xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 167ea67d76c297eb5dd3fa5f4ffc3c85e1842faa)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 //===----------------------------------------------------------------------===//
80 // Argument Implementation
81 //===----------------------------------------------------------------------===//
82 
83 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
84     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
85   setName(Name);
86 }
87 
88 void Argument::setParent(Function *parent) {
89   Parent = parent;
90 }
91 
92 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
93   if (!getType()->isPointerTy()) return false;
94   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
95       (AllowUndefOrPoison ||
96        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
97     return true;
98   else if (getDereferenceableBytes() > 0 &&
99            !NullPointerIsDefined(getParent(),
100                                  getType()->getPointerAddressSpace()))
101     return true;
102   return false;
103 }
104 
105 bool Argument::hasByValAttr() const {
106   if (!getType()->isPointerTy()) return false;
107   return hasAttribute(Attribute::ByVal);
108 }
109 
110 bool Argument::hasByRefAttr() const {
111   if (!getType()->isPointerTy())
112     return false;
113   return hasAttribute(Attribute::ByRef);
114 }
115 
116 bool Argument::hasSwiftSelfAttr() const {
117   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
118 }
119 
120 bool Argument::hasSwiftErrorAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
122 }
123 
124 bool Argument::hasInAllocaAttr() const {
125   if (!getType()->isPointerTy()) return false;
126   return hasAttribute(Attribute::InAlloca);
127 }
128 
129 bool Argument::hasPreallocatedAttr() const {
130   if (!getType()->isPointerTy())
131     return false;
132   return hasAttribute(Attribute::Preallocated);
133 }
134 
135 bool Argument::hasPassPointeeByValueCopyAttr() const {
136   if (!getType()->isPointerTy()) return false;
137   AttributeList Attrs = getParent()->getAttributes();
138   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
139          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
140          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
141 }
142 
143 bool Argument::hasPointeeInMemoryValueAttr() const {
144   if (!getType()->isPointerTy())
145     return false;
146   AttributeList Attrs = getParent()->getAttributes();
147   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
148          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
149          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
150          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
151          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
152 }
153 
154 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
155 /// parameter type.
156 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
157   // FIXME: All the type carrying attributes are mutually exclusive, so there
158   // should be a single query to get the stored type that handles any of them.
159   if (Type *ByValTy = ParamAttrs.getByValType())
160     return ByValTy;
161   if (Type *ByRefTy = ParamAttrs.getByRefType())
162     return ByRefTy;
163   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
164     return PreAllocTy;
165   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
166     return InAllocaTy;
167 
168   // FIXME: sret and inalloca always depends on pointee element type. It's also
169   // possible for byval to miss it.
170   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
171       ParamAttrs.hasAttribute(Attribute::ByVal) ||
172       ParamAttrs.hasAttribute(Attribute::StructRet) ||
173       ParamAttrs.hasAttribute(Attribute::Preallocated))
174     return cast<PointerType>(ArgTy)->getElementType();
175 
176   return nullptr;
177 }
178 
179 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
180   AttributeSet ParamAttrs =
181       getParent()->getAttributes().getParamAttributes(getArgNo());
182   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
183     return DL.getTypeAllocSize(MemTy);
184   return 0;
185 }
186 
187 Type *Argument::getPointeeInMemoryValueType() const {
188   AttributeSet ParamAttrs =
189       getParent()->getAttributes().getParamAttributes(getArgNo());
190   return getMemoryParamAllocType(ParamAttrs, getType());
191 }
192 
193 unsigned Argument::getParamAlignment() const {
194   assert(getType()->isPointerTy() && "Only pointers have alignments");
195   return getParent()->getParamAlignment(getArgNo());
196 }
197 
198 MaybeAlign Argument::getParamAlign() const {
199   assert(getType()->isPointerTy() && "Only pointers have alignments");
200   return getParent()->getParamAlign(getArgNo());
201 }
202 
203 Type *Argument::getParamByValType() const {
204   assert(getType()->isPointerTy() && "Only pointers have byval types");
205   return getParent()->getParamByValType(getArgNo());
206 }
207 
208 Type *Argument::getParamStructRetType() const {
209   assert(getType()->isPointerTy() && "Only pointers have sret types");
210   return getParent()->getParamStructRetType(getArgNo());
211 }
212 
213 Type *Argument::getParamByRefType() const {
214   assert(getType()->isPointerTy() && "Only pointers have byref types");
215   return getParent()->getParamByRefType(getArgNo());
216 }
217 
218 Type *Argument::getParamInAllocaType() const {
219   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
220   return getParent()->getParamInAllocaType(getArgNo());
221 }
222 
223 uint64_t Argument::getDereferenceableBytes() const {
224   assert(getType()->isPointerTy() &&
225          "Only pointers have dereferenceable bytes");
226   return getParent()->getParamDereferenceableBytes(getArgNo());
227 }
228 
229 uint64_t Argument::getDereferenceableOrNullBytes() const {
230   assert(getType()->isPointerTy() &&
231          "Only pointers have dereferenceable bytes");
232   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
233 }
234 
235 bool Argument::hasNestAttr() const {
236   if (!getType()->isPointerTy()) return false;
237   return hasAttribute(Attribute::Nest);
238 }
239 
240 bool Argument::hasNoAliasAttr() const {
241   if (!getType()->isPointerTy()) return false;
242   return hasAttribute(Attribute::NoAlias);
243 }
244 
245 bool Argument::hasNoCaptureAttr() const {
246   if (!getType()->isPointerTy()) return false;
247   return hasAttribute(Attribute::NoCapture);
248 }
249 
250 bool Argument::hasNoFreeAttr() const {
251   if (!getType()->isPointerTy()) return false;
252   return hasAttribute(Attribute::NoFree);
253 }
254 
255 bool Argument::hasStructRetAttr() const {
256   if (!getType()->isPointerTy()) return false;
257   return hasAttribute(Attribute::StructRet);
258 }
259 
260 bool Argument::hasInRegAttr() const {
261   return hasAttribute(Attribute::InReg);
262 }
263 
264 bool Argument::hasReturnedAttr() const {
265   return hasAttribute(Attribute::Returned);
266 }
267 
268 bool Argument::hasZExtAttr() const {
269   return hasAttribute(Attribute::ZExt);
270 }
271 
272 bool Argument::hasSExtAttr() const {
273   return hasAttribute(Attribute::SExt);
274 }
275 
276 bool Argument::onlyReadsMemory() const {
277   AttributeList Attrs = getParent()->getAttributes();
278   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
279          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
280 }
281 
282 void Argument::addAttrs(AttrBuilder &B) {
283   AttributeList AL = getParent()->getAttributes();
284   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
285   getParent()->setAttributes(AL);
286 }
287 
288 void Argument::addAttr(Attribute::AttrKind Kind) {
289   getParent()->addParamAttr(getArgNo(), Kind);
290 }
291 
292 void Argument::addAttr(Attribute Attr) {
293   getParent()->addParamAttr(getArgNo(), Attr);
294 }
295 
296 void Argument::removeAttr(Attribute::AttrKind Kind) {
297   getParent()->removeParamAttr(getArgNo(), Kind);
298 }
299 
300 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
301   return getParent()->hasParamAttribute(getArgNo(), Kind);
302 }
303 
304 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
305   return getParent()->getParamAttribute(getArgNo(), Kind);
306 }
307 
308 //===----------------------------------------------------------------------===//
309 // Helper Methods in Function
310 //===----------------------------------------------------------------------===//
311 
312 LLVMContext &Function::getContext() const {
313   return getType()->getContext();
314 }
315 
316 unsigned Function::getInstructionCount() const {
317   unsigned NumInstrs = 0;
318   for (const BasicBlock &BB : BasicBlocks)
319     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
320                                BB.instructionsWithoutDebug().end());
321   return NumInstrs;
322 }
323 
324 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
325                            const Twine &N, Module &M) {
326   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
327 }
328 
329 void Function::removeFromParent() {
330   getParent()->getFunctionList().remove(getIterator());
331 }
332 
333 void Function::eraseFromParent() {
334   getParent()->getFunctionList().erase(getIterator());
335 }
336 
337 //===----------------------------------------------------------------------===//
338 // Function Implementation
339 //===----------------------------------------------------------------------===//
340 
341 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
342   // If AS == -1 and we are passed a valid module pointer we place the function
343   // in the program address space. Otherwise we default to AS0.
