1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/AbstractCallSite.h" 24 #include "llvm/IR/Argument.h" 25 #include "llvm/IR/Attributes.h" 26 #include "llvm/IR/BasicBlock.h" 27 #include "llvm/IR/Constant.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/GlobalValue.h" 31 #include "llvm/IR/InstIterator.h" 32 #include "llvm/IR/Instruction.h" 33 #include "llvm/IR/Instructions.h" 34 #include "llvm/IR/IntrinsicInst.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/IntrinsicsAArch64.h" 37 #include "llvm/IR/IntrinsicsAMDGPU.h" 38 #include "llvm/IR/IntrinsicsARM.h" 39 #include "llvm/IR/IntrinsicsBPF.h" 40 #include "llvm/IR/IntrinsicsHexagon.h" 41 #include "llvm/IR/IntrinsicsMips.h" 42 #include "llvm/IR/IntrinsicsNVPTX.h" 43 #include "llvm/IR/IntrinsicsPowerPC.h" 44 #include "llvm/IR/IntrinsicsR600.h" 45 #include "llvm/IR/IntrinsicsRISCV.h" 46 #include "llvm/IR/IntrinsicsS390.h" 47 #include "llvm/IR/IntrinsicsVE.h" 48 #include "llvm/IR/IntrinsicsWebAssembly.h" 49 #include "llvm/IR/IntrinsicsX86.h" 50 #include "llvm/IR/IntrinsicsXCore.h" 51 #include "llvm/IR/LLVMContext.h" 52 #include "llvm/IR/MDBuilder.h" 53 #include "llvm/IR/Metadata.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/IR/Operator.h" 56 #include "llvm/IR/SymbolTableListTraits.h" 57 #include "llvm/IR/Type.h" 58 #include "llvm/IR/Use.h" 59 #include "llvm/IR/User.h" 60 #include "llvm/IR/Value.h" 61 #include "llvm/IR/ValueSymbolTable.h" 62 #include "llvm/Support/Casting.h" 63 #include "llvm/Support/Compiler.h" 64 #include "llvm/Support/ErrorHandling.h" 65 #include <algorithm> 66 #include <cassert> 67 #include <cstddef> 68 #include <cstdint> 69 #include <cstring> 70 #include <string> 71 72 using namespace llvm; 73 using ProfileCount = Function::ProfileCount; 74 75 // Explicit instantiations of SymbolTableListTraits since some of the methods 76 // are not in the public header file... 77 template class llvm::SymbolTableListTraits<BasicBlock>; 78 79 //===----------------------------------------------------------------------===// 80 // Argument Implementation 81 //===----------------------------------------------------------------------===// 82 83 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 84 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 85 setName(Name); 86 } 87 88 void Argument::setParent(Function *parent) { 89 Parent = parent; 90 } 91 92 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const { 93 if (!getType()->isPointerTy()) return false; 94 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) && 95 (AllowUndefOrPoison || 96 getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef))) 97 return true; 98 else if (getDereferenceableBytes() > 0 && 99 !NullPointerIsDefined(getParent(), 100 getType()->getPointerAddressSpace())) 101 return true; 102 return false; 103 } 104 105 bool Argument::hasByValAttr() const { 106 if (!getType()->isPointerTy()) return false; 107 return hasAttribute(Attribute::ByVal); 108 } 109 110 bool Argument::hasByRefAttr() const { 111 if (!getType()->isPointerTy()) 112 return false; 113 return hasAttribute(Attribute::ByRef); 114 } 115 116 bool Argument::hasSwiftSelfAttr() const { 117 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 118 } 119 120 bool Argument::hasSwiftErrorAttr() const { 121 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 122 } 123 124 bool Argument::hasInAllocaAttr() const { 125 if (!getType()->isPointerTy()) return false; 126 return hasAttribute(Attribute::InAlloca); 127 } 128 129 bool Argument::hasPreallocatedAttr() const { 130 if (!getType()->isPointerTy()) 131 return false; 132 return hasAttribute(Attribute::Preallocated); 133 } 134 135 bool Argument::hasPassPointeeByValueCopyAttr() const { 136 if (!getType()->isPointerTy()) return false; 137 AttributeList Attrs = getParent()->getAttributes(); 138 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 139 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 140 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated); 141 } 142 143 bool Argument::hasPointeeInMemoryValueAttr() const { 144 if (!getType()->isPointerTy()) 145 return false; 146 AttributeList Attrs = getParent()->getAttributes(); 147 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 148 Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) || 149 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) || 150 Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) || 151 Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef); 152 } 153 154 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory 155 /// parameter type. 156 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) { 157 // FIXME: All the type carrying attributes are mutually exclusive, so there 158 // should be a single query to get the stored type that handles any of them. 159 if (Type *ByValTy = ParamAttrs.getByValType()) 160 return ByValTy; 161 if (Type *ByRefTy = ParamAttrs.getByRefType()) 162 return ByRefTy; 163 if (Type *PreAllocTy = ParamAttrs.getPreallocatedType()) 164 return PreAllocTy; 165 if (Type *InAllocaTy = ParamAttrs.getInAllocaType()) 166 return InAllocaTy; 167 168 // FIXME: sret and inalloca always depends on pointee element type. It's also 169 // possible for byval to miss it. 170 if (ParamAttrs.hasAttribute(Attribute::InAlloca) || 171 ParamAttrs.hasAttribute(Attribute::ByVal) || 172 ParamAttrs.hasAttribute(Attribute::StructRet) || 173 ParamAttrs.hasAttribute(Attribute::Preallocated)) 174 return cast<PointerType>(ArgTy)->getElementType(); 175 176 return nullptr; 177 } 178 179 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const { 180 AttributeSet ParamAttrs = 181 getParent()->getAttributes().getParamAttributes(getArgNo()); 182 if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType())) 183 return DL.getTypeAllocSize(MemTy); 184 return 0; 185 } 186 187 Type *Argument::getPointeeInMemoryValueType() const { 188 AttributeSet ParamAttrs = 189 getParent()->getAttributes().getParamAttributes(getArgNo()); 190 return getMemoryParamAllocType(ParamAttrs, getType()); 191 } 192 193 unsigned Argument::getParamAlignment() const { 194 assert(getType()->isPointerTy() && "Only pointers have alignments"); 195 return getParent()->getParamAlignment(getArgNo()); 196 } 197 198 MaybeAlign Argument::getParamAlign() const { 199 assert(getType()->isPointerTy() && "Only pointers have alignments"); 200 return getParent()->getParamAlign(getArgNo()); 201 } 202 203 Type *Argument::getParamByValType() const { 204 assert(getType()->isPointerTy() && "Only pointers have byval types"); 205 return getParent()->getParamByValType(getArgNo()); 206 } 207 208 Type *Argument::getParamStructRetType() const { 209 assert(getType()->isPointerTy() && "Only pointers have sret types"); 210 return getParent()->getParamStructRetType(getArgNo()); 211 } 212 213 Type *Argument::getParamByRefType() const { 214 assert(getType()->isPointerTy() && "Only pointers have byref types"); 215 return getParent()->getParamByRefType(getArgNo()); 216 } 217 218 Type *Argument::getParamInAllocaType() const { 219 assert(getType()->isPointerTy() && "Only pointers have inalloca types"); 220 return getParent()->getParamInAllocaType(getArgNo()); 221 } 222 223 uint64_t Argument::getDereferenceableBytes() const { 224 assert(getType()->isPointerTy() && 225 "Only pointers have dereferenceable bytes"); 226 return getParent()->getParamDereferenceableBytes(getArgNo()); 227 } 228 229 uint64_t Argument::getDereferenceableOrNullBytes() const { 230 assert(getType()->isPointerTy() && 231 "Only pointers have dereferenceable bytes"); 232 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 233 } 234 235 bool Argument::hasNestAttr() const { 236 if (!getType()->isPointerTy()) return false; 237 return hasAttribute(Attribute::Nest); 238 } 239 240 bool Argument::hasNoAliasAttr() const { 241 if (!getType()->isPointerTy()) return false; 242 return hasAttribute(Attribute::NoAlias); 243 } 244 245 bool Argument::hasNoCaptureAttr() const { 246 if (!getType()->isPointerTy()) return false; 247 return hasAttribute(Attribute::NoCapture); 