xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 22a8f35ce0ed2b47934df458966a90509fd7f25a)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/SymbolTableListTraits.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <string>
54 
55 using namespace llvm;
56 using ProfileCount = Function::ProfileCount;
57 
58 // Explicit instantiations of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class llvm::SymbolTableListTraits<BasicBlock>;
61 
62 //===----------------------------------------------------------------------===//
63 // Argument Implementation
64 //===----------------------------------------------------------------------===//
65 
66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
67     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
68   setName(Name);
69 }
70 
71 void Argument::setParent(Function *parent) {
72   Parent = parent;
73 }
74 
75 bool Argument::hasNonNullAttr() const {
76   if (!getType()->isPointerTy()) return false;
77   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
78     return true;
79   else if (getDereferenceableBytes() > 0 &&
80            !NullPointerIsDefined(getParent(),
81                                  getType()->getPointerAddressSpace()))
82     return true;
83   return false;
84 }
85 
86 bool Argument::hasByValAttr() const {
87   if (!getType()->isPointerTy()) return false;
88   return hasAttribute(Attribute::ByVal);
89 }
90 
91 bool Argument::hasSwiftSelfAttr() const {
92   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
93 }
94 
95 bool Argument::hasSwiftErrorAttr() const {
96   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
97 }
98 
99 bool Argument::hasInAllocaAttr() const {
100   if (!getType()->isPointerTy()) return false;
101   return hasAttribute(Attribute::InAlloca);
102 }
103 
104 bool Argument::hasByValOrInAllocaAttr() const {
105   if (!getType()->isPointerTy()) return false;
106   AttributeList Attrs = getParent()->getAttributes();
107   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
108          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
109 }
110 
111 unsigned Argument::getParamAlignment() const {
112   assert(getType()->isPointerTy() && "Only pointers have alignments");
113   return getParent()->getParamAlignment(getArgNo());
114 }
115 
116 Type *Argument::getParamByValType() const {
117   assert(getType()->isPointerTy() && "Only pointers have byval types");
118   return getParent()->getParamByValType(getArgNo());
119 }
120 
121 uint64_t Argument::getDereferenceableBytes() const {
122   assert(getType()->isPointerTy() &&
123          "Only pointers have dereferenceable bytes");
124   return getParent()->getParamDereferenceableBytes(getArgNo());
125 }
126 
127 uint64_t Argument::getDereferenceableOrNullBytes() const {
128   assert(getType()->isPointerTy() &&
129          "Only pointers have dereferenceable bytes");
130   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
131 }
132 
133 bool Argument::hasNestAttr() const {
134   if (!getType()->isPointerTy()) return false;
135   return hasAttribute(Attribute::Nest);
136 }
137 
138 bool Argument::hasNoAliasAttr() const {
139   if (!getType()->isPointerTy()) return false;
140   return hasAttribute(Attribute::NoAlias);
141 }
142 
143 bool Argument::hasNoCaptureAttr() const {
144   if (!getType()->isPointerTy()) return false;
145   return hasAttribute(Attribute::NoCapture);
146 }
147 
148 bool Argument::hasStructRetAttr() const {
149   if (!getType()->isPointerTy()) return false;
150   return hasAttribute(Attribute::StructRet);
151 }
152 
153 bool Argument::hasInRegAttr() const {
154   return hasAttribute(Attribute::InReg);
155 }
156 
157 bool Argument::hasReturnedAttr() const {
158   return hasAttribute(Attribute::Returned);
159 }
160 
161 bool Argument::hasZExtAttr() const {
162   return hasAttribute(Attribute::ZExt);
163 }
164 
165 bool Argument::hasSExtAttr() const {
166   return hasAttribute(Attribute::SExt);
167 }
168 
169 bool Argument::onlyReadsMemory() const {
170   AttributeList Attrs = getParent()->getAttributes();
171   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
172          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
173 }
174 
175 void Argument::addAttrs(AttrBuilder &B) {
176   AttributeList AL = getParent()->getAttributes();
177   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
178   getParent()->setAttributes(AL);
179 }
180 
181 void Argument::addAttr(Attribute::AttrKind Kind) {
182   getParent()->addParamAttr(getArgNo(), Kind);
183 }
184 
185 void Argument::addAttr(Attribute Attr) {
186   getParent()->addParamAttr(getArgNo(), Attr);
187 }
188 
189 void Argument::removeAttr(Attribute::AttrKind Kind) {
190   getParent()->removeParamAttr(getArgNo(), Kind);
191 }
192 
193 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
194   return getParent()->hasParamAttribute(getArgNo(), Kind);
195 }
196 
197 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
198   return getParent()->getParamAttribute(getArgNo(), Kind);
199 }
200 
201 //===----------------------------------------------------------------------===//
202 // Helper Methods in Function
203 //===----------------------------------------------------------------------===//
204 
205 LLVMContext &Function::getContext() const {
206   return getType()->getContext();
207 }
208 
209 unsigned Function::getInstructionCount() const {
210   unsigned NumInstrs = 0;
211   for (const BasicBlock &BB : BasicBlocks)
212     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
213                                BB.instructionsWithoutDebug().end());
214   return NumInstrs;
215 }
216 
217 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
218                            const Twine &N, Module &M) {
219   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
220 }
221 
222 void Function::removeFromParent() {
223   getParent()->getFunctionList().remove(getIterator());
224 }
225 
226 void Function::eraseFromParent() {
227   getParent()->getFunctionList().erase(getIterator());
228 }
229 
230 //===----------------------------------------------------------------------===//
231 // Function Implementation
232 //===----------------------------------------------------------------------===//
233 
234 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
235   // If AS == -1 and we are passed a valid module pointer we place the function
236   // in the program address space. Otherwise we default to AS0.
237   if (AddrSpace == static_cast<unsigned>(-1))
238     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
239   return AddrSpace;
240 }
241 
242 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
243                    const Twine &name, Module *ParentModule)
244     : GlobalObject(Ty, Value::FunctionVal,
245                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
246                    computeAddrSpace(AddrSpace, ParentModule)),
247       NumArgs(Ty->getNumParams()) {
248   assert(FunctionType::isValidReturnType(getReturnType()) &&
249          "invalid return type");
250   setGlobalObjectSubClassData(0);
251 
252   // We only need a symbol table for a function if the context keeps value names
253   if (!getContext().shouldDiscardValueNames())
254     SymTab = std::make_unique<ValueSymbolTable>();
255 
256   // If the function has arguments, mark them as lazily built.