344   if (AddrSpace == static_cast<unsigned>(-1))
345     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
346   return AddrSpace;
347 }
348 
349 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
350                    const Twine &name, Module *ParentModule)
351     : GlobalObject(Ty, Value::FunctionVal,
352                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
353                    computeAddrSpace(AddrSpace, ParentModule)),
354       NumArgs(Ty->getNumParams()) {
355   assert(FunctionType::isValidReturnType(getReturnType()) &&
356          "invalid return type");
357   setGlobalObjectSubClassData(0);
358 
359   // We only need a symbol table for a function if the context keeps value names
360   if (!getContext().shouldDiscardValueNames())
361     SymTab = std::make_unique<ValueSymbolTable>();
362 
363   // If the function has arguments, mark them as lazily built.
364   if (Ty->getNumParams())
365     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
366 
367   if (ParentModule)
368     ParentModule->getFunctionList().push_back(this);
369 
370   HasLLVMReservedName = getName().startswith("llvm.");
371   // Ensure intrinsics have the right parameter attributes.
372   // Note, the IntID field will have been set in Value::setName if this function
373   // name is a valid intrinsic ID.
374   if (IntID)
375     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
376 }
377 
378 Function::~Function() {
379   dropAllReferences();    // After this it is safe to delete instructions.
380 
381   // Delete all of the method arguments and unlink from symbol table...
382   if (Arguments)
383     clearArguments();
384 
385   // Remove the function from the on-the-side GC table.
386   clearGC();
387 }
388 
389 void Function::BuildLazyArguments() const {
390   // Create the arguments vector, all arguments start out unnamed.
391   auto *FT = getFunctionType();
392   if (NumArgs > 0) {
393     Arguments = std::allocator<Argument>().allocate(NumArgs);
394     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
395       Type *ArgTy = FT->getParamType(i);
396       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
397       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
398     }
399   }
400 
401   // Clear the lazy arguments bit.
402   unsigned SDC = getSubclassDataFromValue();
403   SDC &= ~(1 << 0);
404   const_cast<Function*>(this)->setValueSubclassData(SDC);
405   assert(!hasLazyArguments());
406 }
407 
408 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
409   return MutableArrayRef<Argument>(Args, Count);
410 }
411 
412 bool Function::isConstrainedFPIntrinsic() const {
413   switch (getIntrinsicID()) {
414 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
415   case Intrinsic::INTRINSIC:
416 #include "llvm/IR/ConstrainedOps.def"
417     return true;
418 #undef INSTRUCTION
419   default:
420     return false;
421   }
422 }
423 
424 void Function::clearArguments() {
425   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
426     A.setName("");
427     A.~Argument();
428   }
429   std::allocator<Argument>().deallocate(Arguments, NumArgs);
430   Arguments = nullptr;
431 }
432 
433 void Function::stealArgumentListFrom(Function &Src) {
434   assert(isDeclaration() && "Expected no references to current arguments");
435 
436   // Drop the current arguments, if any, and set the lazy argument bit.
437   if (!hasLazyArguments()) {
438     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
439                         [](const Argument &A) { return A.use_empty(); }) &&
440            "Expected arguments to be unused in declaration");
441     clearArguments();
442     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
443   }
444 
445   // Nothing to steal if Src has lazy arguments.
446   if (Src.hasLazyArguments())
447     return;
448 
449   // Steal arguments from Src, and fix the lazy argument bits.
450   assert(arg_size() == Src.arg_size());
451   Arguments = Src.Arguments;
452   Src.Arguments = nullptr;
453   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
454     // FIXME: This does the work of transferNodesFromList inefficiently.
455     SmallString<128> Name;
456     if (A.hasName())
457       Name = A.getName();
458     if (!Name.empty())
459       A.setName("");
460     A.setParent(this);
461     if (!Name.empty())
462       A.setName(Name);
463   }
464 
465   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
466   assert(!hasLazyArguments());
467   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
468 }
469 
470 // dropAllReferences() - This function causes all the subinstructions to "let
471 // go" of all references that they are maintaining.  This allows one to
472 // 'delete' a whole class at a time, even though there may be circular
473 // references... first all references are dropped, and all use counts go to
474 // zero.  Then everything is deleted for real.  Note that no operations are
475 // valid on an object that has "dropped all references", except operator
476 // delete.
477 //
478 void Function::dropAllReferences() {
479   setIsMaterializable(false);
480 
481   for (BasicBlock &BB : *this)
482     BB.dropAllReferences();
483 
484   // Delete all basic blocks. They are now unused, except possibly by
485   // blockaddresses, but BasicBlock's destructor takes care of those.
486   while (!BasicBlocks.empty())
487     BasicBlocks.begin()->eraseFromParent();
488 
489   // Drop uses of any optional data (real or placeholder).
490   if (getNumOperands()) {
491     User::dropAllReferences();
492     setNumHungOffUseOperands(0);
493     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
494   }
495 
496   // Metadata is stored in a side-table.
