1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Support/ManagedStatic.h" 28 #include "llvm/Support/RWMutex.h" 29 #include "llvm/Support/StringPool.h" 30 #include "llvm/Support/Threading.h" 31 using namespace llvm; 32 33 // Explicit instantiations of SymbolTableListTraits since some of the methods 34 // are not in the public header file... 35 template class llvm::SymbolTableListTraits<Argument, Function>; 36 template class llvm::SymbolTableListTraits<BasicBlock, Function>; 37 38 //===----------------------------------------------------------------------===// 39 // Argument Implementation 40 //===----------------------------------------------------------------------===// 41 42 void Argument::anchor() { } 43 44 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 45 : Value(Ty, Value::ArgumentVal) { 46 Parent = nullptr; 47 48 if (Par) 49 Par->getArgumentList().push_back(this); 50 setName(Name); 51 } 52 53 void Argument::setParent(Function *parent) { 54 Parent = parent; 55 } 56 57 /// getArgNo - Return the index of this formal argument in its containing 58 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 59 unsigned Argument::getArgNo() const { 60 const Function *F = getParent(); 61 assert(F && "Argument is not in a function"); 62 63 Function::const_arg_iterator AI = F->arg_begin(); 64 unsigned ArgIdx = 0; 65 for (; &*AI != this; ++AI) 66 ++ArgIdx; 67 68 return ArgIdx; 69 } 70 71 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 72 /// it in its containing function. Also returns true if at least one byte is 73 /// known to be dereferenceable and the pointer is in addrspace(0). 74 bool Argument::hasNonNullAttr() const { 75 if (!getType()->isPointerTy()) return false; 76 if (getParent()->getAttributes(). 77 hasAttribute(getArgNo()+1, Attribute::NonNull)) 78 return true; 79 else if (getDereferenceableBytes() > 0 && 80 getType()->getPointerAddressSpace() == 0) 81 return true; 82 return false; 83 } 84 85 /// hasByValAttr - Return true if this argument has the byval attribute on it 86 /// in its containing function. 87 bool Argument::hasByValAttr() const { 88 if (!getType()->isPointerTy()) return false; 89 return getParent()->getAttributes(). 90 hasAttribute(getArgNo()+1, Attribute::ByVal); 91 } 92 93 /// \brief Return true if this argument has the inalloca attribute on it in 94 /// its containing function. 95 bool Argument::hasInAllocaAttr() const { 96 if (!getType()->isPointerTy()) return false; 97 return getParent()->getAttributes(). 98 hasAttribute(getArgNo()+1, Attribute::InAlloca); 99 } 100 101 bool Argument::hasByValOrInAllocaAttr() const { 102 if (!getType()->isPointerTy()) return false; 103 AttributeSet Attrs = getParent()->getAttributes(); 104 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 105 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 106 } 107 108 unsigned Argument::getParamAlignment() const { 109 assert(getType()->isPointerTy() && "Only pointers have alignments"); 110 return getParent()->getParamAlignment(getArgNo()+1); 111 112 } 113 114 uint64_t Argument::getDereferenceableBytes() const { 115 assert(getType()->isPointerTy() && 116 "Only pointers have dereferenceable bytes"); 117 return getParent()->getDereferenceableBytes(getArgNo()+1); 118 } 119 120 /// hasNestAttr - Return true if this argument has the nest attribute on 121 /// it in its containing function. 122 bool Argument::hasNestAttr() const { 123 if (!getType()->isPointerTy()) return false; 124 return getParent()->getAttributes(). 125 hasAttribute(getArgNo()+1, Attribute::Nest); 126 } 127 128 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 129 /// it in its containing function. 130 bool Argument::hasNoAliasAttr() const { 131 if (!getType()->isPointerTy()) return false; 132 return getParent()->getAttributes(). 133 hasAttribute(getArgNo()+1, Attribute::NoAlias); 134 } 135 136 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 137 /// on it in its containing function. 138 bool Argument::hasNoCaptureAttr() const { 139 if (!getType()->isPointerTy()) return false; 140 return getParent()->getAttributes(). 141 hasAttribute(getArgNo()+1, Attribute::NoCapture); 142 } 143 144 /// hasSRetAttr - Return true if this argument has the sret attribute on 145 /// it in its containing function. 146 bool Argument::hasStructRetAttr() const { 147 if (!getType()->isPointerTy()) return false; 148 if (this != getParent()->arg_begin()) 149 return false; // StructRet param must be first param 150 return getParent()->getAttributes(). 