xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 23f8fac745bdde70ed4f9c585d19c4913734f1b8)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/SmallVector.h"
20 #include "llvm/ADT/StringExtras.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/IR/AbstractCallSite.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsDirectX.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsLoongArch.h"
42 #include "llvm/IR/IntrinsicsMips.h"
43 #include "llvm/IR/IntrinsicsNVPTX.h"
44 #include "llvm/IR/IntrinsicsPowerPC.h"
45 #include "llvm/IR/IntrinsicsR600.h"
46 #include "llvm/IR/IntrinsicsRISCV.h"
47 #include "llvm/IR/IntrinsicsS390.h"
48 #include "llvm/IR/IntrinsicsSPIRV.h"
49 #include "llvm/IR/IntrinsicsVE.h"
50 #include "llvm/IR/IntrinsicsWebAssembly.h"
51 #include "llvm/IR/IntrinsicsX86.h"
52 #include "llvm/IR/IntrinsicsXCore.h"
53 #include "llvm/IR/LLVMContext.h"
54 #include "llvm/IR/MDBuilder.h"
55 #include "llvm/IR/Metadata.h"
56 #include "llvm/IR/Module.h"
57 #include "llvm/IR/Operator.h"
58 #include "llvm/IR/SymbolTableListTraits.h"
59 #include "llvm/IR/Type.h"
60 #include "llvm/IR/Use.h"
61 #include "llvm/IR/User.h"
62 #include "llvm/IR/Value.h"
63 #include "llvm/IR/ValueSymbolTable.h"
64 #include "llvm/Support/Casting.h"
65 #include "llvm/Support/CommandLine.h"
66 #include "llvm/Support/Compiler.h"
67 #include "llvm/Support/ErrorHandling.h"
68 #include "llvm/Support/ModRef.h"
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <cstring>
73 #include <string>
74 
75 using namespace llvm;
76 using ProfileCount = Function::ProfileCount;
77 
78 // Explicit instantiations of SymbolTableListTraits since some of the methods
79 // are not in the public header file...
80 template class llvm::SymbolTableListTraits<BasicBlock>;
81 
82 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
83     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
84     cl::desc("Maximum size for the name of non-global values."));
85 
86 void Function::convertToNewDbgValues() {
87   IsNewDbgInfoFormat = true;
88   for (auto &BB : *this) {
89     BB.convertToNewDbgValues();
90   }
91 }
92 
93 void Function::convertFromNewDbgValues() {
94   IsNewDbgInfoFormat = false;
95   for (auto &BB : *this) {
96     BB.convertFromNewDbgValues();
97   }
98 }
99 
100 void Function::setIsNewDbgInfoFormat(bool NewFlag) {
101   if (NewFlag && !IsNewDbgInfoFormat)
102     convertToNewDbgValues();
103   else if (!NewFlag && IsNewDbgInfoFormat)
104     convertFromNewDbgValues();
105 }
106 void Function::setNewDbgInfoFormatFlag(bool NewFlag) {
107   for (auto &BB : *this) {
108     BB.setNewDbgInfoFormatFlag(NewFlag);
109   }
110   IsNewDbgInfoFormat = NewFlag;
111 }
112 
113 //===----------------------------------------------------------------------===//
114 // Argument Implementation
115 //===----------------------------------------------------------------------===//
116 
117 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
118     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
119   setName(Name);
120 }
121 
122 void Argument::setParent(Function *parent) {
123   Parent = parent;
124 }
125 
126 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
127   if (!getType()->isPointerTy()) return false;
128   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
129       (AllowUndefOrPoison ||
130        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
131     return true;
132   else if (getDereferenceableBytes() > 0 &&
133            !NullPointerIsDefined(getParent(),
134                                  getType()->getPointerAddressSpace()))
135     return true;
136   return false;
137 }
138 
139 bool Argument::hasByValAttr() const {
140   if (!getType()->isPointerTy()) return false;
141   return hasAttribute(Attribute::ByVal);
142 }
143 
144 bool Argument::hasByRefAttr() const {
145   if (!getType()->isPointerTy())
146     return false;
147   return hasAttribute(Attribute::ByRef);
148 }
149 
150 bool Argument::hasSwiftSelfAttr() const {
151   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
152 }
153 
154 bool Argument::hasSwiftErrorAttr() const {
155   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
156 }
157 
158 bool Argument::hasInAllocaAttr() const {
159   if (!getType()->isPointerTy()) return false;
160   return hasAttribute(Attribute::InAlloca);
161 }
162 
163 bool Argument::hasPreallocatedAttr() const {
164   if (!getType()->isPointerTy())
165     return false;
166   return hasAttribute(Attribute::Preallocated);
167 }
168 
169 bool Argument::hasPassPointeeByValueCopyAttr() const {
170   if (!getType()->isPointerTy()) return false;
171   AttributeList Attrs = getParent()->getAttributes();
172   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
173          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
174          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
175 }
176 
177 bool Argument::hasPointeeInMemoryValueAttr() const {
178   if (!getType()->isPointerTy())
179     return false;
180   AttributeList Attrs = getParent()->getAttributes();
181   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
182          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
183          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
184          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
185          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
186 }
187 
188 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
189 /// parameter type.
190 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs) {
191   // FIXME: All the type carrying attributes are mutually exclusive, so there
192   // should be a single query to get the stored type that handles any of them.
193   if (Type *ByValTy = ParamAttrs.getByValType())
194     return ByValTy;
195   if (Type *ByRefTy = ParamAttrs.getByRefType())
196     return ByRefTy;
197   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
198     return PreAllocTy;
199   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
200     return InAllocaTy;
201   if (Type *SRetTy = ParamAttrs.getStructRetType())
202     return SRetTy;
203 
204   return nullptr;
205 }
206 
207 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
208   AttributeSet ParamAttrs =
209       getParent()->getAttributes().getParamAttrs(getArgNo());
210   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs))
211     return DL.getTypeAllocSize(MemTy);
212   return 0;
213 }
214 
215 Type *Argument::getPointeeInMemoryValueType() const {
216   AttributeSet ParamAttrs =
217       getParent()->getAttributes().getParamAttrs(getArgNo());
218   return getMemoryParamAllocType(ParamAttrs);
219 }
220 
221 MaybeAlign Argument::getParamAlign() const {
222   assert(getType()->isPointerTy() && "Only pointers have alignments");
223   return getParent()->getParamAlign(getArgNo());
224 }
225 
226 MaybeAlign Argument::getParamStackAlign() const {
227   return getParent()->getParamStackAlign(getArgNo());
228 }
229 
230 Type *Argument::getParamByValType() const {
231   assert(getType()->isPointerTy() && "Only pointers have byval types");
232   return getParent()->getParamByValType(getArgNo());
233 }
234 
235 Type *Argument::getParamStructRetType() const {
236   assert(getType()->isPointerTy() && "Only pointers have sret types");
237   return getParent()->getParamStructRetType(getArgNo());
238 }
239 
240 Type *Argument::getParamByRefType() const {
241   assert(getType()->isPointerTy() && "Only pointers have byref types");
242   return getParent()->getParamByRefType(getArgNo());
243 }
244 
245 Type *Argument::getParamInAllocaType() const {
246   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
247   return getParent()->getParamInAllocaType(getArgNo());
248 }
249 
250 uint64_t Argument::getDereferenceableBytes() const {
251   assert(getType()->isPointerTy() &&
252          "Only pointers have dereferenceable bytes");
253   return getParent()->getParamDereferenceableBytes(getArgNo());
254 }
255 
256 uint64_t Argument::getDereferenceableOrNullBytes() const {
257   assert(getType()->isPointerTy() &&
258          "Only pointers have dereferenceable bytes");
259   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
260 }
261 
262 FPClassTest Argument::getNoFPClass() const {
263   return getParent()->getParamNoFPClass(getArgNo());
264 }
265 
266 std::optional<ConstantRange> Argument::getRange() const {
267   const Attribute RangeAttr = getAttribute(llvm::Attribute::Range);
268   if (RangeAttr.isValid())
269     return RangeAttr.getRange();
270   return std::nullopt;
271 }
272 
273 bool Argument::hasNestAttr() const {
274   if (!getType()->isPointerTy()) return false;
275   return hasAttribute(Attribute::Nest);
276 }
277 
278 bool Argument::hasNoAliasAttr() const {
279   if (!getType()->isPointerTy()) return false;
280   return hasAttribute(Attribute::NoAlias);
281 }
282 
283 bool Argument::hasNoCaptureAttr() const {
284   if (!getType()->isPointerTy()) return false;
285   return hasAttribute(Attribute::NoCapture);
286 }
287 
288 bool Argument::hasNoFreeAttr() const {
289   if (!getType()->isPointerTy()) return false;
