xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 15e9a6c2118fa3db2c80043e6679da5dcc72b3a7)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/IntrinsicsAArch64.h"
36 #include "llvm/IR/IntrinsicsAMDGPU.h"
37 #include "llvm/IR/IntrinsicsARM.h"
38 #include "llvm/IR/IntrinsicsBPF.h"
39 #include "llvm/IR/IntrinsicsHexagon.h"
40 #include "llvm/IR/IntrinsicsMips.h"
41 #include "llvm/IR/IntrinsicsNVPTX.h"
42 #include "llvm/IR/IntrinsicsPowerPC.h"
43 #include "llvm/IR/IntrinsicsR600.h"
44 #include "llvm/IR/IntrinsicsRISCV.h"
45 #include "llvm/IR/IntrinsicsS390.h"
46 #include "llvm/IR/IntrinsicsWebAssembly.h"
47 #include "llvm/IR/IntrinsicsX86.h"
48 #include "llvm/IR/IntrinsicsXCore.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/IR/MDBuilder.h"
51 #include "llvm/IR/Metadata.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/SymbolTableListTraits.h"
54 #include "llvm/IR/Type.h"
55 #include "llvm/IR/Use.h"
56 #include "llvm/IR/User.h"
57 #include "llvm/IR/Value.h"
58 #include "llvm/IR/ValueSymbolTable.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Compiler.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include <algorithm>
63 #include <cassert>
64 #include <cstddef>
65 #include <cstdint>
66 #include <cstring>
67 #include <string>
68 
69 using namespace llvm;
70 using ProfileCount = Function::ProfileCount;
71 
72 // Explicit instantiations of SymbolTableListTraits since some of the methods
73 // are not in the public header file...
74 template class llvm::SymbolTableListTraits<BasicBlock>;
75 
76 //===----------------------------------------------------------------------===//
77 // Argument Implementation
78 //===----------------------------------------------------------------------===//
79 
80 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
81     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
82   setName(Name);
83 }
84 
85 void Argument::setParent(Function *parent) {
86   Parent = parent;
87 }
88 
89 bool Argument::hasNonNullAttr() const {
90   if (!getType()->isPointerTy()) return false;
91   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
92     return true;
93   else if (getDereferenceableBytes() > 0 &&
94            !NullPointerIsDefined(getParent(),
95                                  getType()->getPointerAddressSpace()))
96     return true;
97   return false;
98 }
99 
100 bool Argument::hasByValAttr() const {
101   if (!getType()->isPointerTy()) return false;
102   return hasAttribute(Attribute::ByVal);
103 }
104 
105 bool Argument::hasByRefAttr() const {
106   if (!getType()->isPointerTy())
107     return false;
108   return hasAttribute(Attribute::ByRef);
109 }
110 
111 bool Argument::hasSwiftSelfAttr() const {
112   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
113 }
114 
115 bool Argument::hasSwiftErrorAttr() const {
116   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
117 }
118 
119 bool Argument::hasInAllocaAttr() const {
120   if (!getType()->isPointerTy()) return false;
121   return hasAttribute(Attribute::InAlloca);
122 }
123 
124 bool Argument::hasPreallocatedAttr() const {
125   if (!getType()->isPointerTy())
126     return false;
127   return hasAttribute(Attribute::Preallocated);
128 }
129 
130 bool Argument::hasPassPointeeByValueCopyAttr() const {
131   if (!getType()->isPointerTy()) return false;
132   AttributeList Attrs = getParent()->getAttributes();
133   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
134          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
135          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
136 }
137 
138 bool Argument::hasPointeeInMemoryValueAttr() const {
139   if (!getType()->isPointerTy())
140     return false;
141   AttributeList Attrs = getParent()->getAttributes();
142   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
143          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
144          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
145          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
146 }
147 
148 /// For a byval, inalloca, or preallocated parameter, get the in-memory
149 /// parameter type.
150 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
151   // FIXME: All the type carrying attributes are mutually exclusive, so there
152   // should be a single query to get the stored type that handles any of them.
153   if (Type *ByValTy = ParamAttrs.getByValType())
154     return ByValTy;
155   if (Type *ByRefTy = ParamAttrs.getByRefType())
156     return ByRefTy;
157   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
158     return PreAllocTy;
159 
160   // FIXME: inalloca always depends on pointee element type. It's also possible
161   // for byval to miss it.
162   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
163       ParamAttrs.hasAttribute(Attribute::ByVal) ||
164       ParamAttrs.hasAttribute(Attribute::Preallocated))
165     return cast<PointerType>(ArgTy)->getElementType();
166 
167   return nullptr;
168 }
169 
170 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
171   AttributeSet ParamAttrs =
172       getParent()->getAttributes().getParamAttributes(getArgNo());
173   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
174     return DL.getTypeAllocSize(MemTy);
175   return 0;
176 }
177 
178 Type *Argument::getPointeeInMemoryValueType() const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttributes(getArgNo());
181   return getMemoryParamAllocType(ParamAttrs, getType());
182 }
183 
184 unsigned Argument::getParamAlignment() const {
185   assert(getType()->isPointerTy() && "Only pointers have alignments");
186   return getParent()->getParamAlignment(getArgNo());
187 }
188 
189 MaybeAlign Argument::getParamAlign() const {
190   assert(getType()->isPointerTy() && "Only pointers have alignments");
191   return getParent()->getParamAlign(getArgNo());
192 }
193 
194 Type *Argument::getParamByValType() const {
195   assert(getType()->isPointerTy() && "Only pointers have byval types");
196   return getParent()->getParamByValType(getArgNo());
197 }
198 
199 Type *Argument::getParamByRefType() const {
200   assert(getType()->isPointerTy() && "Only pointers have byval types");
201   return getParent()->getParamByRefType(getArgNo());
202 }
203 
204 uint64_t Argument::getDereferenceableBytes() const {
205   assert(getType()->isPointerTy() &&
206          "Only pointers have dereferenceable bytes");
207   return getParent()->getParamDereferenceableBytes(getArgNo());
208 }
209 
210 uint64_t Argument::getDereferenceableOrNullBytes() const {
211   assert(getType()->isPointerTy() &&
212          "Only pointers have dereferenceable bytes");
213   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
214 }
215 
216 bool Argument::hasNestAttr() const {
217   if (!getType()->isPointerTy()) return false;
218   return hasAttribute(Attribute::Nest);
219 }
220 
221 bool Argument::hasNoAliasAttr() const {
222   if (!getType()->isPointerTy()) return false;
223   return hasAttribute(Attribute::NoAlias);
224 }
225 
226 bool Argument::hasNoCaptureAttr() const {
227   if (!getType()->isPointerTy()) return false;
228   return hasAttribute(Attribute::NoCapture);
229 }
230 
231 bool Argument::hasStructRetAttr() const {
232   if (!getType()->isPointerTy()) return false;
233   return hasAttribute(Attribute::StructRet);
234 }
235 
236 bool Argument::hasInRegAttr() const {
237   return hasAttribute(Attribute::InReg);
238 }
239 
240 bool Argument::hasReturnedAttr() const {
241   return hasAttribute(Attribute::Returned);
242 }
243 
244 bool Argument::hasZExtAttr() const {
245   return hasAttribute(Attribute::ZExt);
246 }
