xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 2786e673c7d67ffca531ef38d679620ee3048a1e)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 //===----------------------------------------------------------------------===//
80 // Argument Implementation
81 //===----------------------------------------------------------------------===//
82 
83 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
84     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
85   setName(Name);
86 }
87 
88 void Argument::setParent(Function *parent) {
89   Parent = parent;
90 }
91 
92 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
93   if (!getType()->isPointerTy()) return false;
94   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
95       (AllowUndefOrPoison ||
96        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
97     return true;
98   else if (getDereferenceableBytes() > 0 &&
99            !NullPointerIsDefined(getParent(),
100                                  getType()->getPointerAddressSpace()))
101     return true;
102   return false;
103 }
104 
105 bool Argument::hasByValAttr() const {
106   if (!getType()->isPointerTy()) return false;
107   return hasAttribute(Attribute::ByVal);
108 }
109 
110 bool Argument::hasByRefAttr() const {
111   if (!getType()->isPointerTy())
112     return false;
113   return hasAttribute(Attribute::ByRef);
114 }
115 
116 bool Argument::hasSwiftSelfAttr() const {
117   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
118 }
119 
120 bool Argument::hasSwiftErrorAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
122 }
123 
124 bool Argument::hasInAllocaAttr() const {
125   if (!getType()->isPointerTy()) return false;
126   return hasAttribute(Attribute::InAlloca);
127 }
128 
129 bool Argument::hasPreallocatedAttr() const {
130   if (!getType()->isPointerTy())
131     return false;
132   return hasAttribute(Attribute::Preallocated);
133 }
134 
135 bool Argument::hasPassPointeeByValueCopyAttr() const {
136   if (!getType()->isPointerTy()) return false;
137   AttributeList Attrs = getParent()->getAttributes();
138   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
139          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
140          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
141 }
142 
143 bool Argument::hasPointeeInMemoryValueAttr() const {
144   if (!getType()->isPointerTy())
145     return false;
146   AttributeList Attrs = getParent()->getAttributes();
147   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
148          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
149          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
150          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
151          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
152 }
153 
154 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
155 /// parameter type.
156 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
157   // FIXME: All the type carrying attributes are mutually exclusive, so there
158   // should be a single query to get the stored type that handles any of them.
159   if (Type *ByValTy = ParamAttrs.getByValType())
160     return ByValTy;
161   if (Type *ByRefTy = ParamAttrs.getByRefType())
162     return ByRefTy;
163   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
164     return PreAllocTy;
165   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
166     return InAllocaTy;
167 
168   // FIXME: sret and inalloca always depends on pointee element type. It's also
169   // possible for byval to miss it.
170   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
171       ParamAttrs.hasAttribute(Attribute::ByVal) ||
172       ParamAttrs.hasAttribute(Attribute::StructRet) ||
173       ParamAttrs.hasAttribute(Attribute::Preallocated))
174     return cast<PointerType>(ArgTy)->getElementType();
175 
176   return nullptr;
177 }
178 
179 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
180   AttributeSet ParamAttrs =
181       getParent()->getAttributes().getParamAttributes(getArgNo());
182   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
183     return DL.getTypeAllocSize(MemTy);
184   return 0;
185 }
186 
187 Type *Argument::getPointeeInMemoryValueType() const {
188   AttributeSet ParamAttrs =
189       getParent()->getAttributes().getParamAttributes(getArgNo());
190   return getMemoryParamAllocType(ParamAttrs, getType());
191 }
192 
193 unsigned Argument::getParamAlignment() const {
194   assert(getType()->isPointerTy() && "Only pointers have alignments");
195   return getParent()->getParamAlignment(getArgNo());
196 }
197 
198 MaybeAlign Argument::getParamAlign() const {
199   assert(getType()->isPointerTy() && "Only pointers have alignments");
200   return getParent()->getParamAlign(getArgNo());
201 }
202 
203 MaybeAlign Argument::getParamStackAlign() const {
204   return getParent()->getParamStackAlign(getArgNo());
205 }
206 
207 Type *Argument::getParamByValType() const {
208   assert(getType()->isPointerTy() && "Only pointers have byval types");
209   return getParent()->getParamByValType(getArgNo());
210 }
211 
212 Type *Argument::getParamStructRetType() const {
213   assert(getType()->isPointerTy() && "Only pointers have sret types");
214   return getParent()->getParamStructRetType(getArgNo());
215 }
216 
217 Type *Argument::getParamByRefType() const {
218   assert(getType()->isPointerTy() && "Only pointers have byref types");
219   return getParent()->getParamByRefType(getArgNo());
220 }
221 
222 Type *Argument::getParamInAllocaType() const {
223   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
224   return getParent()->getParamInAllocaType(getArgNo());
225 }
226 
227 uint64_t Argument::getDereferenceableBytes() const {
228   assert(getType()->isPointerTy() &&
229          "Only pointers have dereferenceable bytes");
230   return getParent()->getParamDereferenceableBytes(getArgNo());
231 }
232 
233 uint64_t Argument::getDereferenceableOrNullBytes() const {
234   assert(getType()->isPointerTy() &&
235          "Only pointers have dereferenceable bytes");
236   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
237 }
238 
239 bool Argument::hasNestAttr() const {
240   if (!getType()->isPointerTy()) return false;
241   return hasAttribute(Attribute::Nest);
242 }
243 
244 bool Argument::hasNoAliasAttr() const {
245   if (!getType()->isPointerTy()) return false;
246   return hasAttribute(Attribute::NoAlias);
247 }
248 
249 bool Argument::hasNoCaptureAttr() const {
250   if (!getType()->isPointerTy()) return false;
251   return hasAttribute(Attribute::NoCapture);
252 }
253 
254 bool Argument::hasNoFreeAttr() const {
255   if (!getType()->isPointerTy()) return false;
256   return hasAttribute(Attribute::NoFree);
257 }
258 
259 bool Argument::hasStructRetAttr() const {
260   if (!getType()->isPointerTy()) return false;
261   return hasAttribute(Attribute::StructRet);
262 }
263 
264 bool Argument::hasInRegAttr() const {
265   return hasAttribute(Attribute::InReg);
266 }
267 
268 bool Argument::hasReturnedAttr() const {
269   return hasAttribute(Attribute::Returned);
270 }
271 
272 bool Argument::hasZExtAttr() const {
273   return hasAttribute(Attribute::ZExt);
274 }
275 
276 bool Argument::hasSExtAttr() const {
277   return hasAttribute(Attribute::SExt);
278 }
279 
280 bool Argument::onlyReadsMemory() const {
281   AttributeList Attrs = getParent()->getAttributes();
282   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
283          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
284 }
285 
286 void Argument::addAttrs(AttrBuilder &B) {
287   AttributeList AL = getParent()->getAttributes();
288   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
289   getParent()->setAttributes(AL);
290 }
291 
292 void Argument::addAttr(Attribute::AttrKind Kind) {
293   getParent()->addParamAttr(getArgNo(), Kind);
294 }
295 
296 void Argument::addAttr(Attribute Attr) {
297   getParent()->addParamAttr(getArgNo(), Attr);
298 }
299 
300 void Argument::removeAttr(Attribute::AttrKind Kind) {
301   getParent()->removeParamAttr(getArgNo(), Kind);
302 }
303 
304 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
305   return getParent()->hasParamAttribute(getArgNo(), Kind);
306 }
307 
308 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
309   return getParent()->getParamAttribute(getArgNo(), Kind);
310 }
311 
312 //===----------------------------------------------------------------------===//
313 // Helper Methods in Function
314 //===----------------------------------------------------------------------===//
315 
316 LLVMContext &Function::getContext() const {
317   return getType()->getContext();
318 }
319 
320 unsigned Function::getInstructionCount() const {
321   unsigned NumInstrs = 0;
322   for (const BasicBlock &BB : BasicBlocks)
323     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
324                                BB.instructionsWithoutDebug().end());
325   return NumInstrs;
326 }
327 
328 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
329                            const Twine &N, Module &M) {
330   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
331 }
332 
333 Function *Function::createWithDefaultAttr(FunctionType *Ty,
334                                           LinkageTypes Linkage,
335                                           unsigned AddrSpace, const Twine &N,
336                                           Module *M) {
337   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
338   AttrBuilder B;
339   if (M->getUwtable())
340     B.addAttribute(Attribute::UWTable);
341   switch (M->getFramePointer()) {
342   case FramePointerKind::None:
343     // 0 ("none") is the default.