497   clearMetadata();
498 }
499 
500 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
501   AttributeList PAL = getAttributes();
502   PAL = PAL.addAttribute(getContext(), i, Kind);
503   setAttributes(PAL);
504 }
505 
506 void Function::addAttribute(unsigned i, Attribute Attr) {
507   AttributeList PAL = getAttributes();
508   PAL = PAL.addAttribute(getContext(), i, Attr);
509   setAttributes(PAL);
510 }
511 
512 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
513   AttributeList PAL = getAttributes();
514   PAL = PAL.addAttributes(getContext(), i, Attrs);
515   setAttributes(PAL);
516 }
517 
518 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
519   AttributeList PAL = getAttributes();
520   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
521   setAttributes(PAL);
522 }
523 
524 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
525   AttributeList PAL = getAttributes();
526   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
527   setAttributes(PAL);
528 }
529 
530 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
531   AttributeList PAL = getAttributes();
532   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
533   setAttributes(PAL);
534 }
535 
536 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
537   AttributeList PAL = getAttributes();
538   PAL = PAL.removeAttribute(getContext(), i, Kind);
539   setAttributes(PAL);
540 }
541 
542 void Function::removeAttribute(unsigned i, StringRef Kind) {
543   AttributeList PAL = getAttributes();
544   PAL = PAL.removeAttribute(getContext(), i, Kind);
545   setAttributes(PAL);
546 }
547 
548 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
549   AttributeList PAL = getAttributes();
550   PAL = PAL.removeAttributes(getContext(), i, Attrs);
551   setAttributes(PAL);
552 }
553 
554 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
555   AttributeList PAL = getAttributes();
556   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
557   setAttributes(PAL);
558 }
559 
560 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
561   AttributeList PAL = getAttributes();
562   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
563   setAttributes(PAL);
564 }
565 
566 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
567   AttributeList PAL = getAttributes();
568   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
569   setAttributes(PAL);
570 }
571 
572 void Function::removeParamUndefImplyingAttrs(unsigned ArgNo) {
573   AttributeList PAL = getAttributes();
574   PAL = PAL.removeParamUndefImplyingAttributes(getContext(), ArgNo);
575   setAttributes(PAL);
576 }
577 
578 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
579   AttributeList PAL = getAttributes();
580   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
581   setAttributes(PAL);
582 }
583 
584 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
585   AttributeList PAL = getAttributes();
586   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
587   setAttributes(PAL);
588 }
589 
590 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
591   AttributeList PAL = getAttributes();
592   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
593   setAttributes(PAL);
594 }
595 
596 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
597                                                  uint64_t Bytes) {
598   AttributeList PAL = getAttributes();
599   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
600   setAttributes(PAL);
601 }
602 
603 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
604   if (&FPType == &APFloat::IEEEsingle()) {
605     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
606     StringRef Val = Attr.getValueAsString();
607     if (!Val.empty())
608       return parseDenormalFPAttribute(Val);
609 
610     // If the f32 variant of the attribute isn't specified, try to use the
611     // generic one.
612   }
613 
614   Attribute Attr = getFnAttribute("denormal-fp-math");
615   return parseDenormalFPAttribute(Attr.getValueAsString());
616 }
617 
618 const std::string &Function::getGC() const {
619   assert(hasGC() && "Function has no collector");
620   return getContext().getGC(*this);
621 }
622 
623 void Function::setGC(std::string Str) {
624   setValueSubclassDataBit(14, !Str.empty());
625   getContext().setGC(*this, std::move(Str));
626 }
627 
628 void Function::clearGC() {
629   if (!hasGC())
630     return;
631   getContext().deleteGC(*this);
632   setValueSubclassDataBit(14, false);
633 }
634 
635 bool Function::hasStackProtectorFnAttr() const {
636   return hasFnAttribute(Attribute::StackProtect) ||
637          hasFnAttribute(Attribute::StackProtectStrong) ||
638          hasFnAttribute(Attribute::StackProtectReq);
639 }
640 
641 /// Copy all additional attributes (those not needed to create a Function) from
642 /// the Function Src to this one.
643 void Function::copyAttributesFrom(const Function *Src) {
644   GlobalObject::copyAttributesFrom(Src);
645   setCallingConv(Src->getCallingConv());
646   setAttributes(Src->getAttributes());
647   if (Src->hasGC())
648     setGC(Src->getGC());
649   else
650     clearGC();
651   if (Src->hasPersonalityFn())
652     setPersonalityFn(Src->getPersonalityFn());
653   if (Src->hasPrefixData())
654     setPrefixData(Src->getPrefixData());
655   if (Src->hasPrologueData())
656     setPrologueData(Src->getPrologueData());
657 }
658 
659 /// Table of string intrinsic names indexed by enum value.
660 static const char * const IntrinsicNameTable[] = {
661   "not_intrinsic",
662 #define GET_INTRINSIC_NAME_TABLE
663 #include "llvm/IR/IntrinsicImpl.inc"
664 #undef GET_INTRINSIC_NAME_TABLE
665 };
666 
667 /// Table of per-target intrinsic name tables.
668 #define GET_INTRINSIC_TARGET_DATA
669 #include "llvm/IR/IntrinsicImpl.inc"
670 #undef GET_INTRINSIC_TARGET_DATA
671 
672 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
673   return IID > TargetInfos[0].Count;
674 }
675 
676 bool Function::isTargetIntrinsic() const {
677   return isTargetIntrinsic(IntID);
678 }
679 
680 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
681 /// target as \c Name, or the generic table if \c Name is not target specific.
682 ///
683 /// Returns the relevant slice of \c IntrinsicNameTable
684 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
685   assert(Name.startswith("llvm."));
686 
687   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
688   // Drop "llvm." and take the first dotted component. That will be the target
689   // if this is target specific.
690   StringRef Target = Name.drop_front(5).split('.').first;
691   auto It = partition_point(
692       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
693   // We've either found the target or just fall back to the generic set, which
694   // is always first.
695   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
696   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
697 }
698 
699 /// This does the actual lookup of an intrinsic ID which
700 /// matches the given function name.
701 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
702   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
703   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
704   if (Idx == -1)
705     return Intrinsic::not_intrinsic;
706 
707   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
708   // an index into a sub-table.
709   int Adjust = NameTable.data() - IntrinsicNameTable;
710   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
711 
712   // If the intrinsic is not overloaded, require an exact match. If it is
713   // overloaded, require either exact or prefix match.
714   const auto MatchSize = strlen(NameTable[Idx]);
715   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
716   bool IsExactMatch = Name.size() == MatchSize;
717   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
718                                                      : Intrinsic::not_intrinsic;
719 }
720 
721 void Function::recalculateIntrinsicID() {
722   StringRef Name = getName();
723   if (!Name.startswith("llvm.")) {
724     HasLLVMReservedName = false;
725     IntID = Intrinsic::not_intrinsic;
726     return;
727   }
728   HasLLVMReservedName = true;
729   IntID = lookupIntrinsicID(Name);
730 }
731 
732 /// Returns a stable mangling for the type specified for use in the name
733 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
734 /// of named types is simply their name.  Manglings for unnamed types consist
735 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
736 /// combined with the mangling of their component types.  A vararg function
737 /// type will have a suffix of 'vararg'.  Since function types can contain
738 /// other function types, we close a function type mangling with suffix 'f'
739 /// which can't be confused with it's prefix.  This ensures we don't have
740 /// collisions between two unrelated function types. Otherwise, you might
741 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
742 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
743 /// indicating that extra care must be taken to ensure a unique name.
744 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
745   std::string Result;
746   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
747     Result += "p" + utostr(PTyp->getAddressSpace()) +
748               getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
749   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
750     Result += "a" + utostr(ATyp->getNumElements()) +
751               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
752   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
753     if (!STyp->isLiteral()) {
754       Result += "s_";
755       if (STyp->hasName())
756         Result += STyp->getName();
757       else
758         HasUnnamedType = true;
759     } else {
760       Result += "sl_";
761       for (auto Elem : STyp->elements())
762         Result += getMangledTypeStr(Elem, HasUnnamedType);
763     }
764     // Ensure nested structs are distinguishable.