247 
248 bool Argument::hasSExtAttr() const {
249   return hasAttribute(Attribute::SExt);
250 }
251 
252 bool Argument::onlyReadsMemory() const {
253   AttributeList Attrs = getParent()->getAttributes();
254   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
255          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
256 }
257 
258 void Argument::addAttrs(AttrBuilder &B) {
259   AttributeList AL = getParent()->getAttributes();
260   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
261   getParent()->setAttributes(AL);
262 }
263 
264 void Argument::addAttr(Attribute::AttrKind Kind) {
265   getParent()->addParamAttr(getArgNo(), Kind);
266 }
267 
268 void Argument::addAttr(Attribute Attr) {
269   getParent()->addParamAttr(getArgNo(), Attr);
270 }
271 
272 void Argument::removeAttr(Attribute::AttrKind Kind) {
273   getParent()->removeParamAttr(getArgNo(), Kind);
274 }
275 
276 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
277   return getParent()->hasParamAttribute(getArgNo(), Kind);
278 }
279 
280 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
281   return getParent()->getParamAttribute(getArgNo(), Kind);
282 }
283 
284 //===----------------------------------------------------------------------===//
285 // Helper Methods in Function
286 //===----------------------------------------------------------------------===//
287 
288 LLVMContext &Function::getContext() const {
289   return getType()->getContext();
290 }
291 
292 unsigned Function::getInstructionCount() const {
293   unsigned NumInstrs = 0;
294   for (const BasicBlock &BB : BasicBlocks)
295     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
296                                BB.instructionsWithoutDebug().end());
297   return NumInstrs;
298 }
299 
300 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
301                            const Twine &N, Module &M) {
302   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
303 }
304 
305 void Function::removeFromParent() {
306   getParent()->getFunctionList().remove(getIterator());
307 }
308 
309 void Function::eraseFromParent() {
310   getParent()->getFunctionList().erase(getIterator());
311 }
312 
313 //===----------------------------------------------------------------------===//
314 // Function Implementation
315 //===----------------------------------------------------------------------===//
316 
317 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
318   // If AS == -1 and we are passed a valid module pointer we place the function
319   // in the program address space. Otherwise we default to AS0.
320   if (AddrSpace == static_cast<unsigned>(-1))
321     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
322   return AddrSpace;
323 }
324 
325 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
326                    const Twine &name, Module *ParentModule)
327     : GlobalObject(Ty, Value::FunctionVal,
328                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
329                    computeAddrSpace(AddrSpace, ParentModule)),
330       NumArgs(Ty->getNumParams()) {
331   assert(FunctionType::isValidReturnType(getReturnType()) &&
332          "invalid return type");
333   setGlobalObjectSubClassData(0);
334 
335   // We only need a symbol table for a function if the context keeps value names
336   if (!getContext().shouldDiscardValueNames())
337     SymTab = std::make_unique<ValueSymbolTable>();
338 
339   // If the function has arguments, mark them as lazily built.
340   if (Ty->getNumParams())
341     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
342 
343   if (ParentModule)
344     ParentModule->getFunctionList().push_back(this);
345 
346   HasLLVMReservedName = getName().startswith("llvm.");
347   // Ensure intrinsics have the right parameter attributes.
348   // Note, the IntID field will have been set in Value::setName if this function
349   // name is a valid intrinsic ID.
350   if (IntID)
351     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
352 }
353 
354 Function::~Function() {
355   dropAllReferences();    // After this it is safe to delete instructions.
356 
357   // Delete all of the method arguments and unlink from symbol table...
358   if (Arguments)
359     clearArguments();
360 
361   // Remove the function from the on-the-side GC table.
362   clearGC();
363 }
364 
365 void Function::BuildLazyArguments() const {
366   // Create the arguments vector, all arguments start out unnamed.
367   auto *FT = getFunctionType();
368   if (NumArgs > 0) {
369     Arguments = std::allocator<Argument>().allocate(NumArgs);
370     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
371       Type *ArgTy = FT->getParamType(i);
372       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
373       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
374     }
375   }
376 
377   // Clear the lazy arguments bit.
378   unsigned SDC = getSubclassDataFromValue();
379   SDC &= ~(1 << 0);
380   const_cast<Function*>(this)->setValueSubclassData(SDC);
381   assert(!hasLazyArguments());
382 }
383 
384 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
385   return MutableArrayRef<Argument>(Args, Count);
386 }
387 
388 bool Function::isConstrainedFPIntrinsic() const {
389   switch (getIntrinsicID()) {
390 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
391   case Intrinsic::INTRINSIC:
392 #include "llvm/IR/ConstrainedOps.def"
393     return true;
394 #undef INSTRUCTION
395   default:
396     return false;
397   }
398 }
399 
400 void Function::clearArguments() {
401   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
402     A.setName("");
403     A.~Argument();
404   }
405   std::allocator<Argument>().deallocate(Arguments, NumArgs);
406   Arguments = nullptr;
407 }
408 
409 void Function::stealArgumentListFrom(Function &Src) {
410   assert(isDeclaration() && "Expected no references to current arguments");
411 
412   // Drop the current arguments, if any, and set the lazy argument bit.
413   if (!hasLazyArguments()) {
414     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
415                         [](const Argument &A) { return A.use_empty(); }) &&
416            "Expected arguments to be unused in declaration");
417     clearArguments();
418     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
419   }
420 
421   // Nothing to steal if Src has lazy arguments.
422   if (Src.hasLazyArguments())
423     return;
424 
425   // Steal arguments from Src, and fix the lazy argument bits.
426   assert(arg_size() == Src.arg_size());
427   Arguments = Src.Arguments;
428   Src.Arguments = nullptr;
429   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
430     // FIXME: This does the work of transferNodesFromList inefficiently.
431     SmallString<128> Name;
432     if (A.hasName())
433       Name = A.getName();
434     if (!Name.empty())
435       A.setName("");
436     A.setParent(this);
437     if (!Name.empty())
438       A.setName(Name);
439   }
440 
441   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
442   assert(!hasLazyArguments());
443   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
444 }
445 
446 // dropAllReferences() - This function causes all the subinstructions to "let
447 // go" of all references that they are maintaining.  This allows one to
448 // 'delete' a whole class at a time, even though there may be circular
449 // references... first all references are dropped, and all use counts go to
450 // zero.  Then everything is deleted for real.  Note that no operations are
451 // valid on an object that has "dropped all references", except operator
452 // delete.