248 } 249 250 bool Argument::hasNoFreeAttr() const { 251 if (!getType()->isPointerTy()) return false; 252 return hasAttribute(Attribute::NoFree); 253 } 254 255 bool Argument::hasStructRetAttr() const { 256 if (!getType()->isPointerTy()) return false; 257 return hasAttribute(Attribute::StructRet); 258 } 259 260 bool Argument::hasInRegAttr() const { 261 return hasAttribute(Attribute::InReg); 262 } 263 264 bool Argument::hasReturnedAttr() const { 265 return hasAttribute(Attribute::Returned); 266 } 267 268 bool Argument::hasZExtAttr() const { 269 return hasAttribute(Attribute::ZExt); 270 } 271 272 bool Argument::hasSExtAttr() const { 273 return hasAttribute(Attribute::SExt); 274 } 275 276 bool Argument::onlyReadsMemory() const { 277 AttributeList Attrs = getParent()->getAttributes(); 278 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 279 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 280 } 281 282 void Argument::addAttrs(AttrBuilder &B) { 283 AttributeList AL = getParent()->getAttributes(); 284 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 285 getParent()->setAttributes(AL); 286 } 287 288 void Argument::addAttr(Attribute::AttrKind Kind) { 289 getParent()->addParamAttr(getArgNo(), Kind); 290 } 291 292 void Argument::addAttr(Attribute Attr) { 293 getParent()->addParamAttr(getArgNo(), Attr); 294 } 295 296 void Argument::removeAttr(Attribute::AttrKind Kind) { 297 getParent()->removeParamAttr(getArgNo(), Kind); 298 } 299 300 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 301 return getParent()->hasParamAttribute(getArgNo(), Kind); 302 } 303 304 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const { 305 return getParent()->getParamAttribute(getArgNo(), Kind); 306 } 307 308 //===----------------------------------------------------------------------===// 309 // Helper Methods in Function 310 //===----------------------------------------------------------------------===// 311 312 LLVMContext &Function::getContext() const { 313 return getType()->getContext(); 314 } 315 316 unsigned Function::getInstructionCount() const { 317 unsigned NumInstrs = 0; 318 for (const BasicBlock &BB : BasicBlocks) 319 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 320 BB.instructionsWithoutDebug().end()); 321 return NumInstrs; 322 } 323 324 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 325 const Twine &N, Module &M) { 326 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 327 } 328 329 void Function::removeFromParent() { 330 getParent()->getFunctionList().remove(getIterator()); 331 } 332 333 void Function::eraseFromParent() { 334 getParent()->getFunctionList().erase(getIterator()); 335 } 336 337 //===----------------------------------------------------------------------===// 338 // Function Implementation 339 //===----------------------------------------------------------------------===// 340 341 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 342 // If AS == -1 and we are passed a valid module pointer we place the function 343 // in the program address space. Otherwise we default to AS0. 344 if (AddrSpace == static_cast<unsigned>(-1)) 345 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 346 return AddrSpace; 347 } 348 349 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 350 const Twine &name, Module *ParentModule) 351 : GlobalObject(Ty, Value::FunctionVal, 352 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 353 computeAddrSpace(AddrSpace, ParentModule)), 354 NumArgs(Ty->getNumParams()) { 355 assert(FunctionType::isValidReturnType(getReturnType()) && 356 "invalid return type"); 357 setGlobalObjectSubClassData(0); 358 359 // We only need a symbol table for a function if the context keeps value names 360 if (!getContext().shouldDiscardValueNames()) 361 SymTab = std::make_unique<ValueSymbolTable>(); 362 363 // If the function has arguments, mark them as lazily built. 364 if (Ty->getNumParams()) 365 setValueSubclassData(1); // Set the "has lazy arguments" bit. 366 367 if (ParentModule) 368 ParentModule->getFunctionList().push_back(this); 369 370 HasLLVMReservedName = getName().startswith("llvm."); 371 // Ensure intrinsics have the right parameter attributes. 372 // Note, the IntID field will have been set in Value::setName if this function 373 // name is a valid intrinsic ID. 374 if (IntID) 375 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 376 } 377 378 Function::~Function() { 379 dropAllReferences(); // After this it is safe to delete instructions. 380 381 // Delete all of the method arguments and unlink from symbol table... 382 if (Arguments) 383 clearArguments(); 384 385 // Remove the function from the on-the-side GC table. 386 clearGC(); 387 } 388 389 void Function::BuildLazyArguments() const { 390 // Create the arguments vector, all arguments start out unnamed. 391 auto *FT = getFunctionType(); 392 if (NumArgs > 0) { 393 Arguments = std::allocator<Argument>().allocate(NumArgs); 394 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 395 Type *ArgTy = FT->getParamType(i); 396 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 397 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 398 } 399 } 400 401 // Clear the lazy arguments bit. 402 unsigned SDC = getSubclassDataFromValue(); 403 SDC &= ~(1 << 0); 404 const_cast<Function*>(this)->setValueSubclassData(SDC); 405 assert(!hasLazyArguments()); 406 } 407 408 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 409 return MutableArrayRef<Argument>(Args, Count); 410 } 411 412 bool Function::isConstrainedFPIntrinsic() const { 413 switch (getIntrinsicID()) { 414 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC) \ 415 case Intrinsic::INTRINSIC: 416 #include "llvm/IR/ConstrainedOps.def" 417 return true; 418 #undef INSTRUCTION 419 default: 420 return false; 421 } 422 } 423 424 void Function::clearArguments() { 425 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 426 A.setName(""); 427 A.~Argument(); 428 } 429 std::allocator<Argument>().deallocate(Arguments, NumArgs); 430 Arguments = nullptr; 431 } 432 433 void Function::stealArgumentListFrom(Function &Src) { 434 assert(isDeclaration() && "Expected no references to current arguments"); 435 436 // Drop the current arguments, if any, and set the lazy argument bit. 437 if (!hasLazyArguments()) { 438 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 439 [](const Argument &A) { return A.use_empty(); }) && 440 "Expected arguments to be unused in declaration"); 441 clearArguments(); 442 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 443 } 444 445 // Nothing to steal if Src has lazy arguments. 446 if (Src.hasLazyArguments()) 447 return; 448 449 // Steal arguments from Src, and fix the lazy argument bits. 450 assert(arg_size() == Src.arg_size()); 451 Arguments = Src.Arguments; 452 Src.Arguments = nullptr; 453 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 454 // FIXME: This does the work of transferNodesFromList inefficiently. 455 SmallString<128> Name; 456 if (A.hasName()) 457 Name = A.getName(); 458 if (!Name.empty()) 459 A.setName(""); 460 A.setParent(this); 461 if (!Name.empty()) 462 A.setName(Name); 463 } 464 465 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 466 assert(!hasLazyArguments()); 467 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 468 } 469 470 // dropAllReferences() - This function causes all the subinstructions to "let 471 // go" of all references that they are maintaining. This allows one to 472 // 'delete' a whole class at a time, even though there may be circular 473 // references... first all references are dropped, and all use counts go to 474 // zero. Then everything is deleted for real. Note that no operations are 475 // valid on an object that has "dropped all references", except operator 476 // delete. 477 // 478 void Function::dropAllReferences() { 479 setIsMaterializable(false); 480 481 for (BasicBlock &BB : *this) 482 BB.dropAllReferences(); 483 484 // Delete all basic blocks. They are now unused, except possibly by 485 // blockaddresses, but BasicBlock's destructor takes care of those. 