344     break;
345   case FramePointerKind::NonLeaf:
346     B.addAttribute("frame-pointer", "non-leaf");
347     break;
348   case FramePointerKind::All:
349     B.addAttribute("frame-pointer", "all");
350     break;
351   }
352   F->addAttributes(AttributeList::FunctionIndex, B);
353   return F;
354 }
355 
356 void Function::removeFromParent() {
357   getParent()->getFunctionList().remove(getIterator());
358 }
359 
360 void Function::eraseFromParent() {
361   getParent()->getFunctionList().erase(getIterator());
362 }
363 
364 //===----------------------------------------------------------------------===//
365 // Function Implementation
366 //===----------------------------------------------------------------------===//
367 
368 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
369   // If AS == -1 and we are passed a valid module pointer we place the function
370   // in the program address space. Otherwise we default to AS0.
371   if (AddrSpace == static_cast<unsigned>(-1))
372     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
373   return AddrSpace;
374 }
375 
376 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
377                    const Twine &name, Module *ParentModule)
378     : GlobalObject(Ty, Value::FunctionVal,
379                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
380                    computeAddrSpace(AddrSpace, ParentModule)),
381       NumArgs(Ty->getNumParams()) {
382   assert(FunctionType::isValidReturnType(getReturnType()) &&
383          "invalid return type");
384   setGlobalObjectSubClassData(0);
385 
386   // We only need a symbol table for a function if the context keeps value names
387   if (!getContext().shouldDiscardValueNames())
388     SymTab = std::make_unique<ValueSymbolTable>();
389 
390   // If the function has arguments, mark them as lazily built.
391   if (Ty->getNumParams())
392     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
393 
394   if (ParentModule)
395     ParentModule->getFunctionList().push_back(this);
396 
397   HasLLVMReservedName = getName().startswith("llvm.");
398   // Ensure intrinsics have the right parameter attributes.
399   // Note, the IntID field will have been set in Value::setName if this function
400   // name is a valid intrinsic ID.
401   if (IntID)
402     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
403 }
404 
405 Function::~Function() {
406   dropAllReferences();    // After this it is safe to delete instructions.
407 
408   // Delete all of the method arguments and unlink from symbol table...
409   if (Arguments)
410     clearArguments();
411 
412   // Remove the function from the on-the-side GC table.
413   clearGC();
414 }
415 
416 void Function::BuildLazyArguments() const {
417   // Create the arguments vector, all arguments start out unnamed.
418   auto *FT = getFunctionType();
419   if (NumArgs > 0) {
420     Arguments = std::allocator<Argument>().allocate(NumArgs);
421     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
422       Type *ArgTy = FT->getParamType(i);
423       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
424       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
425     }
426   }
427 
428   // Clear the lazy arguments bit.
429   unsigned SDC = getSubclassDataFromValue();
430   SDC &= ~(1 << 0);
431   const_cast<Function*>(this)->setValueSubclassData(SDC);
432   assert(!hasLazyArguments());
433 }
434 
435 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
436   return MutableArrayRef<Argument>(Args, Count);
437 }
438 
439 bool Function::isConstrainedFPIntrinsic() const {
440   switch (getIntrinsicID()) {
441 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
442   case Intrinsic::INTRINSIC:
443 #include "llvm/IR/ConstrainedOps.def"
444     return true;
445 #undef INSTRUCTION
446   default:
447     return false;
448   }
449 }
450 
451 void Function::clearArguments() {
452   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
453     A.setName("");
454     A.~Argument();
455   }
456   std::allocator<Argument>().deallocate(Arguments, NumArgs);
457   Arguments = nullptr;
458 }
459 
460 void Function::stealArgumentListFrom(Function &Src) {
461   assert(isDeclaration() && "Expected no references to current arguments");
462 
463   // Drop the current arguments, if any, and set the lazy argument bit.
464   if (!hasLazyArguments()) {
465     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
466                         [](const Argument &A) { return A.use_empty(); }) &&
467            "Expected arguments to be unused in declaration");
468     clearArguments();
469     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
470   }
471 
472   // Nothing to steal if Src has lazy arguments.
473   if (Src.hasLazyArguments())
474     return;
475 
476   // Steal arguments from Src, and fix the lazy argument bits.
477   assert(arg_size() == Src.arg_size());
478   Arguments = Src.Arguments;
479   Src.Arguments = nullptr;
480   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
481     // FIXME: This does the work of transferNodesFromList inefficiently.
482     SmallString<128> Name;
483     if (A.hasName())
484       Name = A.getName();
485     if (!Name.empty())
486       A.setName("");
487     A.setParent(this);
488     if (!Name.empty())
489       A.setName(Name);
490   }
491 
492   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
493   assert(!hasLazyArguments());
494   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
495 }
496 
497 // dropAllReferences() - This function causes all the subinstructions to "let
498 // go" of all references that they are maintaining.  This allows one to
499 // 'delete' a whole class at a time, even though there may be circular
500 // references... first all references are dropped, and all use counts go to
501 // zero.  Then everything is deleted for real.  Note that no operations are
502 // valid on an object that has "dropped all references", except operator
503 // delete.
504 //
505 void Function::dropAllReferences() {
506   setIsMaterializable(false);
507 
508   for (BasicBlock &BB : *this)
509     BB.dropAllReferences();
510 
511   // Delete all basic blocks. They are now unused, except possibly by
512   // blockaddresses, but BasicBlock's destructor takes care of those.
513   while (!BasicBlocks.empty())
514     BasicBlocks.begin()->eraseFromParent();
515 
516   // Drop uses of any optional data (real or placeholder).
517   if (getNumOperands()) {
518     User::dropAllReferences();
519     setNumHungOffUseOperands(0);
520     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
521   }
522 
523   // Metadata is stored in a side-table.