453 //
454 void Function::dropAllReferences() {
455   setIsMaterializable(false);
456 
457   for (BasicBlock &BB : *this)
458     BB.dropAllReferences();
459 
460   // Delete all basic blocks. They are now unused, except possibly by
461   // blockaddresses, but BasicBlock's destructor takes care of those.
462   while (!BasicBlocks.empty())
463     BasicBlocks.begin()->eraseFromParent();
464 
465   // Drop uses of any optional data (real or placeholder).
466   if (getNumOperands()) {
467     User::dropAllReferences();
468     setNumHungOffUseOperands(0);
469     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
470   }
471 
472   // Metadata is stored in a side-table.
473   clearMetadata();
474 }
475 
476 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
477   AttributeList PAL = getAttributes();
478   PAL = PAL.addAttribute(getContext(), i, Kind);
479   setAttributes(PAL);
480 }
481 
482 void Function::addAttribute(unsigned i, Attribute Attr) {
483   AttributeList PAL = getAttributes();
484   PAL = PAL.addAttribute(getContext(), i, Attr);
485   setAttributes(PAL);
486 }
487 
488 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
489   AttributeList PAL = getAttributes();
490   PAL = PAL.addAttributes(getContext(), i, Attrs);
491   setAttributes(PAL);
492 }
493 
494 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
495   AttributeList PAL = getAttributes();
496   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
497   setAttributes(PAL);
498 }
499 
500 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
501   AttributeList PAL = getAttributes();
502   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
503   setAttributes(PAL);
504 }
505 
506 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
507   AttributeList PAL = getAttributes();
508   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
509   setAttributes(PAL);
510 }
511 
512 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
513   AttributeList PAL = getAttributes();
514   PAL = PAL.removeAttribute(getContext(), i, Kind);
515   setAttributes(PAL);
516 }
517 
518 void Function::removeAttribute(unsigned i, StringRef Kind) {
519   AttributeList PAL = getAttributes();
520   PAL = PAL.removeAttribute(getContext(), i, Kind);
521   setAttributes(PAL);
522 }
523 
524 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
525   AttributeList PAL = getAttributes();
526   PAL = PAL.removeAttributes(getContext(), i, Attrs);
527   setAttributes(PAL);
528 }
529 
530 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
531   AttributeList PAL = getAttributes();
532   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
533   setAttributes(PAL);
534 }
535 
536 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
537   AttributeList PAL = getAttributes();
538   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
539   setAttributes(PAL);
540 }
541 
542 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
543   AttributeList PAL = getAttributes();
544   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
545   setAttributes(PAL);
546 }
547 
548 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
549   AttributeList PAL = getAttributes();
550   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
551   setAttributes(PAL);
552 }
553 
554 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
555   AttributeList PAL = getAttributes();
556   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
557   setAttributes(PAL);
558 }
559 
560 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
561   AttributeList PAL = getAttributes();
562   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
563   setAttributes(PAL);
564 }
565 
566 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
567                                                  uint64_t Bytes) {
568   AttributeList PAL = getAttributes();
569   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
570   setAttributes(PAL);
571 }
572 
573 const std::string &Function::getGC() const {
574   assert(hasGC() && "Function has no collector");
575   return getContext().getGC(*this);
576 }
577 
578 void Function::setGC(std::string Str) {
579   setValueSubclassDataBit(14, !Str.empty());
580   getContext().setGC(*this, std::move(Str));
581 }
582 
583 void Function::clearGC() {
584   if (!hasGC())
585     return;
586   getContext().deleteGC(*this);
587   setValueSubclassDataBit(14, false);
588 }
589 
590 /// Copy all additional attributes (those not needed to create a Function) from
591 /// the Function Src to this one.
592 void Function::copyAttributesFrom(const Function *Src) {
593   GlobalObject::copyAttributesFrom(Src);
594   setCallingConv(Src->getCallingConv());
595   setAttributes(Src->getAttributes());
596   if (Src->hasGC())
597     setGC(Src->getGC());
598   else
599     clearGC();
600   if (Src->hasPersonalityFn())
601     setPersonalityFn(Src->getPersonalityFn());
602   if (Src->hasPrefixData())
603     setPrefixData(Src->getPrefixData());
604   if (Src->hasPrologueData())
605     setPrologueData(Src->getPrologueData());
606 }
607 
608 /// Table of string intrinsic names indexed by enum value.
609 static const char * const IntrinsicNameTable[] = {
610   "not_intrinsic",
611 #define GET_INTRINSIC_NAME_TABLE
612 #include "llvm/IR/IntrinsicImpl.inc"
613 #undef GET_INTRINSIC_NAME_TABLE
614 };
615 
616 /// Table of per-target intrinsic name tables.
617 #define GET_INTRINSIC_TARGET_DATA
618 #include "llvm/IR/IntrinsicImpl.inc"
619 #undef GET_INTRINSIC_TARGET_DATA
620 
621 bool Function::isTargetIntrinsic() const {
622   return IntID > TargetInfos[0].Count;
623 }
624 
625 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
626 /// target as \c Name, or the generic table if \c Name is not target specific.
627 ///
628 /// Returns the relevant slice of \c IntrinsicNameTable
629 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
630   assert(Name.startswith("llvm."));
631 
632   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
633   // Drop "llvm." and take the first dotted component. That will be the target
634   // if this is target specific.
635   StringRef Target = Name.drop_front(5).split('.').first;
636   auto It = partition_point(
637       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
638   // We've either found the target or just fall back to the generic set, which
639   // is always first.
640   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
641   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
642 }
643 
644 /// This does the actual lookup of an intrinsic ID which
645 /// matches the given function name.
646 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
647   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
648   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
649   if (Idx == -1)
650     return Intrinsic::not_intrinsic;
651 
652   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
653   // an index into a sub-table.
654   int Adjust = NameTable.data() - IntrinsicNameTable;
655   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
656 
657   // If the intrinsic is not overloaded, require an exact match. If it is
658   // overloaded, require either exact or prefix match.