486 while (!BasicBlocks.empty()) 487 BasicBlocks.begin()->eraseFromParent(); 488 489 // Drop uses of any optional data (real or placeholder). 490 if (getNumOperands()) { 491 User::dropAllReferences(); 492 setNumHungOffUseOperands(0); 493 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 494 } 495 496 // Metadata is stored in a side-table. 497 clearMetadata(); 498 } 499 500 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 501 AttributeList PAL = getAttributes(); 502 PAL = PAL.addAttribute(getContext(), i, Kind); 503 setAttributes(PAL); 504 } 505 506 void Function::addAttribute(unsigned i, Attribute Attr) { 507 AttributeList PAL = getAttributes(); 508 PAL = PAL.addAttribute(getContext(), i, Attr); 509 setAttributes(PAL); 510 } 511 512 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 513 AttributeList PAL = getAttributes(); 514 PAL = PAL.addAttributes(getContext(), i, Attrs); 515 setAttributes(PAL); 516 } 517 518 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 519 AttributeList PAL = getAttributes(); 520 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 521 setAttributes(PAL); 522 } 523 524 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 525 AttributeList PAL = getAttributes(); 526 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 527 setAttributes(PAL); 528 } 529 530 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 531 AttributeList PAL = getAttributes(); 532 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 533 setAttributes(PAL); 534 } 535 536 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 537 AttributeList PAL = getAttributes(); 538 PAL = PAL.removeAttribute(getContext(), i, Kind); 539 setAttributes(PAL); 540 } 541 542 void Function::removeAttribute(unsigned i, StringRef Kind) { 543 AttributeList PAL = getAttributes(); 544 PAL = PAL.removeAttribute(getContext(), i, Kind); 545 setAttributes(PAL); 546 } 547 548 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 549 AttributeList PAL = getAttributes(); 550 PAL = PAL.removeAttributes(getContext(), i, Attrs); 551 setAttributes(PAL); 552 } 553 554 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 555 AttributeList PAL = getAttributes(); 556 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 557 setAttributes(PAL); 558 } 559 560 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 561 AttributeList PAL = getAttributes(); 562 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 563 setAttributes(PAL); 564 } 565 566 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 567 AttributeList PAL = getAttributes(); 568 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 569 setAttributes(PAL); 570 } 571 572 void Function::removeParamUndefImplyingAttrs(unsigned ArgNo) { 573 AttributeList PAL = getAttributes(); 574 PAL = PAL.removeParamUndefImplyingAttributes(getContext(), ArgNo); 575 setAttributes(PAL); 576 } 577 578 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 579 AttributeList PAL = getAttributes(); 580 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 581 setAttributes(PAL); 582 } 583 584 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 585 AttributeList PAL = getAttributes(); 586 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 587 setAttributes(PAL); 588 } 589 590 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 591 AttributeList PAL = getAttributes(); 592 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 593 setAttributes(PAL); 594 } 595 596 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 597 uint64_t Bytes) { 598 AttributeList PAL = getAttributes(); 599 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 600 setAttributes(PAL); 601 } 602 603 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const { 604 if (&FPType == &APFloat::IEEEsingle()) { 605 Attribute Attr = getFnAttribute("denormal-fp-math-f32"); 606 StringRef Val = Attr.getValueAsString(); 607 if (!Val.empty()) 608 return parseDenormalFPAttribute(Val); 609 610 // If the f32 variant of the attribute isn't specified, try to use the 611 // generic one. 612 } 613 614 Attribute Attr = getFnAttribute("denormal-fp-math"); 615 return parseDenormalFPAttribute(Attr.getValueAsString()); 616 } 617 618 const std::string &Function::getGC() const { 619 assert(hasGC() && "Function has no collector"); 620 return getContext().getGC(*this); 621 } 622 623 void Function::setGC(std::string Str) { 624 setValueSubclassDataBit(14, !Str.empty()); 625 getContext().setGC(*this, std::move(Str)); 626 } 627 628 void Function::clearGC() { 629 if (!hasGC()) 630 return; 631 getContext().deleteGC(*this); 632 setValueSubclassDataBit(14, false); 633 } 634 635 bool Function::hasStackProtectorFnAttr() const { 636 return hasFnAttribute(Attribute::StackProtect) || 637 hasFnAttribute(Attribute::StackProtectStrong) || 638 hasFnAttribute(Attribute::StackProtectReq); 639 } 640 641 /// Copy all additional attributes (those not needed to create a Function) from 642 /// the Function Src to this one. 643 void Function::copyAttributesFrom(const Function *Src) { 644 GlobalObject::copyAttributesFrom(Src); 645 setCallingConv(Src->getCallingConv()); 646 setAttributes(Src->getAttributes()); 647 if (Src->hasGC()) 648 setGC(Src->getGC()); 649 else 650 clearGC(); 651 if (Src->hasPersonalityFn()) 652 setPersonalityFn(Src->getPersonalityFn()); 653 if (Src->hasPrefixData()) 654 setPrefixData(Src->getPrefixData()); 655 if (Src->hasPrologueData()) 656 setPrologueData(Src->getPrologueData()); 657 } 658 659 /// Table of string intrinsic names indexed by enum value. 660 static const char * const IntrinsicNameTable[] = { 661 "not_intrinsic", 662 #define GET_INTRINSIC_NAME_TABLE 663 #include "llvm/IR/IntrinsicImpl.inc" 664 #undef GET_INTRINSIC_NAME_TABLE 665 }; 666 667 /// Table of per-target intrinsic name tables. 668 #define GET_INTRINSIC_TARGET_DATA 669 #include "llvm/IR/IntrinsicImpl.inc" 670 #undef GET_INTRINSIC_TARGET_DATA 671 672 bool Function::isTargetIntrinsic(Intrinsic::ID IID) { 673 return IID > TargetInfos[0].Count; 674 } 675 676 bool Function::isTargetIntrinsic() const { 677 return isTargetIntrinsic(IntID); 678 } 679 680 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 681 /// target as \c Name, or the generic table if \c Name is not target specific. 682 /// 683 /// Returns the relevant slice of \c IntrinsicNameTable 684 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 685 assert(Name.startswith("llvm.")); 686 687 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 688 // Drop "llvm." and take the first dotted component. That will be the target 689 // if this is target specific. 690 StringRef Target = Name.drop_front(5).split('.').first; 691 auto It = partition_point( 692 Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; }); 693 // We've either found the target or just fall back to the generic set, which 694 // is always first. 695 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 696 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 697 } 698 699 /// This does the actual lookup of an intrinsic ID which 700 /// matches the given function name. 701 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 702 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 703 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 704 if (Idx == -1) 705 return Intrinsic::not_intrinsic; 706 707 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 708 // an index into a sub-table. 709 int Adjust = NameTable.data() - IntrinsicNameTable; 710 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 711 712 // If the intrinsic is not overloaded, require an exact match. If it is 713 // overloaded, require either exact or prefix match. 