257   if (Ty->getNumParams())
258     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
259 
260   if (ParentModule)
261     ParentModule->getFunctionList().push_back(this);
262 
263   HasLLVMReservedName = getName().startswith("llvm.");
264   // Ensure intrinsics have the right parameter attributes.
265   // Note, the IntID field will have been set in Value::setName if this function
266   // name is a valid intrinsic ID.
267   if (IntID)
268     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
269 }
270 
271 Function::~Function() {
272   dropAllReferences();    // After this it is safe to delete instructions.
273 
274   // Delete all of the method arguments and unlink from symbol table...
275   if (Arguments)
276     clearArguments();
277 
278   // Remove the function from the on-the-side GC table.
279   clearGC();
280 }
281 
282 void Function::BuildLazyArguments() const {
283   // Create the arguments vector, all arguments start out unnamed.
284   auto *FT = getFunctionType();
285   if (NumArgs > 0) {
286     Arguments = std::allocator<Argument>().allocate(NumArgs);
287     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
288       Type *ArgTy = FT->getParamType(i);
289       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
290       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
291     }
292   }
293 
294   // Clear the lazy arguments bit.
295   unsigned SDC = getSubclassDataFromValue();
296   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
297   assert(!hasLazyArguments());
298 }
299 
300 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
301   return MutableArrayRef<Argument>(Args, Count);
302 }
303 
304 void Function::clearArguments() {
305   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
306     A.setName("");
307     A.~Argument();
308   }
309   std::allocator<Argument>().deallocate(Arguments, NumArgs);
310   Arguments = nullptr;
311 }
312 
313 void Function::stealArgumentListFrom(Function &Src) {
314   assert(isDeclaration() && "Expected no references to current arguments");
315 
316   // Drop the current arguments, if any, and set the lazy argument bit.
317   if (!hasLazyArguments()) {
318     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
319                         [](const Argument &A) { return A.use_empty(); }) &&
320            "Expected arguments to be unused in declaration");
321     clearArguments();
322     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
323   }
324 
325   // Nothing to steal if Src has lazy arguments.
326   if (Src.hasLazyArguments())
327     return;
328 
329   // Steal arguments from Src, and fix the lazy argument bits.
330   assert(arg_size() == Src.arg_size());
331   Arguments = Src.Arguments;
332   Src.Arguments = nullptr;
333   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
334     // FIXME: This does the work of transferNodesFromList inefficiently.
335     SmallString<128> Name;
336     if (A.hasName())
337       Name = A.getName();
338     if (!Name.empty())
339       A.setName("");
340     A.setParent(this);
341     if (!Name.empty())
342       A.setName(Name);
343   }
344 
345   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
346   assert(!hasLazyArguments());
347   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
348 }
349 
350 // dropAllReferences() - This function causes all the subinstructions to "let
351 // go" of all references that they are maintaining.  This allows one to
352 // 'delete' a whole class at a time, even though there may be circular
353 // references... first all references are dropped, and all use counts go to
354 // zero.  Then everything is deleted for real.  Note that no operations are
355 // valid on an object that has "dropped all references", except operator
356 // delete.
357 //
358 void Function::dropAllReferences() {
359   setIsMaterializable(false);
360 
361   for (BasicBlock &BB : *this)
362     BB.dropAllReferences();
363 
364   // Delete all basic blocks. They are now unused, except possibly by
365   // blockaddresses, but BasicBlock's destructor takes care of those.
366   while (!BasicBlocks.empty())
367     BasicBlocks.begin()->eraseFromParent();
368 
369   // Drop uses of any optional data (real or placeholder).
370   if (getNumOperands()) {
371     User::dropAllReferences();
372     setNumHungOffUseOperands(0);
373     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
374   }
375 
376   // Metadata is stored in a side-table.
377   clearMetadata();
378 }
379 
380 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
381   AttributeList PAL = getAttributes();
382   PAL = PAL.addAttribute(getContext(), i, Kind);
383   setAttributes(PAL);
384 }
385 
386 void Function::addAttribute(unsigned i, Attribute Attr) {
387   AttributeList PAL = getAttributes();
388   PAL = PAL.addAttribute(getContext(), i, Attr);
389   setAttributes(PAL);
390 }
391 
392 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
393   AttributeList PAL = getAttributes();
394   PAL = PAL.addAttributes(getContext(), i, Attrs);
395   setAttributes(PAL);
396 }
397 
398 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
399   AttributeList PAL = getAttributes();
400   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
401   setAttributes(PAL);
402 }
403 
404 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
405   AttributeList PAL = getAttributes();
406   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
407   setAttributes(PAL);
408 }
409 
410 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
411   AttributeList PAL = getAttributes();
412   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
413   setAttributes(PAL);
414 }
415 
416 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
417   AttributeList PAL = getAttributes();
418   PAL = PAL.removeAttribute(getContext(), i, Kind);
419   setAttributes(PAL);
420 }
421 
422 void Function::removeAttribute(unsigned i, StringRef Kind) {
423   AttributeList PAL = getAttributes();
424   PAL = PAL.removeAttribute(getContext(), i, Kind);
425   setAttributes(PAL);
426 }
427 
428 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
429   AttributeList PAL = getAttributes();
430   PAL = PAL.removeAttributes(getContext(), i, Attrs);
431   setAttributes(PAL);
432 }
433 
434 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
435   AttributeList PAL = getAttributes();
436   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
437   setAttributes(PAL);
438 }
439 
440 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
441   AttributeList PAL = getAttributes();
442   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
443   setAttributes(PAL);
444 }
445 
446 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
447   AttributeList PAL = getAttributes();
448   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
449   setAttributes(PAL);
450 }
451 
452 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
453   AttributeList PAL = getAttributes();
454   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
455   setAttributes(PAL);
456 }
457 
458 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
459   AttributeList PAL = getAttributes();
460   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
461   setAttributes(PAL);
462 }
463 
464 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
465   AttributeList PAL = getAttributes();
466   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
467   setAttributes(PAL);
468 }
469 
470 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
471                                                  uint64_t Bytes) {
472   AttributeList PAL = getAttributes();
473   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
474   setAttributes(PAL);
475 }
476 
477 const std::string &Function::getGC() const {
478   assert(hasGC() && "Function has no collector");
479   return getContext().getGC(*this);
480 }
481 
482 void Function::setGC(std::string Str) {
483   setValueSubclassDataBit(14, !Str.empty());
484   getContext().setGC(*this, std::move(Str));
485 }
486 
487 void Function::clearGC() {
488   if (!hasGC())
489     return;
490   getContext().deleteGC(*this);
491   setValueSubclassDataBit(14, false);
492 }
493 
494 /// Copy all additional attributes (those not needed to create a Function) from
495 /// the Function Src to this one.