659   const auto MatchSize = strlen(NameTable[Idx]);
660   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
661   bool IsExactMatch = Name.size() == MatchSize;
662   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
663                                                      : Intrinsic::not_intrinsic;
664 }
665 
666 void Function::recalculateIntrinsicID() {
667   StringRef Name = getName();
668   if (!Name.startswith("llvm.")) {
669     HasLLVMReservedName = false;
670     IntID = Intrinsic::not_intrinsic;
671     return;
672   }
673   HasLLVMReservedName = true;
674   IntID = lookupIntrinsicID(Name);
675 }
676 
677 /// Returns a stable mangling for the type specified for use in the name
678 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
679 /// of named types is simply their name.  Manglings for unnamed types consist
680 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
681 /// combined with the mangling of their component types.  A vararg function
682 /// type will have a suffix of 'vararg'.  Since function types can contain
683 /// other function types, we close a function type mangling with suffix 'f'
684 /// which can't be confused with it's prefix.  This ensures we don't have
685 /// collisions between two unrelated function types. Otherwise, you might
686 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
687 ///
688 static std::string getMangledTypeStr(Type* Ty) {
689   std::string Result;
690   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
691     Result += "p" + utostr(PTyp->getAddressSpace()) +
692       getMangledTypeStr(PTyp->getElementType());
693   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
694     Result += "a" + utostr(ATyp->getNumElements()) +
695       getMangledTypeStr(ATyp->getElementType());
696   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
697     if (!STyp->isLiteral()) {
698       Result += "s_";
699       Result += STyp->getName();
700     } else {
701       Result += "sl_";
702       for (auto Elem : STyp->elements())
703         Result += getMangledTypeStr(Elem);
704     }
705     // Ensure nested structs are distinguishable.
706     Result += "s";
707   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
708     Result += "f_" + getMangledTypeStr(FT->getReturnType());
709     for (size_t i = 0; i < FT->getNumParams(); i++)
710       Result += getMangledTypeStr(FT->getParamType(i));
711     if (FT->isVarArg())
712       Result += "vararg";
713     // Ensure nested function types are distinguishable.
714     Result += "f";
715   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
716     ElementCount EC = VTy->getElementCount();
717     if (EC.isScalable())
718       Result += "nx";
719     Result += "v" + utostr(EC.getKnownMinValue()) +
720               getMangledTypeStr(VTy->getElementType());
721   } else if (Ty) {
722     switch (Ty->getTypeID()) {
723     default: llvm_unreachable("Unhandled type");
724     case Type::VoidTyID:      Result += "isVoid";   break;
725     case Type::MetadataTyID:  Result += "Metadata"; break;
726     case Type::HalfTyID:      Result += "f16";      break;
727     case Type::BFloatTyID:    Result += "bf16";     break;
728     case Type::FloatTyID:     Result += "f32";      break;
729     case Type::DoubleTyID:    Result += "f64";      break;
730     case Type::X86_FP80TyID:  Result += "f80";      break;
731     case Type::FP128TyID:     Result += "f128";     break;
732     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
733     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
734     case Type::IntegerTyID:
735       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
736       break;
737     }
738   }
739   return Result;
740 }
741 
742 StringRef Intrinsic::getName(ID id) {
743   assert(id < num_intrinsics && "Invalid intrinsic ID!");
744   assert(!Intrinsic::isOverloaded(id) &&
745          "This version of getName does not support overloading");
746   return IntrinsicNameTable[id];
747 }
748 
749 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
750   assert(id < num_intrinsics && "Invalid intrinsic ID!");
751   std::string Result(IntrinsicNameTable[id]);
752   for (Type *Ty : Tys) {
753     Result += "." + getMangledTypeStr(Ty);
754   }
755   return Result;
756 }
757 
758 /// IIT_Info - These are enumerators that describe the entries returned by the
759 /// getIntrinsicInfoTableEntries function.
760 ///
761 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
762 enum IIT_Info {
763   // Common values should be encoded with 0-15.
764   IIT_Done = 0,
765   IIT_I1   = 1,
766   IIT_I8   = 2,
767   IIT_I16  = 3,
768   IIT_I32  = 4,
769   IIT_I64  = 5,
770   IIT_F16  = 6,
771   IIT_F32  = 7,
772   IIT_F64  = 8,
773   IIT_V2   = 9,
774   IIT_V4   = 10,
775   IIT_V8   = 11,
776   IIT_V16  = 12,
777   IIT_V32  = 13,
778   IIT_PTR  = 14,
779   IIT_ARG  = 15,
780 
781   // Values from 16+ are only encodable with the inefficient encoding.
782   IIT_V64  = 16,
783   IIT_MMX  = 17,
784   IIT_TOKEN = 18,
785   IIT_METADATA = 19,
786   IIT_EMPTYSTRUCT = 20,
787   IIT_STRUCT2 = 21,
788   IIT_STRUCT3 = 22,
789   IIT_STRUCT4 = 23,
790   IIT_STRUCT5 = 24,
791   IIT_EXTEND_ARG = 25,
792   IIT_TRUNC_ARG = 26,
793   IIT_ANYPTR = 27,
794   IIT_V1   = 28,
795   IIT_VARARG = 29,
796   IIT_HALF_VEC_ARG = 30,
797   IIT_SAME_VEC_WIDTH_ARG = 31,
798   IIT_PTR_TO_ARG = 32,
799   IIT_PTR_TO_ELT = 33,
800   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
801   IIT_I128 = 35,
802   IIT_V512 = 36,
803   IIT_V1024 = 37,
804   IIT_STRUCT6 = 38,
805   IIT_STRUCT7 = 39,
806   IIT_STRUCT8 = 40,
807   IIT_F128 = 41,
808   IIT_VEC_ELEMENT = 42,
809   IIT_SCALABLE_VEC = 43,
810   IIT_SUBDIVIDE2_ARG = 44,
811   IIT_SUBDIVIDE4_ARG = 45,
812   IIT_VEC_OF_BITCASTS_TO_INT = 46,
813   IIT_V128 = 47,
814   IIT_BF16 = 48
815 };
816 
817 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
818                       IIT_Info LastInfo,
819                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
820   using namespace Intrinsic;
821 
822   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
823 
824   IIT_Info Info = IIT_Info(Infos[NextElt++]);
825   unsigned StructElts = 2;
826 
827   switch (Info) {
828   case IIT_Done:
829     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
830     return;
831   case IIT_VARARG:
832     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
833     return;
834   case IIT_MMX:
835     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
836     return;
837   case IIT_TOKEN:
838     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
839     return;
840   case IIT_METADATA:
841     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
842     return;
843   case IIT_F16:
844     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
845     return;
846   case IIT_BF16:
847     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
848     return;
849   case IIT_F32:
850     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
851     return;
852   case IIT_F64:
853     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
854     return;
855   case IIT_F128:
856     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
857     return;
858   case IIT_I1:
859     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
860     return;
861   case IIT_I8:
862     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
863     return;
864   case IIT_I16:
865     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
866     return;
867   case IIT_I32:
868     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
869     return;
870   case IIT_I64:
871     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
872     return;
873   case IIT_I128:
874     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
875     return;
876   case IIT_V1:
877     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
878     DecodeIITType(NextElt, Infos, Info, OutputTable);
879     return;
880   case IIT_V2:
881     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
882     DecodeIITType(NextElt, Infos, Info, OutputTable);
883     return;
884   case IIT_V4:
885     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
886     DecodeIITType(NextElt, Infos, Info, OutputTable);
887     return;
888   case IIT_V8:
889     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
890     DecodeIITType(NextElt, Infos, Info, OutputTable);
891     return;
892   case IIT_V16:
893     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
894     DecodeIITType(NextElt, Infos, Info, OutputTable);