151 hasAttribute(1, Attribute::StructRet); 152 } 153 154 /// hasReturnedAttr - Return true if this argument has the returned attribute on 155 /// it in its containing function. 156 bool Argument::hasReturnedAttr() const { 157 return getParent()->getAttributes(). 158 hasAttribute(getArgNo()+1, Attribute::Returned); 159 } 160 161 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 162 /// its containing function. 163 bool Argument::hasZExtAttr() const { 164 return getParent()->getAttributes(). 165 hasAttribute(getArgNo()+1, Attribute::ZExt); 166 } 167 168 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 169 /// containing function. 170 bool Argument::hasSExtAttr() const { 171 return getParent()->getAttributes(). 172 hasAttribute(getArgNo()+1, Attribute::SExt); 173 } 174 175 /// Return true if this argument has the readonly or readnone attribute on it 176 /// in its containing function. 177 bool Argument::onlyReadsMemory() const { 178 return getParent()->getAttributes(). 179 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 180 getParent()->getAttributes(). 181 hasAttribute(getArgNo()+1, Attribute::ReadNone); 182 } 183 184 /// addAttr - Add attributes to an argument. 185 void Argument::addAttr(AttributeSet AS) { 186 assert(AS.getNumSlots() <= 1 && 187 "Trying to add more than one attribute set to an argument!"); 188 AttrBuilder B(AS, AS.getSlotIndex(0)); 189 getParent()->addAttributes(getArgNo() + 1, 190 AttributeSet::get(Parent->getContext(), 191 getArgNo() + 1, B)); 192 } 193 194 /// removeAttr - Remove attributes from an argument. 195 void Argument::removeAttr(AttributeSet AS) { 196 assert(AS.getNumSlots() <= 1 && 197 "Trying to remove more than one attribute set from an argument!"); 198 AttrBuilder B(AS, AS.getSlotIndex(0)); 199 getParent()->removeAttributes(getArgNo() + 1, 200 AttributeSet::get(Parent->getContext(), 201 getArgNo() + 1, B)); 202 } 203 204 //===----------------------------------------------------------------------===// 205 // Helper Methods in Function 206 //===----------------------------------------------------------------------===// 207 208 bool Function::isMaterializable() const { 209 return getGlobalObjectSubClassData(); 210 } 211 212 void Function::setIsMaterializable(bool V) { setGlobalObjectSubClassData(V); } 213 214 LLVMContext &Function::getContext() const { 215 return getType()->getContext(); 216 } 217 218 FunctionType *Function::getFunctionType() const { return Ty; } 219 220 bool Function::isVarArg() const { 221 return getFunctionType()->isVarArg(); 222 } 223 224 Type *Function::getReturnType() const { 225 return getFunctionType()->getReturnType(); 226 } 227 228 void Function::removeFromParent() { 229 getParent()->getFunctionList().remove(this); 230 } 231 232 void Function::eraseFromParent() { 233 getParent()->getFunctionList().erase(this); 234 } 235 236 //===----------------------------------------------------------------------===// 237 // Function Implementation 238 //===----------------------------------------------------------------------===// 239 240 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 241 Module *ParentModule) 242 : GlobalObject(PointerType::getUnqual(Ty), Value::FunctionVal, nullptr, 0, 243 Linkage, name), 244 Ty(Ty) { 245 assert(FunctionType::isValidReturnType(getReturnType()) && 246 "invalid return type"); 247 setIsMaterializable(false); 248 SymTab = new ValueSymbolTable(); 249 250 // If the function has arguments, mark them as lazily built. 251 if (Ty->getNumParams()) 252 setValueSubclassData(1); // Set the "has lazy arguments" bit. 253 254 if (ParentModule) 255 ParentModule->getFunctionList().push_back(this); 256 257 // Ensure intrinsics have the right parameter attributes. 258 if (unsigned IID = getIntrinsicID()) 259 setAttributes(Intrinsic::getAttributes(getContext(), Intrinsic::ID(IID))); 260 261 } 262 263 Function::~Function() { 264 dropAllReferences(); // After this it is safe to delete instructions. 265 266 // Delete all of the method arguments and unlink from symbol table... 267 ArgumentList.clear(); 268 delete SymTab; 269 270 // Remove the function from the on-the-side GC table. 271 clearGC(); 272 273 // Remove the intrinsicID from the Cache. 274 if (getValueName() && isIntrinsic()) 275 getContext().pImpl->IntrinsicIDCache.erase(this); 276 } 277 278 void Function::BuildLazyArguments() const { 279 // Create the arguments vector, all arguments start out unnamed. 