496 void Function::copyAttributesFrom(const Function *Src) {
497   GlobalObject::copyAttributesFrom(Src);
498   setCallingConv(Src->getCallingConv());
499   setAttributes(Src->getAttributes());
500   if (Src->hasGC())
501     setGC(Src->getGC());
502   else
503     clearGC();
504   if (Src->hasPersonalityFn())
505     setPersonalityFn(Src->getPersonalityFn());
506   if (Src->hasPrefixData())
507     setPrefixData(Src->getPrefixData());
508   if (Src->hasPrologueData())
509     setPrologueData(Src->getPrologueData());
510 }
511 
512 /// Table of string intrinsic names indexed by enum value.
513 static const char * const IntrinsicNameTable[] = {
514   "not_intrinsic",
515 #define GET_INTRINSIC_NAME_TABLE
516 #include "llvm/IR/IntrinsicImpl.inc"
517 #undef GET_INTRINSIC_NAME_TABLE
518 };
519 
520 /// Table of per-target intrinsic name tables.
521 #define GET_INTRINSIC_TARGET_DATA
522 #include "llvm/IR/IntrinsicImpl.inc"
523 #undef GET_INTRINSIC_TARGET_DATA
524 
525 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
526 /// target as \c Name, or the generic table if \c Name is not target specific.
527 ///
528 /// Returns the relevant slice of \c IntrinsicNameTable
529 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
530   assert(Name.startswith("llvm."));
531 
532   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
533   // Drop "llvm." and take the first dotted component. That will be the target
534   // if this is target specific.
535   StringRef Target = Name.drop_front(5).split('.').first;
536   auto It = partition_point(
537       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
538   // We've either found the target or just fall back to the generic set, which
539   // is always first.
540   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
541   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
542 }
543 
544 /// This does the actual lookup of an intrinsic ID which
545 /// matches the given function name.
546 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
547   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
548   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
549   if (Idx == -1)
550     return Intrinsic::not_intrinsic;
551 
552   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
553   // an index into a sub-table.
554   int Adjust = NameTable.data() - IntrinsicNameTable;
555   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
556 
557   // If the intrinsic is not overloaded, require an exact match. If it is
558   // overloaded, require either exact or prefix match.
559   const auto MatchSize = strlen(NameTable[Idx]);
560   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
561   bool IsExactMatch = Name.size() == MatchSize;
562   return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
563 }
564 
565 void Function::recalculateIntrinsicID() {
566   StringRef Name = getName();
567   if (!Name.startswith("llvm.")) {
568     HasLLVMReservedName = false;
569     IntID = Intrinsic::not_intrinsic;
570     return;
571   }
572   HasLLVMReservedName = true;
573   IntID = lookupIntrinsicID(Name);
574 }
575 
576 /// Returns a stable mangling for the type specified for use in the name
577 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
578 /// of named types is simply their name.  Manglings for unnamed types consist
579 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
580 /// combined with the mangling of their component types.  A vararg function
581 /// type will have a suffix of 'vararg'.  Since function types can contain
582 /// other function types, we close a function type mangling with suffix 'f'
583 /// which can't be confused with it's prefix.  This ensures we don't have
584 /// collisions between two unrelated function types. Otherwise, you might
585 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
586 ///
587 static std::string getMangledTypeStr(Type* Ty) {
588   std::string Result;
589   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
590     Result += "p" + utostr(PTyp->getAddressSpace()) +
591       getMangledTypeStr(PTyp->getElementType());
592   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
593     Result += "a" + utostr(ATyp->getNumElements()) +
594       getMangledTypeStr(ATyp->getElementType());
595   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
596     if (!STyp->isLiteral()) {
597       Result += "s_";
598       Result += STyp->getName();
599     } else {
600       Result += "sl_";
601       for (auto Elem : STyp->elements())
602         Result += getMangledTypeStr(Elem);
603     }
604     // Ensure nested structs are distinguishable.
605     Result += "s";
606   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
607     Result += "f_" + getMangledTypeStr(FT->getReturnType());
608     for (size_t i = 0; i < FT->getNumParams(); i++)
609       Result += getMangledTypeStr(FT->getParamType(i));
610     if (FT->isVarArg())
611       Result += "vararg";
612     // Ensure nested function types are distinguishable.
613     Result += "f";
614   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
615     if (VTy->isScalable())
616       Result += "nx";
617     Result += "v" + utostr(VTy->getVectorNumElements()) +
618       getMangledTypeStr(VTy->getVectorElementType());
619   } else if (Ty) {
620     switch (Ty->getTypeID()) {
621     default: llvm_unreachable("Unhandled type");
622     case Type::VoidTyID:      Result += "isVoid";   break;
623     case Type::MetadataTyID:  Result += "Metadata"; break;
624     case Type::HalfTyID:      Result += "f16";      break;
625     case Type::FloatTyID:     Result += "f32";      break;
626     case Type::DoubleTyID:    Result += "f64";      break;
627     case Type::X86_FP80TyID:  Result += "f80";      break;
628     case Type::FP128TyID:     Result += "f128";     break;
629     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
630     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
631     case Type::IntegerTyID:
632       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
633       break;
634     }
635   }
636   return Result;
637 }
638 
639 StringRef Intrinsic::getName(ID id) {
640   assert(id < num_intrinsics && "Invalid intrinsic ID!");
641   assert(!isOverloaded(id) &&
642          "This version of getName does not support overloading");
643   return IntrinsicNameTable[id];
644 }
645 
646 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
647   assert(id < num_intrinsics && "Invalid intrinsic ID!");
648   std::string Result(IntrinsicNameTable[id]);
649   for (Type *Ty : Tys) {
650     Result += "." + getMangledTypeStr(Ty);
651   }
652   return Result;
653 }
654 
655 /// IIT_Info - These are enumerators that describe the entries returned by the
656 /// getIntrinsicInfoTableEntries function.
