName(Name); 49 } 50 51 void Argument::setParent(Function *parent) { 52 Parent = parent; 53 } 54 55 /// getArgNo - Return the index of this formal argument in its containing 56 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 57 unsigned Argument::getArgNo() const { 58 const Function *F = getParent(); 59 assert(F && "Argument is not in a function"); 60 61 Function::const_arg_iterator AI = F->arg_begin(); 62 unsigned ArgIdx = 0; 63 for (; &*AI != this; ++AI) 64 ++ArgIdx; 65 66 return ArgIdx; 67 } 68 69 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 70 /// it in its containing function. Also returns true if at least one byte is 71 /// known to be dereferenceable and the pointer is in addrspace(0). 72 bool Argument::hasNonNullAttr() const { 73 if (!getType()->isPointerTy()) return false; 74 if (getParent()->getAttributes(). 75 hasAttribute(getArgNo()+1, Attribute::NonNull)) 76 return true; 77 else if (getDereferenceableBytes() > 0 && 78 getType()->getPointerAddressSpace() == 0) 79 return true; 80 return false; 81 } 82 83 /// hasByValAttr - Return true if this argument has the byval attribute on it 84 /// in its containing function. 85 bool Argument::hasByValAttr() const { 86 if (!getType()->isPointerTy()) return false; 87 return hasAttribute(Attribute::ByVal); 88 } 89 90 bool Argument::hasSwiftSelfAttr() const { 91 return getParent()->getAttributes(). 92 hasAttribute(getArgNo()+1, Attribute::SwiftSelf); 93 } 94 95 bool Argument::hasSwiftErrorAttr() const { 96 return getParent()->getAttributes(). 97 hasAttribute(getArgNo()+1, Attribute::SwiftError); 98 } 99 100 /// \brief Return true if this argument has the inalloca attribute on it in 101 /// its containing function. 102 bool Argument::hasInAllocaAttr() const { 103 if (!getType()->isPointerTy()) return false; 104 return hasAttribute(Attribute::InAlloca); 105 } 106 107 bool Argument::hasByValOrInAllocaAttr() const { 108 if (!getType()->isPointerTy()) return false; 109 AttributeSet Attrs = getParent()->getAttributes(); 110 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 111 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 112 } 113 114 unsigned Argument::getParamAlignment() const { 115 assert(getType()->isPointerTy() && "Only pointers have alignments"); 116 return getParent()->getParamAlignment(getArgNo()+1); 117 118 } 119 120 uint64_t Argument::getDereferenceableBytes() const { 121 assert(getType()->isPointerTy() && 122 "Only pointers have dereferenceable bytes"); 123 return getParent()->getDereferenceableBytes(getArgNo()+1); 124 } 125 126 uint64_t Argument::getDereferenceableOrNullBytes() const { 127 assert(getType()->isPointerTy() && 128 "Only pointers have dereferenceable bytes"); 129 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 130 } 131 132 /// hasNestAttr - Return true if this argument has the nest attribute on 133 /// it in its containing function. 134 bool Argument::hasNestAttr() const { 135 if (!getType()->isPointerTy()) return false; 136 return hasAttribute(Attribute::Nest); 137 } 138 139 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 140 /// it in its containing function. 141 bool Argument::hasNoAliasAttr() const { 142 if (!getType()->isPointerTy()) return false; 143 return hasAttribute(Attribute::NoAlias); 144 } 145 146 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 147 /// on it in its containing function. 148 bool Argument::hasNoCaptureAttr() const { 149 if (!getType()->isPointerTy()) return false; 150 return hasAttribute(Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return hasAttribute(Attribute::StructRet); 158 } 159 160 /// hasReturnedAttr - Return true if this argument has the returned attribute on 161 /// it in its containing function. 162 bool Argument::hasReturnedAttr() const { 163 return hasAttribute(Attribute::Returned); 164 } 165 166 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 167 /// its containing function. 168 bool Argument::hasZExtAttr() const { 169 return hasAttribute(Attribute::ZExt); 170 } 171 172 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 173 /// containing function. 174 bool Argument::hasSExtAttr() const { 175 return hasAttribute(Attribute::SExt); 176 } 177 178 /// Return true if this argument has the readonly or readnone attribute on it 179 /// in its containing function. 180 bool Argument::onlyReadsMemory() const { 181 return getParent()->getAttributes(). 182 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 183 getParent()->getAttributes(). 184 hasAttribute(getArgNo()+1, Attribute::ReadNone); 185 } 186 187 /// addAttr - Add attributes to an argument. 188 void Argument::addAttr(AttributeSet AS) { 189 assert(AS.getNumSlots() <= 1 && 190 "Trying to add more than one attribute set to an argument!"); 191 AttrBuilder B(AS, AS.getSlotIndex(0)); 192 getParent()->addAttributes(getArgNo() + 1, 193 AttributeSet::get(Parent->getContext(), 194 getArgNo() + 1, B)); 195 } 196 197 /// removeAttr - Remove attributes from an argument. 198 void Argument::removeAttr(AttributeSet AS) { 199 assert(AS.getNumSlots() <= 1 && 200 "Trying to remove more than one attribute set from an argument!"); 201 AttrBuilder B(AS, AS.getSlotIndex(0)); 202 getParent()->removeAttributes(getArgNo() + 1, 203 AttributeSet::get(Parent->getContext(), 204 getArgNo() + 1, B)); 205 } 206 207 /// hasAttribute - Checks if an argument has a given attribute. 