895     return;
896   case IIT_V32:
897     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
898     DecodeIITType(NextElt, Infos, Info, OutputTable);
899     return;
900   case IIT_V64:
901     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
902     DecodeIITType(NextElt, Infos, Info, OutputTable);
903     return;
904   case IIT_V128:
905     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
906     DecodeIITType(NextElt, Infos, Info, OutputTable);
907     return;
908   case IIT_V512:
909     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
910     DecodeIITType(NextElt, Infos, Info, OutputTable);
911     return;
912   case IIT_V1024:
913     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
914     DecodeIITType(NextElt, Infos, Info, OutputTable);
915     return;
916   case IIT_PTR:
917     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
918     DecodeIITType(NextElt, Infos, Info, OutputTable);
919     return;
920   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
921     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
922                                              Infos[NextElt++]));
923     DecodeIITType(NextElt, Infos, Info, OutputTable);
924     return;
925   }
926   case IIT_ARG: {
927     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
928     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
929     return;
930   }
931   case IIT_EXTEND_ARG: {
932     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
933     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
934                                              ArgInfo));
935     return;
936   }
937   case IIT_TRUNC_ARG: {
938     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
939     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
940                                              ArgInfo));
941     return;
942   }
943   case IIT_HALF_VEC_ARG: {
944     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
945     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
946                                              ArgInfo));
947     return;
948   }
949   case IIT_SAME_VEC_WIDTH_ARG: {
950     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
951     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
952                                              ArgInfo));
953     return;
954   }
955   case IIT_PTR_TO_ARG: {
956     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
957     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
958                                              ArgInfo));
959     return;
960   }
961   case IIT_PTR_TO_ELT: {
962     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
963     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
964     return;
965   }
966   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
967     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
968     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
969     OutputTable.push_back(
970         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
971     return;
972   }
973   case IIT_EMPTYSTRUCT:
974     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
975     return;
976   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
977   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
978   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
979   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
980   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
981   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
982   case IIT_STRUCT2: {
983     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
984 
985     for (unsigned i = 0; i != StructElts; ++i)
986       DecodeIITType(NextElt, Infos, Info, OutputTable);
987     return;
988   }
989   case IIT_SUBDIVIDE2_ARG: {
990     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
991     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
992                                              ArgInfo));
993     return;
994   }
995   case IIT_SUBDIVIDE4_ARG: {
996     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
997     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
998                                              ArgInfo));
999     return;
1000   }
1001   case IIT_VEC_ELEMENT: {
1002     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1003     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1004                                              ArgInfo));
1005     return;
1006   }
1007   case IIT_SCALABLE_VEC: {
1008     DecodeIITType(NextElt, Infos, Info, OutputTable);
1009     return;
1010   }
1011   case IIT_VEC_OF_BITCASTS_TO_INT: {
1012     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1013     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1014                                              ArgInfo));
1015     return;
1016   }
1017   }
1018   llvm_unreachable("unhandled");
1019 }
1020 
1021 #define GET_INTRINSIC_GENERATOR_GLOBAL
1022 #include "llvm/IR/IntrinsicImpl.inc"
1023 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1024 
1025 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1026                                              SmallVectorImpl<IITDescriptor> &T){
1027   // Check to see if the intrinsic's type was expressible by the table.
1028   unsigned TableVal = IIT_Table[id-1];
1029 
1030   // Decode the TableVal into an array of IITValues.
1031   SmallVector<unsigned char, 8> IITValues;
1032   ArrayRef<unsigned char> IITEntries;
1033   unsigned NextElt = 0;
1034   if ((TableVal >> 31) != 0) {
1035     // This is an offset into the IIT_LongEncodingTable.
1036     IITEntries = IIT_LongEncodingTable;
1037 
1038     // Strip sentinel bit.
1039     NextElt = (TableVal << 1) >> 1;
1040   } else {
1041     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1042     // into a single word in the table itself, decode it now.
1043     do {
1044       IITValues.push_back(TableVal & 0xF);
1045       TableVal >>= 4;
1046     } while (TableVal);
1047 
1048     IITEntries = IITValues;
1049     NextElt = 0;
1050   }
1051 
1052   // Okay, decode the table into the output vector of IITDescriptors.
1053   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1054   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1055     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1056 }
1057 
1058 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1059                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1060   using namespace Intrinsic;
1061 
1062   IITDescriptor D = Infos.front();
1063   Infos = Infos.slice(1);
1064 
1065   switch (D.Kind) {
1066   case IITDescriptor::Void: return Type::getVoidTy(Context);
1067   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1068   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1069   case IITDescriptor::Token: return Type::getTokenTy(Context);
1070   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1071   case IITDescriptor::Half: return Type::getHalfTy(Context);
1072   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1073   case IITDescriptor::Float: return Type::getFloatTy(Context);
1074   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1075   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1076 
1077   case IITDescriptor::Integer:
1078     return IntegerType::get(Context, D.Integer_Width);
1079   case IITDescriptor::Vector:
1080     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1081                            D.Vector_Width);
1082   case IITDescriptor::Pointer:
1083     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1084                             D.Pointer_AddressSpace);
1085   case IITDescriptor::Struct: {
1086     SmallVector<Type *, 8> Elts;
1087     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1088       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1089     return StructType::get(Context, Elts);
1090   }
1091   case IITDescriptor::Argument:
1092     return Tys[D.getArgumentNumber()];
1093   case IITDescriptor::ExtendArgument: {
1094     Type *Ty = Tys[D.getArgumentNumber()];
1095     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1096       return VectorType::getExtendedElementVectorType(VTy);
1097 
1098     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1099   }
1100   case IITDescriptor::TruncArgument: {
1101     Type *Ty = Tys[D.getArgumentNumber()];
1102     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1103       return VectorType::getTruncatedElementVectorType(VTy);