290   return hasAttribute(Attribute::NoFree);
291 }
292 
293 bool Argument::hasStructRetAttr() const {
294   if (!getType()->isPointerTy()) return false;
295   return hasAttribute(Attribute::StructRet);
296 }
297 
298 bool Argument::hasInRegAttr() const {
299   return hasAttribute(Attribute::InReg);
300 }
301 
302 bool Argument::hasReturnedAttr() const {
303   return hasAttribute(Attribute::Returned);
304 }
305 
306 bool Argument::hasZExtAttr() const {
307   return hasAttribute(Attribute::ZExt);
308 }
309 
310 bool Argument::hasSExtAttr() const {
311   return hasAttribute(Attribute::SExt);
312 }
313 
314 bool Argument::onlyReadsMemory() const {
315   AttributeList Attrs = getParent()->getAttributes();
316   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
317          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
318 }
319 
320 void Argument::addAttrs(AttrBuilder &B) {
321   AttributeList AL = getParent()->getAttributes();
322   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
323   getParent()->setAttributes(AL);
324 }
325 
326 void Argument::addAttr(Attribute::AttrKind Kind) {
327   getParent()->addParamAttr(getArgNo(), Kind);
328 }
329 
330 void Argument::addAttr(Attribute Attr) {
331   getParent()->addParamAttr(getArgNo(), Attr);
332 }
333 
334 void Argument::removeAttr(Attribute::AttrKind Kind) {
335   getParent()->removeParamAttr(getArgNo(), Kind);
336 }
337 
338 void Argument::removeAttrs(const AttributeMask &AM) {
339   AttributeList AL = getParent()->getAttributes();
340   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), AM);
341   getParent()->setAttributes(AL);
342 }
343 
344 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
345   return getParent()->hasParamAttribute(getArgNo(), Kind);
346 }
347 
348 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
349   return getParent()->getParamAttribute(getArgNo(), Kind);
350 }
351 
352 //===----------------------------------------------------------------------===//
353 // Helper Methods in Function
354 //===----------------------------------------------------------------------===//
355 
356 LLVMContext &Function::getContext() const {
357   return getType()->getContext();
358 }
359 
360 unsigned Function::getInstructionCount() const {
361   unsigned NumInstrs = 0;
362   for (const BasicBlock &BB : BasicBlocks)
363     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
364                                BB.instructionsWithoutDebug().end());
365   return NumInstrs;
366 }
367 
368 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
369                            const Twine &N, Module &M) {
370   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
371 }
372 
373 Function *Function::createWithDefaultAttr(FunctionType *Ty,
374                                           LinkageTypes Linkage,
375                                           unsigned AddrSpace, const Twine &N,
376                                           Module *M) {
377   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
378   AttrBuilder B(F->getContext());
379   UWTableKind UWTable = M->getUwtable();
380   if (UWTable != UWTableKind::None)
381     B.addUWTableAttr(UWTable);
382   switch (M->getFramePointer()) {
383   case FramePointerKind::None:
384     // 0 ("none") is the default.
385     break;
386   case FramePointerKind::NonLeaf:
387     B.addAttribute("frame-pointer", "non-leaf");
388     break;
389   case FramePointerKind::All:
390     B.addAttribute("frame-pointer", "all");
391     break;
392   }
393   if (M->getModuleFlag("function_return_thunk_extern"))
394     B.addAttribute(Attribute::FnRetThunkExtern);
395   F->addFnAttrs(B);
396   return F;
397 }
398 
399 void Function::removeFromParent() {
400   getParent()->getFunctionList().remove(getIterator());
401 }
402 
403 void Function::eraseFromParent() {
404   getParent()->getFunctionList().erase(getIterator());
405 }
406 
407 void Function::splice(Function::iterator ToIt, Function *FromF,
408                       Function::iterator FromBeginIt,
409                       Function::iterator FromEndIt) {
410 #ifdef EXPENSIVE_CHECKS
411   // Check that FromBeginIt is before FromEndIt.
412   auto FromFEnd = FromF->end();
413   for (auto It = FromBeginIt; It != FromEndIt; ++It)
414     assert(It != FromFEnd && "FromBeginIt not before FromEndIt!");
415 #endif // EXPENSIVE_CHECKS
416   BasicBlocks.splice(ToIt, FromF->BasicBlocks, FromBeginIt, FromEndIt);
417 }
418 
419 Function::iterator Function::erase(Function::iterator FromIt,
420                                    Function::iterator ToIt) {
421   return BasicBlocks.erase(FromIt, ToIt);
422 }
423 
424 //===----------------------------------------------------------------------===//
425 // Function Implementation
426 //===----------------------------------------------------------------------===//
427 
428 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
429   // If AS == -1 and we are passed a valid module pointer we place the function
430   // in the program address space. Otherwise we default to AS0.
431   if (AddrSpace == static_cast<unsigned>(-1))
432     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
433   return AddrSpace;
434 }
435 
436 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
437                    const Twine &name, Module *ParentModule)
438     : GlobalObject(Ty, Value::FunctionVal,
439                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
440                    computeAddrSpace(AddrSpace, ParentModule)),
441       NumArgs(Ty->getNumParams()), IsNewDbgInfoFormat(false) {
442   assert(FunctionType::isValidReturnType(getReturnType()) &&
443          "invalid return type");
444   setGlobalObjectSubClassData(0);
445 
446   // We only need a symbol table for a function if the context keeps value names
447   if (!getContext().shouldDiscardValueNames())
448     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
449 
450   // If the function has arguments, mark them as lazily built.
451   if (Ty->getNumParams())
452     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
453 
454   if (ParentModule) {
455     ParentModule->getFunctionList().push_back(this);
456     IsNewDbgInfoFormat = ParentModule->IsNewDbgInfoFormat;
457   }
458 
459   HasLLVMReservedName = getName().starts_with("llvm.");
460   // Ensure intrinsics have the right parameter attributes.
461   // Note, the IntID field will have been set in Value::setName if this function
462   // name is a valid intrinsic ID.
463   if (IntID)
464     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
465 }
466 
467 Function::~Function() {
468   dropAllReferences();    // After this it is safe to delete instructions.
469 
470   // Delete all of the method arguments and unlink from symbol table...
471   if (Arguments)
472     clearArguments();
473 
474   // Remove the function from the on-the-side GC table.
475   clearGC();
476 }
477 
478 void Function::BuildLazyArguments() const {
479   // Create the arguments vector, all arguments start out unnamed.
480   auto *FT = getFunctionType();
481   if (NumArgs > 0) {
482     Arguments = std::allocator<Argument>().allocate(NumArgs);
483     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
484       Type *ArgTy = FT->getParamType(i);
485       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
486       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
487     }
488   }
489 
490   // Clear the lazy arguments bit.
491   unsigned SDC = getSubclassDataFromValue();
492   SDC &= ~(1 << 0);
493   const_cast<Function*>(this)->setValueSubclassData(SDC);
494   assert(!hasLazyArguments());
495 }
496 
497 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
498   return MutableArrayRef<Argument>(Args, Count);
499 }
500 
501 bool Function::isConstrainedFPIntrinsic() const {
502   return Intrinsic::isConstrainedFPIntrinsic(getIntrinsicID());
503 }
504 
505 void Function::clearArguments() {
506   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
507     A.setName("");
508     A.~Argument();
509   }
510   std::allocator<Argument>().deallocate(Arguments, NumArgs);
511   Arguments = nullptr;
512 }
513 
514 void Function::stealArgumentListFrom(Function &Src) {
515   assert(isDeclaration() && "Expected no references to current arguments");
516 
517   // Drop the current arguments, if any, and set the lazy argument bit.
518   if (!hasLazyArguments()) {
519     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
520                         [](const Argument &A) { return A.use_empty(); }) &&
521            "Expected arguments to be unused in declaration");
522     clearArguments();
523     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
524   }
525 
526   // Nothing to steal if Src has lazy arguments.
527   if (Src.hasLazyArguments())
528     return;
529 
530   // Steal arguments from Src, and fix the lazy argument bits.
531   assert(arg_size() == Src.arg_size());
532   Arguments = Src.Arguments;
533   Src.Arguments = nullptr;
534   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
535     // FIXME: This does the work of transferNodesFromList inefficiently.