765     Result += "s";
766   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
767     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
768     for (size_t i = 0; i < FT->getNumParams(); i++)
769       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
770     if (FT->isVarArg())
771       Result += "vararg";
772     // Ensure nested function types are distinguishable.
773     Result += "f";
774   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
775     ElementCount EC = VTy->getElementCount();
776     if (EC.isScalable())
777       Result += "nx";
778     Result += "v" + utostr(EC.getKnownMinValue()) +
779               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
780   } else if (Ty) {
781     switch (Ty->getTypeID()) {
782     default: llvm_unreachable("Unhandled type");
783     case Type::VoidTyID:      Result += "isVoid";   break;
784     case Type::MetadataTyID:  Result += "Metadata"; break;
785     case Type::HalfTyID:      Result += "f16";      break;
786     case Type::BFloatTyID:    Result += "bf16";     break;
787     case Type::FloatTyID:     Result += "f32";      break;
788     case Type::DoubleTyID:    Result += "f64";      break;
789     case Type::X86_FP80TyID:  Result += "f80";      break;
790     case Type::FP128TyID:     Result += "f128";     break;
791     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
792     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
793     case Type::X86_AMXTyID:   Result += "x86amx";   break;
794     case Type::IntegerTyID:
795       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
796       break;
797     }
798   }
799   return Result;
800 }
801 
802 StringRef Intrinsic::getName(ID id) {
803   assert(id < num_intrinsics && "Invalid intrinsic ID!");
804   assert(!Intrinsic::isOverloaded(id) &&
805          "This version of getName does not support overloading");
806   return IntrinsicNameTable[id];
807 }
808 
809 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
810                                FunctionType *FT) {
811   assert(Id < num_intrinsics && "Invalid intrinsic ID!");
812   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
813          "This version of getName is for overloaded intrinsics only");
814   bool HasUnnamedType = false;
815   std::string Result(IntrinsicNameTable[Id]);
816   for (Type *Ty : Tys) {
817     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
818   }
819   assert((M || !HasUnnamedType) && "unnamed types need a module");
820   if (M && HasUnnamedType) {
821     if (!FT)
822       FT = getType(M->getContext(), Id, Tys);
823     else
824       assert((FT == getType(M->getContext(), Id, Tys)) &&
825              "Provided FunctionType must match arguments");
826     return M->getUniqueIntrinsicName(Result, Id, FT);
827   }
828   return Result;
829 }
830 
831 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys) {
832   return getName(Id, Tys, nullptr, nullptr);
833 }
834 
835 /// IIT_Info - These are enumerators that describe the entries returned by the
836 /// getIntrinsicInfoTableEntries function.
837 ///
838 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
839 enum IIT_Info {
840   // Common values should be encoded with 0-15.
841   IIT_Done = 0,
842   IIT_I1   = 1,
843   IIT_I8   = 2,
844   IIT_I16  = 3,
845   IIT_I32  = 4,
846   IIT_I64  = 5,
847   IIT_F16  = 6,
848   IIT_F32  = 7,
849   IIT_F64  = 8,
850   IIT_V2   = 9,
851   IIT_V4   = 10,
852   IIT_V8   = 11,
853   IIT_V16  = 12,
854   IIT_V32  = 13,
855   IIT_PTR  = 14,
856   IIT_ARG  = 15,
857 
858   // Values from 16+ are only encodable with the inefficient encoding.
859   IIT_V64  = 16,
860   IIT_MMX  = 17,
861   IIT_TOKEN = 18,
862   IIT_METADATA = 19,
863   IIT_EMPTYSTRUCT = 20,
864   IIT_STRUCT2 = 21,
865   IIT_STRUCT3 = 22,
866   IIT_STRUCT4 = 23,
867   IIT_STRUCT5 = 24,
868   IIT_EXTEND_ARG = 25,
869   IIT_TRUNC_ARG = 26,
870   IIT_ANYPTR = 27,
871   IIT_V1   = 28,
872   IIT_VARARG = 29,
873   IIT_HALF_VEC_ARG = 30,
874   IIT_SAME_VEC_WIDTH_ARG = 31,
875   IIT_PTR_TO_ARG = 32,
876   IIT_PTR_TO_ELT = 33,
877   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
878   IIT_I128 = 35,
879   IIT_V512 = 36,
880   IIT_V1024 = 37,
881   IIT_STRUCT6 = 38,
882   IIT_STRUCT7 = 39,
883   IIT_STRUCT8 = 40,
884   IIT_F128 = 41,
885   IIT_VEC_ELEMENT = 42,
886   IIT_SCALABLE_VEC = 43,
887   IIT_SUBDIVIDE2_ARG = 44,
888   IIT_SUBDIVIDE4_ARG = 45,
889   IIT_VEC_OF_BITCASTS_TO_INT = 46,
890   IIT_V128 = 47,
891   IIT_BF16 = 48,
892   IIT_STRUCT9 = 49,
893   IIT_V256 = 50,
894   IIT_AMX  = 51
895 };
896 
897 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
898                       IIT_Info LastInfo,
899                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
900   using namespace Intrinsic;
901 
902   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
903 
904   IIT_Info Info = IIT_Info(Infos[NextElt++]);
905   unsigned StructElts = 2;
906 
907   switch (Info) {
908   case IIT_Done:
909     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
910     return;
911   case IIT_VARARG:
912     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
913     return;
914   case IIT_MMX:
915     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
916     return;
917   case IIT_AMX:
918     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
919     return;
920   case IIT_TOKEN:
921     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
922     return;
923   case IIT_METADATA:
924     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
925     return;
926   case IIT_F16:
927     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
928     return;
929   case IIT_BF16:
930     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
931     return;
932   case IIT_F32:
933     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
934     return;
935   case IIT_F64:
936     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
937     return;
938   case IIT_F128:
939     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
940     return;
941   case IIT_I1:
942     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
943     return;
944   case IIT_I8:
945     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
946     return;
947   case IIT_I16:
948     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
949     return;
950   case IIT_I32:
951     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
952     return;
953   case IIT_I64:
954     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
955     return;
956   case IIT_I128:
957     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
958     return;
959   case IIT_V1:
960     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
961     DecodeIITType(NextElt, Infos, Info, OutputTable);
962     return;
963   case IIT_V2:
964     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
965     DecodeIITType(NextElt, Infos, Info, OutputTable);
966     return;
967   case IIT_V4:
968     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
969     DecodeIITType(NextElt, Infos, Info, OutputTable);
970     return;
971   case IIT_V8:
972     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
973     DecodeIITType(NextElt, Infos, Info, OutputTable);
974     return;
975   case IIT_V16:
976     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
977     DecodeIITType(NextElt, Infos, Info, OutputTable);
978     return;
979   case IIT_V32:
980     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
981     DecodeIITType(NextElt, Infos, Info, OutputTable);
982     return;
983   case IIT_V64:
984     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
985     DecodeIITType(NextElt, Infos, Info, OutputTable);
986     return;
987   case IIT_V128:
988     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
989     DecodeIITType(NextElt, Infos, Info, OutputTable);
990     return;
991   case IIT_V256:
992     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
993     DecodeIITType(NextElt, Infos, Info, OutputTable);
994     return;
995   case IIT_V512:
996     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
997     DecodeIITType(NextElt, Infos, Info, OutputTable);
998     return;
999   case IIT_V1024:
1000     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1001     DecodeIITType(NextElt, Infos, Info, OutputTable);
1002     return;
1003   case IIT_PTR:
1004     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1005     DecodeIITType(NextElt, Infos, Info, OutputTable);
1006     return;
1007   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1008     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1009                                              Infos[NextElt++]));
1010     DecodeIITType(NextElt, Infos, Info, OutputTable);