280 FunctionType *FT = getFunctionType(); 281 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 282 assert(!FT->getParamType(i)->isVoidTy() && 283 "Cannot have void typed arguments!"); 284 ArgumentList.push_back(new Argument(FT->getParamType(i))); 285 } 286 287 // Clear the lazy arguments bit. 288 unsigned SDC = getSubclassDataFromValue(); 289 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 290 } 291 292 size_t Function::arg_size() const { 293 return getFunctionType()->getNumParams(); 294 } 295 bool Function::arg_empty() const { 296 return getFunctionType()->getNumParams() == 0; 297 } 298 299 void Function::setParent(Module *parent) { 300 Parent = parent; 301 } 302 303 // dropAllReferences() - This function causes all the subinstructions to "let 304 // go" of all references that they are maintaining. This allows one to 305 // 'delete' a whole class at a time, even though there may be circular 306 // references... first all references are dropped, and all use counts go to 307 // zero. Then everything is deleted for real. Note that no operations are 308 // valid on an object that has "dropped all references", except operator 309 // delete. 310 // 311 void Function::dropAllReferences() { 312 setIsMaterializable(false); 313 314 for (iterator I = begin(), E = end(); I != E; ++I) 315 I->dropAllReferences(); 316 317 // Delete all basic blocks. They are now unused, except possibly by 318 // blockaddresses, but BasicBlock's destructor takes care of those. 319 while (!BasicBlocks.empty()) 320 BasicBlocks.begin()->eraseFromParent(); 321 322 // Prefix and prologue data are stored in a side table. 323 setPrefixData(nullptr); 324 setPrologueData(nullptr); 325 } 326 327 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 328 AttributeSet PAL = getAttributes(); 329 PAL = PAL.addAttribute(getContext(), i, attr); 330 setAttributes(PAL); 331 } 332 333 void Function::addAttributes(unsigned i, AttributeSet attrs) { 334 AttributeSet PAL = getAttributes(); 335 PAL = PAL.addAttributes(getContext(), i, attrs); 336 setAttributes(PAL); 337 } 338 339 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 340 AttributeSet PAL = getAttributes(); 341 PAL = PAL.removeAttributes(getContext(), i, attrs); 342 setAttributes(PAL); 343 } 344 345 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 346 AttributeSet PAL = getAttributes(); 347 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 348 setAttributes(PAL); 349 } 350 351 // Maintain the GC name for each function in an on-the-side table. This saves 352 // allocating an additional word in Function for programs which do not use GC 353 // (i.e., most programs) at the cost of increased overhead for clients which do 354 // use GC. 355 static DenseMap<const Function*,PooledStringPtr> *GCNames; 356 static StringPool *GCNamePool; 357 static ManagedStatic<sys::SmartRWMutex<true> > GCLock; 358 359 bool Function::hasGC() const { 360 sys::SmartScopedReader<true> Reader(*GCLock); 361 return GCNames && GCNames->count(this); 362 } 363 364 const char *Function::getGC() const { 365 assert(hasGC() && "Function has no collector"); 366 sys::SmartScopedReader<true> Reader(*GCLock); 367 return *(*GCNames)[this]; 368 } 369 370 void Function::setGC(const char *Str) { 371 sys::SmartScopedWriter<true> Writer(*GCLock); 372 if (!GCNamePool) 373 GCNamePool = new StringPool(); 374 if (!GCNames) 375 GCNames = new DenseMap<const Function*,PooledStringPtr>(); 376 (*GCNames)[this] = GCNamePool->intern(Str); 377 } 378 379 void Function::clearGC() { 380 sys::SmartScopedWriter<true> Writer(*GCLock); 381 if (GCNames) { 382 GCNames->erase(this); 383 if (GCNames->empty()) { 384 delete GCNames; 385 GCNames = nullptr; 386 if (GCNamePool->empty()) { 387 delete GCNamePool; 388 GCNamePool = nullptr; 389 } 390 } 391 } 392 } 393 394 /// copyAttributesFrom - copy all additional attributes (those not needed to 395 /// create a Function) from the Function Src to this one. 396 void Function::copyAttributesFrom(const GlobalValue *Src) { 397 assert(isa<Function>(Src) && "Expected a Function!"); 398 GlobalObject::copyAttributesFrom(Src); 399 const Function *SrcF = cast<Function>(Src); 400 setCallingConv(SrcF->getCallingConv()); 401 setAttributes(SrcF->getAttributes()); 402 if (SrcF->hasGC()) 403 setGC(SrcF->getGC()); 404 else 405 clearGC(); 406 if (SrcF->hasPrefixData()) 407 setPrefixData(SrcF->getPrefixData()); 408 else 409 setPrefixData(nullptr); 410 if (SrcF->hasPrologueData()) 411 setPrologueData(SrcF->getPrologueData()); 412 else 413 setPrologueData(nullptr); 414 } 415 416 /// getIntrinsicID - This method returns the ID number of the specified 417 /// function, or Intrinsic::not_intrinsic if the function is not an 418 /// intrinsic, or if the pointer is null. This value is always defined to be 419 /// zero to allow easy checking for whether a function is intrinsic or not. The 420 /// particular intrinsic functions which correspond to this value are defined in 421 /// llvm/Intrinsics.h. Results are cached in the LLVM context, subsequent 422 /// requests for the same ID return results much faster from the cache. 