524   clearMetadata();
525 }
526 
527 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
528   AttributeList PAL = getAttributes();
529   PAL = PAL.addAttribute(getContext(), i, Kind);
530   setAttributes(PAL);
531 }
532 
533 void Function::addAttribute(unsigned i, Attribute Attr) {
534   AttributeList PAL = getAttributes();
535   PAL = PAL.addAttribute(getContext(), i, Attr);
536   setAttributes(PAL);
537 }
538 
539 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
540   AttributeList PAL = getAttributes();
541   PAL = PAL.addAttributes(getContext(), i, Attrs);
542   setAttributes(PAL);
543 }
544 
545 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
546   AttributeList PAL = getAttributes();
547   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
548   setAttributes(PAL);
549 }
550 
551 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
552   AttributeList PAL = getAttributes();
553   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
554   setAttributes(PAL);
555 }
556 
557 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
558   AttributeList PAL = getAttributes();
559   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
560   setAttributes(PAL);
561 }
562 
563 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
564   AttributeList PAL = getAttributes();
565   PAL = PAL.removeAttribute(getContext(), i, Kind);
566   setAttributes(PAL);
567 }
568 
569 void Function::removeAttribute(unsigned i, StringRef Kind) {
570   AttributeList PAL = getAttributes();
571   PAL = PAL.removeAttribute(getContext(), i, Kind);
572   setAttributes(PAL);
573 }
574 
575 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
576   AttributeList PAL = getAttributes();
577   PAL = PAL.removeAttributes(getContext(), i, Attrs);
578   setAttributes(PAL);
579 }
580 
581 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
582   AttributeList PAL = getAttributes();
583   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
584   setAttributes(PAL);
585 }
586 
587 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
588   AttributeList PAL = getAttributes();
589   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
590   setAttributes(PAL);
591 }
592 
593 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
594   AttributeList PAL = getAttributes();
595   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
596   setAttributes(PAL);
597 }
598 
599 void Function::removeParamUndefImplyingAttrs(unsigned ArgNo) {
600   AttributeList PAL = getAttributes();
601   PAL = PAL.removeParamUndefImplyingAttributes(getContext(), ArgNo);
602   setAttributes(PAL);
603 }
604 
605 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
606   AttributeList PAL = getAttributes();
607   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
608   setAttributes(PAL);
609 }
610 
611 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
612   AttributeList PAL = getAttributes();
613   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
614   setAttributes(PAL);
615 }
616 
617 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
618   AttributeList PAL = getAttributes();
619   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
620   setAttributes(PAL);
621 }
622 
623 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
624                                                  uint64_t Bytes) {
625   AttributeList PAL = getAttributes();
626   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
627   setAttributes(PAL);
628 }
629 
630 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
631   if (&FPType == &APFloat::IEEEsingle()) {
632     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
633     StringRef Val = Attr.getValueAsString();
634     if (!Val.empty())
635       return parseDenormalFPAttribute(Val);
636 
637     // If the f32 variant of the attribute isn't specified, try to use the
638     // generic one.
639   }
640 
641   Attribute Attr = getFnAttribute("denormal-fp-math");
642   return parseDenormalFPAttribute(Attr.getValueAsString());
643 }
644 
645 const std::string &Function::getGC() const {
646   assert(hasGC() && "Function has no collector");
647   return getContext().getGC(*this);
648 }
649 
650 void Function::setGC(std::string Str) {
651   setValueSubclassDataBit(14, !Str.empty());
652   getContext().setGC(*this, std::move(Str));
653 }
654 
655 void Function::clearGC() {
656   if (!hasGC())
657     return;
658   getContext().deleteGC(*this);
659   setValueSubclassDataBit(14, false);
660 }
661 
662 bool Function::hasStackProtectorFnAttr() const {
663   return hasFnAttribute(Attribute::StackProtect) ||
664          hasFnAttribute(Attribute::StackProtectStrong) ||
665          hasFnAttribute(Attribute::StackProtectReq);
666 }
667 
668 /// Copy all additional attributes (those not needed to create a Function) from
669 /// the Function Src to this one.
670 void Function::copyAttributesFrom(const Function *Src) {
671   GlobalObject::copyAttributesFrom(Src);
672   setCallingConv(Src->getCallingConv());
673   setAttributes(Src->getAttributes());
674   if (Src->hasGC())
675     setGC(Src->getGC());
676   else
677     clearGC();
678   if (Src->hasPersonalityFn())
679     setPersonalityFn(Src->getPersonalityFn());
680   if (Src->hasPrefixData())
681     setPrefixData(Src->getPrefixData());
682   if (Src->hasPrologueData())
683     setPrologueData(Src->getPrologueData());
684 }
685 
686 /// Table of string intrinsic names indexed by enum value.
687 static const char * const IntrinsicNameTable[] = {
688   "not_intrinsic",
689 #define GET_INTRINSIC_NAME_TABLE
690 #include "llvm/IR/IntrinsicImpl.inc"
691 #undef GET_INTRINSIC_NAME_TABLE
692 };
693 
694 /// Table of per-target intrinsic name tables.
695 #define GET_INTRINSIC_TARGET_DATA
696 #include "llvm/IR/IntrinsicImpl.inc"
697 #undef GET_INTRINSIC_TARGET_DATA
698 
699 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
700   return IID > TargetInfos[0].Count;
701 }
702 
703 bool Function::isTargetIntrinsic() const {
704   return isTargetIntrinsic(IntID);
705 }
706 
707 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
708 /// target as \c Name, or the generic table if \c Name is not target specific.
709 ///
710 /// Returns the relevant slice of \c IntrinsicNameTable
711 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
712   assert(Name.startswith("llvm."));
713 
714   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
715   // Drop "llvm." and take the first dotted component. That will be the target
716   // if this is target specific.
717   StringRef Target = Name.drop_front(5).split('.').first;
718   auto It = partition_point(
719       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
720   // We've either found the target or just fall back to the generic set, which
721   // is always first.
722   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
723   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
724 }
725 
726 /// This does the actual lookup of an intrinsic ID which
727 /// matches the given function name.
728 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
729   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
730   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
731   if (Idx == -1)
732     return Intrinsic::not_intrinsic;
733 
734   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
735   // an index into a sub-table.
736   int Adjust = NameTable.data() - IntrinsicNameTable;
737   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
738 
739   // If the intrinsic is not overloaded, require an exact match. If it is
740   // overloaded, require either exact or prefix match.
741   const auto MatchSize = strlen(NameTable[Idx]);
742   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
743   bool IsExactMatch = Name.size() == MatchSize;
744   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
745                                                      : Intrinsic::not_intrinsic;
746 }
747 
748 void Function::recalculateIntrinsicID() {
749   StringRef Name = getName();
750   if (!Name.startswith("llvm.")) {
751     HasLLVMReservedName = false;
752     IntID = Intrinsic::not_intrinsic;
753     return;
754   }
755   HasLLVMReservedName = true;
756   IntID = lookupIntrinsicID(Name);
757 }
758 
759 /// Returns a stable mangling for the type specified for use in the name
760 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
761 /// of named types is simply their name.  Manglings for unnamed types consist
762 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
763 /// combined with the mangling of their component types.  A vararg function
764 /// type will have a suffix of 'vararg'.  Since function types can contain
765 /// other function types, we close a function type mangling with suffix 'f'
766 /// which can't be confused with it's prefix.  This ensures we don't have
767 /// collisions between two unrelated function types. Otherwise, you might
768 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
769 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
770 /// indicating that extra care must be taken to ensure a unique name.