1011     return;
1012   }
1013   case IIT_ARG: {
1014     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1015     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1016     return;
1017   }
1018   case IIT_EXTEND_ARG: {
1019     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1020     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1021                                              ArgInfo));
1022     return;
1023   }
1024   case IIT_TRUNC_ARG: {
1025     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1026     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1027                                              ArgInfo));
1028     return;
1029   }
1030   case IIT_HALF_VEC_ARG: {
1031     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1032     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1033                                              ArgInfo));
1034     return;
1035   }
1036   case IIT_SAME_VEC_WIDTH_ARG: {
1037     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1038     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1039                                              ArgInfo));
1040     return;
1041   }
1042   case IIT_PTR_TO_ARG: {
1043     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1044     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1045                                              ArgInfo));
1046     return;
1047   }
1048   case IIT_PTR_TO_ELT: {
1049     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1050     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1051     return;
1052   }
1053   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1054     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1055     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1056     OutputTable.push_back(
1057         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1058     return;
1059   }
1060   case IIT_EMPTYSTRUCT:
1061     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1062     return;
1063   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1064   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1065   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1066   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1067   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1068   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1069   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1070   case IIT_STRUCT2: {
1071     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1072 
1073     for (unsigned i = 0; i != StructElts; ++i)
1074       DecodeIITType(NextElt, Infos, Info, OutputTable);
1075     return;
1076   }
1077   case IIT_SUBDIVIDE2_ARG: {
1078     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1079     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1080                                              ArgInfo));
1081     return;
1082   }
1083   case IIT_SUBDIVIDE4_ARG: {
1084     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1085     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1086                                              ArgInfo));
1087     return;
1088   }
1089   case IIT_VEC_ELEMENT: {
1090     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1091     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1092                                              ArgInfo));
1093     return;
1094   }
1095   case IIT_SCALABLE_VEC: {
1096     DecodeIITType(NextElt, Infos, Info, OutputTable);
1097     return;
1098   }
1099   case IIT_VEC_OF_BITCASTS_TO_INT: {
1100     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1101     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1102                                              ArgInfo));
1103     return;
1104   }
1105   }
1106   llvm_unreachable("unhandled");
1107 }
1108 
1109 #define GET_INTRINSIC_GENERATOR_GLOBAL
1110 #include "llvm/IR/IntrinsicImpl.inc"
1111 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1112 
1113 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1114                                              SmallVectorImpl<IITDescriptor> &T){
1115   // Check to see if the intrinsic's type was expressible by the table.
1116   unsigned TableVal = IIT_Table[id-1];
1117 
1118   // Decode the TableVal into an array of IITValues.
1119   SmallVector<unsigned char, 8> IITValues;
1120   ArrayRef<unsigned char> IITEntries;
1121   unsigned NextElt = 0;
1122   if ((TableVal >> 31) != 0) {
1123     // This is an offset into the IIT_LongEncodingTable.
1124     IITEntries = IIT_LongEncodingTable;
1125 
1126     // Strip sentinel bit.
1127     NextElt = (TableVal << 1) >> 1;
1128   } else {
1129     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1130     // into a single word in the table itself, decode it now.
1131     do {
1132       IITValues.push_back(TableVal & 0xF);
1133       TableVal >>= 4;
1134     } while (TableVal);
1135 
1136     IITEntries = IITValues;
1137     NextElt = 0;
1138   }
1139 
1140   // Okay, decode the table into the output vector of IITDescriptors.
1141   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1142   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1143     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1144 }
1145 
1146 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1147                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1148   using namespace Intrinsic;
1149 
1150   IITDescriptor D = Infos.front();
1151   Infos = Infos.slice(1);
1152 
1153   switch (D.Kind) {
1154   case IITDescriptor::Void: return Type::getVoidTy(Context);
1155   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1156   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1157   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1158   case IITDescriptor::Token: return Type::getTokenTy(Context);
1159   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1160   case IITDescriptor::Half: return Type::getHalfTy(Context);
1161   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1162   case IITDescriptor::Float: return Type::getFloatTy(Context);
1163   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1164   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1165 
1166   case IITDescriptor::Integer:
1167     return IntegerType::get(Context, D.Integer_Width);
1168   case IITDescriptor::Vector:
1169     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1170                            D.Vector_Width);
1171   case IITDescriptor::Pointer:
1172     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1173                             D.Pointer_AddressSpace);
1174   case IITDescriptor::Struct: {
1175     SmallVector<Type *, 8> Elts;
1176     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1177       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1178     return StructType::get(Context, Elts);
1179   }
1180   case IITDescriptor::Argument:
1181     return Tys[D.getArgumentNumber()];
1182   case IITDescriptor::ExtendArgument: {
1183     Type *Ty = Tys[D.getArgumentNumber()];
1184     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1185       return VectorType::getExtendedElementVectorType(VTy);
1186 
1187     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1188   }
1189   case IITDescriptor::TruncArgument: {
1190     Type *Ty = Tys[D.getArgumentNumber()];
1191     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1192       return VectorType::getTruncatedElementVectorType(VTy);
1193 
1194     IntegerType *ITy = cast<IntegerType>(Ty);
1195     assert(ITy->getBitWidth() % 2 == 0);
1196     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1197   }
1198   case IITDescriptor::Subdivide2Argument:
1199   case IITDescriptor::Subdivide4Argument: {
1200     Type *Ty = Tys[D.getArgumentNumber()];
1201     VectorType *VTy = dyn_cast<VectorType>(Ty);
1202     assert(VTy && "Expected an argument of Vector Type");
1203     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1204     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1205   }
1206   case IITDescriptor::HalfVecArgument:
1207     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1208                                                   Tys[D.getArgumentNumber()]));
1209   case IITDescriptor::SameVecWidthArgument: {
1210     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1211     Type *Ty = Tys[D.getArgumentNumber()];
1212     if (auto *VTy = dyn_cast<VectorType>(Ty))
1213       return VectorType::get(EltTy, VTy->getElementCount());
1214     return EltTy;
1215   }
1216   case IITDescriptor::PtrToArgument: {
1217     Type *Ty = Tys[D.getArgumentNumber()];
1218     return PointerType::getUnqual(Ty);
1219   }
1220   case IITDescriptor::PtrToElt: {