536     SmallString<128> Name;
537     if (A.hasName())
538       Name = A.getName();
539     if (!Name.empty())
540       A.setName("");
541     A.setParent(this);
542     if (!Name.empty())
543       A.setName(Name);
544   }
545 
546   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
547   assert(!hasLazyArguments());
548   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
549 }
550 
551 void Function::deleteBodyImpl(bool ShouldDrop) {
552   setIsMaterializable(false);
553 
554   for (BasicBlock &BB : *this)
555     BB.dropAllReferences();
556 
557   // Delete all basic blocks. They are now unused, except possibly by
558   // blockaddresses, but BasicBlock's destructor takes care of those.
559   while (!BasicBlocks.empty())
560     BasicBlocks.begin()->eraseFromParent();
561 
562   if (getNumOperands()) {
563     if (ShouldDrop) {
564       // Drop uses of any optional data (real or placeholder).
565       User::dropAllReferences();
566       setNumHungOffUseOperands(0);
567     } else {
568       // The code needs to match Function::allocHungoffUselist().
569       auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
570       Op<0>().set(CPN);
571       Op<1>().set(CPN);
572       Op<2>().set(CPN);
573     }
574     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
575   }
576 
577   // Metadata is stored in a side-table.
578   clearMetadata();
579 }
580 
581 void Function::addAttributeAtIndex(unsigned i, Attribute Attr) {
582   AttributeSets = AttributeSets.addAttributeAtIndex(getContext(), i, Attr);
583 }
584 
585 void Function::addFnAttr(Attribute::AttrKind Kind) {
586   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
587 }
588 
589 void Function::addFnAttr(StringRef Kind, StringRef Val) {
590   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
591 }
592 
593 void Function::addFnAttr(Attribute Attr) {
594   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
595 }
596 
597 void Function::addFnAttrs(const AttrBuilder &Attrs) {
598   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
599 }
600 
601 void Function::addRetAttr(Attribute::AttrKind Kind) {
602   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
603 }
604 
605 void Function::addRetAttr(Attribute Attr) {
606   AttributeSets = AttributeSets.addRetAttribute(getContext(), Attr);
607 }
608 
609 void Function::addRetAttrs(const AttrBuilder &Attrs) {
610   AttributeSets = AttributeSets.addRetAttributes(getContext(), Attrs);
611 }
612 
613 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
614   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
615 }
616 
617 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
618   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
619 }
620 
621 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
622   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
623 }
624 
625 void Function::removeAttributeAtIndex(unsigned i, Attribute::AttrKind Kind) {
626   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
627 }
628 
629 void Function::removeAttributeAtIndex(unsigned i, StringRef Kind) {
630   AttributeSets = AttributeSets.removeAttributeAtIndex(getContext(), i, Kind);
631 }
632 
633 void Function::removeFnAttr(Attribute::AttrKind Kind) {
634   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
635 }
636 
637 void Function::removeFnAttr(StringRef Kind) {
638   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
639 }
640 
641 void Function::removeFnAttrs(const AttributeMask &AM) {
642   AttributeSets = AttributeSets.removeFnAttributes(getContext(), AM);
643 }
644 
645 void Function::removeRetAttr(Attribute::AttrKind Kind) {
646   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
647 }
648 
649 void Function::removeRetAttr(StringRef Kind) {
650   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
651 }
652 
653 void Function::removeRetAttrs(const AttributeMask &Attrs) {
654   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
655 }
656 
657 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
658   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
659 }
660 
661 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
662   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
663 }
664 
665 void Function::removeParamAttrs(unsigned ArgNo, const AttributeMask &Attrs) {
666   AttributeSets =
667       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
668 }
669 
670 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
671   AttributeSets =
672       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
673 }
674 
675 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
676   return AttributeSets.hasFnAttr(Kind);
677 }
678 
679 bool Function::hasFnAttribute(StringRef Kind) const {
680   return AttributeSets.hasFnAttr(Kind);
681 }
682 
683 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
684   return AttributeSets.hasRetAttr(Kind);
685 }
686 
687 bool Function::hasParamAttribute(unsigned ArgNo,
688                                  Attribute::AttrKind Kind) const {
689   return AttributeSets.hasParamAttr(ArgNo, Kind);
690 }
691 
692 Attribute Function::getAttributeAtIndex(unsigned i,
693                                         Attribute::AttrKind Kind) const {
694   return AttributeSets.getAttributeAtIndex(i, Kind);
695 }
696 
697 Attribute Function::getAttributeAtIndex(unsigned i, StringRef Kind) const {
698   return AttributeSets.getAttributeAtIndex(i, Kind);
699 }
700 
701 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
702   return AttributeSets.getFnAttr(Kind);
703 }
704 
705 Attribute Function::getFnAttribute(StringRef Kind) const {
706   return AttributeSets.getFnAttr(Kind);
707 }
708 
709 Attribute Function::getRetAttribute(Attribute::AttrKind Kind) const {
710   return AttributeSets.getRetAttr(Kind);
711 }
712 
713 uint64_t Function::getFnAttributeAsParsedInteger(StringRef Name,
714                                                  uint64_t Default) const {
715   Attribute A = getFnAttribute(Name);
716   uint64_t Result = Default;
717   if (A.isStringAttribute()) {
718     StringRef Str = A.getValueAsString();
719     if (Str.getAsInteger(0, Result))
720       getContext().emitError("cannot parse integer attribute " + Name);
721   }
722 
723   return Result;
724 }
725 
726 /// gets the specified attribute from the list of attributes.
727 Attribute Function::getParamAttribute(unsigned ArgNo,
728                                       Attribute::AttrKind Kind) const {
729   return AttributeSets.getParamAttr(ArgNo, Kind);
730 }
731 
732 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
733                                                  uint64_t Bytes) {
734   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
735                                                                   ArgNo, Bytes);
736 }
737 
738 void Function::addRangeRetAttr(const ConstantRange &CR) {
739   AttributeSets = AttributeSets.addRangeRetAttr(getContext(), CR);
740 }
741 
742 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
743   if (&FPType == &APFloat::IEEEsingle()) {
744     DenormalMode Mode = getDenormalModeF32Raw();
745     // If the f32 variant of the attribute isn't specified, try to use the
746     // generic one.
747     if (Mode.isValid())
748       return Mode;
749   }
750 
751   return getDenormalModeRaw();
752 }
753 
754 DenormalMode Function::getDenormalModeRaw() const {
755   Attribute Attr = getFnAttribute("denormal-fp-math");
756   StringRef Val = Attr.getValueAsString();
757   return parseDenormalFPAttribute(Val);
758 }
759 
760 DenormalMode Function::getDenormalModeF32Raw() const {
761   Attribute Attr = getFnAttribute("denormal-fp-math-f32");
762   if (Attr.isValid()) {
763     StringRef Val = Attr.getValueAsString();
764     return parseDenormalFPAttribute(Val);
765   }
766 
767   return DenormalMode::getInvalid();
768 }
769 
770 const std::string &Function::getGC() const {
771   assert(hasGC() && "Function has no collector");
772   return getContext().getGC(*this);
773 }
774 
775 void Function::setGC(std::string Str) {
776   setValueSubclassDataBit(14, !Str.empty());
777   getContext().setGC(*this, std::move(Str));
778 }
779 
780 void Function::clearGC() {
781   if (!hasGC())
782     return;
783   getContext().deleteGC(*this);
784   setValueSubclassDataBit(14, false);
785 }
786 
787 bool Function::hasStackProtectorFnAttr() const {
788   return hasFnAttribute(Attribute::StackProtect) ||
789          hasFnAttribute(Attribute::StackProtectStrong) ||
790          hasFnAttribute(Attribute::StackProtectReq);
791 }
792 
793 /// Copy all additional attributes (those not needed to create a Function) from
794 /// the Function Src to this one.
795 void Function::copyAttributesFrom(const Function *Src) {
796   GlobalObject::copyAttributesFrom(Src);
797   setCallingConv(Src->getCallingConv());
798   setAttributes(Src->getAttributes());
799   if (Src->hasGC())
800     setGC(Src->getGC());
801   else
802     clearGC();
803   if (Src->hasPersonalityFn())
804     setPersonalityFn(Src->getPersonalityFn());
805   if (Src->hasPrefixData())
806     setPrefixData(Src->getPrefixData());
807   if (Src->hasPrologueData())
808     setPrologueData(Src->getPrologueData());
809 }
810 
811 MemoryEffects Function::getMemoryEffects() const {
812   return getAttributes().getMemoryEffects();
813 }
814 void Function::setMemoryEffects(MemoryEffects ME) {
815   addFnAttr(Attribute::getWithMemoryEffects(getContext(), ME));
816 }
817 
818 /// Determine if the function does not access memory.