771 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
772   std::string Result;
773   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
774     Result += "p" + utostr(PTyp->getAddressSpace()) +
775               getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
776   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
777     Result += "a" + utostr(ATyp->getNumElements()) +
778               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
779   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
780     if (!STyp->isLiteral()) {
781       Result += "s_";
782       if (STyp->hasName())
783         Result += STyp->getName();
784       else
785         HasUnnamedType = true;
786     } else {
787       Result += "sl_";
788       for (auto Elem : STyp->elements())
789         Result += getMangledTypeStr(Elem, HasUnnamedType);
790     }
791     // Ensure nested structs are distinguishable.
792     Result += "s";
793   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
794     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
795     for (size_t i = 0; i < FT->getNumParams(); i++)
796       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
797     if (FT->isVarArg())
798       Result += "vararg";
799     // Ensure nested function types are distinguishable.
800     Result += "f";
801   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
802     ElementCount EC = VTy->getElementCount();
803     if (EC.isScalable())
804       Result += "nx";
805     Result += "v" + utostr(EC.getKnownMinValue()) +
806               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
807   } else if (Ty) {
808     switch (Ty->getTypeID()) {
809     default: llvm_unreachable("Unhandled type");
810     case Type::VoidTyID:      Result += "isVoid";   break;
811     case Type::MetadataTyID:  Result += "Metadata"; break;
812     case Type::HalfTyID:      Result += "f16";      break;
813     case Type::BFloatTyID:    Result += "bf16";     break;
814     case Type::FloatTyID:     Result += "f32";      break;
815     case Type::DoubleTyID:    Result += "f64";      break;
816     case Type::X86_FP80TyID:  Result += "f80";      break;
817     case Type::FP128TyID:     Result += "f128";     break;
818     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
819     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
820     case Type::X86_AMXTyID:   Result += "x86amx";   break;
821     case Type::IntegerTyID:
822       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
823       break;
824     }
825   }
826   return Result;
827 }
828 
829 StringRef Intrinsic::getName(ID id) {
830   assert(id < num_intrinsics && "Invalid intrinsic ID!");
831   assert(!Intrinsic::isOverloaded(id) &&
832          "This version of getName does not support overloading");
833   return IntrinsicNameTable[id];
834 }
835 
836 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
837                                FunctionType *FT) {
838   assert(Id < num_intrinsics && "Invalid intrinsic ID!");
839   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
840          "This version of getName is for overloaded intrinsics only");
841   bool HasUnnamedType = false;
842   std::string Result(IntrinsicNameTable[Id]);
843   for (Type *Ty : Tys) {
844     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
845   }
846   assert((M || !HasUnnamedType) && "unnamed types need a module");
847   if (M && HasUnnamedType) {
848     if (!FT)
849       FT = getType(M->getContext(), Id, Tys);
850     else
851       assert((FT == getType(M->getContext(), Id, Tys)) &&
852              "Provided FunctionType must match arguments");
853     return M->getUniqueIntrinsicName(Result, Id, FT);
854   }
855   return Result;
856 }
857 
858 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys) {
859   return getName(Id, Tys, nullptr, nullptr);
860 }
861 
862 /// IIT_Info - These are enumerators that describe the entries returned by the
863 /// getIntrinsicInfoTableEntries function.
864 ///
865 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
866 enum IIT_Info {
867   // Common values should be encoded with 0-15.
868   IIT_Done = 0,
869   IIT_I1   = 1,
870   IIT_I8   = 2,
871   IIT_I16  = 3,
872   IIT_I32  = 4,
873   IIT_I64  = 5,
874   IIT_F16  = 6,
875   IIT_F32  = 7,
876   IIT_F64  = 8,
877   IIT_V2   = 9,
878   IIT_V4   = 10,
879   IIT_V8   = 11,
880   IIT_V16  = 12,
881   IIT_V32  = 13,
882   IIT_PTR  = 14,
883   IIT_ARG  = 15,
884 
885   // Values from 16+ are only encodable with the inefficient encoding.
886   IIT_V64  = 16,
887   IIT_MMX  = 17,
888   IIT_TOKEN = 18,
889   IIT_METADATA = 19,
890   IIT_EMPTYSTRUCT = 20,
891   IIT_STRUCT2 = 21,
892   IIT_STRUCT3 = 22,
893   IIT_STRUCT4 = 23,
894   IIT_STRUCT5 = 24,
895   IIT_EXTEND_ARG = 25,
896   IIT_TRUNC_ARG = 26,
897   IIT_ANYPTR = 27,
898   IIT_V1   = 28,
899   IIT_VARARG = 29,
900   IIT_HALF_VEC_ARG = 30,
901   IIT_SAME_VEC_WIDTH_ARG = 31,
902   IIT_PTR_TO_ARG = 32,
903   IIT_PTR_TO_ELT = 33,
904   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
905   IIT_I128 = 35,
906   IIT_V512 = 36,
907   IIT_V1024 = 37,
908   IIT_STRUCT6 = 38,
909   IIT_STRUCT7 = 39,
910   IIT_STRUCT8 = 40,
911   IIT_F128 = 41,
912   IIT_VEC_ELEMENT = 42,
913   IIT_SCALABLE_VEC = 43,
914   IIT_SUBDIVIDE2_ARG = 44,
915   IIT_SUBDIVIDE4_ARG = 45,
916   IIT_VEC_OF_BITCASTS_TO_INT = 46,
917   IIT_V128 = 47,
918   IIT_BF16 = 48,
919   IIT_STRUCT9 = 49,
920   IIT_V256 = 50,
921   IIT_AMX  = 51
922 };
923 
924 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
925                       IIT_Info LastInfo,
926                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
927   using namespace Intrinsic;
928 
929   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
930 
931   IIT_Info Info = IIT_Info(Infos[NextElt++]);
932   unsigned StructElts = 2;
933 
934   switch (Info) {
935   case IIT_Done:
936     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
937     return;
938   case IIT_VARARG:
939     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
940     return;
941   case IIT_MMX:
942     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
943     return;
944   case IIT_AMX:
945     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
946     return;
947   case IIT_TOKEN:
948     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
949     return;
950   case IIT_METADATA:
951     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
952     return;
953   case IIT_F16:
954     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
955     return;
956   case IIT_BF16:
957     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
958     return;
959   case IIT_F32:
960     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
961     return;
962   case IIT_F64:
963     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
964     return;
965   case IIT_F128:
966     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
967     return;
968   case IIT_I1:
969     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
970     return;
971   case IIT_I8:
972     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
973     return;
974   case IIT_I16:
975     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
976     return;
977   case IIT_I32:
978     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
979     return;
980   case IIT_I64:
981     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
982     return;
983   case IIT_I128:
984     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
985     return;
986   case IIT_V1:
987     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
988     DecodeIITType(NextElt, Infos, Info, OutputTable);
989     return;
990   case IIT_V2:
991     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
992     DecodeIITType(NextElt, Infos, Info, OutputTable);
993     return;
994   case IIT_V4:
995     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
996     DecodeIITType(NextElt, Infos, Info, OutputTable);
997     return;
998   case IIT_V8:
999     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1000     DecodeIITType(NextElt, Infos, Info, OutputTable);
1001     return;
1002   case IIT_V16:
1003     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1004     DecodeIITType(NextElt, Infos, Info, OutputTable);
1005     return;
1006   case IIT_V32:
1007     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1008     DecodeIITType(NextElt, Infos, Info, OutputTable);
1009     return;
1010   case IIT_V64:
1011     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1012     DecodeIITType(NextElt, Infos, Info, OutputTable);
1013     return;
1014   case IIT_V128:
1015     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1016     DecodeIITType(NextElt, Infos, Info, OutputTable);
1017     return;
1018   case IIT_V256:
1019     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1020     DecodeIITType(NextElt, Infos, Info, OutputTable);
1021     return;
1022   case IIT_V512:
1023     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1024     DecodeIITType(NextElt, Infos, Info, OutputTable);
1025     return;
1026   case IIT_V1024:
1027     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1028     DecodeIITType(NextElt, Infos, Info, OutputTable);
1029     return;
1030   case IIT_PTR:
1031     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1032     DecodeIITType(NextElt, Infos, Info, OutputTable);
1033     return;
1034   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1035     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1036                                              Infos[NextElt++]));
1037     DecodeIITType(NextElt, Infos, Info, OutputTable);
1038     return;
1039   }
1040   case IIT_ARG: {
1041     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1042     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1043     return;
1044   }
1045   case IIT_EXTEND_ARG: {
1046     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1047     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1048                                              ArgInfo));
1049     return;
1050   }
1051   case IIT_TRUNC_ARG: {
1052     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1053     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1054                                              ArgInfo));
1055     return;
1056   }
1057   case IIT_HALF_VEC_ARG: {
1058     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1059     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1060                                              ArgInfo));
1061     return;
1062   }
1063   case IIT_SAME_VEC_WIDTH_ARG: {
1064     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1065     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1066                                              ArgInfo));
1067     return;
1068   }
1069   case IIT_PTR_TO_ARG: {
1070     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1071     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1072                                              ArgInfo));
1073     return;
1074   }
1075   case IIT_PTR_TO_ELT: {
1076     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1077     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1078     return;
1079   }
1080   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1081     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1082     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1083     OutputTable.push_back(
1084         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1085     return;
1086   }
1087   case IIT_EMPTYSTRUCT:
1088     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1089     return;
1090   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1091   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1092   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1093   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1094   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1095   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1096   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1097   case IIT_STRUCT2: {
1098     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1099 
1100     for (unsigned i = 0; i != StructElts; ++i)
1101       DecodeIITType(NextElt, Infos, Info, OutputTable);
1102     return;
1103   }
1104   case IIT_SUBDIVIDE2_ARG: {
1105     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1106     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1107                                              ArgInfo));
1108     return;
1109   }
1110   case IIT_SUBDIVIDE4_ARG: {
1111     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1112     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1113                                              ArgInfo));
1114     return;
1115   }
1116   case IIT_VEC_ELEMENT: {
1117     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1118     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1119                                              ArgInfo));
1120     return;
1121   }
1122   case IIT_SCALABLE_VEC: {
1123     DecodeIITType(NextElt, Infos, Info, OutputTable);
1124     return;
1125   }
1126   case IIT_VEC_OF_BITCASTS_TO_INT: {
1127     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1128     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1129                                              ArgInfo));
1130     return;
1131   }
1132   }
1133   llvm_unreachable("unhandled");
1134 }
1135 
1136 #define GET_INTRINSIC_GENERATOR_GLOBAL
1137 #include "llvm/IR/IntrinsicImpl.inc"
1138 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1139 
1140 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1141                                              SmallVectorImpl<IITDescriptor> &T){
1142   // Check to see if the intrinsic's type was expressible by the table.
1143   unsigned TableVal = IIT_Table[id-1];
1144 
1145   // Decode the TableVal into an array of IITValues.
1146   SmallVector<unsigned char, 8> IITValues;
1147   ArrayRef<unsigned char> IITEntries;
1148   unsigned NextElt = 0;
1149   if ((TableVal >> 31) != 0) {
1150     // This is an offset into the IIT_LongEncodingTable.
1151     IITEntries = IIT_LongEncodingTable;
1152 
1153     // Strip sentinel bit.
1154     NextElt = (TableVal << 1) >> 1;
1155   } else {
1156     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1157     // into a single word in the table itself, decode it now.
1158     do {
1159       IITValues.push_back(TableVal & 0xF);
1160       TableVal >>= 4;
1161     } while (TableVal);
1162 
1163     IITEntries = IITValues;
1164     NextElt = 0;
1165   }
1166 
1167   // Okay, decode the table into the output vector of IITDescriptors.
1168   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1169   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1170     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1171 }
1172 
1173 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1174                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1175   using namespace Intrinsic;
1176 
1177   IITDescriptor D = Infos.front();
1178   Infos = Infos.slice(1);
1179 
1180   switch (D.Kind) {
1181   case IITDescriptor::Void: return Type::getVoidTy(Context);
1182   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1183   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1184   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1185   case IITDescriptor::Token: return Type::getTokenTy(Context);
1186   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1187   case IITDescriptor::Half: return Type::getHalfTy(Context);
1188   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1189   case IITDescriptor::Float: return Type::getFloatTy(Context);
1190   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1191   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1192 
1193   case IITDescriptor::Integer:
1194     return IntegerType::get(Context, D.Integer_Width);
1195   case IITDescriptor::Vector:
1196     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1197                            D.Vector_Width);
1198   case IITDescriptor::Pointer:
1199     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1200                             D.Pointer_AddressSpace);
1201   case IITDescriptor::Struct: {
1202     SmallVector<Type *, 8> Elts;
1203     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1204       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1205     return StructType::get(Context, Elts);
1206   }
1207   case IITDescriptor::Argument:
1208     return Tys[D.getArgumentNumber()];
1209   case IITDescriptor::ExtendArgument: {
1210     Type *Ty = Tys[D.getArgumentNumber()];
1211     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1212       return VectorType::getExtendedElementVectorType(VTy);
1213 
1214     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1215   }
1216   case IITDescriptor::TruncArgument: {
1217     Type *Ty = Tys[D.getArgumentNumber()];
1218     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1219       return VectorType::getTruncatedElementVectorType(VTy);
1220 
1221     IntegerType *ITy = cast<IntegerType>(Ty);
1222     assert(ITy->getBitWidth() % 2 == 0);
1223     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1224   }
1225   case IITDescriptor::Subdivide2Argument:
1226   case IITDescriptor::Subdivide4Argument: {
1227     Type *Ty = Tys[D.getArgumentNumber()];
1228     VectorType *VTy = dyn_cast<VectorType>(Ty);
1229     assert(VTy && "Expected an argument of Vector Type");
1230     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1231     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1232   }