1221     Type *Ty = Tys[D.getArgumentNumber()];
1222     VectorType *VTy = dyn_cast<VectorType>(Ty);
1223     if (!VTy)
1224       llvm_unreachable("Expected an argument of Vector Type");
1225     Type *EltTy = VTy->getElementType();
1226     return PointerType::getUnqual(EltTy);
1227   }
1228   case IITDescriptor::VecElementArgument: {
1229     Type *Ty = Tys[D.getArgumentNumber()];
1230     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1231       return VTy->getElementType();
1232     llvm_unreachable("Expected an argument of Vector Type");
1233   }
1234   case IITDescriptor::VecOfBitcastsToInt: {
1235     Type *Ty = Tys[D.getArgumentNumber()];
1236     VectorType *VTy = dyn_cast<VectorType>(Ty);
1237     assert(VTy && "Expected an argument of Vector Type");
1238     return VectorType::getInteger(VTy);
1239   }
1240   case IITDescriptor::VecOfAnyPtrsToElt:
1241     // Return the overloaded type (which determines the pointers address space)
1242     return Tys[D.getOverloadArgNumber()];
1243   }
1244   llvm_unreachable("unhandled");
1245 }
1246 
1247 FunctionType *Intrinsic::getType(LLVMContext &Context,
1248                                  ID id, ArrayRef<Type*> Tys) {
1249   SmallVector<IITDescriptor, 8> Table;
1250   getIntrinsicInfoTableEntries(id, Table);
1251 
1252   ArrayRef<IITDescriptor> TableRef = Table;
1253   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1254 
1255   SmallVector<Type*, 8> ArgTys;
1256   while (!TableRef.empty())
1257     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1258 
1259   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1260   // If we see void type as the type of the last argument, it is vararg intrinsic
1261   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1262     ArgTys.pop_back();
1263     return FunctionType::get(ResultTy, ArgTys, true);
1264   }
1265   return FunctionType::get(ResultTy, ArgTys, false);
1266 }
1267 
1268 bool Intrinsic::isOverloaded(ID id) {
1269 #define GET_INTRINSIC_OVERLOAD_TABLE
1270 #include "llvm/IR/IntrinsicImpl.inc"
1271 #undef GET_INTRINSIC_OVERLOAD_TABLE
1272 }
1273 
1274 bool Intrinsic::isLeaf(ID id) {
1275   switch (id) {
1276   default:
1277     return true;
1278 
1279   case Intrinsic::experimental_gc_statepoint:
1280   case Intrinsic::experimental_patchpoint_void:
1281   case Intrinsic::experimental_patchpoint_i64:
1282     return false;
1283   }
1284 }
1285 
1286 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1287 #define GET_INTRINSIC_ATTRIBUTES
1288 #include "llvm/IR/IntrinsicImpl.inc"
1289 #undef GET_INTRINSIC_ATTRIBUTES
1290 
1291 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1292   // There can never be multiple globals with the same name of different types,
1293   // because intrinsics must be a specific type.
1294   auto *FT = getType(M->getContext(), id, Tys);
1295   return cast<Function>(
1296       M->getOrInsertFunction(Tys.empty() ? getName(id)
1297                                          : getName(id, Tys, M, FT),
1298                              getType(M->getContext(), id, Tys))
1299           .getCallee());
1300 }
1301 
1302 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1303 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1304 #include "llvm/IR/IntrinsicImpl.inc"
1305 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1306 
1307 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1308 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1309 #include "llvm/IR/IntrinsicImpl.inc"
1310 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1311 
1312 using DeferredIntrinsicMatchPair =
1313     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1314 
1315 static bool matchIntrinsicType(
1316     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1317     SmallVectorImpl<Type *> &ArgTys,
1318     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1319     bool IsDeferredCheck) {
1320   using namespace Intrinsic;
1321 
1322   // If we ran out of descriptors, there are too many arguments.
1323   if (Infos.empty()) return true;
1324 
1325   // Do this before slicing off the 'front' part
1326   auto InfosRef = Infos;
1327   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1328     DeferredChecks.emplace_back(T, InfosRef);
1329     return false;
1330   };
1331 
1332   IITDescriptor D = Infos.front();
1333   Infos = Infos.slice(1);
1334 
1335   switch (D.Kind) {
1336     case IITDescriptor::Void: return !Ty->isVoidTy();
1337     case IITDescriptor::VarArg: return true;
1338     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1339     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1340     case IITDescriptor::Token: return !Ty->isTokenTy();
1341     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1342     case IITDescriptor::Half: return !Ty->isHalfTy();
1343     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1344     case IITDescriptor::Float: return !Ty->isFloatTy();
1345     case IITDescriptor::Double: return !Ty->isDoubleTy();
1346     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1347     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1348     case IITDescriptor::Vector: {
1349       VectorType *VT = dyn_cast<VectorType>(Ty);
1350       return !VT || VT->getElementCount() != D.Vector_Width ||
1351              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1352                                 DeferredChecks, IsDeferredCheck);
1353     }
1354     case IITDescriptor::Pointer: {
1355       PointerType *PT = dyn_cast<PointerType>(Ty);
1356       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1357              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1358                                 DeferredChecks, IsDeferredCheck);
1359     }
1360 
1361     case IITDescriptor::Struct: {
1362       StructType *ST = dyn_cast<StructType>(Ty);
1363       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1364         return true;
1365 
1366       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1367         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1368                                DeferredChecks, IsDeferredCheck))
1369           return true;
1370       return false;
1371     }
1372 
1373     case IITDescriptor::Argument:
1374       // If this is the second occurrence of an argument,
1375       // verify that the later instance matches the previous instance.
1376       if (D.getArgumentNumber() < ArgTys.size())
1377         return Ty != ArgTys[D.getArgumentNumber()];
1378 
1379       if (D.getArgumentNumber() > ArgTys.size() ||
1380           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1381         return IsDeferredCheck || DeferCheck(Ty);
1382 
1383       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1384              "Table consistency error");
1385       ArgTys.push_back(Ty);
1386 
1387       switch (D.getArgumentKind()) {
1388         case IITDescriptor::AK_Any:        return false; // Success
1389         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1390         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1391         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1392         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1393         default:                           break;
1394       }
1395       llvm_unreachable("all argument kinds not covered");
1396 
1397     case IITDescriptor::ExtendArgument: {
1398       // If this is a forward reference, defer the check for later.
1399       if (D.getArgumentNumber() >= ArgTys.size())
1400         return IsDeferredCheck || DeferCheck(Ty);
1401 
1402       Type *NewTy = ArgTys[D.getArgumentNumber()];
1403       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1404         NewTy = VectorType::getExtendedElementVectorType(VTy);
1405       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1406         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1407       else
1408         return true;
1409 
1410       return Ty != NewTy;
1411     }
1412     case IITDescriptor::TruncArgument: {
1413       // If this is a forward reference, defer the check for later.
1414       if (D.getArgumentNumber() >= ArgTys.size())
1415         return IsDeferredCheck || DeferCheck(Ty);
1416 
1417       Type *NewTy = ArgTys[D.getArgumentNumber()];
1418       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1419         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1420       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1421         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1422       else
1423         return true;
1424 
1425       return Ty != NewTy;
1426     }
1427     case IITDescriptor::HalfVecArgument:
1428       // If this is a forward reference, defer the check for later.