1104 
1105     IntegerType *ITy = cast<IntegerType>(Ty);
1106     assert(ITy->getBitWidth() % 2 == 0);
1107     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1108   }
1109   case IITDescriptor::Subdivide2Argument:
1110   case IITDescriptor::Subdivide4Argument: {
1111     Type *Ty = Tys[D.getArgumentNumber()];
1112     VectorType *VTy = dyn_cast<VectorType>(Ty);
1113     assert(VTy && "Expected an argument of Vector Type");
1114     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1115     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1116   }
1117   case IITDescriptor::HalfVecArgument:
1118     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1119                                                   Tys[D.getArgumentNumber()]));
1120   case IITDescriptor::SameVecWidthArgument: {
1121     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1122     Type *Ty = Tys[D.getArgumentNumber()];
1123     if (auto *VTy = dyn_cast<VectorType>(Ty))
1124       return VectorType::get(EltTy, VTy->getElementCount());
1125     return EltTy;
1126   }
1127   case IITDescriptor::PtrToArgument: {
1128     Type *Ty = Tys[D.getArgumentNumber()];
1129     return PointerType::getUnqual(Ty);
1130   }
1131   case IITDescriptor::PtrToElt: {
1132     Type *Ty = Tys[D.getArgumentNumber()];
1133     VectorType *VTy = dyn_cast<VectorType>(Ty);
1134     if (!VTy)
1135       llvm_unreachable("Expected an argument of Vector Type");
1136     Type *EltTy = VTy->getElementType();
1137     return PointerType::getUnqual(EltTy);
1138   }
1139   case IITDescriptor::VecElementArgument: {
1140     Type *Ty = Tys[D.getArgumentNumber()];
1141     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1142       return VTy->getElementType();
1143     llvm_unreachable("Expected an argument of Vector Type");
1144   }
1145   case IITDescriptor::VecOfBitcastsToInt: {
1146     Type *Ty = Tys[D.getArgumentNumber()];
1147     VectorType *VTy = dyn_cast<VectorType>(Ty);
1148     assert(VTy && "Expected an argument of Vector Type");
1149     return VectorType::getInteger(VTy);
1150   }
1151   case IITDescriptor::VecOfAnyPtrsToElt:
1152     // Return the overloaded type (which determines the pointers address space)
1153     return Tys[D.getOverloadArgNumber()];
1154   }
1155   llvm_unreachable("unhandled");
1156 }
1157 
1158 FunctionType *Intrinsic::getType(LLVMContext &Context,
1159                                  ID id, ArrayRef<Type*> Tys) {
1160   SmallVector<IITDescriptor, 8> Table;
1161   getIntrinsicInfoTableEntries(id, Table);
1162 
1163   ArrayRef<IITDescriptor> TableRef = Table;
1164   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1165 
1166   SmallVector<Type*, 8> ArgTys;
1167   while (!TableRef.empty())
1168     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1169 
1170   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1171   // If we see void type as the type of the last argument, it is vararg intrinsic
1172   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1173     ArgTys.pop_back();
1174     return FunctionType::get(ResultTy, ArgTys, true);
1175   }
1176   return FunctionType::get(ResultTy, ArgTys, false);
1177 }
1178 
1179 bool Intrinsic::isOverloaded(ID id) {
1180 #define GET_INTRINSIC_OVERLOAD_TABLE
1181 #include "llvm/IR/IntrinsicImpl.inc"
1182 #undef GET_INTRINSIC_OVERLOAD_TABLE
1183 }
1184 
1185 bool Intrinsic::isLeaf(ID id) {
1186   switch (id) {
1187   default:
1188     return true;
1189 
1190   case Intrinsic::experimental_gc_statepoint:
1191   case Intrinsic::experimental_patchpoint_void:
1192   case Intrinsic::experimental_patchpoint_i64:
1193     return false;
1194   }
1195 }
1196 
1197 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1198 #define GET_INTRINSIC_ATTRIBUTES
1199 #include "llvm/IR/IntrinsicImpl.inc"
1200 #undef GET_INTRINSIC_ATTRIBUTES
1201 
1202 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1203   // There can never be multiple globals with the same name of different types,
1204   // because intrinsics must be a specific type.
1205   return cast<Function>(
1206       M->getOrInsertFunction(getName(id, Tys),
1207                              getType(M->getContext(), id, Tys))
1208           .getCallee());
1209 }
1210 
1211 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1212 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1213 #include "llvm/IR/IntrinsicImpl.inc"
1214 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1215 
1216 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1217 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1218 #include "llvm/IR/IntrinsicImpl.inc"
1219 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1220 
1221 using DeferredIntrinsicMatchPair =
1222     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1223 
1224 static bool matchIntrinsicType(
1225     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1226     SmallVectorImpl<Type *> &ArgTys,
1227     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1228     bool IsDeferredCheck) {
1229   using namespace Intrinsic;
1230 
1231   // If we ran out of descriptors, there are too many arguments.
1232   if (Infos.empty()) return true;
1233 
1234   // Do this before slicing off the 'front' part
1235   auto InfosRef = Infos;
1236   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1237     DeferredChecks.emplace_back(T, InfosRef);
1238     return false;
1239   };
1240 
1241   IITDescriptor D = Infos.front();
1242   Infos = Infos.slice(1);
1243 
1244   switch (D.Kind) {
1245     case IITDescriptor::Void: return !Ty->isVoidTy();
1246     case IITDescriptor::VarArg: return true;
1247     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1248     case IITDescriptor::Token: return !Ty->isTokenTy();
1249     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1250     case IITDescriptor::Half: return !Ty->isHalfTy();
1251     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1252     case IITDescriptor::Float: return !Ty->isFloatTy();
1253     case IITDescriptor::Double: return !Ty->isDoubleTy();
1254     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1255     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1256     case IITDescriptor::Vector: {
1257       VectorType *VT = dyn_cast<VectorType>(Ty);
1258       return !VT || VT->getElementCount() != D.Vector_Width ||
1259              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1260                                 DeferredChecks, IsDeferredCheck);
1261     }
1262     case IITDescriptor::Pointer: {
1263       PointerType *PT = dyn_cast<PointerType>(Ty);
1264       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1265              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1266                                 DeferredChecks, IsDeferredCheck);
1267     }
1268 
1269     case IITDescriptor::Struct: {
1270       StructType *ST = dyn_cast<StructType>(Ty);
1271       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1272         return true;
1273 
1274       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1275         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1276                                DeferredChecks, IsDeferredCheck))
1277           return true;
1278       return false;
1279     }
1280 
1281     case IITDescriptor::Argument:
1282       // If this is the second occurrence of an argument,
1283       // verify that the later instance matches the previous instance.
1284       if (D.getArgumentNumber() < ArgTys.size())
1285         return Ty != ArgTys[D.getArgumentNumber()];
1286 
1287       if (D.getArgumentNumber() > ArgTys.size() ||
1288           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1289         return IsDeferredCheck || DeferCheck(Ty);
1290 
1291       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1292              "Table consistency error");
1293       ArgTys.push_back(Ty);
1294 
1295       switch (D.getArgumentKind()) {
1296         case IITDescriptor::AK_Any:        return false; // Success
1297         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1298         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1299         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1300         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1301         default:                           break;
1302       }
1303       llvm_unreachable("all argument kinds not covered");
1304 
1305     case IITDescriptor::ExtendArgument: {
1306       // If this is a forward reference, defer the check for later.