714 const auto MatchSize = strlen(NameTable[Idx]); 715 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 716 bool IsExactMatch = Name.size() == MatchSize; 717 return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID 718 : Intrinsic::not_intrinsic; 719 } 720 721 void Function::recalculateIntrinsicID() { 722 StringRef Name = getName(); 723 if (!Name.startswith("llvm.")) { 724 HasLLVMReservedName = false; 725 IntID = Intrinsic::not_intrinsic; 726 return; 727 } 728 HasLLVMReservedName = true; 729 IntID = lookupIntrinsicID(Name); 730 } 731 732 /// Returns a stable mangling for the type specified for use in the name 733 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 734 /// of named types is simply their name. Manglings for unnamed types consist 735 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 736 /// combined with the mangling of their component types. A vararg function 737 /// type will have a suffix of 'vararg'. Since function types can contain 738 /// other function types, we close a function type mangling with suffix 'f' 739 /// which can't be confused with it's prefix. This ensures we don't have 740 /// collisions between two unrelated function types. Otherwise, you might 741 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 742 /// The HasUnnamedType boolean is set if an unnamed type was encountered, 743 /// indicating that extra care must be taken to ensure a unique name. 744 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) { 745 std::string Result; 746 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 747 Result += "p" + utostr(PTyp->getAddressSpace()) + 748 getMangledTypeStr(PTyp->getElementType(), HasUnnamedType); 749 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 750 Result += "a" + utostr(ATyp->getNumElements()) + 751 getMangledTypeStr(ATyp->getElementType(), HasUnnamedType); 752 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 753 if (!STyp->isLiteral()) { 754 Result += "s_"; 755 if (STyp->hasName()) 756 Result += STyp->getName(); 757 else 758 HasUnnamedType = true; 759 } else { 760 Result += "sl_"; 761 for (auto Elem : STyp->elements()) 762 Result += getMangledTypeStr(Elem, HasUnnamedType); 763 } 764 // Ensure nested structs are distinguishable. 765 Result += "s"; 766 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 767 Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType); 768 for (size_t i = 0; i < FT->getNumParams(); i++) 769 Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType); 770 if (FT->isVarArg()) 771 Result += "vararg"; 772 // Ensure nested function types are distinguishable. 773 Result += "f"; 774 } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) { 775 ElementCount EC = VTy->getElementCount(); 776 if (EC.isScalable()) 777 Result += "nx"; 778 Result += "v" + utostr(EC.getKnownMinValue()) + 779 getMangledTypeStr(VTy->getElementType(), HasUnnamedType); 780 } else if (Ty) { 781 switch (Ty->getTypeID()) { 782 default: llvm_unreachable("Unhandled type"); 783 case Type::VoidTyID: Result += "isVoid"; break; 784 case Type::MetadataTyID: Result += "Metadata"; break; 785 case Type::HalfTyID: Result += "f16"; break; 786 case Type::BFloatTyID: Result += "bf16"; break; 787 case Type::FloatTyID: Result += "f32"; break; 788 case Type::DoubleTyID: Result += "f64"; break; 789 case Type::X86_FP80TyID: Result += "f80"; break; 790 case Type::FP128TyID: Result += "f128"; break; 791 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 792 case Type::X86_MMXTyID: Result += "x86mmx"; break; 793 case Type::X86_AMXTyID: Result += "x86amx"; break; 794 case Type::IntegerTyID: 795 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 796 break; 797 } 798 } 799 return Result; 800 } 801 802 StringRef Intrinsic::getName(ID id) { 803 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 804 assert(!Intrinsic::isOverloaded(id) && 805 "This version of getName does not support overloading"); 806 return IntrinsicNameTable[id]; 807 } 808 809 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M, 810 FunctionType *FT) { 811 assert(Id < num_intrinsics && "Invalid intrinsic ID!"); 812 assert((Tys.empty() || Intrinsic::isOverloaded(Id)) && 813 "This version of getName is for overloaded intrinsics only"); 814 bool HasUnnamedType = false; 815 std::string Result(IntrinsicNameTable[Id]); 816 for (Type *Ty : Tys) { 817 Result += "." + getMangledTypeStr(Ty, HasUnnamedType); 818 } 819 assert((M || !HasUnnamedType) && "unnamed types need a module"); 820 if (M && HasUnnamedType) { 821 if (!FT) 822 FT = getType(M->getContext(), Id, Tys); 823 else 824 assert((FT == getType(M->getContext(), Id, Tys)) && 825 "Provided FunctionType must match arguments"); 826 return M->getUniqueIntrinsicName(Result, Id, FT); 827 } 828 return Result; 829 } 830 831 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys) { 832 return getName(Id, Tys, nullptr, nullptr); 833 } 834 835 /// IIT_Info - These are enumerators that describe the entries returned by the 836 /// getIntrinsicInfoTableEntries function. 837 /// 838 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 839 enum IIT_Info { 840 // Common values should be encoded with 0-15. 841 IIT_Done = 0, 842 IIT_I1 = 1, 843 IIT_I8 = 2, 844 IIT_I16 = 3, 845 IIT_I32 = 4, 846 IIT_I64 = 5, 847 IIT_F16 = 6, 848 IIT_F32 = 7, 849 IIT_F64 = 8, 850 IIT_V2 = 9, 851 IIT_V4 = 10, 852 IIT_V8 = 11, 853 IIT_V16 = 12, 854 IIT_V32 = 13, 855 IIT_PTR = 14, 856 IIT_ARG = 15, 857 858 // Values from 16+ are only encodable with the inefficient encoding. 859 IIT_V64 = 16, 860 IIT_MMX = 17, 861 IIT_TOKEN = 18, 862 IIT_METADATA = 19, 863 IIT_EMPTYSTRUCT = 20, 864 IIT_STRUCT2 = 21, 865 IIT_STRUCT3 = 22, 866 IIT_STRUCT4 = 23, 867 IIT_STRUCT5 = 24, 868 IIT_EXTEND_ARG = 25, 869 IIT_TRUNC_ARG = 26, 870 IIT_ANYPTR = 27, 871 IIT_V1 = 28, 872 IIT_VARARG = 29, 873 IIT_HALF_VEC_ARG = 30, 874 IIT_SAME_VEC_WIDTH_ARG = 31, 875 IIT_PTR_TO_ARG = 32, 876 IIT_PTR_TO_ELT = 33, 877 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 878 IIT_I128 = 35, 879 IIT_V512 = 36, 880 IIT_V1024 = 37, 881 IIT_STRUCT6 = 38, 882 IIT_STRUCT7 = 39, 883 IIT_STRUCT8 = 40, 884 IIT_F128 = 41, 885 IIT_VEC_ELEMENT = 42, 886 IIT_SCALABLE_VEC = 43, 887 IIT_SUBDIVIDE2_ARG = 44, 888 IIT_SUBDIVIDE4_ARG = 45, 889 IIT_VEC_OF_BITCASTS_TO_INT = 46, 890 IIT_V128 = 47, 891 IIT_BF16 = 48, 892 IIT_STRUCT9 = 49, 893 IIT_V256 = 50, 894 IIT_AMX = 51 895 }; 896 897 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 898 IIT_Info LastInfo, 899 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 900 using namespace Intrinsic; 901 902 bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC); 903 904 IIT_Info Info = IIT_Info(Infos[NextElt++]); 905 unsigned StructElts = 2; 906 907 switch (Info) { 908 case IIT_Done: 909 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 910 return; 911 case IIT_VARARG: 912 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 913 return; 914 case IIT_MMX: 915 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 916 return; 917 case IIT_AMX: 918 OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0)); 919 return; 920 case IIT_TOKEN: 921 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 922 return; 923 case IIT_METADATA: 924 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 925 return; 926 case IIT_F16: 927 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 928 return; 929 case IIT_BF16: 930 OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0)); 931 return; 932 case IIT_F32: 933 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 934 return; 935 case IIT_F64: 936 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 937 return; 938 case IIT_F128: 939 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 940 return; 941 case IIT_I1: 942 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 943 return; 944 case IIT_I8: 945 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 946 return; 947 case IIT_I16: 948 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 949 return; 950 case IIT_I32: 951 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 952 return; 953 case IIT_I64: 954 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 955 return; 956 case IIT_I128: 957 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 958 return; 959 case IIT_V1: 960 OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector)); 961 DecodeIITType(NextElt, Infos, Info, OutputTable); 962 return; 963 case IIT_V2: 964 OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector)); 965 DecodeIITType(NextElt, Infos, Info, OutputTable); 966 return; 967 case IIT_V4: 968 OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector)); 969 DecodeIITType(NextElt, Infos, Info, OutputTable); 970 return; 971 case IIT_V8: 972 OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector)); 973 DecodeIITType(NextElt, Infos, Info, OutputTable); 974 return; 975 case IIT_V16: 976 OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector)); 977 DecodeIITType(NextElt, Infos, Info, OutputTable); 978 return; 979 case IIT_V32: 980 OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector)); 981 DecodeIITType(NextElt, Infos, Info, OutputTable); 982 return; 983 case IIT_V64: 984 OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector)); 985 DecodeIITType(NextElt, Infos, Info, OutputTable); 986 return; 987 case IIT_V128: 988 OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector)); 989 DecodeIITType(NextElt, Infos, Info, OutputTable); 990 return; 991 case IIT_V256: 992 OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector)); 993 DecodeIITType(NextElt, Infos, Info, OutputTable); 994 return; 995 case IIT_V512: 996 OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector)); 997 DecodeIITType(NextElt, Infos, Info, OutputTable); 998 return; 999 case IIT_V1024: 1000 OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector)); 1001 DecodeIITType(NextElt, Infos, Info, OutputTable); 1002 return; 1003 case IIT_PTR: 1004 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 1005 DecodeIITType(NextElt, Infos, Info, OutputTable); 1006 return; 1007 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 1008 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 1009 Infos[NextElt++])); 1010 DecodeIITType(NextElt, Infos, Info, OutputTable); 1011 return; 1012 } 1013 case IIT_ARG: { 1014 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1015 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 1016 return; 1017 } 1018 case IIT_EXTEND_ARG: { 1019 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1020 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 1021 ArgInfo)); 1022 return; 1023 } 1024 case IIT_TRUNC_ARG: { 1025 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1026 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 1027 ArgInfo)); 1028 return; 1029 } 1030 case IIT_HALF_VEC_ARG: { 1031 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1032 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 1033 ArgInfo)); 1034 return; 1035 } 1036 case IIT_SAME_VEC_WIDTH_ARG: { 1037 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1038 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 1039 ArgInfo)); 1040 return; 1041 } 1042 case IIT_PTR_TO_ARG: { 1043 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1044 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 1045 ArgInfo)); 1046 return; 1047 } 1048 case IIT_PTR_TO_ELT: { 1049 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1050 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 1051 return; 1052 } 1053 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 1054 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1055 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1056 OutputTable.push_back( 1057 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 1058 return; 1059 } 1060 case IIT_EMPTYSTRUCT: 1061 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 1062 return; 1063 case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH; 1064 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 1065 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 1066 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 1067 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 1068 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 1069 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 1070 case IIT_STRUCT2: { 1071 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 1072 1073 for (unsigned i = 0; i != StructElts; ++i) 1074 DecodeIITType(NextElt, Infos, Info, OutputTable); 1075 return; 1076 } 1077 case IIT_SUBDIVIDE2_ARG: { 1078 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1079 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument, 1080 ArgInfo)); 1081 return; 1082 } 1083 case IIT_SUBDIVIDE4_ARG: { 1084 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1085 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument, 1086 ArgInfo)); 1087 return; 1088 } 1089 case IIT_VEC_ELEMENT: { 1090 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1091 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument, 1092 ArgInfo)); 1093 return; 1094 } 1095 case IIT_SCALABLE_VEC: { 1096 DecodeIITType(NextElt, Infos, Info, OutputTable); 1097 return; 1098 } 1099 case IIT_VEC_OF_BITCASTS_TO_INT: { 1100 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 1101 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt, 1102 ArgInfo)); 1103 return; 1104 } 1105 } 1106 llvm_unreachable("unhandled"); 1107 } 1108 1109 #define GET_INTRINSIC_GENERATOR_GLOBAL 1110 #include "llvm/IR/IntrinsicImpl.inc" 1111 #undef GET_INTRINSIC_GENERATOR_GLOBAL 1112 1113 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 1114 SmallVectorImpl<IITDescriptor> &T){ 1115 // Check to see if the intrinsic's type was expressible by the table. 1116 unsigned TableVal = IIT_Table[id-1]; 1117 1118 // Decode the TableVal into an array of IITValues. 1119 SmallVector<unsigned char, 8> IITValues; 1120 ArrayRef<unsigned char> IITEntries; 1121 unsigned NextElt = 0; 1122 if ((TableVal >> 31) != 0) { 1123 // This is an offset into the IIT_LongEncodingTable. 1124 IITEntries = IIT_LongEncodingTable; 1125 1126 // Strip sentinel bit. 1127 NextElt = (TableVal << 1) >> 1; 1128 } else { 1129 // Decode the TableVal into an array of IITValues. If the entry was encoded 1130 // into a single word in the table itself, decode it now. 1131 do { 1132 IITValues.push_back(TableVal & 0xF); 1133 TableVal >>= 4; 1134 } while (TableVal); 1135 1136 IITEntries = IITValues; 1137 NextElt = 0; 1138 } 1139 1140 // Okay, decode the table into the output vector of IITDescriptors. 1141 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1142 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 1143 DecodeIITType(NextElt, IITEntries, IIT_Done, T); 1144 } 1145 1146 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 1147 ArrayRef<Type*> Tys, LLVMContext &Context) { 1148 using namespace Intrinsic; 1149 1150 IITDescriptor D = Infos.front(); 1151 Infos = Infos.slice(1); 1152 1153 switch (D.Kind) { 1154 case IITDescriptor::Void: return Type::getVoidTy(Context); 1155 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 1156 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 1157 case IITDescriptor::AMX: return Type::getX86_AMXTy(Context); 1158 case IITDescriptor::Token: return Type::getTokenTy(Context); 1159 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 1160 case IITDescriptor::Half: return Type::getHalfTy(Context); 1161 case IITDescriptor::BFloat: return Type::getBFloatTy(Context); 1162 case IITDescriptor::Float: return Type::getFloatTy(Context); 1163 case IITDescriptor::Double: return Type::getDoubleTy(Context); 1164 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 1165 1166 case IITDescriptor::Integer: 1167 return IntegerType::get(Context, D.Integer_Width); 1168 case IITDescriptor::Vector: 1169 return VectorType::get(DecodeFixedType(Infos, Tys, Context), 1170 D.Vector_Width); 1171 case IITDescriptor::Pointer: 1172 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 1173 D.Pointer_AddressSpace); 1174 case IITDescriptor::Struct: { 1175 SmallVector<Type *, 8> Elts; 1176 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1177 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 1178 return StructType::get(Context, Elts); 1179 } 1180 case IITDescriptor::Argument: 1181 return Tys[D.getArgumentNumber()]; 1182 case IITDescriptor::ExtendArgument: { 1183 Type *Ty = Tys[D.getArgumentNumber()]; 1184 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1185 