208 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 209 return getParent()->hasAttribute(getArgNo() + 1, Kind); 210 } 211 212 //===----------------------------------------------------------------------===// 213 // Helper Methods in Function 214 //===----------------------------------------------------------------------===// 215 216 bool Function::isMaterializable() const { 217 return getGlobalObjectSubClassData() & (1 << IsMaterializableBit); 218 } 219 220 void Function::setIsMaterializable(bool V) { 221 unsigned Mask = 1 << IsMaterializableBit; 222 setGlobalObjectSubClassData((~Mask & getGlobalObjectSubClassData()) | 223 (V ? Mask : 0u)); 224 } 225 226 LLVMContext &Function::getContext() const { 227 return getType()->getContext(); 228 } 229 230 FunctionType *Function::getFunctionType() const { 231 return cast<FunctionType>(getValueType()); 232 } 233 234 bool Function::isVarArg() const { 235 return getFunctionType()->isVarArg(); 236 } 237 238 Type *Function::getReturnType() const { 239 return getFunctionType()->getReturnType(); 240 } 241 242 void Function::removeFromParent() { 243 getParent()->getFunctionList().remove(getIterator()); 244 } 245 246 void Function::eraseFromParent() { 247 getParent()->getFunctionList().erase(getIterator()); 248 } 249 250 //===----------------------------------------------------------------------===// 251 // Function Implementation 252 //===----------------------------------------------------------------------===// 253 254 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 255 Module *ParentModule) 256 : GlobalObject(Ty, Value::FunctionVal, 257 OperandTraits<Function>::op_begin(this), 0, Linkage, name) { 258 assert(FunctionType::isValidReturnType(getReturnType()) && 259 "invalid return type"); 260 setGlobalObjectSubClassData(0); 261 262 // We only need a symbol table for a function if the context keeps value names 263 if (!getContext().shouldDiscardValueNames()) 264 SymTab = make_unique<ValueSymbolTable>(); 265 266 // If the function has arguments, mark them as lazily built. 267 if (Ty->getNumParams()) 268 setValueSubclassData(1); // Set the "has lazy arguments" bit. 269 270 if (ParentModule) 271 ParentModule->getFunctionList().push_back(this); 272 273 HasLLVMReservedName = getName().startswith("llvm."); 274 // Ensure intrinsics have the right parameter attributes. 275 // Note, the IntID field will have been set in Value::setName if this function 276 // name is a valid intrinsic ID. 277 if (IntID) 278 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 279 } 280 281 Function::~Function() { 282 dropAllReferences(); // After this it is safe to delete instructions. 283 284 // Delete all of the method arguments and unlink from symbol table... 285 ArgumentList.clear(); 286 287 // Remove the function from the on-the-side GC table. 288 clearGC(); 289 } 290 291 void Function::BuildLazyArguments() const { 292 // Create the arguments vector, all arguments start out unnamed. 293 FunctionType *FT = getFunctionType(); 294 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 295 assert(!FT->getParamType(i)->isVoidTy() && 296 "Cannot have void typed arguments!"); 297 ArgumentList.push_back(new Argument(FT->getParamType(i))); 298 } 299 300 // Clear the lazy arguments bit. 301 unsigned SDC = getSubclassDataFromValue(); 302 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 303 } 304 305 void Function::stealArgumentListFrom(Function &Src) { 306 assert(isDeclaration() && "Expected no references to current arguments"); 307 308 // Drop the current arguments, if any, and set the lazy argument bit. 309 if (!hasLazyArguments()) { 310 assert(llvm::all_of(ArgumentList, 311 [](const Argument &A) { return A.use_empty(); }) && 312 "Expected arguments to be unused in declaration"); 313 ArgumentList.clear(); 314 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 315 } 316 317 // Nothing to steal if Src has lazy arguments. 318 if (Src.hasLazyArguments()) 319 return; 320 321 // Steal arguments from Src, and fix the lazy argument bits. 322 ArgumentList.splice(ArgumentList.end(), Src.ArgumentList); 323 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 324 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 325 } 326 327 size_t Function::arg_size() const { 328 return getFunctionType()->getNumParams(); 329 } 330 bool Function::arg_empty() const { 331 return getFunctionType()->getNumParams() == 0; 332 } 333 334 // dropAllReferences() - This function causes all the subinstructions to "let 335 // go" of all references that they are maintaining. This allows one to 336 // 'delete' a whole class at a time, even though there may be circular 337 // references... first all references are dropped, and all use counts go to 338 // zero. Then everything is deleted for real. Note that no operations are 339 // valid on an object that has "dropped all references", except operator 340 // delete. 341 // 342 void Function::dropAllReferences() { 343 setIsMaterializable(false); 344 345 for (BasicBlock &BB : *this) 346 BB.dropAllReferences(); 347 348 // Delete all basic blocks. They are now unused, except possibly by 349 // blockaddresses, but BasicBlock's destructor takes care of those. 350 while (!BasicBlocks.empty()) 351 BasicBlocks.begin()->eraseFromParent(); 352 353 // Drop uses of any optional data (real or placeholder). 354 if (getNumOperands()) { 355 User::dropAllReferences(); 356 setNumHungOffUseOperands(0); 357 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 358 } 359 360 // Metadata is stored in a side-table. 