819 bool Function::doesNotAccessMemory() const {
820   return getMemoryEffects().doesNotAccessMemory();
821 }
822 void Function::setDoesNotAccessMemory() {
823   setMemoryEffects(MemoryEffects::none());
824 }
825 
826 /// Determine if the function does not access or only reads memory.
827 bool Function::onlyReadsMemory() const {
828   return getMemoryEffects().onlyReadsMemory();
829 }
830 void Function::setOnlyReadsMemory() {
831   setMemoryEffects(getMemoryEffects() & MemoryEffects::readOnly());
832 }
833 
834 /// Determine if the function does not access or only writes memory.
835 bool Function::onlyWritesMemory() const {
836   return getMemoryEffects().onlyWritesMemory();
837 }
838 void Function::setOnlyWritesMemory() {
839   setMemoryEffects(getMemoryEffects() & MemoryEffects::writeOnly());
840 }
841 
842 /// Determine if the call can access memmory only using pointers based
843 /// on its arguments.
844 bool Function::onlyAccessesArgMemory() const {
845   return getMemoryEffects().onlyAccessesArgPointees();
846 }
847 void Function::setOnlyAccessesArgMemory() {
848   setMemoryEffects(getMemoryEffects() & MemoryEffects::argMemOnly());
849 }
850 
851 /// Determine if the function may only access memory that is
852 ///  inaccessible from the IR.
853 bool Function::onlyAccessesInaccessibleMemory() const {
854   return getMemoryEffects().onlyAccessesInaccessibleMem();
855 }
856 void Function::setOnlyAccessesInaccessibleMemory() {
857   setMemoryEffects(getMemoryEffects() & MemoryEffects::inaccessibleMemOnly());
858 }
859 
860 /// Determine if the function may only access memory that is
861 ///  either inaccessible from the IR or pointed to by its arguments.
862 bool Function::onlyAccessesInaccessibleMemOrArgMem() const {
863   return getMemoryEffects().onlyAccessesInaccessibleOrArgMem();
864 }
865 void Function::setOnlyAccessesInaccessibleMemOrArgMem() {
866   setMemoryEffects(getMemoryEffects() &
867                    MemoryEffects::inaccessibleOrArgMemOnly());
868 }
869 
870 /// Table of string intrinsic names indexed by enum value.
871 static const char * const IntrinsicNameTable[] = {
872   "not_intrinsic",
873 #define GET_INTRINSIC_NAME_TABLE
874 #include "llvm/IR/IntrinsicImpl.inc"
875 #undef GET_INTRINSIC_NAME_TABLE
876 };
877 
878 /// Table of per-target intrinsic name tables.
879 #define GET_INTRINSIC_TARGET_DATA
880 #include "llvm/IR/IntrinsicImpl.inc"
881 #undef GET_INTRINSIC_TARGET_DATA
882 
883 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
884   return IID > TargetInfos[0].Count;
885 }
886 
887 bool Function::isTargetIntrinsic() const {
888   return isTargetIntrinsic(IntID);
889 }
890 
891 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
892 /// target as \c Name, or the generic table if \c Name is not target specific.
893 ///
894 /// Returns the relevant slice of \c IntrinsicNameTable
895 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
896   assert(Name.starts_with("llvm."));
897 
898   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
899   // Drop "llvm." and take the first dotted component. That will be the target
900   // if this is target specific.
901   StringRef Target = Name.drop_front(5).split('.').first;
902   auto It = partition_point(
903       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
904   // We've either found the target or just fall back to the generic set, which
905   // is always first.
906   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
907   return ArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
908 }
909 
910 /// This does the actual lookup of an intrinsic ID which
911 /// matches the given function name.
912 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
913   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
914   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
915   if (Idx == -1)
916     return Intrinsic::not_intrinsic;
917 
918   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
919   // an index into a sub-table.
920   int Adjust = NameTable.data() - IntrinsicNameTable;
921   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
922 
923   // If the intrinsic is not overloaded, require an exact match. If it is
924   // overloaded, require either exact or prefix match.
925   const auto MatchSize = strlen(NameTable[Idx]);
926   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
927   bool IsExactMatch = Name.size() == MatchSize;
928   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
929                                                      : Intrinsic::not_intrinsic;
930 }
931 
932 void Function::updateAfterNameChange() {
933   LibFuncCache = UnknownLibFunc;
934   StringRef Name = getName();
935   if (!Name.starts_with("llvm.")) {
936     HasLLVMReservedName = false;
937     IntID = Intrinsic::not_intrinsic;
938     return;
939   }
940   HasLLVMReservedName = true;
941   IntID = lookupIntrinsicID(Name);
942 }
943 
944 /// Returns a stable mangling for the type specified for use in the name
945 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
946 /// of named types is simply their name.  Manglings for unnamed types consist
947 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
948 /// combined with the mangling of their component types.  A vararg function
949 /// type will have a suffix of 'vararg'.  Since function types can contain
950 /// other function types, we close a function type mangling with suffix 'f'
951 /// which can't be confused with it's prefix.  This ensures we don't have
952 /// collisions between two unrelated function types. Otherwise, you might
953 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
954 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
955 /// indicating that extra care must be taken to ensure a unique name.
956 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
957   std::string Result;
958   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
959     Result += "p" + utostr(PTyp->getAddressSpace());
960   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
961     Result += "a" + utostr(ATyp->getNumElements()) +
962               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
963   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
964     if (!STyp->isLiteral()) {
965       Result += "s_";
966       if (STyp->hasName())
967         Result += STyp->getName();
968       else
969         HasUnnamedType = true;
970     } else {
971       Result += "sl_";
972       for (auto *Elem : STyp->elements())
973         Result += getMangledTypeStr(Elem, HasUnnamedType);
974     }
975     // Ensure nested structs are distinguishable.
976     Result += "s";
977   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
978     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
979     for (size_t i = 0; i < FT->getNumParams(); i++)
980       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
981     if (FT->isVarArg())
982       Result += "vararg";
983     // Ensure nested function types are distinguishable.
984     Result += "f";
985   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
986     ElementCount EC = VTy->getElementCount();
987     if (EC.isScalable())
988       Result += "nx";
989     Result += "v" + utostr(EC.getKnownMinValue()) +
990               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
991   } else if (TargetExtType *TETy = dyn_cast<TargetExtType>(Ty)) {
992     Result += "t";
993     Result += TETy->getName();
994     for (Type *ParamTy : TETy->type_params())
995       Result += "_" + getMangledTypeStr(ParamTy, HasUnnamedType);
996     for (unsigned IntParam : TETy->int_params())
997       Result += "_" + utostr(IntParam);
998     // Ensure nested target extension types are distinguishable.
999     Result += "t";
1000   } else if (Ty) {
1001     switch (Ty->getTypeID()) {
1002     default: llvm_unreachable("Unhandled type");
1003     case Type::VoidTyID:      Result += "isVoid";   break;
1004     case Type::MetadataTyID:  Result += "Metadata"; break;
1005     case Type::HalfTyID:      Result += "f16";      break;
1006     case Type::BFloatTyID:    Result += "bf16";     break;
1007     case Type::FloatTyID:     Result += "f32";      break;
1008     case Type::DoubleTyID:    Result += "f64";      break;
1009     case Type::X86_FP80TyID:  Result += "f80";      break;
1010     case Type::FP128TyID:     Result += "f128";     break;
1011     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
1012     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
1013     case Type::X86_AMXTyID:   Result += "x86amx";   break;
1014     case Type::IntegerTyID:
1015       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
1016       break;
1017     }
1018   }
1019   return Result;
1020 }
1021 
1022 StringRef Intrinsic::getBaseName(ID id) {
1023   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1024   return IntrinsicNameTable[id];
1025 }
1026 
1027 StringRef Intrinsic::getName(ID id) {
1028   assert(id < num_intrinsics && "Invalid intrinsic ID!");
1029   assert(!Intrinsic::isOverloaded(id) &&
1030          "This version of getName does not support overloading");
1031   return getBaseName(id);
1032 }
1033 
1034 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
1035                                         Module *M, FunctionType *FT,
1036                                         bool EarlyModuleCheck) {
1037 
1038   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
1039   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
1040          "This version of getName is for overloaded intrinsics only");
1041   (void)EarlyModuleCheck;
1042   assert((!EarlyModuleCheck || M ||
1043           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
1044          "Intrinsic overloading on pointer types need to provide a Module");
1045   bool HasUnnamedType = false;
1046   std::string Result(Intrinsic::getBaseName(Id));
1047   for (Type *Ty : Tys)
1048     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
1049   if (HasUnnamedType) {
1050     assert(M && "unnamed types need a module");
1051     if (!FT)
1052       FT = Intrinsic::getType(M->getContext(), Id, Tys);
1053     else
1054       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
1055              "Provided FunctionType must match arguments");
1056     return M->getUniqueIntrinsicName(Result, Id, FT);
1057   }
1058   return Result;
1059 }
1060 
1061 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
1062                                FunctionType *FT) {
1063   assert(M && "We need to have a Module");
1064   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
1065 }
1066 
1067 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
1068   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
1069 }
1070 
1071 /// IIT_Info - These are enumerators that describe the entries returned by the
1072 /// getIntrinsicInfoTableEntries function.