return VectorType::getExtendedElementVectorType(VTy); 1186 1187 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 1188 } 1189 case IITDescriptor::TruncArgument: { 1190 Type *Ty = Tys[D.getArgumentNumber()]; 1191 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1192 return VectorType::getTruncatedElementVectorType(VTy); 1193 1194 IntegerType *ITy = cast<IntegerType>(Ty); 1195 assert(ITy->getBitWidth() % 2 == 0); 1196 return IntegerType::get(Context, ITy->getBitWidth() / 2); 1197 } 1198 case IITDescriptor::Subdivide2Argument: 1199 case IITDescriptor::Subdivide4Argument: { 1200 Type *Ty = Tys[D.getArgumentNumber()]; 1201 VectorType *VTy = dyn_cast<VectorType>(Ty); 1202 assert(VTy && "Expected an argument of Vector Type"); 1203 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1204 return VectorType::getSubdividedVectorType(VTy, SubDivs); 1205 } 1206 case IITDescriptor::HalfVecArgument: 1207 return VectorType::getHalfElementsVectorType(cast<VectorType>( 1208 Tys[D.getArgumentNumber()])); 1209 case IITDescriptor::SameVecWidthArgument: { 1210 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 1211 Type *Ty = Tys[D.getArgumentNumber()]; 1212 if (auto *VTy = dyn_cast<VectorType>(Ty)) 1213 return VectorType::get(EltTy, VTy->getElementCount()); 1214 return EltTy; 1215 } 1216 case IITDescriptor::PtrToArgument: { 1217 Type *Ty = Tys[D.getArgumentNumber()]; 1218 return PointerType::getUnqual(Ty); 1219 } 1220 case IITDescriptor::PtrToElt: { 1221 Type *Ty = Tys[D.getArgumentNumber()]; 1222 VectorType *VTy = dyn_cast<VectorType>(Ty); 1223 if (!VTy) 1224 llvm_unreachable("Expected an argument of Vector Type"); 1225 Type *EltTy = VTy->getElementType(); 1226 return PointerType::getUnqual(EltTy); 1227 } 1228 case IITDescriptor::VecElementArgument: { 1229 Type *Ty = Tys[D.getArgumentNumber()]; 1230 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 1231 return VTy->getElementType(); 1232 llvm_unreachable("Expected an argument of Vector Type"); 1233 } 1234 case IITDescriptor::VecOfBitcastsToInt: { 1235 Type *Ty = Tys[D.getArgumentNumber()]; 1236 VectorType *VTy = dyn_cast<VectorType>(Ty); 1237 assert(VTy && "Expected an argument of Vector Type"); 1238 return VectorType::getInteger(VTy); 1239 } 1240 case IITDescriptor::VecOfAnyPtrsToElt: 1241 // Return the overloaded type (which determines the pointers address space) 1242 return Tys[D.getOverloadArgNumber()]; 1243 } 1244 llvm_unreachable("unhandled"); 1245 } 1246 1247 FunctionType *Intrinsic::getType(LLVMContext &Context, 1248 ID id, ArrayRef<Type*> Tys) { 1249 SmallVector<IITDescriptor, 8> Table; 1250 getIntrinsicInfoTableEntries(id, Table); 1251 1252 ArrayRef<IITDescriptor> TableRef = Table; 1253 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 1254 1255 SmallVector<Type*, 8> ArgTys; 1256 while (!TableRef.empty()) 1257 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 1258 1259 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 1260 // If we see void type as the type of the last argument, it is vararg intrinsic 1261 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 1262 ArgTys.pop_back(); 1263 return FunctionType::get(ResultTy, ArgTys, true); 1264 } 1265 return FunctionType::get(ResultTy, ArgTys, false); 1266 } 1267 1268 bool Intrinsic::isOverloaded(ID id) { 1269 #define GET_INTRINSIC_OVERLOAD_TABLE 1270 #include "llvm/IR/IntrinsicImpl.inc" 1271 #undef GET_INTRINSIC_OVERLOAD_TABLE 1272 } 1273 1274 bool Intrinsic::isLeaf(ID id) { 1275 switch (id) { 1276 default: 1277 return true; 1278 1279 case Intrinsic::experimental_gc_statepoint: 1280 case Intrinsic::experimental_patchpoint_void: 1281 case Intrinsic::experimental_patchpoint_i64: 1282 return false; 1283 } 1284 } 1285 1286 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1287 #define GET_INTRINSIC_ATTRIBUTES 1288 #include "llvm/IR/IntrinsicImpl.inc" 1289 #undef GET_INTRINSIC_ATTRIBUTES 1290 1291 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1292 // There can never be multiple globals with the same name of different types, 1293 // because intrinsics must be a specific type. 1294 auto *FT = getType(M->getContext(), id, Tys); 1295 return cast<Function>( 1296 M->getOrInsertFunction(Tys.empty() ? getName(id) 1297 : getName(id, Tys, M, FT), 1298 getType(M->getContext(), id, Tys)) 1299 .getCallee()); 1300 } 1301 1302 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1303 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1304 #include "llvm/IR/IntrinsicImpl.inc" 1305 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1306 1307 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1308 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1309 #include "llvm/IR/IntrinsicImpl.inc" 1310 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1311 1312 using DeferredIntrinsicMatchPair = 1313 std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>; 1314 1315 static bool matchIntrinsicType( 1316 Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1317 SmallVectorImpl<Type *> &ArgTys, 1318 SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks, 1319 bool IsDeferredCheck) { 1320 using namespace Intrinsic; 1321 1322 // If we ran out of descriptors, there are too many arguments. 1323 if (Infos.empty()) return true; 1324 1325 // Do this before slicing off the 'front' part 1326 auto InfosRef = Infos; 1327 auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) { 1328 DeferredChecks.emplace_back(T, InfosRef); 1329 return false; 1330 }; 1331 1332 IITDescriptor D = Infos.front(); 1333 Infos = Infos.slice(1); 1334 1335 switch (D.Kind) { 1336 case IITDescriptor::Void: return !Ty->isVoidTy(); 1337 case IITDescriptor::VarArg: return true; 1338 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1339 case IITDescriptor::AMX: return !Ty->isX86_AMXTy(); 1340 case IITDescriptor::Token: return !Ty->isTokenTy(); 1341 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1342 case IITDescriptor::Half: return !Ty->isHalfTy(); 1343 case IITDescriptor::BFloat: return !Ty->isBFloatTy(); 1344 case IITDescriptor::Float: return !Ty->isFloatTy(); 1345 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1346 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1347 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1348 case IITDescriptor::Vector: { 1349 VectorType *VT = dyn_cast<VectorType>(Ty); 1350 return !VT || VT->getElementCount() != D.Vector_Width || 1351 matchIntrinsicType(VT->getElementType(), Infos, ArgTys, 1352 DeferredChecks, IsDeferredCheck); 1353 } 1354 case IITDescriptor::Pointer: { 1355 PointerType *PT = dyn_cast<PointerType>(Ty); 1356 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1357 matchIntrinsicType(PT->getElementType(), Infos, ArgTys, 1358 DeferredChecks, IsDeferredCheck); 1359 } 1360 1361 case IITDescriptor::Struct: { 1362 StructType *ST = dyn_cast<StructType>(Ty); 1363 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1364 return true; 1365 1366 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1367 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys, 1368 DeferredChecks, IsDeferredCheck)) 1369 return true; 1370 return false; 1371 } 1372 1373 case IITDescriptor::Argument: 1374 // If this is the second occurrence of an argument, 1375 // verify that the later instance matches the previous instance. 1376 if (D.getArgumentNumber() < ArgTys.size()) 1377 return Ty != ArgTys[D.getArgumentNumber()]; 1378 1379 if (D.getArgumentNumber() > ArgTys.size() || 1380 D.getArgumentKind() == IITDescriptor::AK_MatchType) 1381 return IsDeferredCheck || DeferCheck(Ty); 1382 1383 assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck && 1384 "Table consistency error"); 1385 ArgTys.push_back(Ty); 1386 1387 switch (D.getArgumentKind()) { 1388 case IITDescriptor::AK_Any: return false; // Success 1389 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1390 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1391 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1392 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1393 default: break; 1394 } 1395 llvm_unreachable("all argument kinds not covered"); 1396 1397 case IITDescriptor::ExtendArgument: { 1398 // If this is a forward reference, defer the check for later. 