361 clearMetadata(); 362 } 363 364 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 365 AttributeSet PAL = getAttributes(); 366 PAL = PAL.addAttribute(getContext(), i, Kind); 367 setAttributes(PAL); 368 } 369 370 void Function::addAttribute(unsigned i, Attribute Attr) { 371 AttributeSet PAL = getAttributes(); 372 PAL = PAL.addAttribute(getContext(), i, Attr); 373 setAttributes(PAL); 374 } 375 376 void Function::addAttributes(unsigned i, AttributeSet Attrs) { 377 AttributeSet PAL = getAttributes(); 378 PAL = PAL.addAttributes(getContext(), i, Attrs); 379 setAttributes(PAL); 380 } 381 382 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 383 AttributeSet PAL = getAttributes(); 384 PAL = PAL.removeAttribute(getContext(), i, Kind); 385 setAttributes(PAL); 386 } 387 388 void Function::removeAttribute(unsigned i, StringRef Kind) { 389 AttributeSet PAL = getAttributes(); 390 PAL = PAL.removeAttribute(getContext(), i, Kind); 391 setAttributes(PAL); 392 } 393 394 void Function::removeAttributes(unsigned i, AttributeSet Attrs) { 395 AttributeSet PAL = getAttributes(); 396 PAL = PAL.removeAttributes(getContext(), i, Attrs); 397 setAttributes(PAL); 398 } 399 400 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 401 AttributeSet PAL = getAttributes(); 402 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 403 setAttributes(PAL); 404 } 405 406 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 407 AttributeSet PAL = getAttributes(); 408 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 409 setAttributes(PAL); 410 } 411 412 const std::string &Function::getGC() const { 413 assert(hasGC() && "Function has no collector"); 414 return getContext().getGC(*this); 415 } 416 417 void Function::setGC(std::string Str) { 418 setValueSubclassDataBit(14, !Str.empty()); 419 getContext().setGC(*this, std::move(Str)); 420 } 421 422 void Function::clearGC() { 423 if (!hasGC()) 424 return; 425 getContext().deleteGC(*this); 426 setValueSubclassDataBit(14, false); 427 } 428 429 /// Copy all additional attributes (those not needed to create a Function) from 430 /// the Function Src to this one. 431 void Function::copyAttributesFrom(const GlobalValue *Src) { 432 GlobalObject::copyAttributesFrom(Src); 433 const Function *SrcF = dyn_cast<Function>(Src); 434 if (!SrcF) 435 return; 436 437 setCallingConv(SrcF->getCallingConv()); 438 setAttributes(SrcF->getAttributes()); 439 if (SrcF->hasGC()) 440 setGC(SrcF->getGC()); 441 else 442 clearGC(); 443 if (SrcF->hasPersonalityFn()) 444 setPersonalityFn(SrcF->getPersonalityFn()); 445 if (SrcF->hasPrefixData()) 446 setPrefixData(SrcF->getPrefixData()); 447 if (SrcF->hasPrologueData()) 448 setPrologueData(SrcF->getPrologueData()); 449 } 450 451 /// Table of string intrinsic names indexed by enum value. 452 static const char * const IntrinsicNameTable[] = { 453 "not_intrinsic", 454 #define GET_INTRINSIC_NAME_TABLE 455 #include "llvm/IR/Intrinsics.gen" 456 #undef GET_INTRINSIC_NAME_TABLE 457 }; 458 459 /// Table of per-target intrinsic name tables. 460 #define GET_INTRINSIC_TARGET_DATA 461 #include "llvm/IR/Intrinsics.gen" 462 #undef GET_INTRINSIC_TARGET_DATA 463 464 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 465 /// target as \c Name, or the generic table if \c Name is not target specific. 466 /// 467 /// Returns the relevant slice of \c IntrinsicNameTable 468 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 469 assert(Name.startswith("llvm.")); 470 471 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 472 // Drop "llvm." and take the first dotted component. That will be the target 473 // if this is target specific. 474 StringRef Target = Name.drop_front(5).split('.').first; 475 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 476 [](const IntrinsicTargetInfo &TI, 477 StringRef Target) { return TI.Name < Target; }); 478 // We've either found the target or just fall back to the generic set, which 479 // is always first. 480 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 481 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 482 } 483 484 /// \brief This does the actual lookup of an intrinsic ID which 485 /// matches the given function name. 486 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 487 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 488 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 489 if (Idx == -1) 490 return Intrinsic::not_intrinsic; 491 492 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 493 // an index into a sub-table. 494 int Adjust = NameTable.data() - IntrinsicNameTable; 495 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 496 497 // If the intrinsic is not overloaded, require an exact match. If it is 498 // overloaded, require a prefix match. 499 bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]); 500 return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 501 } 502 503 void Function::recalculateIntrinsicID() { 504 StringRef Name = getName(); 505 if (!Name.startswith("llvm.")) { 506 HasLLVMReservedName = false; 507 IntID = Intrinsic::not_intrinsic; 508 return; 509 } 510 HasLLVMReservedName = true; 511 IntID = lookupIntrinsicID(Name); 512 } 513 514 /// Returns a stable mangling for the type specified for use in the name 515 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 516 /// of named types is simply their name. Manglings for unnamed types consist 517 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 518 /// combined with the mangling of their component types. A vararg function 519 /// type will have a suffix of 'vararg'. Since function types can contain 520 /// other function types, we close a function type mangling with suffix 'f' 521 /// which can't be confused with it's prefix. This ensures we don't have 522 /// collisions between two unrelated function types. Otherwise, you might 523 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 524 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 525 /// cases) fall back to the MVT codepath, where they could be mangled to 526 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 527 /// everything. 