657 ///
658 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
659 enum IIT_Info {
660   // Common values should be encoded with 0-15.
661   IIT_Done = 0,
662   IIT_I1   = 1,
663   IIT_I8   = 2,
664   IIT_I16  = 3,
665   IIT_I32  = 4,
666   IIT_I64  = 5,
667   IIT_F16  = 6,
668   IIT_F32  = 7,
669   IIT_F64  = 8,
670   IIT_V2   = 9,
671   IIT_V4   = 10,
672   IIT_V8   = 11,
673   IIT_V16  = 12,
674   IIT_V32  = 13,
675   IIT_PTR  = 14,
676   IIT_ARG  = 15,
677 
678   // Values from 16+ are only encodable with the inefficient encoding.
679   IIT_V64  = 16,
680   IIT_MMX  = 17,
681   IIT_TOKEN = 18,
682   IIT_METADATA = 19,
683   IIT_EMPTYSTRUCT = 20,
684   IIT_STRUCT2 = 21,
685   IIT_STRUCT3 = 22,
686   IIT_STRUCT4 = 23,
687   IIT_STRUCT5 = 24,
688   IIT_EXTEND_ARG = 25,
689   IIT_TRUNC_ARG = 26,
690   IIT_ANYPTR = 27,
691   IIT_V1   = 28,
692   IIT_VARARG = 29,
693   IIT_HALF_VEC_ARG = 30,
694   IIT_SAME_VEC_WIDTH_ARG = 31,
695   IIT_PTR_TO_ARG = 32,
696   IIT_PTR_TO_ELT = 33,
697   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
698   IIT_I128 = 35,
699   IIT_V512 = 36,
700   IIT_V1024 = 37,
701   IIT_STRUCT6 = 38,
702   IIT_STRUCT7 = 39,
703   IIT_STRUCT8 = 40,
704   IIT_F128 = 41,
705   IIT_VEC_ELEMENT = 42,
706   IIT_SCALABLE_VEC = 43,
707   IIT_SUBDIVIDE2_ARG = 44,
708   IIT_SUBDIVIDE4_ARG = 45
709 };
710 
711 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
712                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
713   using namespace Intrinsic;
714 
715   IIT_Info Info = IIT_Info(Infos[NextElt++]);
716   unsigned StructElts = 2;
717 
718   switch (Info) {
719   case IIT_Done:
720     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
721     return;
722   case IIT_VARARG:
723     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
724     return;
725   case IIT_MMX:
726     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
727     return;
728   case IIT_TOKEN:
729     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
730     return;
731   case IIT_METADATA:
732     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
733     return;
734   case IIT_F16:
735     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
736     return;
737   case IIT_F32:
738     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
739     return;
740   case IIT_F64:
741     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
742     return;
743   case IIT_F128:
744     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
745     return;
746   case IIT_I1:
747     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
748     return;
749   case IIT_I8:
750     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
751     return;
752   case IIT_I16:
753     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
754     return;
755   case IIT_I32:
756     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
757     return;
758   case IIT_I64:
759     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
760     return;
761   case IIT_I128:
762     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
763     return;
764   case IIT_V1:
765     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
766     DecodeIITType(NextElt, Infos, OutputTable);
767     return;
768   case IIT_V2:
769     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
770     DecodeIITType(NextElt, Infos, OutputTable);
771     return;
772   case IIT_V4:
773     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
774     DecodeIITType(NextElt, Infos, OutputTable);
775     return;
776   case IIT_V8:
777     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
778     DecodeIITType(NextElt, Infos, OutputTable);
779     return;
780   case IIT_V16:
781     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
782     DecodeIITType(NextElt, Infos, OutputTable);
783     return;
784   case IIT_V32:
785     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
786     DecodeIITType(NextElt, Infos, OutputTable);
787     return;
788   case IIT_V64:
789     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
790     DecodeIITType(NextElt, Infos, OutputTable);
791     return;
792   case IIT_V512:
793     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
794     DecodeIITType(NextElt, Infos, OutputTable);
795     return;
796   case IIT_V1024:
797     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
798     DecodeIITType(NextElt, Infos, OutputTable);
799     return;
800   case IIT_PTR:
801     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
802     DecodeIITType(NextElt, Infos, OutputTable);
803     return;
804   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
805     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
806                                              Infos[NextElt++]));
807     DecodeIITType(NextElt, Infos, OutputTable);
808     return;
809   }
810   case IIT_ARG: {
811     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
812     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
813     return;
814   }
815   case IIT_EXTEND_ARG: {
816     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
817     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
818                                              ArgInfo));
819     return;
820   }
821   case IIT_TRUNC_ARG: {
822     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
823     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
824                                              ArgInfo));
825     return;
826   }
827   case IIT_HALF_VEC_ARG: {
828     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
829     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
830                                              ArgInfo));
831     return;
832   }
833   case IIT_SAME_VEC_WIDTH_ARG: {
834     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
835     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
836                                              ArgInfo));
837     return;
838   }
839   case IIT_PTR_TO_ARG: {
840     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
841     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
842                                              ArgInfo));
843     return;
844   }
845   case IIT_PTR_TO_ELT: {
846     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
847     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
848     return;
849   }
850   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
851     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
852     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
853     OutputTable.push_back(
854         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
855     return;
856   }
857   case IIT_EMPTYSTRUCT:
858     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
859     return;
860   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
861   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
862   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
863   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
864   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
865   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
866   case IIT_STRUCT2: {
867     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
868 
869     for (unsigned i = 0; i != StructElts; ++i)
870       DecodeIITType(NextElt, Infos, OutputTable);
871     return;
872   }
873   case IIT_SUBDIVIDE2_ARG: {
874     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
875     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
876                                              ArgInfo));
877     return;
878   }
879   case IIT_SUBDIVIDE4_ARG: {
880     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
881     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
882                                              ArgInfo));
883     return;
884   }
885   case IIT_VEC_ELEMENT: {
886     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
887     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
888                                              ArgInfo));
889     return;
890   }
891   case IIT_SCALABLE_VEC: {
892     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument,
893                                              0));
894     DecodeIITType(NextElt, Infos, OutputTable);
895     return;
896   }
897   }
898   llvm_unreachable("unhandled");
899 }
900 
901 #define GET_INTRINSIC_GENERATOR_GLOBAL
902 #include "llvm/IR/IntrinsicImpl.inc"
903 #undef GET_INTRINSIC_GENERATOR_GLOBAL
904 
905 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
906                                              SmallVectorImpl<IITDescriptor> &T){
907   // Check to see if the intrinsic's type was expressible by the table.