1233   case IITDescriptor::HalfVecArgument:
1234     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1235                                                   Tys[D.getArgumentNumber()]));
1236   case IITDescriptor::SameVecWidthArgument: {
1237     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1238     Type *Ty = Tys[D.getArgumentNumber()];
1239     if (auto *VTy = dyn_cast<VectorType>(Ty))
1240       return VectorType::get(EltTy, VTy->getElementCount());
1241     return EltTy;
1242   }
1243   case IITDescriptor::PtrToArgument: {
1244     Type *Ty = Tys[D.getArgumentNumber()];
1245     return PointerType::getUnqual(Ty);
1246   }
1247   case IITDescriptor::PtrToElt: {
1248     Type *Ty = Tys[D.getArgumentNumber()];
1249     VectorType *VTy = dyn_cast<VectorType>(Ty);
1250     if (!VTy)
1251       llvm_unreachable("Expected an argument of Vector Type");
1252     Type *EltTy = VTy->getElementType();
1253     return PointerType::getUnqual(EltTy);
1254   }
1255   case IITDescriptor::VecElementArgument: {
1256     Type *Ty = Tys[D.getArgumentNumber()];
1257     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1258       return VTy->getElementType();
1259     llvm_unreachable("Expected an argument of Vector Type");
1260   }
1261   case IITDescriptor::VecOfBitcastsToInt: {
1262     Type *Ty = Tys[D.getArgumentNumber()];
1263     VectorType *VTy = dyn_cast<VectorType>(Ty);
1264     assert(VTy && "Expected an argument of Vector Type");
1265     return VectorType::getInteger(VTy);
1266   }
1267   case IITDescriptor::VecOfAnyPtrsToElt:
1268     // Return the overloaded type (which determines the pointers address space)
1269     return Tys[D.getOverloadArgNumber()];
1270   }
1271   llvm_unreachable("unhandled");
1272 }
1273 
1274 FunctionType *Intrinsic::getType(LLVMContext &Context,
1275                                  ID id, ArrayRef<Type*> Tys) {
1276   SmallVector<IITDescriptor, 8> Table;
1277   getIntrinsicInfoTableEntries(id, Table);
1278 
1279   ArrayRef<IITDescriptor> TableRef = Table;
1280   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1281 
1282   SmallVector<Type*, 8> ArgTys;
1283   while (!TableRef.empty())
1284     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1285 
1286   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1287   // If we see void type as the type of the last argument, it is vararg intrinsic
1288   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1289     ArgTys.pop_back();
1290     return FunctionType::get(ResultTy, ArgTys, true);
1291   }
1292   return FunctionType::get(ResultTy, ArgTys, false);
1293 }
1294 
1295 bool Intrinsic::isOverloaded(ID id) {
1296 #define GET_INTRINSIC_OVERLOAD_TABLE
1297 #include "llvm/IR/IntrinsicImpl.inc"
1298 #undef GET_INTRINSIC_OVERLOAD_TABLE
1299 }
1300 
1301 bool Intrinsic::isLeaf(ID id) {
1302   switch (id) {
1303   default:
1304     return true;
1305 
1306   case Intrinsic::experimental_gc_statepoint:
1307   case Intrinsic::experimental_patchpoint_void:
1308   case Intrinsic::experimental_patchpoint_i64:
1309     return false;
1310   }
1311 }
1312 
1313 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1314 #define GET_INTRINSIC_ATTRIBUTES
1315 #include "llvm/IR/IntrinsicImpl.inc"
1316 #undef GET_INTRINSIC_ATTRIBUTES
1317 
1318 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1319   // There can never be multiple globals with the same name of different types,
1320   // because intrinsics must be a specific type.
1321   auto *FT = getType(M->getContext(), id, Tys);
1322   return cast<Function>(
1323       M->getOrInsertFunction(Tys.empty() ? getName(id)
1324                                          : getName(id, Tys, M, FT),
1325                              getType(M->getContext(), id, Tys))
1326           .getCallee());
1327 }
1328 
1329 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1330 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1331 #include "llvm/IR/IntrinsicImpl.inc"
1332 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1333 
1334 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1335 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1336 #include "llvm/IR/IntrinsicImpl.inc"
1337 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1338 
1339 using DeferredIntrinsicMatchPair =
1340     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1341 
1342 static bool matchIntrinsicType(
1343     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1344     SmallVectorImpl<Type *> &ArgTys,
1345     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1346     bool IsDeferredCheck) {
1347   using namespace Intrinsic;
1348 
1349   // If we ran out of descriptors, there are too many arguments.
1350   if (Infos.empty()) return true;
1351 
1352   // Do this before slicing off the 'front' part
1353   auto InfosRef = Infos;
1354   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1355     DeferredChecks.emplace_back(T, InfosRef);
1356     return false;
1357   };
1358 
1359   IITDescriptor D = Infos.front();
1360   Infos = Infos.slice(1);
1361 
1362   switch (D.Kind) {
1363     case IITDescriptor::Void: return !Ty->isVoidTy();
1364     case IITDescriptor::VarArg: return true;
1365     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1366     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1367     case IITDescriptor::Token: return !Ty->isTokenTy();
1368     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1369     case IITDescriptor::Half: return !Ty->isHalfTy();
1370     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1371     case IITDescriptor::Float: return !Ty->isFloatTy();
1372     case IITDescriptor::Double: return !Ty->isDoubleTy();
1373     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1374     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1375     case IITDescriptor::Vector: {
1376       VectorType *VT = dyn_cast<VectorType>(Ty);
1377       return !VT || VT->getElementCount() != D.Vector_Width ||
1378              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1379                                 DeferredChecks, IsDeferredCheck);
1380     }
1381     case IITDescriptor::Pointer: {
1382       PointerType *PT = dyn_cast<PointerType>(Ty);
1383       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1384              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1385                                 DeferredChecks, IsDeferredCheck);
1386     }
1387 
1388     case IITDescriptor::Struct: {
1389       StructType *ST = dyn_cast<StructType>(Ty);
1390       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1391         return true;
1392 
1393       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1394         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1395                                DeferredChecks, IsDeferredCheck))
1396           return true;
1397       return false;
1398     }
1399 
1400     case IITDescriptor::Argument:
1401       // If this is the second occurrence of an argument,
1402       // verify that the later instance matches the previous instance.
1403       if (D.getArgumentNumber() < ArgTys.size())
1404         return Ty != ArgTys[D.getArgumentNumber()];
1405 
1406       if (D.getArgumentNumber() > ArgTys.size() ||
1407           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1408         return IsDeferredCheck || DeferCheck(Ty);
1409 
1410       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1411              "Table consistency error");
1412       ArgTys.push_back(Ty);
1413 
1414       switch (D.getArgumentKind()) {
1415         case IITDescriptor::AK_Any:        return false; // Success
1416         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1417         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1418         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1419         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1420         default:                           break;
1421       }
1422       llvm_unreachable("all argument kinds not covered");
1423 
1424     case IITDescriptor::ExtendArgument: {
1425       // If this is a forward reference, defer the check for later.
1426       if (D.getArgumentNumber() >= ArgTys.size())
1427         return IsDeferredCheck || DeferCheck(Ty);
1428 
1429       Type *NewTy = ArgTys[D.getArgumentNumber()];
1430       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1431         NewTy = VectorType::getExtendedElementVectorType(VTy);
1432       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1433         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1434       else
1435         return true;
1436 
1437       return Ty != NewTy;
1438     }
1439     case IITDescriptor::TruncArgument: {
1440       // If this is a forward reference, defer the check for later.