1073 ///
1074 /// Defined in Intrinsics.td.
1075 enum IIT_Info {
1076 #define GET_INTRINSIC_IITINFO
1077 #include "llvm/IR/IntrinsicImpl.inc"
1078 #undef GET_INTRINSIC_IITINFO
1079 };
1080 
1081 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
1082                       IIT_Info LastInfo,
1083                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
1084   using namespace Intrinsic;
1085 
1086   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
1087 
1088   IIT_Info Info = IIT_Info(Infos[NextElt++]);
1089   unsigned StructElts = 2;
1090 
1091   switch (Info) {
1092   case IIT_Done:
1093     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
1094     return;
1095   case IIT_VARARG:
1096     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
1097     return;
1098   case IIT_MMX:
1099     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
1100     return;
1101   case IIT_AMX:
1102     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
1103     return;
1104   case IIT_TOKEN:
1105     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1106     return;
1107   case IIT_METADATA:
1108     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1109     return;
1110   case IIT_F16:
1111     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1112     return;
1113   case IIT_BF16:
1114     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1115     return;
1116   case IIT_F32:
1117     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1118     return;
1119   case IIT_F64:
1120     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1121     return;
1122   case IIT_F128:
1123     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1124     return;
1125   case IIT_PPCF128:
1126     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PPCQuad, 0));
1127     return;
1128   case IIT_I1:
1129     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1130     return;
1131   case IIT_I2:
1132     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 2));
1133     return;
1134   case IIT_I4:
1135     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 4));
1136     return;
1137   case IIT_AARCH64_SVCOUNT:
1138     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AArch64Svcount, 0));
1139     return;
1140   case IIT_I8:
1141     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1142     return;
1143   case IIT_I16:
1144     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1145     return;
1146   case IIT_I32:
1147     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1148     return;
1149   case IIT_I64:
1150     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1151     return;
1152   case IIT_I128:
1153     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1154     return;
1155   case IIT_V1:
1156     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1157     DecodeIITType(NextElt, Infos, Info, OutputTable);
1158     return;
1159   case IIT_V2:
1160     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1161     DecodeIITType(NextElt, Infos, Info, OutputTable);
1162     return;
1163   case IIT_V3:
1164     OutputTable.push_back(IITDescriptor::getVector(3, IsScalableVector));
1165     DecodeIITType(NextElt, Infos, Info, OutputTable);
1166     return;
1167   case IIT_V4:
1168     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1169     DecodeIITType(NextElt, Infos, Info, OutputTable);
1170     return;
1171   case IIT_V6:
1172     OutputTable.push_back(IITDescriptor::getVector(6, IsScalableVector));
1173     DecodeIITType(NextElt, Infos, Info, OutputTable);
1174     return;
1175   case IIT_V8:
1176     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1177     DecodeIITType(NextElt, Infos, Info, OutputTable);
1178     return;
1179   case IIT_V10:
1180     OutputTable.push_back(IITDescriptor::getVector(10, IsScalableVector));
1181     DecodeIITType(NextElt, Infos, Info, OutputTable);
1182     return;
1183   case IIT_V16:
1184     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1185     DecodeIITType(NextElt, Infos, Info, OutputTable);
1186     return;
1187   case IIT_V32:
1188     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1189     DecodeIITType(NextElt, Infos, Info, OutputTable);
1190     return;
1191   case IIT_V64:
1192     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1193     DecodeIITType(NextElt, Infos, Info, OutputTable);
1194     return;
1195   case IIT_V128:
1196     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1197     DecodeIITType(NextElt, Infos, Info, OutputTable);
1198     return;
1199   case IIT_V256:
1200     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1201     DecodeIITType(NextElt, Infos, Info, OutputTable);
1202     return;
1203   case IIT_V512:
1204     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1205     DecodeIITType(NextElt, Infos, Info, OutputTable);
1206     return;
1207   case IIT_V1024:
1208     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1209     DecodeIITType(NextElt, Infos, Info, OutputTable);
1210     return;
1211   case IIT_EXTERNREF:
1212     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 10));
1213     return;
1214   case IIT_FUNCREF:
1215     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 20));
1216     return;
1217   case IIT_PTR:
1218     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1219     return;
1220   case IIT_ANYPTR: // [ANYPTR addrspace]
1221     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1222                                              Infos[NextElt++]));
1223     return;
1224   case IIT_ARG: {
1225     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1226     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1227     return;
1228   }
1229   case IIT_EXTEND_ARG: {
1230     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1231     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1232                                              ArgInfo));
1233     return;
1234   }
1235   case IIT_TRUNC_ARG: {
1236     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1237     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1238                                              ArgInfo));
1239     return;
1240   }
1241   case IIT_HALF_VEC_ARG: {
1242     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1243     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1244                                              ArgInfo));
1245     return;
1246   }
1247   case IIT_SAME_VEC_WIDTH_ARG: {
1248     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1249     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1250                                              ArgInfo));
1251     return;
1252   }
1253   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1254     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1255     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1256     OutputTable.push_back(
1257         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1258     return;
1259   }
1260   case IIT_EMPTYSTRUCT:
1261     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1262     return;
1263   case IIT_STRUCT9: ++StructElts; [[fallthrough]];
1264   case IIT_STRUCT8: ++StructElts; [[fallthrough]];
1265   case IIT_STRUCT7: ++StructElts; [[fallthrough]];
1266   case IIT_STRUCT6: ++StructElts; [[fallthrough]];
1267   case IIT_STRUCT5: ++StructElts; [[fallthrough]];
1268   case IIT_STRUCT4: ++StructElts; [[fallthrough]];
1269   case IIT_STRUCT3: ++StructElts; [[fallthrough]];
1270   case IIT_STRUCT2: {
1271     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1272 
1273     for (unsigned i = 0; i != StructElts; ++i)
1274       DecodeIITType(NextElt, Infos, Info, OutputTable);
1275     return;
1276   }
1277   case IIT_SUBDIVIDE2_ARG: {
1278     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1279     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1280                                              ArgInfo));
1281     return;
1282   }
1283   case IIT_SUBDIVIDE4_ARG: {
1284     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1285     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1286                                              ArgInfo));
1287     return;
1288   }
1289   case IIT_VEC_ELEMENT: {
1290     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1291     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1292                                              ArgInfo));
1293     return;
1294   }
1295   case IIT_SCALABLE_VEC: {
1296     DecodeIITType(NextElt, Infos, Info, OutputTable);
1297     return;
1298   }
1299   case IIT_VEC_OF_BITCASTS_TO_INT: {
1300     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1301     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1302                                              ArgInfo));
1303     return;
1304   }
1305   }
1306   llvm_unreachable("unhandled");
1307 }
1308 
1309 #define GET_INTRINSIC_GENERATOR_GLOBAL
1310 #include "llvm/IR/IntrinsicImpl.inc"
1311 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1312 
1313 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1314                                              SmallVectorImpl<IITDescriptor> &T){
1315   // Check to see if the intrinsic's type was expressible by the table.
1316   unsigned TableVal = IIT_Table[id-1];
1317 
1318   // Decode the TableVal into an array of IITValues.
1319   SmallVector<unsigned char, 8> IITValues;
1320   ArrayRef<unsigned char> IITEntries;
1321   unsigned NextElt = 0;
1322   if ((TableVal >> 31) != 0) {
1323     // This is an offset into the IIT_LongEncodingTable.
1324     IITEntries = IIT_LongEncodingTable;
1325 
1326     // Strip sentinel bit.
1327     NextElt = (TableVal << 1) >> 1;
1328   } else {
1329     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1330     // into a single word in the table itself, decode it now.
1331     do {
1332       IITValues.push_back(TableVal & 0xF);
1333       TableVal >>= 4;
1334     } while (TableVal);
1335 
1336     IITEntries = IITValues;
1337     NextElt = 0;
1338   }
1339 
1340   // Okay, decode the table into the output vector of IITDescriptors.