1429       if (D.getArgumentNumber() >= ArgTys.size())
1430         return IsDeferredCheck || DeferCheck(Ty);
1431       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1432              VectorType::getHalfElementsVectorType(
1433                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1434     case IITDescriptor::SameVecWidthArgument: {
1435       if (D.getArgumentNumber() >= ArgTys.size()) {
1436         // Defer check and subsequent check for the vector element type.
1437         Infos = Infos.slice(1);
1438         return IsDeferredCheck || DeferCheck(Ty);
1439       }
1440       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1441       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1442       // Both must be vectors of the same number of elements or neither.
1443       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1444         return true;
1445       Type *EltTy = Ty;
1446       if (ThisArgType) {
1447         if (ReferenceType->getElementCount() !=
1448             ThisArgType->getElementCount())
1449           return true;
1450         EltTy = ThisArgType->getElementType();
1451       }
1452       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1453                                 IsDeferredCheck);
1454     }
1455     case IITDescriptor::PtrToArgument: {
1456       if (D.getArgumentNumber() >= ArgTys.size())
1457         return IsDeferredCheck || DeferCheck(Ty);
1458       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1459       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1460       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1461     }
1462     case IITDescriptor::PtrToElt: {
1463       if (D.getArgumentNumber() >= ArgTys.size())
1464         return IsDeferredCheck || DeferCheck(Ty);
1465       VectorType * ReferenceType =
1466         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1467       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1468 
1469       return (!ThisArgType || !ReferenceType ||
1470               ThisArgType->getElementType() != ReferenceType->getElementType());
1471     }
1472     case IITDescriptor::VecOfAnyPtrsToElt: {
1473       unsigned RefArgNumber = D.getRefArgNumber();
1474       if (RefArgNumber >= ArgTys.size()) {
1475         if (IsDeferredCheck)
1476           return true;
1477         // If forward referencing, already add the pointer-vector type and
1478         // defer the checks for later.
1479         ArgTys.push_back(Ty);
1480         return DeferCheck(Ty);
1481       }
1482 
1483       if (!IsDeferredCheck){
1484         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1485                "Table consistency error");
1486         ArgTys.push_back(Ty);
1487       }
1488 
1489       // Verify the overloaded type "matches" the Ref type.
1490       // i.e. Ty is a vector with the same width as Ref.
1491       // Composed of pointers to the same element type as Ref.
1492       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1493       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1494       if (!ThisArgVecTy || !ReferenceType ||
1495           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1496         return true;
1497       PointerType *ThisArgEltTy =
1498           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1499       if (!ThisArgEltTy)
1500         return true;
1501       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1502     }
1503     case IITDescriptor::VecElementArgument: {
1504       if (D.getArgumentNumber() >= ArgTys.size())
1505         return IsDeferredCheck ? true : DeferCheck(Ty);
1506       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1507       return !ReferenceType || Ty != ReferenceType->getElementType();
1508     }
1509     case IITDescriptor::Subdivide2Argument:
1510     case IITDescriptor::Subdivide4Argument: {
1511       // If this is a forward reference, defer the check for later.
1512       if (D.getArgumentNumber() >= ArgTys.size())
1513         return IsDeferredCheck || DeferCheck(Ty);
1514 
1515       Type *NewTy = ArgTys[D.getArgumentNumber()];
1516       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1517         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1518         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1519         return Ty != NewTy;
1520       }
1521       return true;
1522     }
1523     case IITDescriptor::VecOfBitcastsToInt: {
1524       if (D.getArgumentNumber() >= ArgTys.size())
1525         return IsDeferredCheck || DeferCheck(Ty);
1526       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1527       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1528       if (!ThisArgVecTy || !ReferenceType)
1529         return true;
1530       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1531     }
1532   }
1533   llvm_unreachable("unhandled");
1534 }
1535 
1536 Intrinsic::MatchIntrinsicTypesResult
1537 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1538                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1539                                    SmallVectorImpl<Type *> &ArgTys) {
1540   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1541   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1542                          false))
1543     return MatchIntrinsicTypes_NoMatchRet;
1544 
1545   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1546 
1547   for (auto Ty : FTy->params())
1548     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1549       return MatchIntrinsicTypes_NoMatchArg;
1550 
1551   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1552     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1553     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1554                            true))
1555       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1556                                          : MatchIntrinsicTypes_NoMatchArg;
1557   }
1558 
1559   return MatchIntrinsicTypes_Match;
1560 }
1561 
1562 bool
1563 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1564                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1565   // If there are no descriptors left, then it can't be a vararg.
1566   if (Infos.empty())
1567     return isVarArg;
1568 
1569   // There should be only one descriptor remaining at this point.
1570   if (Infos.size() != 1)
1571     return true;
1572 
1573   // Check and verify the descriptor.
1574   IITDescriptor D = Infos.front();
1575   Infos = Infos.slice(1);
1576   if (D.Kind == IITDescriptor::VarArg)
1577     return !isVarArg;
1578 
1579   return true;
1580 }
1581 
1582 bool Intrinsic::getIntrinsicSignature(Function *F,
1583                                       SmallVectorImpl<Type *> &ArgTys) {
1584   Intrinsic::ID ID = F->getIntrinsicID();
1585   if (!ID)
1586     return false;
1587 
1588   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1589   getIntrinsicInfoTableEntries(ID, Table);
1590   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1591 
1592   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1593                                          ArgTys) !=
1594       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1595     return false;
1596   }
1597   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1598                                       TableRef))
1599     return false;
1600   return true;
1601 }
1602 
1603 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1604   SmallVector<Type *, 4> ArgTys;
1605   if (!getIntrinsicSignature(F, ArgTys))
1606     return None;
1607 
1608   Intrinsic::ID ID = F->getIntrinsicID();
1609   StringRef Name = F->getName();
1610   if (Name ==
1611       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()))
1612     return None;
1613 
1614   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1615   NewDecl->setCallingConv(F->getCallingConv());
1616   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1617          "Shouldn't change the signature");
1618   return NewDecl;
1619 }
1620 
1621 /// hasAddressTaken - returns true if there are any uses of this function
1622 /// other than direct calls or invokes to it. Optionally ignores callback
1623 /// uses, assume like pointer annotation calls, and references in llvm.used
1624 /// and llvm.compiler.used variables.