908   unsigned TableVal = IIT_Table[id-1];
909 
910   // Decode the TableVal into an array of IITValues.
911   SmallVector<unsigned char, 8> IITValues;
912   ArrayRef<unsigned char> IITEntries;
913   unsigned NextElt = 0;
914   if ((TableVal >> 31) != 0) {
915     // This is an offset into the IIT_LongEncodingTable.
916     IITEntries = IIT_LongEncodingTable;
917 
918     // Strip sentinel bit.
919     NextElt = (TableVal << 1) >> 1;
920   } else {
921     // Decode the TableVal into an array of IITValues.  If the entry was encoded
922     // into a single word in the table itself, decode it now.
923     do {
924       IITValues.push_back(TableVal & 0xF);
925       TableVal >>= 4;
926     } while (TableVal);
927 
928     IITEntries = IITValues;
929     NextElt = 0;
930   }
931 
932   // Okay, decode the table into the output vector of IITDescriptors.
933   DecodeIITType(NextElt, IITEntries, T);
934   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
935     DecodeIITType(NextElt, IITEntries, T);
936 }
937 
938 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
939                              ArrayRef<Type*> Tys, LLVMContext &Context) {
940   using namespace Intrinsic;
941 
942   IITDescriptor D = Infos.front();
943   Infos = Infos.slice(1);
944 
945   switch (D.Kind) {
946   case IITDescriptor::Void: return Type::getVoidTy(Context);
947   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
948   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
949   case IITDescriptor::Token: return Type::getTokenTy(Context);
950   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
951   case IITDescriptor::Half: return Type::getHalfTy(Context);
952   case IITDescriptor::Float: return Type::getFloatTy(Context);
953   case IITDescriptor::Double: return Type::getDoubleTy(Context);
954   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
955 
956   case IITDescriptor::Integer:
957     return IntegerType::get(Context, D.Integer_Width);
958   case IITDescriptor::Vector:
959     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
960   case IITDescriptor::Pointer:
961     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
962                             D.Pointer_AddressSpace);
963   case IITDescriptor::Struct: {
964     SmallVector<Type *, 8> Elts;
965     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
966       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
967     return StructType::get(Context, Elts);
968   }
969   case IITDescriptor::Argument:
970     return Tys[D.getArgumentNumber()];
971   case IITDescriptor::ExtendArgument: {
972     Type *Ty = Tys[D.getArgumentNumber()];
973     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
974       return VectorType::getExtendedElementVectorType(VTy);
975 
976     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
977   }
978   case IITDescriptor::TruncArgument: {
979     Type *Ty = Tys[D.getArgumentNumber()];
980     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
981       return VectorType::getTruncatedElementVectorType(VTy);
982 
983     IntegerType *ITy = cast<IntegerType>(Ty);
984     assert(ITy->getBitWidth() % 2 == 0);
985     return IntegerType::get(Context, ITy->getBitWidth() / 2);
986   }
987   case IITDescriptor::Subdivide2Argument:
988   case IITDescriptor::Subdivide4Argument: {
989     Type *Ty = Tys[D.getArgumentNumber()];
990     VectorType *VTy = dyn_cast<VectorType>(Ty);
991     assert(VTy && "Expected an argument of Vector Type");
992     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
993     return VectorType::getSubdividedVectorType(VTy, SubDivs);
994   }
995   case IITDescriptor::HalfVecArgument:
996     return VectorType::getHalfElementsVectorType(cast<VectorType>(
997                                                   Tys[D.getArgumentNumber()]));
998   case IITDescriptor::SameVecWidthArgument: {
999     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1000     Type *Ty = Tys[D.getArgumentNumber()];
1001     if (auto *VTy = dyn_cast<VectorType>(Ty))
1002       return VectorType::get(EltTy, VTy->getElementCount());
1003     return EltTy;
1004   }
1005   case IITDescriptor::PtrToArgument: {
1006     Type *Ty = Tys[D.getArgumentNumber()];
1007     return PointerType::getUnqual(Ty);
1008   }
1009   case IITDescriptor::PtrToElt: {
1010     Type *Ty = Tys[D.getArgumentNumber()];
1011     VectorType *VTy = dyn_cast<VectorType>(Ty);
1012     if (!VTy)
1013       llvm_unreachable("Expected an argument of Vector Type");
1014     Type *EltTy = VTy->getVectorElementType();
1015     return PointerType::getUnqual(EltTy);
1016   }
1017   case IITDescriptor::VecElementArgument: {
1018     Type *Ty = Tys[D.getArgumentNumber()];
1019     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1020       return VTy->getElementType();
1021     llvm_unreachable("Expected an argument of Vector Type");
1022   }
1023   case IITDescriptor::VecOfAnyPtrsToElt:
1024     // Return the overloaded type (which determines the pointers address space)
1025     return Tys[D.getOverloadArgNumber()];
1026   case IITDescriptor::ScalableVecArgument: {
1027     Type *Ty = DecodeFixedType(Infos, Tys, Context);
1028     return VectorType::get(Ty->getVectorElementType(),
1029                            { Ty->getVectorNumElements(), true });
1030   }
1031   }
1032   llvm_unreachable("unhandled");
1033 }
1034 
1035 FunctionType *Intrinsic::getType(LLVMContext &Context,
1036                                  ID id, ArrayRef<Type*> Tys) {
1037   SmallVector<IITDescriptor, 8> Table;
1038   getIntrinsicInfoTableEntries(id, Table);
1039 
1040   ArrayRef<IITDescriptor> TableRef = Table;
1041   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1042 
1043   SmallVector<Type*, 8> ArgTys;
1044   while (!TableRef.empty())
1045     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1046 
1047   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1048   // If we see void type as the type of the last argument, it is vararg intrinsic
1049   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1050     ArgTys.pop_back();
1051     return FunctionType::get(ResultTy, ArgTys, true);
1052   }
1053   return FunctionType::get(ResultTy, ArgTys, false);
1054 }
1055 
1056 bool Intrinsic::isOverloaded(ID id) {
1057 #define GET_INTRINSIC_OVERLOAD_TABLE
1058 #include "llvm/IR/IntrinsicImpl.inc"
1059 #undef GET_INTRINSIC_OVERLOAD_TABLE
1060 }