1341   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1342   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1343     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1344 }
1345 
1346 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1347                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1348   using namespace Intrinsic;
1349 
1350   IITDescriptor D = Infos.front();
1351   Infos = Infos.slice(1);
1352 
1353   switch (D.Kind) {
1354   case IITDescriptor::Void: return Type::getVoidTy(Context);
1355   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1356   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1357   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1358   case IITDescriptor::Token: return Type::getTokenTy(Context);
1359   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1360   case IITDescriptor::Half: return Type::getHalfTy(Context);
1361   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1362   case IITDescriptor::Float: return Type::getFloatTy(Context);
1363   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1364   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1365   case IITDescriptor::PPCQuad: return Type::getPPC_FP128Ty(Context);
1366   case IITDescriptor::AArch64Svcount:
1367     return TargetExtType::get(Context, "aarch64.svcount");
1368 
1369   case IITDescriptor::Integer:
1370     return IntegerType::get(Context, D.Integer_Width);
1371   case IITDescriptor::Vector:
1372     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1373                            D.Vector_Width);
1374   case IITDescriptor::Pointer:
1375     return PointerType::get(Context, D.Pointer_AddressSpace);
1376   case IITDescriptor::Struct: {
1377     SmallVector<Type *, 8> Elts;
1378     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1379       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1380     return StructType::get(Context, Elts);
1381   }
1382   case IITDescriptor::Argument:
1383     return Tys[D.getArgumentNumber()];
1384   case IITDescriptor::ExtendArgument: {
1385     Type *Ty = Tys[D.getArgumentNumber()];
1386     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1387       return VectorType::getExtendedElementVectorType(VTy);
1388 
1389     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1390   }
1391   case IITDescriptor::TruncArgument: {
1392     Type *Ty = Tys[D.getArgumentNumber()];
1393     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1394       return VectorType::getTruncatedElementVectorType(VTy);
1395 
1396     IntegerType *ITy = cast<IntegerType>(Ty);
1397     assert(ITy->getBitWidth() % 2 == 0);
1398     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1399   }
1400   case IITDescriptor::Subdivide2Argument:
1401   case IITDescriptor::Subdivide4Argument: {
1402     Type *Ty = Tys[D.getArgumentNumber()];
1403     VectorType *VTy = dyn_cast<VectorType>(Ty);
1404     assert(VTy && "Expected an argument of Vector Type");
1405     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1406     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1407   }
1408   case IITDescriptor::HalfVecArgument:
1409     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1410                                                   Tys[D.getArgumentNumber()]));
1411   case IITDescriptor::SameVecWidthArgument: {
1412     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1413     Type *Ty = Tys[D.getArgumentNumber()];
1414     if (auto *VTy = dyn_cast<VectorType>(Ty))
1415       return VectorType::get(EltTy, VTy->getElementCount());
1416     return EltTy;
1417   }
1418   case IITDescriptor::VecElementArgument: {
1419     Type *Ty = Tys[D.getArgumentNumber()];
1420     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1421       return VTy->getElementType();
1422     llvm_unreachable("Expected an argument of Vector Type");
1423   }
1424   case IITDescriptor::VecOfBitcastsToInt: {
1425     Type *Ty = Tys[D.getArgumentNumber()];
1426     VectorType *VTy = dyn_cast<VectorType>(Ty);
1427     assert(VTy && "Expected an argument of Vector Type");
1428     return VectorType::getInteger(VTy);
1429   }
1430   case IITDescriptor::VecOfAnyPtrsToElt:
1431     // Return the overloaded type (which determines the pointers address space)
1432     return Tys[D.getOverloadArgNumber()];
1433   }
1434   llvm_unreachable("unhandled");
1435 }
1436 
1437 FunctionType *Intrinsic::getType(LLVMContext &Context,
1438                                  ID id, ArrayRef<Type*> Tys) {
1439   SmallVector<IITDescriptor, 8> Table;
1440   getIntrinsicInfoTableEntries(id, Table);
1441 
1442   ArrayRef<IITDescriptor> TableRef = Table;
1443   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1444 
1445   SmallVector<Type*, 8> ArgTys;
1446   while (!TableRef.empty())
1447     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1448 
1449   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1450   // If we see void type as the type of the last argument, it is vararg intrinsic
1451   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1452     ArgTys.pop_back();
1453     return FunctionType::get(ResultTy, ArgTys, true);
1454   }
1455   return FunctionType::get(ResultTy, ArgTys, false);
1456 }
1457 
1458 bool Intrinsic::isOverloaded(ID id) {
1459 #define GET_INTRINSIC_OVERLOAD_TABLE
1460 #include "llvm/IR/IntrinsicImpl.inc"
1461 #undef GET_INTRINSIC_OVERLOAD_TABLE
1462 }
1463 
1464 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1465 #define GET_INTRINSIC_ATTRIBUTES
1466 #include "llvm/IR/IntrinsicImpl.inc"
1467 #undef GET_INTRINSIC_ATTRIBUTES
1468 
1469 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1470   // There can never be multiple globals with the same name of different types,
1471   // because intrinsics must be a specific type.
1472   auto *FT = getType(M->getContext(), id, Tys);
1473   return cast<Function>(
1474       M->getOrInsertFunction(
1475            Tys.empty() ? getName(id) : getName(id, Tys, M, FT), FT)
1476           .getCallee());
1477 }
1478 
1479 // This defines the "Intrinsic::getIntrinsicForClangBuiltin()" method.
1480 #define GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1481 #include "llvm/IR/IntrinsicImpl.inc"
1482 #undef GET_LLVM_INTRINSIC_FOR_CLANG_BUILTIN
1483 
1484 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1485 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1486 #include "llvm/IR/IntrinsicImpl.inc"
1487 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1488 
1489 bool Intrinsic::isConstrainedFPIntrinsic(ID QID) {
1490   switch (QID) {
1491 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
1492   case Intrinsic::INTRINSIC:
1493 #include "llvm/IR/ConstrainedOps.def"
1494 #undef INSTRUCTION
1495     return true;
1496   default:
1497     return false;
1498   }
1499 }
1500 
1501 bool Intrinsic::hasConstrainedFPRoundingModeOperand(Intrinsic::ID QID) {
1502   switch (QID) {
1503 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
1504   case Intrinsic::INTRINSIC:                                                   \
1505     return ROUND_MODE == 1;
1506 #include "llvm/IR/ConstrainedOps.def"
1507 #undef INSTRUCTION
1508   default:
1509     return false;
1510   }
1511 }
1512 
1513 using DeferredIntrinsicMatchPair =
1514     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1515 
1516 static bool matchIntrinsicType(
1517     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1518     SmallVectorImpl<Type *> &ArgTys,
1519     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1520     bool IsDeferredCheck) {
1521   using namespace Intrinsic;
1522 
1523   // If we ran out of descriptors, there are too many arguments.
1524   if (Infos.empty()) return true;
1525 
1526   // Do this before slicing off the 'front' part
1527   auto InfosRef = Infos;
1528   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1529     DeferredChecks.emplace_back(T, InfosRef);
1530     return false;
1531   };
1532 
1533   IITDescriptor D = Infos.front();
1534   Infos = Infos.slice(1);
1535 
1536   switch (D.Kind) {
1537     case IITDescriptor::Void: return !Ty->isVoidTy();
1538     case IITDescriptor::VarArg: return true;
1539     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1540     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1541     case IITDescriptor::Token: return !Ty->isTokenTy();
1542     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1543     case IITDescriptor::Half: return !Ty->isHalfTy();
1544     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1545     case IITDescriptor::Float: return !Ty->isFloatTy();
1546     case IITDescriptor::Double: return !Ty->isDoubleTy();
1547     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1548     case IITDescriptor::PPCQuad: return !Ty->isPPC_FP128Ty();
1549     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1550     case IITDescriptor::AArch64Svcount:
1551       return !isa<TargetExtType>(Ty) ||
1552              cast<TargetExtType>(Ty)->getName() != "aarch64.svcount";
1553     case IITDescriptor::Vector: {
1554       VectorType *VT = dyn_cast<VectorType>(Ty);
1555       return !VT || VT->getElementCount() != D.Vector_Width ||
1556              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1557                                 DeferredChecks, IsDeferredCheck);
1558     }
1559     case IITDescriptor::Pointer: {
1560       PointerType *PT = dyn_cast<PointerType>(Ty);
1561       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace;
1562     }
1563 
1564     case IITDescriptor::Struct: {
1565       StructType *ST = dyn_cast<StructType>(Ty);
1566       if (!ST || !ST->isLiteral() || ST->isPacked() ||
1567           ST->getNumElements() != D.Struct_NumElements)
1568         return true;
1569 
1570       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1571         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1572                                DeferredChecks, IsDeferredCheck))
1573           return true;
1574       return false;
1575     }
1576 
1577     case IITDescriptor::Argument:
1578       // If this is the second occurrence of an argument,
1579       // verify that the later instance matches the previous instance.