528 static std::string getMangledTypeStr(Type* Ty) { 529 std::string Result; 530 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 531 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 532 getMangledTypeStr(PTyp->getElementType()); 533 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 534 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 535 getMangledTypeStr(ATyp->getElementType()); 536 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 537 assert(!STyp->isLiteral() && "TODO: implement literal types"); 538 Result += STyp->getName(); 539 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 540 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 541 for (size_t i = 0; i < FT->getNumParams(); i++) 542 Result += getMangledTypeStr(FT->getParamType(i)); 543 if (FT->isVarArg()) 544 Result += "vararg"; 545 // Ensure nested function types are distinguishable. 546 Result += "f"; 547 } else if (isa<VectorType>(Ty)) 548 Result += "v" + utostr(Ty->getVectorNumElements()) + 549 getMangledTypeStr(Ty->getVectorElementType()); 550 else if (Ty) 551 Result += EVT::getEVT(Ty).getEVTString(); 552 return Result; 553 } 554 555 StringRef Intrinsic::getName(ID id) { 556 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 557 assert(!isOverloaded(id) && 558 "This version of getName does not support overloading"); 559 return IntrinsicNameTable[id]; 560 } 561 562 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 563 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 564 std::string Result(IntrinsicNameTable[id]); 565 for (Type *Ty : Tys) { 566 Result += "." + getMangledTypeStr(Ty); 567 } 568 return Result; 569 } 570 571 572 /// IIT_Info - These are enumerators that describe the entries returned by the 573 /// getIntrinsicInfoTableEntries function. 574 /// 575 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 576 enum IIT_Info { 577 // Common values should be encoded with 0-15. 578 IIT_Done = 0, 579 IIT_I1 = 1, 580 IIT_I8 = 2, 581 IIT_I16 = 3, 582 IIT_I32 = 4, 583 IIT_I64 = 5, 584 IIT_F16 = 6, 585 IIT_F32 = 7, 586 IIT_F64 = 8, 587 IIT_V2 = 9, 588 IIT_V4 = 10, 589 IIT_V8 = 11, 590 IIT_V16 = 12, 591 IIT_V32 = 13, 592 IIT_PTR = 14, 593 IIT_ARG = 15, 594 595 // Values from 16+ are only encodable with the inefficient encoding. 596 IIT_V64 = 16, 597 IIT_MMX = 17, 598 IIT_TOKEN = 18, 599 IIT_METADATA = 19, 600 IIT_EMPTYSTRUCT = 20, 601 IIT_STRUCT2 = 21, 602 IIT_STRUCT3 = 22, 603 IIT_STRUCT4 = 23, 604 IIT_STRUCT5 = 24, 605 IIT_EXTEND_ARG = 25, 606 IIT_TRUNC_ARG = 26, 607 IIT_ANYPTR = 27, 608 IIT_V1 = 28, 609 IIT_VARARG = 29, 610 IIT_HALF_VEC_ARG = 30, 611 IIT_SAME_VEC_WIDTH_ARG = 31, 612 IIT_PTR_TO_ARG = 32, 613 IIT_PTR_TO_ELT = 33, 614 IIT_VEC_OF_PTRS_TO_ELT = 34, 615 IIT_I128 = 35, 616 IIT_V512 = 36, 617 IIT_V1024 = 37 618 }; 619 620 621 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 622 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 623 IIT_Info Info = IIT_Info(Infos[NextElt++]); 624 unsigned StructElts = 2; 625 using namespace Intrinsic; 626 627 switch (Info) { 628 case IIT_Done: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 630 return; 631 case IIT_VARARG: 632 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 633 return; 634 case IIT_MMX: 635 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 636 return; 637 case IIT_TOKEN: 638 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 639 return; 640 case IIT_METADATA: 641 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 642 return; 643 case IIT_F16: 644 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 645 return; 646 case IIT_F32: 647 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 648 return; 649 case IIT_F64: 650 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 651 return; 652 case IIT_I1: 653 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 654 return; 655 case IIT_I8: 656 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 657 return; 658 case IIT_I16: 659 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 660 return; 661 case IIT_I32: 662 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 663 return; 664 case IIT_I64: 665 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 666 return; 667 case IIT_I128: 668 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 669 return; 670 case IIT_V1: 671 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 672 DecodeIITType(NextElt, Infos, OutputTable); 673 return; 674 case IIT_V2: 675 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 676 DecodeIITType(NextElt, Infos, OutputTable); 677 return; 678 case IIT_V4: 679 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 680 DecodeIITType(NextElt, Infos, OutputTable); 681 return; 682 case IIT_V8: 683 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 684 