423 /// 424 unsigned Function::getIntrinsicID() const { 425 const ValueName *ValName = this->getValueName(); 426 if (!ValName || !isIntrinsic()) 427 return 0; 428 429 LLVMContextImpl::IntrinsicIDCacheTy &IntrinsicIDCache = 430 getContext().pImpl->IntrinsicIDCache; 431 if (!IntrinsicIDCache.count(this)) { 432 unsigned Id = lookupIntrinsicID(); 433 IntrinsicIDCache[this]=Id; 434 return Id; 435 } 436 return IntrinsicIDCache[this]; 437 } 438 439 /// This private method does the actual lookup of an intrinsic ID when the query 440 /// could not be answered from the cache. 441 unsigned Function::lookupIntrinsicID() const { 442 const ValueName *ValName = this->getValueName(); 443 unsigned Len = ValName->getKeyLength(); 444 const char *Name = ValName->getKeyData(); 445 446 #define GET_FUNCTION_RECOGNIZER 447 #include "llvm/IR/Intrinsics.gen" 448 #undef GET_FUNCTION_RECOGNIZER 449 450 return 0; 451 } 452 453 /// Returns a stable mangling for the type specified for use in the name 454 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 455 /// of named types is simply their name. Manglings for unnamed types consist 456 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 457 /// combined with the mangling of their component types. A vararg function 458 /// type will have a suffix of 'vararg'. Since function types can contain 459 /// other function types, we close a function type mangling with suffix 'f' 460 /// which can't be confused with it's prefix. This ensures we don't have 461 /// collisions between two unrelated function types. Otherwise, you might 462 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 463 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 464 /// cases) fall back to the MVT codepath, where they could be mangled to 465 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 466 /// everything. 467 static std::string getMangledTypeStr(Type* Ty) { 468 std::string Result; 469 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 470 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 471 getMangledTypeStr(PTyp->getElementType()); 472 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 473 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 474 getMangledTypeStr(ATyp->getElementType()); 475 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 476 if (!STyp->isLiteral()) 477 Result += STyp->getName(); 478 else 479 llvm_unreachable("TODO: implement literal types"); 480 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 481 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 482 for (size_t i = 0; i < FT->getNumParams(); i++) 483 Result += getMangledTypeStr(FT->getParamType(i)); 484 if (FT->isVarArg()) 485 Result += "vararg"; 486 // Ensure nested function types are distinguishable. 487 Result += "f"; 488 } else if (Ty) 489 Result += EVT::getEVT(Ty).getEVTString(); 490 return Result; 491 } 492 493 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 494 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 495 static const char * const Table[] = { 496 "not_intrinsic", 497 #define GET_INTRINSIC_NAME_TABLE 498 #include "llvm/IR/Intrinsics.gen" 499 #undef GET_INTRINSIC_NAME_TABLE 500 }; 501 if (Tys.empty()) 502 return Table[id]; 503 std::string Result(Table[id]); 504 for (unsigned i = 0; i < Tys.size(); ++i) { 505 Result += "." + getMangledTypeStr(Tys[i]); 506 } 507 return Result; 508 } 509 510 511 /// IIT_Info - These are enumerators that describe the entries returned by the 512 /// getIntrinsicInfoTableEntries function. 513 /// 514 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 515 enum IIT_Info { 516 // Common values should be encoded with 0-15. 517 IIT_Done = 0, 518 IIT_I1 = 1, 519 IIT_I8 = 2, 520 IIT_I16 = 3, 521 IIT_I32 = 4, 522 IIT_I64 = 5, 523 IIT_F16 = 6, 524 IIT_F32 = 7, 525 IIT_F64 = 8, 526 IIT_V2 = 9, 527 IIT_V4 = 10, 528 IIT_V8 = 11, 529 IIT_V16 = 12, 530 IIT_V32 = 13, 531 IIT_PTR = 14, 532 IIT_ARG = 15, 533 534 // Values from 16+ are only encodable with the inefficient encoding. 