1061 
1062 bool Intrinsic::isLeaf(ID id) {
1063   switch (id) {
1064   default:
1065     return true;
1066 
1067   case Intrinsic::experimental_gc_statepoint:
1068   case Intrinsic::experimental_patchpoint_void:
1069   case Intrinsic::experimental_patchpoint_i64:
1070     return false;
1071   }
1072 }
1073 
1074 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1075 #define GET_INTRINSIC_ATTRIBUTES
1076 #include "llvm/IR/IntrinsicImpl.inc"
1077 #undef GET_INTRINSIC_ATTRIBUTES
1078 
1079 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1080   // There can never be multiple globals with the same name of different types,
1081   // because intrinsics must be a specific type.
1082   return cast<Function>(
1083       M->getOrInsertFunction(getName(id, Tys),
1084                              getType(M->getContext(), id, Tys))
1085           .getCallee());
1086 }
1087 
1088 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1089 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1090 #include "llvm/IR/IntrinsicImpl.inc"
1091 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1092 
1093 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1094 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1095 #include "llvm/IR/IntrinsicImpl.inc"
1096 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1097 
1098 using DeferredIntrinsicMatchPair =
1099     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1100 
1101 static bool matchIntrinsicType(
1102     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1103     SmallVectorImpl<Type *> &ArgTys,
1104     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1105     bool IsDeferredCheck) {
1106   using namespace Intrinsic;
1107 
1108   // If we ran out of descriptors, there are too many arguments.
1109   if (Infos.empty()) return true;
1110 
1111   // Do this before slicing off the 'front' part
1112   auto InfosRef = Infos;
1113   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1114     DeferredChecks.emplace_back(T, InfosRef);
1115     return false;
1116   };
1117 
1118   IITDescriptor D = Infos.front();
1119   Infos = Infos.slice(1);
1120 
1121   switch (D.Kind) {
1122     case IITDescriptor::Void: return !Ty->isVoidTy();
1123     case IITDescriptor::VarArg: return true;
1124     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1125     case IITDescriptor::Token: return !Ty->isTokenTy();
1126     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1127     case IITDescriptor::Half: return !Ty->isHalfTy();
1128     case IITDescriptor::Float: return !Ty->isFloatTy();
1129     case IITDescriptor::Double: return !Ty->isDoubleTy();
1130     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1131     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1132     case IITDescriptor::Vector: {
1133       VectorType *VT = dyn_cast<VectorType>(Ty);
1134       return !VT || VT->getNumElements() != D.Vector_Width ||
1135              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1136                                 DeferredChecks, IsDeferredCheck);
1137     }
1138     case IITDescriptor::Pointer: {
1139       PointerType *PT = dyn_cast<PointerType>(Ty);
1140       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1141              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1142                                 DeferredChecks, IsDeferredCheck);
1143     }
1144 
1145     case IITDescriptor::Struct: {
1146       StructType *ST = dyn_cast<StructType>(Ty);
1147       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1148         return true;
1149 
1150       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1151         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1152                                DeferredChecks, IsDeferredCheck))
1153           return true;
1154       return false;
1155     }
1156 
1157     case IITDescriptor::Argument:
1158       // If this is the second occurrence of an argument,
1159       // verify that the later instance matches the previous instance.
1160       if (D.getArgumentNumber() < ArgTys.size())
1161         return Ty != ArgTys[D.getArgumentNumber()];
1162 
1163       if (D.getArgumentNumber() > ArgTys.size() ||
1164           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1165         return IsDeferredCheck || DeferCheck(Ty);
1166 
1167       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1168              "Table consistency error");
1169       ArgTys.push_back(Ty);
1170 
1171       switch (D.getArgumentKind()) {
1172         case IITDescriptor::AK_Any:        return false; // Success
1173         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1174         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1175         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1176         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1177         default:                           break;
1178       }
1179       llvm_unreachable("all argument kinds not covered");
1180 
1181     case IITDescriptor::ExtendArgument: {
1182       // If this is a forward reference, defer the check for later.
1183       if (D.getArgumentNumber() >= ArgTys.size())
1184         return IsDeferredCheck || DeferCheck(Ty);
1185 
1186       Type *NewTy = ArgTys[D.getArgumentNumber()];
1187       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1188         NewTy = VectorType::getExtendedElementVectorType(VTy);
1189       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1190         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1191       else
1192         return true;
1193 
1194       return Ty != NewTy;
1195     }
1196     case IITDescriptor::TruncArgument: {
1197       // If this is a forward reference, defer the check for later.
1198       if (D.getArgumentNumber() >= ArgTys.size())
1199         return IsDeferredCheck || DeferCheck(Ty);
1200 
1201       Type *NewTy = ArgTys[D.getArgumentNumber()];
1202       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1203         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1204       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1205         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1206       else
1207         return true;
1208 
1209       return Ty != NewTy;
1210     }
1211     case IITDescriptor::HalfVecArgument:
1212       // If this is a forward reference, defer the check for later.