1580       if (D.getArgumentNumber() < ArgTys.size())
1581         return Ty != ArgTys[D.getArgumentNumber()];
1582 
1583       if (D.getArgumentNumber() > ArgTys.size() ||
1584           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1585         return IsDeferredCheck || DeferCheck(Ty);
1586 
1587       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1588              "Table consistency error");
1589       ArgTys.push_back(Ty);
1590 
1591       switch (D.getArgumentKind()) {
1592         case IITDescriptor::AK_Any:        return false; // Success
1593         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1594         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1595         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1596         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1597         default:                           break;
1598       }
1599       llvm_unreachable("all argument kinds not covered");
1600 
1601     case IITDescriptor::ExtendArgument: {
1602       // If this is a forward reference, defer the check for later.
1603       if (D.getArgumentNumber() >= ArgTys.size())
1604         return IsDeferredCheck || DeferCheck(Ty);
1605 
1606       Type *NewTy = ArgTys[D.getArgumentNumber()];
1607       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1608         NewTy = VectorType::getExtendedElementVectorType(VTy);
1609       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1610         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1611       else
1612         return true;
1613 
1614       return Ty != NewTy;
1615     }
1616     case IITDescriptor::TruncArgument: {
1617       // If this is a forward reference, defer the check for later.
1618       if (D.getArgumentNumber() >= ArgTys.size())
1619         return IsDeferredCheck || DeferCheck(Ty);
1620 
1621       Type *NewTy = ArgTys[D.getArgumentNumber()];
1622       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1623         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1624       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1625         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1626       else
1627         return true;
1628 
1629       return Ty != NewTy;
1630     }
1631     case IITDescriptor::HalfVecArgument:
1632       // If this is a forward reference, defer the check for later.
1633       if (D.getArgumentNumber() >= ArgTys.size())
1634         return IsDeferredCheck || DeferCheck(Ty);
1635       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1636              VectorType::getHalfElementsVectorType(
1637                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1638     case IITDescriptor::SameVecWidthArgument: {
1639       if (D.getArgumentNumber() >= ArgTys.size()) {
1640         // Defer check and subsequent check for the vector element type.
1641         Infos = Infos.slice(1);
1642         return IsDeferredCheck || DeferCheck(Ty);
1643       }
1644       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1645       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1646       // Both must be vectors of the same number of elements or neither.
1647       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1648         return true;
1649       Type *EltTy = Ty;
1650       if (ThisArgType) {
1651         if (ReferenceType->getElementCount() !=
1652             ThisArgType->getElementCount())
1653           return true;
1654         EltTy = ThisArgType->getElementType();
1655       }
1656       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1657                                 IsDeferredCheck);
1658     }
1659     case IITDescriptor::VecOfAnyPtrsToElt: {
1660       unsigned RefArgNumber = D.getRefArgNumber();
1661       if (RefArgNumber >= ArgTys.size()) {
1662         if (IsDeferredCheck)
1663           return true;
1664         // If forward referencing, already add the pointer-vector type and
1665         // defer the checks for later.
1666         ArgTys.push_back(Ty);
1667         return DeferCheck(Ty);
1668       }
1669 
1670       if (!IsDeferredCheck){
1671         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1672                "Table consistency error");
1673         ArgTys.push_back(Ty);
1674       }
1675 
1676       // Verify the overloaded type "matches" the Ref type.
1677       // i.e. Ty is a vector with the same width as Ref.
1678       // Composed of pointers to the same element type as Ref.
1679       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1680       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1681       if (!ThisArgVecTy || !ReferenceType ||
1682           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1683         return true;
1684       return !ThisArgVecTy->getElementType()->isPointerTy();
1685     }
1686     case IITDescriptor::VecElementArgument: {
1687       if (D.getArgumentNumber() >= ArgTys.size())
1688         return IsDeferredCheck ? true : DeferCheck(Ty);
1689       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1690       return !ReferenceType || Ty != ReferenceType->getElementType();
1691     }
1692     case IITDescriptor::Subdivide2Argument:
1693     case IITDescriptor::Subdivide4Argument: {
1694       // If this is a forward reference, defer the check for later.
1695       if (D.getArgumentNumber() >= ArgTys.size())
1696         return IsDeferredCheck || DeferCheck(Ty);
1697 
1698       Type *NewTy = ArgTys[D.getArgumentNumber()];
1699       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1700         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1701         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1702         return Ty != NewTy;
1703       }
1704       return true;
1705     }
1706     case IITDescriptor::VecOfBitcastsToInt: {
1707       if (D.getArgumentNumber() >= ArgTys.size())
1708         return IsDeferredCheck || DeferCheck(Ty);
1709       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1710       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1711       if (!ThisArgVecTy || !ReferenceType)
1712         return true;
1713       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1714     }
1715   }
1716   llvm_unreachable("unhandled");
1717 }
1718 
1719 Intrinsic::MatchIntrinsicTypesResult
1720 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1721                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1722                                    SmallVectorImpl<Type *> &ArgTys) {
1723   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1724   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1725                          false))
1726     return MatchIntrinsicTypes_NoMatchRet;
1727 
1728   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1729 
1730   for (auto *Ty : FTy->params())
1731     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1732       return MatchIntrinsicTypes_NoMatchArg;
1733 
1734   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1735     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1736     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1737                            true))
1738       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1739                                          : MatchIntrinsicTypes_NoMatchArg;
1740   }
1741 
1742   return MatchIntrinsicTypes_Match;
1743 }
1744 
1745 bool
1746 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1747                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1748   // If there are no descriptors left, then it can't be a vararg.
1749   if (Infos.empty())
1750     return isVarArg;
1751 
1752   // There should be only one descriptor remaining at this point.
1753   if (Infos.size() != 1)
1754     return true;
1755 
1756   // Check and verify the descriptor.
1757   IITDescriptor D = Infos.front();
1758   Infos = Infos.slice(1);
1759   if (D.Kind == IITDescriptor::VarArg)
1760     return !isVarArg;
1761 
1762   return true;
1763 }
1764 
1765 bool Intrinsic::getIntrinsicSignature(Intrinsic::ID ID, FunctionType *FT,
1766                                       SmallVectorImpl<Type *> &ArgTys) {
1767   if (!ID)
1768     return false;
1769 
1770   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1771   getIntrinsicInfoTableEntries(ID, Table);
1772   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1773 
1774   if (Intrinsic::matchIntrinsicSignature(FT, TableRef, ArgTys) !=
1775       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1776     return false;
1777   }
1778   if (Intrinsic::matchIntrinsicVarArg(FT->isVarArg(), TableRef))
1779     return false;
1780   return true;
1781 }
1782 
1783 bool Intrinsic::getIntrinsicSignature(Function *F,
1784                                       SmallVectorImpl<Type *> &ArgTys) {
1785   return getIntrinsicSignature(F->getIntrinsicID(), F->getFunctionType(),
1786                                ArgTys);
1787 }
1788 
1789 std::optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1790   SmallVector<Type *, 4> ArgTys;
1791   if (!getIntrinsicSignature(F, ArgTys))
1792     return std::nullopt;
1793 
1794   Intrinsic::ID ID = F->getIntrinsicID();
1795   StringRef Name = F->getName();
1796   std::string WantedName =
1797       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1798   if (Name == WantedName)
1799     return std::nullopt;
1800 
1801   Function *NewDecl = [&] {
1802     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1803       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1804         if (ExistingF->getFunctionType() == F->getFunctionType())
1805           return ExistingF;
1806 
1807       // The name already exists, but is not a function or has the wrong
1808       // prototype. Make place for the new one by renaming the old version.
1809       // Either this old version will be removed later on or the module is
1810       // invalid and we'll get an error.
1811       ExistingGV->setName(WantedName + ".renamed");
1812     }
1813     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1814   }();
1815 
1816   NewDecl->setCallingConv(F->getCallingConv());
1817   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1818          "Shouldn't change the signature");
1819   return NewDecl;
1820 }
1821 
1822 /// hasAddressTaken - returns true if there are any uses of this function
1823 /// other than direct calls or invokes to it. Optionally ignores callback
1824 /// uses, assume like pointer annotation calls, and references in llvm.used
1825 /// and llvm.compiler.used variables.