1307       if (D.getArgumentNumber() >= ArgTys.size())
1308         return IsDeferredCheck || DeferCheck(Ty);
1309 
1310       Type *NewTy = ArgTys[D.getArgumentNumber()];
1311       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1312         NewTy = VectorType::getExtendedElementVectorType(VTy);
1313       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1314         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1315       else
1316         return true;
1317 
1318       return Ty != NewTy;
1319     }
1320     case IITDescriptor::TruncArgument: {
1321       // If this is a forward reference, defer the check for later.
1322       if (D.getArgumentNumber() >= ArgTys.size())
1323         return IsDeferredCheck || DeferCheck(Ty);
1324 
1325       Type *NewTy = ArgTys[D.getArgumentNumber()];
1326       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1327         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1328       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1329         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1330       else
1331         return true;
1332 
1333       return Ty != NewTy;
1334     }
1335     case IITDescriptor::HalfVecArgument:
1336       // If this is a forward reference, defer the check for later.
1337       if (D.getArgumentNumber() >= ArgTys.size())
1338         return IsDeferredCheck || DeferCheck(Ty);
1339       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1340              VectorType::getHalfElementsVectorType(
1341                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1342     case IITDescriptor::SameVecWidthArgument: {
1343       if (D.getArgumentNumber() >= ArgTys.size()) {
1344         // Defer check and subsequent check for the vector element type.
1345         Infos = Infos.slice(1);
1346         return IsDeferredCheck || DeferCheck(Ty);
1347       }
1348       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1349       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1350       // Both must be vectors of the same number of elements or neither.
1351       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1352         return true;
1353       Type *EltTy = Ty;
1354       if (ThisArgType) {
1355         if (ReferenceType->getElementCount() !=
1356             ThisArgType->getElementCount())
1357           return true;
1358         EltTy = ThisArgType->getElementType();
1359       }
1360       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1361                                 IsDeferredCheck);
1362     }
1363     case IITDescriptor::PtrToArgument: {
1364       if (D.getArgumentNumber() >= ArgTys.size())
1365         return IsDeferredCheck || DeferCheck(Ty);
1366       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1367       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1368       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1369     }
1370     case IITDescriptor::PtrToElt: {
1371       if (D.getArgumentNumber() >= ArgTys.size())
1372         return IsDeferredCheck || DeferCheck(Ty);
1373       VectorType * ReferenceType =
1374         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1375       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1376 
1377       return (!ThisArgType || !ReferenceType ||
1378               ThisArgType->getElementType() != ReferenceType->getElementType());
1379     }
1380     case IITDescriptor::VecOfAnyPtrsToElt: {
1381       unsigned RefArgNumber = D.getRefArgNumber();
1382       if (RefArgNumber >= ArgTys.size()) {
1383         if (IsDeferredCheck)
1384           return true;
1385         // If forward referencing, already add the pointer-vector type and
1386         // defer the checks for later.
1387         ArgTys.push_back(Ty);
1388         return DeferCheck(Ty);
1389       }
1390 
1391       if (!IsDeferredCheck){
1392         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1393                "Table consistency error");
1394         ArgTys.push_back(Ty);
1395       }
1396 
1397       // Verify the overloaded type "matches" the Ref type.
1398       // i.e. Ty is a vector with the same width as Ref.
1399       // Composed of pointers to the same element type as Ref.
1400       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1401       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1402       if (!ThisArgVecTy || !ReferenceType ||
1403           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1404         return true;
1405       PointerType *ThisArgEltTy =
1406           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1407       if (!ThisArgEltTy)
1408         return true;
1409       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1410     }
1411     case IITDescriptor::VecElementArgument: {
1412       if (D.getArgumentNumber() >= ArgTys.size())
1413         return IsDeferredCheck ? true : DeferCheck(Ty);
1414       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1415       return !ReferenceType || Ty != ReferenceType->getElementType();
1416     }
1417     case IITDescriptor::Subdivide2Argument:
1418     case IITDescriptor::Subdivide4Argument: {
1419       // If this is a forward reference, defer the check for later.
1420       if (D.getArgumentNumber() >= ArgTys.size())
1421         return IsDeferredCheck || DeferCheck(Ty);
1422 
1423       Type *NewTy = ArgTys[D.getArgumentNumber()];
1424       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1425         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1426         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1427         return Ty != NewTy;
1428       }
1429       return true;
1430     }
1431     case IITDescriptor::VecOfBitcastsToInt: {
1432       if (D.getArgumentNumber() >= ArgTys.size())
1433         return IsDeferredCheck || DeferCheck(Ty);
1434       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1435       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1436       if (!ThisArgVecTy || !ReferenceType)
1437         return true;
1438       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1439     }
1440   }
1441   llvm_unreachable("unhandled");
1442 }
1443 
1444 Intrinsic::MatchIntrinsicTypesResult
1445 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1446                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1447                                    SmallVectorImpl<Type *> &ArgTys) {
1448   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1449   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1450                          false))
1451     return MatchIntrinsicTypes_NoMatchRet;
1452 
1453   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1454 
1455   for (auto Ty : FTy->params())
1456     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1457       return MatchIntrinsicTypes_NoMatchArg;
1458 
1459   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1460     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1461     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1462                            true))
1463       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1464                                          : MatchIntrinsicTypes_NoMatchArg;
1465   }
1466 
1467   return MatchIntrinsicTypes_Match;
1468 }
1469 
1470 bool
1471 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1472                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1473   // If there are no descriptors left, then it can't be a vararg.
1474   if (Infos.empty())
1475     return isVarArg;
1476 
1477   // There should be only one descriptor remaining at this point.
1478   if (Infos.size() != 1)
1479     return true;
1480 
1481   // Check and verify the descriptor.
1482   IITDescriptor D = Infos.front();
1483   Infos = Infos.slice(1);
1484   if (D.Kind == IITDescriptor::VarArg)
1485     return !isVarArg;
1486 
1487   return true;
1488 }
1489 
1490 bool Intrinsic::getIntrinsicSignature(Function *F,
1491                                       SmallVectorImpl<Type *> &ArgTys) {
1492   Intrinsic::ID ID = F->getIntrinsicID();
1493   if (!ID)
1494     return false;
1495 
1496   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1497   getIntrinsicInfoTableEntries(ID, Table);
1498   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1499 
1500   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1501                                          ArgTys) !=
1502       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1503     return false;
1504   }
1505   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1506                                       TableRef))
1507     return false;
1508   return true;
1509 }
1510 
1511 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1512   SmallVector<Type *, 4> ArgTys;
1513   if (!getIntrinsicSignature(F, ArgTys))
1514     return None;
1515 
1516   Intrinsic::ID ID = F->getIntrinsicID();
1517   StringRef Name = F->getName();
1518   if (Name == Intrinsic::getName(ID, ArgTys))
1519     return None;
1520 
1521   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1522   NewDecl->setCallingConv(F->getCallingConv());
1523   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1524          "Shouldn't change the signature");
1525   return NewDecl;
1526 }
1527 
1528 /// hasAddressTaken - returns true if there are any uses of this function
1529 /// other than direct calls or invokes to it. Optionally ignores callback
1530 /// uses.