DecodeIITType(NextElt, Infos, OutputTable); 685 return; 686 case IIT_V16: 687 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 688 DecodeIITType(NextElt, Infos, OutputTable); 689 return; 690 case IIT_V32: 691 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 692 DecodeIITType(NextElt, Infos, OutputTable); 693 return; 694 case IIT_V64: 695 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 696 DecodeIITType(NextElt, Infos, OutputTable); 697 return; 698 case IIT_V512: 699 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 700 DecodeIITType(NextElt, Infos, OutputTable); 701 return; 702 case IIT_V1024: 703 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 704 DecodeIITType(NextElt, Infos, OutputTable); 705 return; 706 case IIT_PTR: 707 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 708 DecodeIITType(NextElt, Infos, OutputTable); 709 return; 710 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 711 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 712 Infos[NextElt++])); 713 DecodeIITType(NextElt, Infos, OutputTable); 714 return; 715 } 716 case IIT_ARG: { 717 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 718 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 719 return; 720 } 721 case IIT_EXTEND_ARG: { 722 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 723 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 724 ArgInfo)); 725 return; 726 } 727 case IIT_TRUNC_ARG: { 728 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 729 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 730 ArgInfo)); 731 return; 732 } 733 case IIT_HALF_VEC_ARG: { 734 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 735 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 736 ArgInfo)); 737 return; 738 } 739 case IIT_SAME_VEC_WIDTH_ARG: { 740 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 741 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 742 ArgInfo)); 743 return; 744 } 745 case IIT_PTR_TO_ARG: { 746 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 747 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 748 ArgInfo)); 749 return; 750 } 751 case IIT_PTR_TO_ELT: { 752 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 753 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 754 return; 755 } 756 case IIT_VEC_OF_PTRS_TO_ELT: { 757 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 758 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 759 ArgInfo)); 760 return; 761 } 762 case IIT_EMPTYSTRUCT: 763 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 764 return; 765 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 766 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 767 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 768 case IIT_STRUCT2: { 769 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 770 771 for (unsigned i = 0; i != StructElts; ++i) 772 DecodeIITType(NextElt, Infos, OutputTable); 773 return; 774 } 775 } 776 llvm_unreachable("unhandled"); 777 } 778 779 780 #define GET_INTRINSIC_GENERATOR_GLOBAL 781 #include "llvm/IR/Intrinsics.gen" 782 #undef GET_INTRINSIC_GENERATOR_GLOBAL 783 784 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 785 SmallVectorImpl<IITDescriptor> &T){ 786 // Check to see if the intrinsic's type was expressible by the table. 787 unsigned TableVal = IIT_Table[id-1]; 788 789 // Decode the TableVal into an array of IITValues. 790 SmallVector<unsigned char, 8> IITValues; 791 ArrayRef<unsigned char> IITEntries; 792 unsigned NextElt = 0; 793 if ((TableVal >> 31) != 0) { 794 // This is an offset into the IIT_LongEncodingTable. 795 IITEntries = IIT_LongEncodingTable; 796 797 // Strip sentinel bit. 798 NextElt = (TableVal << 1) >> 1; 799 } else { 800 // Decode the TableVal into an array of IITValues. If the entry was encoded 801 // into a single word in the table itself, decode it now. 802 do { 803 IITValues.push_back(TableVal & 0xF); 804 TableVal >>= 4; 805 } while (TableVal); 806 807 IITEntries = IITValues; 808 NextElt = 0; 809 } 810 811 // Okay, decode the table into the output vector of IITDescriptors. 812 DecodeIITType(NextElt, IITEntries, T); 813 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 814 DecodeIITType(NextElt, IITEntries, T); 815 } 816 817 818 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 819 ArrayRef<Type*> Tys, LLVMContext &Context) { 820 using namespace Intrinsic; 821 IITDescriptor D = Infos.front(); 822 Infos = Infos.slice(1); 823 824 switch (D.Kind) { 825 case IITDescriptor::Void: return Type::getVoidTy(Context); 826 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 827 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 828 case IITDescriptor::Token: return Type::getTokenTy(Context); 829 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 830 case IITDescriptor::Half: return Type::getHalfTy(Context); 831 case IITDescriptor::Float: return Type::getFloatTy(Context); 832 case IITDescriptor::Double: return Type::getDoubleTy(Context); 833 834 case IITDescriptor::Integer: 835 return IntegerType::get(Context, D.Integer_Width); 836 case IITDescriptor::Vector: 837 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 838 case IITDescriptor::Pointer: 839 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 840 D.Pointer_AddressSpace); 841 case IITDescriptor::Struct: { 842 Type *Elts[5]; 843 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 844 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 845 