1399 if (D.getArgumentNumber() >= ArgTys.size()) 1400 return IsDeferredCheck || DeferCheck(Ty); 1401 1402 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1403 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1404 NewTy = VectorType::getExtendedElementVectorType(VTy); 1405 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1406 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1407 else 1408 return true; 1409 1410 return Ty != NewTy; 1411 } 1412 case IITDescriptor::TruncArgument: { 1413 // If this is a forward reference, defer the check for later. 1414 if (D.getArgumentNumber() >= ArgTys.size()) 1415 return IsDeferredCheck || DeferCheck(Ty); 1416 1417 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1418 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1419 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1420 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1421 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1422 else 1423 return true; 1424 1425 return Ty != NewTy; 1426 } 1427 case IITDescriptor::HalfVecArgument: 1428 // If this is a forward reference, defer the check for later. 1429 if (D.getArgumentNumber() >= ArgTys.size()) 1430 return IsDeferredCheck || DeferCheck(Ty); 1431 return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1432 VectorType::getHalfElementsVectorType( 1433 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1434 case IITDescriptor::SameVecWidthArgument: { 1435 if (D.getArgumentNumber() >= ArgTys.size()) { 1436 // Defer check and subsequent check for the vector element type. 1437 Infos = Infos.slice(1); 1438 return IsDeferredCheck || DeferCheck(Ty); 1439 } 1440 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1441 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1442 // Both must be vectors of the same number of elements or neither. 1443 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1444 return true; 1445 Type *EltTy = Ty; 1446 if (ThisArgType) { 1447 if (ReferenceType->getElementCount() != 1448 ThisArgType->getElementCount()) 1449 return true; 1450 EltTy = ThisArgType->getElementType(); 1451 } 1452 return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks, 1453 IsDeferredCheck); 1454 } 1455 case IITDescriptor::PtrToArgument: { 1456 if (D.getArgumentNumber() >= ArgTys.size()) 1457 return IsDeferredCheck || DeferCheck(Ty); 1458 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1459 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1460 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1461 } 1462 case IITDescriptor::PtrToElt: { 1463 if (D.getArgumentNumber() >= ArgTys.size()) 1464 return IsDeferredCheck || DeferCheck(Ty); 1465 VectorType * ReferenceType = 1466 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1467 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1468 1469 return (!ThisArgType || !ReferenceType || 1470 ThisArgType->getElementType() != ReferenceType->getElementType()); 1471 } 1472 case IITDescriptor::VecOfAnyPtrsToElt: { 1473 unsigned RefArgNumber = D.getRefArgNumber(); 1474 if (RefArgNumber >= ArgTys.size()) { 1475 if (IsDeferredCheck) 1476 return true; 1477 // If forward referencing, already add the pointer-vector type and 1478 // defer the checks for later. 1479 ArgTys.push_back(Ty); 1480 return DeferCheck(Ty); 1481 } 1482 1483 if (!IsDeferredCheck){ 1484 assert(D.getOverloadArgNumber() == ArgTys.size() && 1485 "Table consistency error"); 1486 ArgTys.push_back(Ty); 1487 } 1488 1489 // Verify the overloaded type "matches" the Ref type. 1490 // i.e. Ty is a vector with the same width as Ref. 1491 // Composed of pointers to the same element type as Ref. 1492 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1493 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1494 if (!ThisArgVecTy || !ReferenceType || 1495 (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount())) 1496 return true; 1497 PointerType *ThisArgEltTy = 1498 dyn_cast<PointerType>(ThisArgVecTy->getElementType()); 1499 if (!ThisArgEltTy) 1500 return true; 1501 return ThisArgEltTy->getElementType() != ReferenceType->getElementType(); 1502 } 1503 case IITDescriptor::VecElementArgument: { 1504 if (D.getArgumentNumber() >= ArgTys.size()) 1505 return IsDeferredCheck ? true : DeferCheck(Ty); 1506 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1507 return !ReferenceType || Ty != ReferenceType->getElementType(); 1508 } 1509 case IITDescriptor::Subdivide2Argument: 1510 case IITDescriptor::Subdivide4Argument: { 1511 // If this is a forward reference, defer the check for later. 1512 if (D.getArgumentNumber() >= ArgTys.size()) 1513 return IsDeferredCheck || DeferCheck(Ty); 1514 1515 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1516 if (auto *VTy = dyn_cast<VectorType>(NewTy)) { 1517 int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2; 1518 NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs); 1519 return Ty != NewTy; 1520 } 1521 return true; 1522 } 1523 case IITDescriptor::VecOfBitcastsToInt: { 1524 if (D.getArgumentNumber() >= ArgTys.size()) 1525 return IsDeferredCheck || DeferCheck(Ty); 1526 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1527 auto *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1528 if (!ThisArgVecTy || !ReferenceType) 1529 return true; 1530 return ThisArgVecTy != VectorType::getInteger(ReferenceType); 1531 } 1532 } 1533 llvm_unreachable("unhandled"); 1534 } 1535 1536 Intrinsic::MatchIntrinsicTypesResult 1537 Intrinsic::matchIntrinsicSignature(FunctionType *FTy, 1538 ArrayRef<Intrinsic::IITDescriptor> &Infos, 1539 SmallVectorImpl<Type *> &ArgTys) { 1540 SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks; 1541 if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks, 1542 false)) 1543 return MatchIntrinsicTypes_NoMatchRet; 1544 1545 unsigned NumDeferredReturnChecks = DeferredChecks.size(); 1546 1547 for (auto Ty : FTy->params()) 1548 if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false)) 1549 return MatchIntrinsicTypes_NoMatchArg; 1550 1551 for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) { 1552 DeferredIntrinsicMatchPair &Check = DeferredChecks[I]; 1553 if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks, 1554 true)) 1555 return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet 1556 : MatchIntrinsicTypes_NoMatchArg; 1557 } 1558 1559 return MatchIntrinsicTypes_Match; 1560 } 1561 1562 bool 1563 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1564 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1565 // If there are no descriptors left, then it can't be a vararg. 1566 if (Infos.empty()) 1567 return isVarArg; 1568 1569 // There should be only one descriptor remaining at this point. 1570 if (Infos.size() != 1) 1571 return true; 1572 1573 // Check and verify the descriptor. 1574 IITDescriptor D = Infos.front(); 1575 Infos = Infos.slice(1); 1576 if (D.Kind == IITDescriptor::VarArg) 1577 return !isVarArg; 1578 1579 return true; 1580 } 1581 1582 bool Intrinsic::getIntrinsicSignature(Function *F, 1583 SmallVectorImpl<Type *> &ArgTys) { 1584 Intrinsic::ID ID = F->getIntrinsicID(); 1585 if (!ID) 1586 return false; 1587 1588 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1589 getIntrinsicInfoTableEntries(ID, Table); 1590 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1591 1592 if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef, 1593 ArgTys) != 1594 Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) { 1595 return false; 1596 } 1597 if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(), 1598 TableRef)) 1599 return false; 1600 return true; 1601 } 1602 1603 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) { 1604 SmallVector<Type *, 4> ArgTys; 1605 if (!getIntrinsicSignature(F, ArgTys)) 1606 return None; 1607 1608 Intrinsic::ID ID = F->getIntrinsicID(); 1609 StringRef Name = F->getName(); 1610 if (Name == 1611 Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType())) 1612 return None; 1613 1614 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1615 NewDecl->setCallingConv(F->getCallingConv()); 1616 assert(NewDecl->getFunctionType() == F->getFunctionType() && 1617 "Shouldn't change the signature"); 1618 return NewDecl; 1619 } 1620 1621 /// hasAddressTaken - returns true if there are any uses of this function 1622 /// other than direct calls or invokes to it. Optionally ignores callback 1623 /// uses, assume like pointer annotation calls, and references in llvm.used 1624 /// and llvm.compiler.used variables. 