1625 bool Function::hasAddressTaken(const User **PutOffender,
1626                                bool IgnoreCallbackUses,
1627                                bool IgnoreAssumeLikeCalls,
1628                                bool IgnoreLLVMUsed) const {
1629   for (const Use &U : uses()) {
1630     const User *FU = U.getUser();
1631     if (isa<BlockAddress>(FU))
1632       continue;
1633 
1634     if (IgnoreCallbackUses) {
1635       AbstractCallSite ACS(&U);
1636       if (ACS && ACS.isCallbackCall())
1637         continue;
1638     }
1639 
1640     if (isa<BitCastOperator>(FU) && isa<ConstantExpr>(FU) &&
1641         llvm::all_of(FU->uses(), [](const Use &U) {
1642           if (const CallBase *CB = dyn_cast<CallBase>(U.getUser()))
1643             return CB->isCallee(&U);
1644           return false;
1645         }))
1646       continue;
1647 
1648     const auto *Call = dyn_cast<CallBase>(FU);
1649     if (!Call) {
1650       if (IgnoreAssumeLikeCalls) {
1651         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1652           if (FI->isCast() && !FI->user_empty() &&
1653               llvm::all_of(FU->users(), [](const User *U) {
1654                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1655                   return I->isAssumeLikeIntrinsic();
1656                 return false;
1657               }))
1658             continue;
1659         }
1660       }
1661       if (IgnoreLLVMUsed && !FU->user_empty()) {
1662         const User *FUU = FU;
1663         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1664             !FU->user_begin()->user_empty())
1665           FUU = *FU->user_begin();
1666         if (llvm::all_of(FUU->users(), [](const User *U) {
1667               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1668                 return GV->hasName() &&
1669                        (GV->getName().equals("llvm.compiler.used") ||
1670                         GV->getName().equals("llvm.used"));
1671               return false;
1672             }))
1673           continue;
1674       }
1675       if (PutOffender)
1676         *PutOffender = FU;
1677       return true;
1678     }
1679     if (!Call->isCallee(&U)) {
1680       if (PutOffender)
1681         *PutOffender = FU;
1682       return true;
1683     }
1684   }
1685   return false;
1686 }
1687 
1688 bool Function::isDefTriviallyDead() const {
1689   // Check the linkage
1690   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1691       !hasAvailableExternallyLinkage())
1692     return false;
1693 
1694   // Check if the function is used by anything other than a blockaddress.
1695   for (const User *U : users())
1696     if (!isa<BlockAddress>(U))
1697       return false;
1698 
1699   return true;
1700 }
1701 
1702 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1703 /// setjmp or other function that gcc recognizes as "returning twice".
1704 bool Function::callsFunctionThatReturnsTwice() const {
1705   for (const Instruction &I : instructions(this))
1706     if (const auto *Call = dyn_cast<CallBase>(&I))
1707       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1708         return true;
1709 
1710   return false;
1711 }
1712 
1713 Constant *Function::getPersonalityFn() const {
1714   assert(hasPersonalityFn() && getNumOperands());
1715   return cast<Constant>(Op<0>());
1716 }
1717 
1718 void Function::setPersonalityFn(Constant *Fn) {
1719   setHungoffOperand<0>(Fn);
1720   setValueSubclassDataBit(3, Fn != nullptr);
1721 }
1722 
1723 Constant *Function::getPrefixData() const {
1724   assert(hasPrefixData() && getNumOperands());
1725   return cast<Constant>(Op<1>());
1726 }
1727 
1728 void Function::setPrefixData(Constant *PrefixData) {
1729   setHungoffOperand<1>(PrefixData);
1730   setValueSubclassDataBit(1, PrefixData != nullptr);
1731 }
1732 
1733 Constant *Function::getPrologueData() const {
1734   assert(hasPrologueData() && getNumOperands());
1735   return cast<Constant>(Op<2>());
1736 }
1737 
1738 void Function::setPrologueData(Constant *PrologueData) {
1739   setHungoffOperand<2>(PrologueData);
1740   setValueSubclassDataBit(2, PrologueData != nullptr);
1741 }
1742 
1743 void Function::allocHungoffUselist() {
1744   // If we've already allocated a uselist, stop here.
1745   if (getNumOperands())
1746     return;
1747 
1748   allocHungoffUses(3, /*IsPhi=*/ false);
1749   setNumHungOffUseOperands(3);
1750 
1751   // Initialize the uselist with placeholder operands to allow traversal.
1752   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1753   Op<0>().set(CPN);
1754   Op<1>().set(CPN);
1755   Op<2>().set(CPN);
1756 }
1757 
1758 template <int Idx>
1759 void Function::setHungoffOperand(Constant *C) {
1760   if (C) {
1761     allocHungoffUselist();
1762     Op<Idx>().set(C);
1763   } else if (getNumOperands()) {
1764     Op<Idx>().set(
1765         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1766   }
1767 }
1768 
1769 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1770   assert(Bit < 16 && "SubclassData contains only 16 bits");
1771   if (On)
1772     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1773   else
1774     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1775 }
1776 
1777 void Function::setEntryCount(ProfileCount Count,
1778                              const DenseSet<GlobalValue::GUID> *S) {
1779   assert(Count.hasValue());
1780 #if !defined(NDEBUG)
1781   auto PrevCount = getEntryCount();
1782   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1783 #endif
1784 
1785   auto ImportGUIDs = getImportGUIDs();
1786   if (S == nullptr && ImportGUIDs.size())
1787     S = &ImportGUIDs;
1788 
1789   MDBuilder MDB(getContext());
1790   setMetadata(
1791       LLVMContext::MD_prof,
1792       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1793 }
1794 
1795 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1796                              const DenseSet<GlobalValue::GUID> *Imports) {
1797   setEntryCount(ProfileCount(Count, Type), Imports);
1798 }
1799 
1800 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1801   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1802   if (MD && MD->getOperand(0))
1803     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1804       if (MDS->getString().equals("function_entry_count")) {
1805         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1806         uint64_t Count = CI->getValue().getZExtValue();
1807         // A value of -1 is used for SamplePGO when there were no samples.
1808         // Treat this the same as unknown.
1809         if (Count == (uint64_t)-1)
1810           return ProfileCount::getInvalid();
1811         return ProfileCount(Count, PCT_Real);
1812       } else if (AllowSynthetic &&
1813                  MDS->getString().equals("synthetic_function_entry_count")) {
1814         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1815         uint64_t Count = CI->getValue().getZExtValue();
1816         return ProfileCount(Count, PCT_Synthetic);
1817       }
1818     }
1819   return ProfileCount::getInvalid();
1820 }
1821 
1822 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1823   DenseSet<GlobalValue::GUID> R;
1824   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1825     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1826       if (MDS->getString().equals("function_entry_count"))
1827         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1828           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1829                        ->getValue()
1830                        .getZExtValue());
1831   return R;
1832 }
1833 
1834 void Function::setSectionPrefix(StringRef Prefix) {
1835   MDBuilder MDB(getContext());
1836   setMetadata(LLVMContext::MD_section_prefix,
1837               MDB.createFunctionSectionPrefix(Prefix));
1838 }
1839 
1840 Optional<StringRef> Function::getSectionPrefix() const {
1841   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1842     assert(cast<MDString>(MD->getOperand(0))
1843                ->getString()
1844                .equals("function_section_prefix") &&
1845            "Metadata not match");
1846     return cast<MDString>(MD->getOperand(1))->getString();
1847   }
1848   return None;
1849 }
1850 
1851 bool Function::nullPointerIsDefined() const {
1852   return hasFnAttribute(Attribute::NullPointerIsValid);
1853 }
1854 
1855 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1856   if (F && F->nullPointerIsDefined())
1857     return true;
1858 
1859   if (AS != 0)
1860     return true;
1861 
1862   return false;
1863 }
1864