Elts[i] = DecodeFixedType(Infos, Tys, Context); 846 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 847 } 848 849 case IITDescriptor::Argument: 850 return Tys[D.getArgumentNumber()]; 851 case IITDescriptor::ExtendArgument: { 852 Type *Ty = Tys[D.getArgumentNumber()]; 853 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 854 return VectorType::getExtendedElementVectorType(VTy); 855 856 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 857 } 858 case IITDescriptor::TruncArgument: { 859 Type *Ty = Tys[D.getArgumentNumber()]; 860 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 861 return VectorType::getTruncatedElementVectorType(VTy); 862 863 IntegerType *ITy = cast<IntegerType>(Ty); 864 assert(ITy->getBitWidth() % 2 == 0); 865 return IntegerType::get(Context, ITy->getBitWidth() / 2); 866 } 867 case IITDescriptor::HalfVecArgument: 868 return VectorType::getHalfElementsVectorType(cast<VectorType>( 869 Tys[D.getArgumentNumber()])); 870 case IITDescriptor::SameVecWidthArgument: { 871 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 872 Type *Ty = Tys[D.getArgumentNumber()]; 873 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 874 return VectorType::get(EltTy, VTy->getNumElements()); 875 } 876 llvm_unreachable("unhandled"); 877 } 878 case IITDescriptor::PtrToArgument: { 879 Type *Ty = Tys[D.getArgumentNumber()]; 880 return PointerType::getUnqual(Ty); 881 } 882 case IITDescriptor::PtrToElt: { 883 Type *Ty = Tys[D.getArgumentNumber()]; 884 VectorType *VTy = dyn_cast<VectorType>(Ty); 885 if (!VTy) 886 llvm_unreachable("Expected an argument of Vector Type"); 887 Type *EltTy = VTy->getVectorElementType(); 888 return PointerType::getUnqual(EltTy); 889 } 890 case IITDescriptor::VecOfPtrsToElt: { 891 Type *Ty = Tys[D.getArgumentNumber()]; 892 VectorType *VTy = dyn_cast<VectorType>(Ty); 893 if (!VTy) 894 llvm_unreachable("Expected an argument of Vector Type"); 895 Type *EltTy = VTy->getVectorElementType(); 896 return VectorType::get(PointerType::getUnqual(EltTy), 897 VTy->getNumElements()); 898 } 899 } 900 llvm_unreachable("unhandled"); 901 } 902 903 904 905 FunctionType *Intrinsic::getType(LLVMContext &Context, 906 ID id, ArrayRef<Type*> Tys) { 907 SmallVector<IITDescriptor, 8> Table; 908 getIntrinsicInfoTableEntries(id, Table); 909 910 ArrayRef<IITDescriptor> TableRef = Table; 911 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 912 913 SmallVector<Type*, 8> ArgTys; 914 while (!TableRef.empty()) 915 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 916 917 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 918 // If we see void type as the type of the last argument, it is vararg intrinsic 919 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 920 ArgTys.pop_back(); 921 return FunctionType::get(ResultTy, ArgTys, true); 922 } 923 return FunctionType::get(ResultTy, ArgTys, false); 924 } 925 926 bool Intrinsic::isOverloaded(ID id) { 927 #define GET_INTRINSIC_OVERLOAD_TABLE 928 #include "llvm/IR/Intrinsics.gen" 929 #undef GET_INTRINSIC_OVERLOAD_TABLE 930 } 931 932 bool Intrinsic::isLeaf(ID id) { 933 switch (id) { 934 default: 935 return true; 936 937 case Intrinsic::experimental_gc_statepoint: 938 case Intrinsic::experimental_patchpoint_void: 939 case Intrinsic::experimental_patchpoint_i64: 940 return false; 941 } 942 } 943 944 /// This defines the "Intrinsic::getAttributes(ID id)" method. 945 #define GET_INTRINSIC_ATTRIBUTES 946 #include "llvm/IR/Intrinsics.gen" 947 #undef GET_INTRINSIC_ATTRIBUTES 948 949 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 950 // There can never be multiple globals with the same name of different types, 951 // because intrinsics must be a specific type. 952 return 953 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 954 getType(M->getContext(), id, Tys))); 955 } 956 957 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 958 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 959 #include "llvm/IR/Intrinsics.gen" 960 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 961 962 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 963 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 964 #include "llvm/IR/Intrinsics.gen" 965 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 966 967 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 968 SmallVectorImpl<Type*> &ArgTys) { 969 using namespace Intrinsic; 970 971 // If we ran out of descriptors, there are too many arguments. 972 if (Infos.empty()) return true; 973 IITDescriptor D = Infos.front(); 974 Infos = Infos.slice(1); 975 976 switch (D.Kind) { 977 case IITDescriptor::Void: return !Ty->isVoidTy(); 978 case IITDescriptor::VarArg: return true; 979 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 980 case IITDescriptor::Token: return !Ty->isTokenTy(); 981 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 982 case IITDescriptor::Half: return !Ty->isHalfTy(); 983 case IITDescriptor::Float: return !Ty->isFloatTy(); 984 case IITDescriptor::Double: return !Ty->isDoubleTy(); 985 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 986 case IITDescriptor::Vector: { 987 VectorType *VT = dyn_cast<VectorType>(Ty); 988 return !VT || VT->getNumElements() != D.Vector_Width || 989 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 990 } 991 case IITDescriptor::Pointer: { 992 PointerType *PT = dyn_cast<PointerType>(Ty); 993 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 994 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 995 } 996 997 case IITDescriptor::Struct: { 998 StructType *ST = dyn_cast<StructType>(Ty); 999 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1000 return true; 1001 1002 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1003 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 1004 return true; 1005 return false; 1006 } 1007 1008 case IITDescriptor::Argument: 1009 // Two cases here - If this is the second occurrence of an argument, verify 1010 // that the later instance matches the previous instance. 