1625 bool Function::hasAddressTaken(const User **PutOffender, 1626 bool IgnoreCallbackUses, 1627 bool IgnoreAssumeLikeCalls, 1628 bool IgnoreLLVMUsed) const { 1629 for (const Use &U : uses()) { 1630 const User *FU = U.getUser(); 1631 if (isa<BlockAddress>(FU)) 1632 continue; 1633 1634 if (IgnoreCallbackUses) { 1635 AbstractCallSite ACS(&U); 1636 if (ACS && ACS.isCallbackCall()) 1637 continue; 1638 } 1639 1640 if (isa<BitCastOperator>(FU) && isa<ConstantExpr>(FU) && 1641 llvm::all_of(FU->uses(), [](const Use &U) { 1642 if (const CallBase *CB = dyn_cast<CallBase>(U.getUser())) 1643 return CB->isCallee(&U); 1644 return false; 1645 })) 1646 continue; 1647 1648 const auto *Call = dyn_cast<CallBase>(FU); 1649 if (!Call) { 1650 if (IgnoreAssumeLikeCalls) { 1651 if (const auto *FI = dyn_cast<Instruction>(FU)) { 1652 if (FI->isCast() && !FI->user_empty() && 1653 llvm::all_of(FU->users(), [](const User *U) { 1654 if (const auto *I = dyn_cast<IntrinsicInst>(U)) 1655 return I->isAssumeLikeIntrinsic(); 1656 return false; 1657 })) 1658 continue; 1659 } 1660 } 1661 if (IgnoreLLVMUsed && !FU->user_empty()) { 1662 const User *FUU = FU; 1663 if (isa<BitCastOperator>(FU) && FU->hasOneUse() && 1664 !FU->user_begin()->user_empty()) 1665 FUU = *FU->user_begin(); 1666 if (llvm::all_of(FUU->users(), [](const User *U) { 1667 if (const auto *GV = dyn_cast<GlobalVariable>(U)) 1668 return GV->hasName() && 1669 (GV->getName().equals("llvm.compiler.used") || 1670 GV->getName().equals("llvm.used")); 1671 return false; 1672 })) 1673 continue; 1674 } 1675 if (PutOffender) 1676 *PutOffender = FU; 1677 return true; 1678 } 1679 if (!Call->isCallee(&U)) { 1680 if (PutOffender) 1681 *PutOffender = FU; 1682 return true; 1683 } 1684 } 1685 return false; 1686 } 1687 1688 bool Function::isDefTriviallyDead() const { 1689 // Check the linkage 1690 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1691 !hasAvailableExternallyLinkage()) 1692 return false; 1693 1694 // Check if the function is used by anything other than a blockaddress. 1695 for (const User *U : users()) 1696 if (!isa<BlockAddress>(U)) 1697 return false; 1698 1699 return true; 1700 } 1701 1702 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1703 /// setjmp or other function that gcc recognizes as "returning twice". 1704 bool Function::callsFunctionThatReturnsTwice() const { 1705 for (const Instruction &I : instructions(this)) 1706 if (const auto *Call = dyn_cast<CallBase>(&I)) 1707 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1708 return true; 1709 1710 return false; 1711 } 1712 1713 Constant *Function::getPersonalityFn() const { 1714 assert(hasPersonalityFn() && getNumOperands()); 1715 return cast<Constant>(Op<0>()); 1716 } 1717 1718 void Function::setPersonalityFn(Constant *Fn) { 1719 setHungoffOperand<0>(Fn); 1720 setValueSubclassDataBit(3, Fn != nullptr); 1721 } 1722 1723 Constant *Function::getPrefixData() const { 1724 assert(hasPrefixData() && getNumOperands()); 1725 return cast<Constant>(Op<1>()); 1726 } 1727 1728 void Function::setPrefixData(Constant *PrefixData) { 1729 setHungoffOperand<1>(PrefixData); 1730 setValueSubclassDataBit(1, PrefixData != nullptr); 1731 } 1732 1733 Constant *Function::getPrologueData() const { 1734 assert(hasPrologueData() && getNumOperands()); 1735 return cast<Constant>(Op<2>()); 1736 } 1737 1738 void Function::setPrologueData(Constant *PrologueData) { 1739 setHungoffOperand<2>(PrologueData); 1740 setValueSubclassDataBit(2, PrologueData != nullptr); 1741 } 1742 1743 void Function::allocHungoffUselist() { 1744 // If we've already allocated a uselist, stop here. 1745 if (getNumOperands()) 1746 return; 1747 1748 allocHungoffUses(3, /*IsPhi=*/ false); 1749 setNumHungOffUseOperands(3); 1750 1751 // Initialize the uselist with placeholder operands to allow traversal. 1752 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1753 Op<0>().set(CPN); 1754 Op<1>().set(CPN); 1755 Op<2>().set(CPN); 1756 } 1757 1758 template <int Idx> 1759 void Function::setHungoffOperand(Constant *C) { 1760 if (C) { 1761 allocHungoffUselist(); 1762 Op<Idx>().set(C); 1763 } else if (getNumOperands()) { 1764 Op<Idx>().set( 1765 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1766 } 1767 } 1768 1769 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1770 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1771 if (On) 1772 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1773 else 1774 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1775 } 1776 1777 void Function::setEntryCount(ProfileCount Count, 1778 const DenseSet<GlobalValue::GUID> *S) { 1779 assert(Count.hasValue()); 1780 #if !defined(NDEBUG) 1781 auto PrevCount = getEntryCount(); 1782 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1783 #endif 1784 1785 auto ImportGUIDs = getImportGUIDs(); 1786 if (S == nullptr && ImportGUIDs.size()) 1787 S = &ImportGUIDs; 1788 1789 MDBuilder MDB(getContext()); 1790 setMetadata( 1791 LLVMContext::MD_prof, 1792 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1793 } 1794 1795 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1796 const DenseSet<GlobalValue::GUID> *Imports) { 1797 setEntryCount(ProfileCount(Count, Type), Imports); 1798 } 1799 1800 ProfileCount Function::getEntryCount(bool AllowSynthetic) const { 1801 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1802 if (MD && MD->getOperand(0)) 1803 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1804 if (MDS->getString().equals("function_entry_count")) { 1805 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1806 uint64_t Count = CI->getValue().getZExtValue(); 1807 // A value of -1 is used for SamplePGO when there were no samples. 1808 // Treat this the same as unknown. 1809 if (Count == (uint64_t)-1) 1810 return ProfileCount::getInvalid(); 1811 return ProfileCount(Count, PCT_Real); 1812 } else if (AllowSynthetic && 1813 MDS->getString().equals("synthetic_function_entry_count")) { 1814 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1815 uint64_t Count = CI->getValue().getZExtValue(); 1816 return ProfileCount(Count, PCT_Synthetic); 1817 } 1818 } 1819 return ProfileCount::getInvalid(); 1820 } 1821 1822 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1823 DenseSet<GlobalValue::GUID> R; 1824 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1825 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1826 if (MDS->getString().equals("function_entry_count")) 1827 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1828 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1829 ->getValue() 1830 .getZExtValue()); 1831 return R; 1832 } 1833 1834 void Function::setSectionPrefix(StringRef Prefix) { 1835 MDBuilder MDB(getContext()); 1836 setMetadata(LLVMContext::MD_section_prefix, 1837 MDB.createFunctionSectionPrefix(Prefix)); 1838 } 1839 1840 Optional<StringRef> Function::getSectionPrefix() const { 1841 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1842 assert(cast<MDString>(MD->getOperand(0)) 1843 ->getString() 1844 .equals("function_section_prefix") && 1845 "Metadata not match"); 1846 return cast<MDString>(MD->getOperand(1))->getString(); 1847 } 1848 return None; 1849 } 1850 1851 bool Function::nullPointerIsDefined() const { 1852 return hasFnAttribute(Attribute::NullPointerIsValid); 1853 } 1854 1855 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1856 if (F && F->nullPointerIsDefined()) 1857 return true; 1858 1859 if (AS != 0) 1860 return true; 1861 1862 return false; 1863 } 1864