1826 bool Function::hasAddressTaken(const User **PutOffender,
1827                                bool IgnoreCallbackUses,
1828                                bool IgnoreAssumeLikeCalls, bool IgnoreLLVMUsed,
1829                                bool IgnoreARCAttachedCall,
1830                                bool IgnoreCastedDirectCall) const {
1831   for (const Use &U : uses()) {
1832     const User *FU = U.getUser();
1833     if (isa<BlockAddress>(FU))
1834       continue;
1835 
1836     if (IgnoreCallbackUses) {
1837       AbstractCallSite ACS(&U);
1838       if (ACS && ACS.isCallbackCall())
1839         continue;
1840     }
1841 
1842     const auto *Call = dyn_cast<CallBase>(FU);
1843     if (!Call) {
1844       if (IgnoreAssumeLikeCalls &&
1845           isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1846           all_of(FU->users(), [](const User *U) {
1847             if (const auto *I = dyn_cast<IntrinsicInst>(U))
1848               return I->isAssumeLikeIntrinsic();
1849             return false;
1850           })) {
1851         continue;
1852       }
1853 
1854       if (IgnoreLLVMUsed && !FU->user_empty()) {
1855         const User *FUU = FU;
1856         if (isa<BitCastOperator, AddrSpaceCastOperator>(FU) &&
1857             FU->hasOneUse() && !FU->user_begin()->user_empty())
1858           FUU = *FU->user_begin();
1859         if (llvm::all_of(FUU->users(), [](const User *U) {
1860               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1861                 return GV->hasName() &&
1862                        (GV->getName() == "llvm.compiler.used" ||
1863                         GV->getName() == "llvm.used");
1864               return false;
1865             }))
1866           continue;
1867       }
1868       if (PutOffender)
1869         *PutOffender = FU;
1870       return true;
1871     }
1872 
1873     if (IgnoreAssumeLikeCalls) {
1874       if (const auto *I = dyn_cast<IntrinsicInst>(Call))
1875         if (I->isAssumeLikeIntrinsic())
1876           continue;
1877     }
1878 
1879     if (!Call->isCallee(&U) || (!IgnoreCastedDirectCall &&
1880                                 Call->getFunctionType() != getFunctionType())) {
1881       if (IgnoreARCAttachedCall &&
1882           Call->isOperandBundleOfType(LLVMContext::OB_clang_arc_attachedcall,
1883                                       U.getOperandNo()))
1884         continue;
1885 
1886       if (PutOffender)
1887         *PutOffender = FU;
1888       return true;
1889     }
1890   }
1891   return false;
1892 }
1893 
1894 bool Function::isDefTriviallyDead() const {
1895   // Check the linkage
1896   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1897       !hasAvailableExternallyLinkage())
1898     return false;
1899 
1900   // Check if the function is used by anything other than a blockaddress.
1901   for (const User *U : users())
1902     if (!isa<BlockAddress>(U))
1903       return false;
1904 
1905   return true;
1906 }
1907 
1908 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1909 /// setjmp or other function that gcc recognizes as "returning twice".
1910 bool Function::callsFunctionThatReturnsTwice() const {
1911   for (const Instruction &I : instructions(this))
1912     if (const auto *Call = dyn_cast<CallBase>(&I))
1913       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1914         return true;
1915 
1916   return false;
1917 }
1918 
1919 Constant *Function::getPersonalityFn() const {
1920   assert(hasPersonalityFn() && getNumOperands());
1921   return cast<Constant>(Op<0>());
1922 }
1923 
1924 void Function::setPersonalityFn(Constant *Fn) {
1925   setHungoffOperand<0>(Fn);
1926   setValueSubclassDataBit(3, Fn != nullptr);
1927 }
1928 
1929 Constant *Function::getPrefixData() const {
1930   assert(hasPrefixData() && getNumOperands());
1931   return cast<Constant>(Op<1>());
1932 }
1933 
1934 void Function::setPrefixData(Constant *PrefixData) {
1935   setHungoffOperand<1>(PrefixData);
1936   setValueSubclassDataBit(1, PrefixData != nullptr);
1937 }
1938 
1939 Constant *Function::getPrologueData() const {
1940   assert(hasPrologueData() && getNumOperands());
1941   return cast<Constant>(Op<2>());
1942 }
1943 
1944 void Function::setPrologueData(Constant *PrologueData) {
1945   setHungoffOperand<2>(PrologueData);
1946   setValueSubclassDataBit(2, PrologueData != nullptr);
1947 }
1948 
1949 void Function::allocHungoffUselist() {
1950   // If we've already allocated a uselist, stop here.
1951   if (getNumOperands())
1952     return;
1953 
1954   allocHungoffUses(3, /*IsPhi=*/ false);
1955   setNumHungOffUseOperands(3);
1956 
1957   // Initialize the uselist with placeholder operands to allow traversal.
1958   auto *CPN = ConstantPointerNull::get(PointerType::get(getContext(), 0));
1959   Op<0>().set(CPN);
1960   Op<1>().set(CPN);
1961   Op<2>().set(CPN);
1962 }
1963 
1964 template <int Idx>
1965 void Function::setHungoffOperand(Constant *C) {
1966   if (C) {
1967     allocHungoffUselist();
1968     Op<Idx>().set(C);
1969   } else if (getNumOperands()) {
1970     Op<Idx>().set(ConstantPointerNull::get(PointerType::get(getContext(), 0)));
1971   }
1972 }
1973 
1974 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1975   assert(Bit < 16 && "SubclassData contains only 16 bits");
1976   if (On)
1977     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1978   else
1979     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1980 }
1981 
1982 void Function::setEntryCount(ProfileCount Count,
1983                              const DenseSet<GlobalValue::GUID> *S) {
1984 #if !defined(NDEBUG)
1985   auto PrevCount = getEntryCount();
1986   assert(!PrevCount || PrevCount->getType() == Count.getType());
1987 #endif
1988 
1989   auto ImportGUIDs = getImportGUIDs();
1990   if (S == nullptr && ImportGUIDs.size())
1991     S = &ImportGUIDs;
1992 
1993   MDBuilder MDB(getContext());
1994   setMetadata(
1995       LLVMContext::MD_prof,
1996       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1997 }
1998 
1999 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
2000                              const DenseSet<GlobalValue::GUID> *Imports) {
2001   setEntryCount(ProfileCount(Count, Type), Imports);
2002 }
2003 
2004 std::optional<ProfileCount> Function::getEntryCount(bool AllowSynthetic) const {
2005   MDNode *MD = getMetadata(LLVMContext::MD_prof);
2006   if (MD && MD->getOperand(0))
2007     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
2008       if (MDS->getString() == "function_entry_count") {
2009         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2010         uint64_t Count = CI->getValue().getZExtValue();
2011         // A value of -1 is used for SamplePGO when there were no samples.
2012         // Treat this the same as unknown.
2013         if (Count == (uint64_t)-1)
2014           return std::nullopt;
2015         return ProfileCount(Count, PCT_Real);
2016       } else if (AllowSynthetic &&
2017                  MDS->getString() == "synthetic_function_entry_count") {
2018         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
2019         uint64_t Count = CI->getValue().getZExtValue();
2020         return ProfileCount(Count, PCT_Synthetic);
2021       }
2022     }
2023   return std::nullopt;
2024 }
2025 
2026 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
2027   DenseSet<GlobalValue::GUID> R;
2028   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
2029     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
2030       if (MDS->getString() == "function_entry_count")
2031         for (unsigned i = 2; i < MD->getNumOperands(); i++)
2032           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
2033                        ->getValue()
2034                        .getZExtValue());
2035   return R;
2036 }
2037 
2038 void Function::setSectionPrefix(StringRef Prefix) {
2039   MDBuilder MDB(getContext());
2040   setMetadata(LLVMContext::MD_section_prefix,
2041               MDB.createFunctionSectionPrefix(Prefix));
2042 }
2043 
2044 std::optional<StringRef> Function::getSectionPrefix() const {
2045   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
2046     assert(cast<MDString>(MD->getOperand(0))->getString() ==
2047                "function_section_prefix" &&
2048            "Metadata not match");
2049     return cast<MDString>(MD->getOperand(1))->getString();
2050   }
2051   return std::nullopt;
2052 }
2053 
2054 bool Function::nullPointerIsDefined() const {
2055   return hasFnAttribute(Attribute::NullPointerIsValid);
2056 }
2057 
2058 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
2059   if (F && F->nullPointerIsDefined())
2060     return true;
2061 
2062   if (AS != 0)
2063     return true;
2064 
2065   return false;
2066 }
2067