1441       if (D.getArgumentNumber() >= ArgTys.size())
1442         return IsDeferredCheck || DeferCheck(Ty);
1443 
1444       Type *NewTy = ArgTys[D.getArgumentNumber()];
1445       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1446         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1447       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1448         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1449       else
1450         return true;
1451 
1452       return Ty != NewTy;
1453     }
1454     case IITDescriptor::HalfVecArgument:
1455       // If this is a forward reference, defer the check for later.
1456       if (D.getArgumentNumber() >= ArgTys.size())
1457         return IsDeferredCheck || DeferCheck(Ty);
1458       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1459              VectorType::getHalfElementsVectorType(
1460                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1461     case IITDescriptor::SameVecWidthArgument: {
1462       if (D.getArgumentNumber() >= ArgTys.size()) {
1463         // Defer check and subsequent check for the vector element type.
1464         Infos = Infos.slice(1);
1465         return IsDeferredCheck || DeferCheck(Ty);
1466       }
1467       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1468       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1469       // Both must be vectors of the same number of elements or neither.
1470       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1471         return true;
1472       Type *EltTy = Ty;
1473       if (ThisArgType) {
1474         if (ReferenceType->getElementCount() !=
1475             ThisArgType->getElementCount())
1476           return true;
1477         EltTy = ThisArgType->getElementType();
1478       }
1479       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1480                                 IsDeferredCheck);
1481     }
1482     case IITDescriptor::PtrToArgument: {
1483       if (D.getArgumentNumber() >= ArgTys.size())
1484         return IsDeferredCheck || DeferCheck(Ty);
1485       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1486       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1487       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1488     }
1489     case IITDescriptor::PtrToElt: {
1490       if (D.getArgumentNumber() >= ArgTys.size())
1491         return IsDeferredCheck || DeferCheck(Ty);
1492       VectorType * ReferenceType =
1493         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1494       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1495 
1496       return (!ThisArgType || !ReferenceType ||
1497               ThisArgType->getElementType() != ReferenceType->getElementType());
1498     }
1499     case IITDescriptor::VecOfAnyPtrsToElt: {
1500       unsigned RefArgNumber = D.getRefArgNumber();
1501       if (RefArgNumber >= ArgTys.size()) {
1502         if (IsDeferredCheck)
1503           return true;
1504         // If forward referencing, already add the pointer-vector type and
1505         // defer the checks for later.
1506         ArgTys.push_back(Ty);
1507         return DeferCheck(Ty);
1508       }
1509 
1510       if (!IsDeferredCheck){
1511         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1512                "Table consistency error");
1513         ArgTys.push_back(Ty);
1514       }
1515 
1516       // Verify the overloaded type "matches" the Ref type.
1517       // i.e. Ty is a vector with the same width as Ref.
1518       // Composed of pointers to the same element type as Ref.
1519       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1520       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1521       if (!ThisArgVecTy || !ReferenceType ||
1522           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1523         return true;
1524       PointerType *ThisArgEltTy =
1525           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1526       if (!ThisArgEltTy)
1527         return true;
1528       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1529     }
1530     case IITDescriptor::VecElementArgument: {
1531       if (D.getArgumentNumber() >= ArgTys.size())
1532         return IsDeferredCheck ? true : DeferCheck(Ty);
1533       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1534       return !ReferenceType || Ty != ReferenceType->getElementType();
1535     }
1536     case IITDescriptor::Subdivide2Argument:
1537     case IITDescriptor::Subdivide4Argument: {
1538       // If this is a forward reference, defer the check for later.
1539       if (D.getArgumentNumber() >= ArgTys.size())
1540         return IsDeferredCheck || DeferCheck(Ty);
1541 
1542       Type *NewTy = ArgTys[D.getArgumentNumber()];
1543       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1544         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1545         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1546         return Ty != NewTy;
1547       }
1548       return true;
1549     }
1550     case IITDescriptor::VecOfBitcastsToInt: {
1551       if (D.getArgumentNumber() >= ArgTys.size())
1552         return IsDeferredCheck || DeferCheck(Ty);
1553       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1554       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1555       if (!ThisArgVecTy || !ReferenceType)
1556         return true;
1557       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1558     }
1559   }
1560   llvm_unreachable("unhandled");
1561 }
1562 
1563 Intrinsic::MatchIntrinsicTypesResult
1564 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1565                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1566                                    SmallVectorImpl<Type *> &ArgTys) {
1567   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1568   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1569                          false))
1570     return MatchIntrinsicTypes_NoMatchRet;
1571 
1572   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1573 
1574   for (auto Ty : FTy->params())
1575     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1576       return MatchIntrinsicTypes_NoMatchArg;
1577 
1578   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1579     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1580     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1581                            true))
1582       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1583                                          : MatchIntrinsicTypes_NoMatchArg;
1584   }
1585 
1586   return MatchIntrinsicTypes_Match;
1587 }
1588 
1589 bool
1590 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1591                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1592   // If there are no descriptors left, then it can't be a vararg.
1593   if (Infos.empty())
1594     return isVarArg;
1595 
1596   // There should be only one descriptor remaining at this point.
1597   if (Infos.size() != 1)
1598     return true;
1599 
1600   // Check and verify the descriptor.
1601   IITDescriptor D = Infos.front();
1602   Infos = Infos.slice(1);
1603   if (D.Kind == IITDescriptor::VarArg)
1604     return !isVarArg;
1605 
1606   return true;
1607 }
1608 
1609 bool Intrinsic::getIntrinsicSignature(Function *F,
1610                                       SmallVectorImpl<Type *> &ArgTys) {
1611   Intrinsic::ID ID = F->getIntrinsicID();
1612   if (!ID)
1613     return false;
1614 
1615   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1616   getIntrinsicInfoTableEntries(ID, Table);
1617   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1618 
1619   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1620                                          ArgTys) !=
1621       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1622     return false;
1623   }
1624   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1625                                       TableRef))
1626     return false;
1627   return true;
1628 }
1629 
1630 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1631   SmallVector<Type *, 4> ArgTys;
1632   if (!getIntrinsicSignature(F, ArgTys))
1633     return None;
1634 
1635   Intrinsic::ID ID = F->getIntrinsicID();
1636   StringRef Name = F->getName();
1637   if (Name ==
1638       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()))
1639     return None;
1640 
1641   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1642   NewDecl->setCallingConv(F->getCallingConv());
1643   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1644          "Shouldn't change the signature");
1645   return NewDecl;
1646 }
1647 
1648 /// hasAddressTaken - returns true if there are any uses of this function
1649 /// other than direct calls or invokes to it. Optionally ignores callback
1650 /// uses, assume like pointer annotation calls, and references in llvm.used
1651 /// and llvm.compiler.used variables.