1531 bool Function::hasAddressTaken(const User **PutOffender,
1532                                bool IgnoreCallbackUses) const {
1533   for (const Use &U : uses()) {
1534     const User *FU = U.getUser();
1535     if (isa<BlockAddress>(FU))
1536       continue;
1537 
1538     if (IgnoreCallbackUses) {
1539       AbstractCallSite ACS(&U);
1540       if (ACS && ACS.isCallbackCall())
1541         continue;
1542     }
1543 
1544     const auto *Call = dyn_cast<CallBase>(FU);
1545     if (!Call) {
1546       if (PutOffender)
1547         *PutOffender = FU;
1548       return true;
1549     }
1550     if (!Call->isCallee(&U)) {
1551       if (PutOffender)
1552         *PutOffender = FU;
1553       return true;
1554     }
1555   }
1556   return false;
1557 }
1558 
1559 bool Function::isDefTriviallyDead() const {
1560   // Check the linkage
1561   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1562       !hasAvailableExternallyLinkage())
1563     return false;
1564 
1565   // Check if the function is used by anything other than a blockaddress.
1566   for (const User *U : users())
1567     if (!isa<BlockAddress>(U))
1568       return false;
1569 
1570   return true;
1571 }
1572 
1573 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1574 /// setjmp or other function that gcc recognizes as "returning twice".
1575 bool Function::callsFunctionThatReturnsTwice() const {
1576   for (const Instruction &I : instructions(this))
1577     if (const auto *Call = dyn_cast<CallBase>(&I))
1578       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1579         return true;
1580 
1581   return false;
1582 }
1583 
1584 Constant *Function::getPersonalityFn() const {
1585   assert(hasPersonalityFn() && getNumOperands());
1586   return cast<Constant>(Op<0>());
1587 }
1588 
1589 void Function::setPersonalityFn(Constant *Fn) {
1590   setHungoffOperand<0>(Fn);
1591   setValueSubclassDataBit(3, Fn != nullptr);
1592 }
1593 
1594 Constant *Function::getPrefixData() const {
1595   assert(hasPrefixData() && getNumOperands());
1596   return cast<Constant>(Op<1>());
1597 }
1598 
1599 void Function::setPrefixData(Constant *PrefixData) {
1600   setHungoffOperand<1>(PrefixData);
1601   setValueSubclassDataBit(1, PrefixData != nullptr);
1602 }
1603 
1604 Constant *Function::getPrologueData() const {
1605   assert(hasPrologueData() && getNumOperands());
1606   return cast<Constant>(Op<2>());
1607 }
1608 
1609 void Function::setPrologueData(Constant *PrologueData) {
1610   setHungoffOperand<2>(PrologueData);
1611   setValueSubclassDataBit(2, PrologueData != nullptr);
1612 }
1613 
1614 void Function::allocHungoffUselist() {
1615   // If we've already allocated a uselist, stop here.
1616   if (getNumOperands())
1617     return;
1618 
1619   allocHungoffUses(3, /*IsPhi=*/ false);
1620   setNumHungOffUseOperands(3);
1621 
1622   // Initialize the uselist with placeholder operands to allow traversal.
1623   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1624   Op<0>().set(CPN);
1625   Op<1>().set(CPN);
1626   Op<2>().set(CPN);
1627 }
1628 
1629 template <int Idx>
1630 void Function::setHungoffOperand(Constant *C) {
1631   if (C) {
1632     allocHungoffUselist();
1633     Op<Idx>().set(C);
1634   } else if (getNumOperands()) {
1635     Op<Idx>().set(
1636         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1637   }
1638 }
1639 
1640 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1641   assert(Bit < 16 && "SubclassData contains only 16 bits");
1642   if (On)
1643     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1644   else
1645     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1646 }
1647 
1648 void Function::setEntryCount(ProfileCount Count,
1649                              const DenseSet<GlobalValue::GUID> *S) {
1650   assert(Count.hasValue());
1651 #if !defined(NDEBUG)
1652   auto PrevCount = getEntryCount();
1653   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1654 #endif
1655 
1656   auto ImportGUIDs = getImportGUIDs();
1657   if (S == nullptr && ImportGUIDs.size())
1658     S = &ImportGUIDs;
1659 
1660   MDBuilder MDB(getContext());
1661   setMetadata(
1662       LLVMContext::MD_prof,
1663       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1664 }
1665 
1666 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1667                              const DenseSet<GlobalValue::GUID> *Imports) {
1668   setEntryCount(ProfileCount(Count, Type), Imports);
1669 }
1670 
1671 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1672   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1673   if (MD && MD->getOperand(0))
1674     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1675       if (MDS->getString().equals("function_entry_count")) {
1676         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1677         uint64_t Count = CI->getValue().getZExtValue();
1678         // A value of -1 is used for SamplePGO when there were no samples.
1679         // Treat this the same as unknown.
1680         if (Count == (uint64_t)-1)
1681           return ProfileCount::getInvalid();
1682         return ProfileCount(Count, PCT_Real);
1683       } else if (AllowSynthetic &&
1684                  MDS->getString().equals("synthetic_function_entry_count")) {
1685         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1686         uint64_t Count = CI->getValue().getZExtValue();
1687         return ProfileCount(Count, PCT_Synthetic);
1688       }
1689     }
1690   return ProfileCount::getInvalid();
1691 }
1692 
1693 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1694   DenseSet<GlobalValue::GUID> R;
1695   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1696     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1697       if (MDS->getString().equals("function_entry_count"))
1698         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1699           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1700                        ->getValue()
1701                        .getZExtValue());
1702   return R;
1703 }
1704 
1705 void Function::setSectionPrefix(StringRef Prefix) {
1706   MDBuilder MDB(getContext());
1707   setMetadata(LLVMContext::MD_section_prefix,
1708               MDB.createFunctionSectionPrefix(Prefix));
1709 }
1710 
1711 Optional<StringRef> Function::getSectionPrefix() const {
1712   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1713     assert(cast<MDString>(MD->getOperand(0))
1714                ->getString()
1715                .equals("function_section_prefix") &&
1716            "Metadata not match");
1717     return cast<MDString>(MD->getOperand(1))->getString();
1718   }
1719   return None;
1720 }
1721 
1722 bool Function::nullPointerIsDefined() const {
1723   return hasFnAttribute(Attribute::NullPointerIsValid);
1724 }
1725 
1726 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1727   if (F && F->nullPointerIsDefined())
1728     return true;
1729 
1730   if (AS != 0)
1731     return true;
1732 
1733   return false;
1734 }
1735