1011 if (D.getArgumentNumber() < ArgTys.size()) 1012 return Ty != ArgTys[D.getArgumentNumber()]; 1013 1014 // Otherwise, if this is the first instance of an argument, record it and 1015 // verify the "Any" kind. 1016 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1017 ArgTys.push_back(Ty); 1018 1019 switch (D.getArgumentKind()) { 1020 case IITDescriptor::AK_Any: return false; // Success 1021 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1022 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1023 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1024 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1025 } 1026 llvm_unreachable("all argument kinds not covered"); 1027 1028 case IITDescriptor::ExtendArgument: { 1029 // This may only be used when referring to a previous vector argument. 1030 if (D.getArgumentNumber() >= ArgTys.size()) 1031 return true; 1032 1033 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1034 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1035 NewTy = VectorType::getExtendedElementVectorType(VTy); 1036 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1037 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1038 else 1039 return true; 1040 1041 return Ty != NewTy; 1042 } 1043 case IITDescriptor::TruncArgument: { 1044 // This may only be used when referring to a previous vector argument. 1045 if (D.getArgumentNumber() >= ArgTys.size()) 1046 return true; 1047 1048 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1049 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1050 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1051 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1052 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1053 else 1054 return true; 1055 1056 return Ty != NewTy; 1057 } 1058 case IITDescriptor::HalfVecArgument: 1059 // This may only be used when referring to a previous vector argument. 1060 return D.getArgumentNumber() >= ArgTys.size() || 1061 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1062 VectorType::getHalfElementsVectorType( 1063 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1064 case IITDescriptor::SameVecWidthArgument: { 1065 if (D.getArgumentNumber() >= ArgTys.size()) 1066 return true; 1067 VectorType * ReferenceType = 1068 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1069 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1070 if (!ThisArgType || !ReferenceType || 1071 (ReferenceType->getVectorNumElements() != 1072 ThisArgType->getVectorNumElements())) 1073 return true; 1074 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1075 Infos, ArgTys); 1076 } 1077 case IITDescriptor::PtrToArgument: { 1078 if (D.getArgumentNumber() >= ArgTys.size()) 1079 return true; 1080 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1081 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1082 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1083 } 1084 case IITDescriptor::PtrToElt: { 1085 if (D.getArgumentNumber() >= ArgTys.size()) 1086 return true; 1087 VectorType * ReferenceType = 1088 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1089 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1090 1091 return (!ThisArgType || !ReferenceType || 1092 ThisArgType->getElementType() != ReferenceType->getElementType()); 1093 } 1094 case IITDescriptor::VecOfPtrsToElt: { 1095 if (D.getArgumentNumber() >= ArgTys.size()) 1096 return true; 1097 VectorType * ReferenceType = 1098 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1099 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1100 if (!ThisArgVecTy || !ReferenceType || 1101 (ReferenceType->getVectorNumElements() != 1102 ThisArgVecTy->getVectorNumElements())) 1103 return true; 1104 PointerType *ThisArgEltTy = 1105 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1106 if (!ThisArgEltTy) 1107 return true; 1108 return ThisArgEltTy->getElementType() != 1109 ReferenceType->getVectorElementType(); 1110 } 1111 } 1112 llvm_unreachable("unhandled"); 1113 } 1114 1115 bool 1116 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1117 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1118 // If there are no descriptors left, then it can't be a vararg. 1119 if (Infos.empty()) 1120 return isVarArg; 1121 1122 // There should be only one descriptor remaining at this point. 1123 if (Infos.size() != 1) 1124 return true; 1125 1126 // Check and verify the descriptor. 1127 IITDescriptor D = Infos.front(); 1128 Infos = Infos.slice(1); 1129 if (D.Kind == IITDescriptor::VarArg) 1130 return !isVarArg; 1131 1132 return true; 1133 } 1134 1135 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1136 Intrinsic::ID ID = F->getIntrinsicID(); 1137 if (!ID) 1138 return None; 1139 1140 FunctionType *FTy = F->getFunctionType(); 1141 // Accumulate an array of overloaded types for the given intrinsic 1142 SmallVector<Type *, 4> ArgTys; 1143 { 1144 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1145 getIntrinsicInfoTableEntries(ID, Table); 1146 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1147 1148 // If we encounter any problems matching the signature with the descriptor 1149 // just give up remangling. It's up to verifier to report the discrepancy. 