1213       return D.getArgumentNumber() >= ArgTys.size() ||
1214              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1215              VectorType::getHalfElementsVectorType(
1216                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1217     case IITDescriptor::SameVecWidthArgument: {
1218       if (D.getArgumentNumber() >= ArgTys.size()) {
1219         // Defer check and subsequent check for the vector element type.
1220         Infos = Infos.slice(1);
1221         return IsDeferredCheck || DeferCheck(Ty);
1222       }
1223       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1224       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1225       // Both must be vectors of the same number of elements or neither.
1226       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1227         return true;
1228       Type *EltTy = Ty;
1229       if (ThisArgType) {
1230         if (ReferenceType->getElementCount() !=
1231             ThisArgType->getElementCount())
1232           return true;
1233         EltTy = ThisArgType->getVectorElementType();
1234       }
1235       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1236                                 IsDeferredCheck);
1237     }
1238     case IITDescriptor::PtrToArgument: {
1239       if (D.getArgumentNumber() >= ArgTys.size())
1240         return IsDeferredCheck || DeferCheck(Ty);
1241       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1242       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1243       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1244     }
1245     case IITDescriptor::PtrToElt: {
1246       if (D.getArgumentNumber() >= ArgTys.size())
1247         return IsDeferredCheck || DeferCheck(Ty);
1248       VectorType * ReferenceType =
1249         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1250       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1251 
1252       return (!ThisArgType || !ReferenceType ||
1253               ThisArgType->getElementType() != ReferenceType->getElementType());
1254     }
1255     case IITDescriptor::VecOfAnyPtrsToElt: {
1256       unsigned RefArgNumber = D.getRefArgNumber();
1257       if (RefArgNumber >= ArgTys.size()) {
1258         if (IsDeferredCheck)
1259           return true;
1260         // If forward referencing, already add the pointer-vector type and
1261         // defer the checks for later.
1262         ArgTys.push_back(Ty);
1263         return DeferCheck(Ty);
1264       }
1265 
1266       if (!IsDeferredCheck){
1267         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1268                "Table consistency error");
1269         ArgTys.push_back(Ty);
1270       }
1271 
1272       // Verify the overloaded type "matches" the Ref type.
1273       // i.e. Ty is a vector with the same width as Ref.
1274       // Composed of pointers to the same element type as Ref.
1275       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1276       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1277       if (!ThisArgVecTy || !ReferenceType ||
1278           (ReferenceType->getVectorNumElements() !=
1279            ThisArgVecTy->getVectorNumElements()))
1280         return true;
1281       PointerType *ThisArgEltTy =
1282               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1283       if (!ThisArgEltTy)
1284         return true;
1285       return ThisArgEltTy->getElementType() !=
1286              ReferenceType->getVectorElementType();
1287     }
1288     case IITDescriptor::VecElementArgument: {
1289       if (D.getArgumentNumber() >= ArgTys.size())
1290         return IsDeferredCheck ? true : DeferCheck(Ty);
1291       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1292       return !ReferenceType || Ty != ReferenceType->getElementType();
1293     }
1294     case IITDescriptor::Subdivide2Argument:
1295     case IITDescriptor::Subdivide4Argument: {
1296       // If this is a forward reference, defer the check for later.
1297       if (D.getArgumentNumber() >= ArgTys.size())
1298         return IsDeferredCheck || DeferCheck(Ty);
1299 
1300       Type *NewTy = ArgTys[D.getArgumentNumber()];
1301       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1302         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1303         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1304         return Ty != NewTy;
1305       }
1306       return true;
1307     }
1308     case IITDescriptor::ScalableVecArgument: {
1309       VectorType *VTy = dyn_cast<VectorType>(Ty);
1310       if (!VTy || !VTy->isScalable())
1311         return true;
1312       return matchIntrinsicType(VTy, Infos, ArgTys, DeferredChecks,
1313                                 IsDeferredCheck);
1314     }
1315   }
1316   llvm_unreachable("unhandled");
1317 }
1318 
1319 Intrinsic::MatchIntrinsicTypesResult
1320 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1321                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1322                                    SmallVectorImpl<Type *> &ArgTys) {
1323   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1324   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1325                          false))
1326     return MatchIntrinsicTypes_NoMatchRet;
1327 
1328   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1329 
1330   for (auto Ty : FTy->params())
1331     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1332       return MatchIntrinsicTypes_NoMatchArg;
1333 
1334   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1335     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1336     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1337                            true))
1338       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1339                                          : MatchIntrinsicTypes_NoMatchArg;
1340   }
1341 
1342   return MatchIntrinsicTypes_Match;
1343 }
1344 
1345 bool
1346 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1347                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1348   // If there are no descriptors left, then it can't be a vararg.
1349   if (Infos.empty())
1350     return isVarArg;
1351 
1352   // There should be only one descriptor remaining at this point.
1353   if (Infos.size() != 1)
1354     return true;
1355 
1356   // Check and verify the descriptor.
1357   IITDescriptor D = Infos.front();
1358   Infos = Infos.slice(1);
1359   if (D.Kind == IITDescriptor::VarArg)
1360     return !isVarArg;
1361 
1362   return true;
1363 }
1364 
1365 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1366   Intrinsic::ID ID = F->getIntrinsicID();
1367   if (!ID)
1368     return None;
1369 
1370   FunctionType *FTy = F->getFunctionType();
1371   // Accumulate an array of overloaded types for the given intrinsic
1372   SmallVector<Type *, 4> ArgTys;
1373   {
1374     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1375     getIntrinsicInfoTableEntries(ID, Table);
1376     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1377 
1378     if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys))
1379       return None;
1380     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1381       return None;
1382   }
1383 
1384   StringRef Name = F->getName();
1385   if (Name == Intrinsic::getName(ID, ArgTys))
1386     return None;
1387 
1388   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1389   NewDecl->setCallingConv(F->getCallingConv());
1390   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1391   return NewDecl;
1392 }
1393 
1394 /// hasAddressTaken - returns true if there are any uses of this function
1395 /// other than direct calls or invokes to it.