1652 bool Function::hasAddressTaken(const User **PutOffender,
1653                                bool IgnoreCallbackUses,
1654                                bool IgnoreAssumeLikeCalls,
1655                                bool IgnoreLLVMUsed) const {
1656   for (const Use &U : uses()) {
1657     const User *FU = U.getUser();
1658     if (isa<BlockAddress>(FU))
1659       continue;
1660 
1661     if (IgnoreCallbackUses) {
1662       AbstractCallSite ACS(&U);
1663       if (ACS && ACS.isCallbackCall())
1664         continue;
1665     }
1666 
1667     const auto *Call = dyn_cast<CallBase>(FU);
1668     if (!Call) {
1669       if (IgnoreAssumeLikeCalls) {
1670         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1671           if (FI->isCast() && !FI->user_empty() &&
1672               llvm::all_of(FU->users(), [](const User *U) {
1673                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1674                   return I->isAssumeLikeIntrinsic();
1675                 return false;
1676               }))
1677             continue;
1678         }
1679       }
1680       if (IgnoreLLVMUsed && !FU->user_empty()) {
1681         const User *FUU = FU;
1682         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1683             !FU->user_begin()->user_empty())
1684           FUU = *FU->user_begin();
1685         if (llvm::all_of(FUU->users(), [](const User *U) {
1686               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1687                 return GV->hasName() &&
1688                        (GV->getName().equals("llvm.compiler.used") ||
1689                         GV->getName().equals("llvm.used"));
1690               return false;
1691             }))
1692           continue;
1693       }
1694       if (PutOffender)
1695         *PutOffender = FU;
1696       return true;
1697     }
1698     if (!Call->isCallee(&U)) {
1699       if (PutOffender)
1700         *PutOffender = FU;
1701       return true;
1702     }
1703   }
1704   return false;
1705 }
1706 
1707 bool Function::isDefTriviallyDead() const {
1708   // Check the linkage
1709   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1710       !hasAvailableExternallyLinkage())
1711     return false;
1712 
1713   // Check if the function is used by anything other than a blockaddress.
1714   for (const User *U : users())
1715     if (!isa<BlockAddress>(U))
1716       return false;
1717 
1718   return true;
1719 }
1720 
1721 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1722 /// setjmp or other function that gcc recognizes as "returning twice".
1723 bool Function::callsFunctionThatReturnsTwice() const {
1724   for (const Instruction &I : instructions(this))
1725     if (const auto *Call = dyn_cast<CallBase>(&I))
1726       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1727         return true;
1728 
1729   return false;
1730 }
1731 
1732 Constant *Function::getPersonalityFn() const {
1733   assert(hasPersonalityFn() && getNumOperands());
1734   return cast<Constant>(Op<0>());
1735 }
1736 
1737 void Function::setPersonalityFn(Constant *Fn) {
1738   setHungoffOperand<0>(Fn);
1739   setValueSubclassDataBit(3, Fn != nullptr);
1740 }
1741 
1742 Constant *Function::getPrefixData() const {
1743   assert(hasPrefixData() && getNumOperands());
1744   return cast<Constant>(Op<1>());
1745 }
1746 
1747 void Function::setPrefixData(Constant *PrefixData) {
1748   setHungoffOperand<1>(PrefixData);
1749   setValueSubclassDataBit(1, PrefixData != nullptr);
1750 }
1751 
1752 Constant *Function::getPrologueData() const {
1753   assert(hasPrologueData() && getNumOperands());
1754   return cast<Constant>(Op<2>());
1755 }
1756 
1757 void Function::setPrologueData(Constant *PrologueData) {
1758   setHungoffOperand<2>(PrologueData);
1759   setValueSubclassDataBit(2, PrologueData != nullptr);
1760 }
1761 
1762 void Function::allocHungoffUselist() {
1763   // If we've already allocated a uselist, stop here.
1764   if (getNumOperands())
1765     return;
1766 
1767   allocHungoffUses(3, /*IsPhi=*/ false);
1768   setNumHungOffUseOperands(3);
1769 
1770   // Initialize the uselist with placeholder operands to allow traversal.
1771   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1772   Op<0>().set(CPN);
1773   Op<1>().set(CPN);
1774   Op<2>().set(CPN);
1775 }
1776 
1777 template <int Idx>
1778 void Function::setHungoffOperand(Constant *C) {
1779   if (C) {
1780     allocHungoffUselist();
1781     Op<Idx>().set(C);
1782   } else if (getNumOperands()) {
1783     Op<Idx>().set(
1784         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1785   }
1786 }
1787 
1788 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1789   assert(Bit < 16 && "SubclassData contains only 16 bits");
1790   if (On)
1791     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1792   else
1793     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1794 }
1795 
1796 void Function::setEntryCount(ProfileCount Count,
1797                              const DenseSet<GlobalValue::GUID> *S) {
1798   assert(Count.hasValue());
1799 #if !defined(NDEBUG)
1800   auto PrevCount = getEntryCount();
1801   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1802 #endif
1803 
1804   auto ImportGUIDs = getImportGUIDs();
1805   if (S == nullptr && ImportGUIDs.size())
1806     S = &ImportGUIDs;
1807 
1808   MDBuilder MDB(getContext());
1809   setMetadata(
1810       LLVMContext::MD_prof,
1811       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1812 }
1813 
1814 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1815                              const DenseSet<GlobalValue::GUID> *Imports) {
1816   setEntryCount(ProfileCount(Count, Type), Imports);
1817 }
1818 
1819 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1820   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1821   if (MD && MD->getOperand(0))
1822     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1823       if (MDS->getString().equals("function_entry_count")) {
1824         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1825         uint64_t Count = CI->getValue().getZExtValue();
1826         // A value of -1 is used for SamplePGO when there were no samples.
1827         // Treat this the same as unknown.
1828         if (Count == (uint64_t)-1)
1829           return ProfileCount::getInvalid();
1830         return ProfileCount(Count, PCT_Real);
1831       } else if (AllowSynthetic &&
1832                  MDS->getString().equals("synthetic_function_entry_count")) {
1833         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1834         uint64_t Count = CI->getValue().getZExtValue();
1835         return ProfileCount(Count, PCT_Synthetic);
1836       }
1837     }
1838   return ProfileCount::getInvalid();
1839 }
1840 
1841 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1842   DenseSet<GlobalValue::GUID> R;
1843   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1844     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1845       if (MDS->getString().equals("function_entry_count"))
1846         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1847           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1848                        ->getValue()
1849                        .getZExtValue());
1850   return R;
1851 }
1852 
1853 void Function::setSectionPrefix(StringRef Prefix) {
1854   MDBuilder MDB(getContext());
1855   setMetadata(LLVMContext::MD_section_prefix,
1856               MDB.createFunctionSectionPrefix(Prefix));
1857 }
1858 
1859 Optional<StringRef> Function::getSectionPrefix() const {
1860   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1861     assert(cast<MDString>(MD->getOperand(0))
1862                ->getString()
1863                .equals("function_section_prefix") &&
1864            "Metadata not match");
1865     return cast<MDString>(MD->getOperand(1))->getString();
1866   }
1867   return None;
1868 }
1869 
1870 bool Function::nullPointerIsDefined() const {
1871   return hasFnAttribute(Attribute::NullPointerIsValid);
1872 }
1873 
1874 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1875   if (F && F->nullPointerIsDefined())
1876     return true;
1877 
1878   if (AS != 0)
1879     return true;
1880 
1881   return false;
1882 }
1883