1150 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1151 return None; 1152 for (auto Ty : FTy->params()) 1153 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1154 return None; 1155 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1156 return None; 1157 } 1158 1159 StringRef Name = F->getName(); 1160 if (Name == Intrinsic::getName(ID, ArgTys)) 1161 return None; 1162 1163 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1164 NewDecl->setCallingConv(F->getCallingConv()); 1165 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1166 return NewDecl; 1167 } 1168 1169 /// hasAddressTaken - returns true if there are any uses of this function 1170 /// other than direct calls or invokes to it. 1171 bool Function::hasAddressTaken(const User* *PutOffender) const { 1172 for (const Use &U : uses()) { 1173 const User *FU = U.getUser(); 1174 if (isa<BlockAddress>(FU)) 1175 continue; 1176 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1177 if (PutOffender) 1178 *PutOffender = FU; 1179 return true; 1180 } 1181 ImmutableCallSite CS(cast<Instruction>(FU)); 1182 if (!CS.isCallee(&U)) { 1183 if (PutOffender) 1184 *PutOffender = FU; 1185 return true; 1186 } 1187 } 1188 return false; 1189 } 1190 1191 bool Function::isDefTriviallyDead() const { 1192 // Check the linkage 1193 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1194 !hasAvailableExternallyLinkage()) 1195 return false; 1196 1197 // Check if the function is used by anything other than a blockaddress. 1198 for (const User *U : users()) 1199 if (!isa<BlockAddress>(U)) 1200 return false; 1201 1202 return true; 1203 } 1204 1205 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1206 /// setjmp or other function that gcc recognizes as "returning twice". 1207 bool Function::callsFunctionThatReturnsTwice() const { 1208 for (const_inst_iterator 1209 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1210 ImmutableCallSite CS(&*I); 1211 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1212 return true; 1213 } 1214 1215 return false; 1216 } 1217 1218 Constant *Function::getPersonalityFn() const { 1219 assert(hasPersonalityFn() && getNumOperands()); 1220 return cast<Constant>(Op<0>()); 1221 } 1222 1223 void Function::setPersonalityFn(Constant *Fn) { 1224 setHungoffOperand<0>(Fn); 1225 setValueSubclassDataBit(3, Fn != nullptr); 1226 } 1227 1228 Constant *Function::getPrefixData() const { 1229 assert(hasPrefixData() && getNumOperands()); 1230 return cast<Constant>(Op<1>()); 1231 } 1232 1233 void Function::setPrefixData(Constant *PrefixData) { 1234 setHungoffOperand<1>(PrefixData); 1235 setValueSubclassDataBit(1, PrefixData != nullptr); 1236 } 1237 1238 Constant *Function::getPrologueData() const { 1239 assert(hasPrologueData() && getNumOperands()); 1240 return cast<Constant>(Op<2>()); 1241 } 1242 1243 void Function::setPrologueData(Constant *PrologueData) { 1244 setHungoffOperand<2>(PrologueData); 1245 setValueSubclassDataBit(2, PrologueData != nullptr); 1246 } 1247 1248 void Function::allocHungoffUselist() { 1249 // If we've already allocated a uselist, stop here. 1250 if (getNumOperands()) 1251 return; 1252 1253 allocHungoffUses(3, /*IsPhi=*/ false); 1254 setNumHungOffUseOperands(3); 1255 1256 // Initialize the uselist with placeholder operands to allow traversal. 1257 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1258 Op<0>().set(CPN); 1259 Op<1>().set(CPN); 1260 Op<2>().set(CPN); 1261 } 1262 1263 template <int Idx> 1264 void Function::setHungoffOperand(Constant *C) { 1265 if (C) { 1266 allocHungoffUselist(); 1267 Op<Idx>().set(C); 1268 } else if (getNumOperands()) { 1269 Op<Idx>().set( 1270 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1271 } 1272 } 1273 1274 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1275 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1276 if (On) 1277 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1278 else 1279 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1280 } 1281 1282 void Function::setEntryCount(uint64_t Count) { 1283 MDBuilder MDB(getContext()); 1284 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 1285 } 1286 1287 Optional<uint64_t> Function::getEntryCount() const { 1288 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1289 if (MD && MD->getOperand(0)) 1290 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1291 if (MDS->getString().equals("function_entry_count")) { 1292 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1293 uint64_t Count = CI->getValue().getZExtValue(); 1294 if (Count == 0) 1295 return None; 1296 return Count; 1297 } 1298 return None; 1299 } 1300 1301 void Function::setSectionPrefix(StringRef Prefix) { 1302 MDBuilder MDB(getContext()); 1303 setMetadata(LLVMContext::MD_section_prefix, 1304 MDB.createFunctionSectionPrefix(Prefix)); 1305 } 1306 1307 Optional<StringRef> Function::getSectionPrefix() const { 1308 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1309 assert(dyn_cast<MDString>(MD->getOperand(0)) 1310 ->getString() 1311 .equals("function_section_prefix") && 1312 "Metadata not match"); 1313 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1314 } 1315 return None; 1316 } 1317