1396 bool Function::hasAddressTaken(const User* *PutOffender) const {
1397   for (const Use &U : uses()) {
1398     const User *FU = U.getUser();
1399     if (isa<BlockAddress>(FU))
1400       continue;
1401     const auto *Call = dyn_cast<CallBase>(FU);
1402     if (!Call) {
1403       if (PutOffender)
1404         *PutOffender = FU;
1405       return true;
1406     }
1407     if (!Call->isCallee(&U)) {
1408       if (PutOffender)
1409         *PutOffender = FU;
1410       return true;
1411     }
1412   }
1413   return false;
1414 }
1415 
1416 bool Function::isDefTriviallyDead() const {
1417   // Check the linkage
1418   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1419       !hasAvailableExternallyLinkage())
1420     return false;
1421 
1422   // Check if the function is used by anything other than a blockaddress.
1423   for (const User *U : users())
1424     if (!isa<BlockAddress>(U))
1425       return false;
1426 
1427   return true;
1428 }
1429 
1430 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1431 /// setjmp or other function that gcc recognizes as "returning twice".
1432 bool Function::callsFunctionThatReturnsTwice() const {
1433   for (const Instruction &I : instructions(this))
1434     if (const auto *Call = dyn_cast<CallBase>(&I))
1435       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1436         return true;
1437 
1438   return false;
1439 }
1440 
1441 Constant *Function::getPersonalityFn() const {
1442   assert(hasPersonalityFn() && getNumOperands());
1443   return cast<Constant>(Op<0>());
1444 }
1445 
1446 void Function::setPersonalityFn(Constant *Fn) {
1447   setHungoffOperand<0>(Fn);
1448   setValueSubclassDataBit(3, Fn != nullptr);
1449 }
1450 
1451 Constant *Function::getPrefixData() const {
1452   assert(hasPrefixData() && getNumOperands());
1453   return cast<Constant>(Op<1>());
1454 }
1455 
1456 void Function::setPrefixData(Constant *PrefixData) {
1457   setHungoffOperand<1>(PrefixData);
1458   setValueSubclassDataBit(1, PrefixData != nullptr);
1459 }
1460 
1461 Constant *Function::getPrologueData() const {
1462   assert(hasPrologueData() && getNumOperands());
1463   return cast<Constant>(Op<2>());
1464 }
1465 
1466 void Function::setPrologueData(Constant *PrologueData) {
1467   setHungoffOperand<2>(PrologueData);
1468   setValueSubclassDataBit(2, PrologueData != nullptr);
1469 }
1470 
1471 void Function::allocHungoffUselist() {
1472   // If we've already allocated a uselist, stop here.
1473   if (getNumOperands())
1474     return;
1475 
1476   allocHungoffUses(3, /*IsPhi=*/ false);
1477   setNumHungOffUseOperands(3);
1478 
1479   // Initialize the uselist with placeholder operands to allow traversal.
1480   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1481   Op<0>().set(CPN);
1482   Op<1>().set(CPN);
1483   Op<2>().set(CPN);
1484 }
1485 
1486 template <int Idx>
1487 void Function::setHungoffOperand(Constant *C) {
1488   if (C) {
1489     allocHungoffUselist();
1490     Op<Idx>().set(C);
1491   } else if (getNumOperands()) {
1492     Op<Idx>().set(
1493         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1494   }
1495 }
1496 
1497 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1498   assert(Bit < 16 && "SubclassData contains only 16 bits");
1499   if (On)
1500     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1501   else
1502     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1503 }
1504 
1505 void Function::setEntryCount(ProfileCount Count,
1506                              const DenseSet<GlobalValue::GUID> *S) {
1507   assert(Count.hasValue());
1508 #if !defined(NDEBUG)
1509   auto PrevCount = getEntryCount();
1510   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1511 #endif
1512   MDBuilder MDB(getContext());
1513   setMetadata(
1514       LLVMContext::MD_prof,
1515       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1516 }
1517 
1518 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1519                              const DenseSet<GlobalValue::GUID> *Imports) {
1520   setEntryCount(ProfileCount(Count, Type), Imports);
1521 }
1522 
1523 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1524   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1525   if (MD && MD->getOperand(0))
1526     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1527       if (MDS->getString().equals("function_entry_count")) {
1528         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1529         uint64_t Count = CI->getValue().getZExtValue();
1530         // A value of -1 is used for SamplePGO when there were no samples.
1531         // Treat this the same as unknown.
1532         if (Count == (uint64_t)-1)
1533           return ProfileCount::getInvalid();
1534         return ProfileCount(Count, PCT_Real);
1535       } else if (AllowSynthetic &&
1536                  MDS->getString().equals("synthetic_function_entry_count")) {
1537         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1538         uint64_t Count = CI->getValue().getZExtValue();
1539         return ProfileCount(Count, PCT_Synthetic);
1540       }
1541     }
1542   return ProfileCount::getInvalid();
1543 }
1544 
1545 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1546   DenseSet<GlobalValue::GUID> R;
1547   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1548     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1549       if (MDS->getString().equals("function_entry_count"))
1550         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1551           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1552                        ->getValue()
1553                        .getZExtValue());
1554   return R;
1555 }
1556 
1557 void Function::setSectionPrefix(StringRef Prefix) {
1558   MDBuilder MDB(getContext());
1559   setMetadata(LLVMContext::MD_section_prefix,
1560               MDB.createFunctionSectionPrefix(Prefix));
1561 }
1562 
1563 Optional<StringRef> Function::getSectionPrefix() const {
1564   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1565     assert(cast<MDString>(MD->getOperand(0))
1566                ->getString()
1567                .equals("function_section_prefix") &&
1568            "Metadata not match");
1569     return cast<MDString>(MD->getOperand(1))->getString();
1570   }
1571   return None;
1572 }
1573 
1574 bool Function::nullPointerIsDefined() const {
1575   return getFnAttribute("null-pointer-is-valid")
1576           .getValueAsString()
1577           .equals("true");
1578 }
1579 
1580 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1581   if (F && F->nullPointerIsDefined())
1582     return true;
1583 
1584   if (AS != 0)
1585     return true;
1586 
1587   return false;
1588 }
1589