535 IIT_V64 = 16, 536 IIT_MMX = 17, 537 IIT_METADATA = 18, 538 IIT_EMPTYSTRUCT = 19, 539 IIT_STRUCT2 = 20, 540 IIT_STRUCT3 = 21, 541 IIT_STRUCT4 = 22, 542 IIT_STRUCT5 = 23, 543 IIT_EXTEND_ARG = 24, 544 IIT_TRUNC_ARG = 25, 545 IIT_ANYPTR = 26, 546 IIT_V1 = 27, 547 IIT_VARARG = 28, 548 IIT_HALF_VEC_ARG = 29, 549 IIT_SAME_VEC_WIDTH_ARG = 30, 550 IIT_PTR_TO_ARG = 31, 551 IIT_VEC_OF_PTRS_TO_ELT = 32 552 }; 553 554 555 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 556 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 557 IIT_Info Info = IIT_Info(Infos[NextElt++]); 558 unsigned StructElts = 2; 559 using namespace Intrinsic; 560 561 switch (Info) { 562 case IIT_Done: 563 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 564 return; 565 case IIT_VARARG: 566 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 567 return; 568 case IIT_MMX: 569 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 570 return; 571 case IIT_METADATA: 572 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 573 return; 574 case IIT_F16: 575 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 576 return; 577 case IIT_F32: 578 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 579 return; 580 case IIT_F64: 581 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 582 return; 583 case IIT_I1: 584 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 585 return; 586 case IIT_I8: 587 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 588 return; 589 case IIT_I16: 590 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 591 return; 592 case IIT_I32: 593 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 594 return; 595 case IIT_I64: 596 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 597 return; 598 case IIT_V1: 599 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 600 DecodeIITType(NextElt, Infos, OutputTable); 601 return; 602 case IIT_V2: 603 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 604 DecodeIITType(NextElt, Infos, OutputTable); 605 return; 606 case IIT_V4: 607 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 608 DecodeIITType(NextElt, Infos, OutputTable); 609 return; 610 case IIT_V8: 611 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 612 DecodeIITType(NextElt, Infos, OutputTable); 613 return; 614 case IIT_V16: 615 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 616 DecodeIITType(NextElt, Infos, OutputTable); 617 return; 618 case IIT_V32: 619 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 620 DecodeIITType(NextElt, Infos, OutputTable); 621 return; 622 case IIT_V64: 623 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 624 DecodeIITType(NextElt, Infos, OutputTable); 625 return; 626 case IIT_PTR: 627 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 628 DecodeIITType(NextElt, Infos, OutputTable); 629 return; 630 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 631 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 632 Infos[NextElt++])); 633 DecodeIITType(NextElt, Infos, OutputTable); 634 return; 635 } 636 case IIT_ARG: { 637 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 638 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 639 return; 640 } 641 case IIT_EXTEND_ARG: { 642 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 643 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 644 ArgInfo)); 645 return; 646 } 647 case IIT_TRUNC_ARG: { 648 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 649 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 650 ArgInfo)); 651 return; 652 } 653 case IIT_HALF_VEC_ARG: { 654 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 655 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 656 ArgInfo)); 657 return; 658 } 659 case IIT_SAME_VEC_WIDTH_ARG: { 660 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 661 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 662 ArgInfo)); 663 return; 664 } 665 case IIT_PTR_TO_ARG: { 666 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 667 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 668 ArgInfo)); 669 return; 670 } 671 case IIT_VEC_OF_PTRS_TO_ELT: { 672 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 673 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 674 ArgInfo)); 675 return; 676 } 677 case IIT_EMPTYSTRUCT: 678 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 679 return; 680 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 681 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 682 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 683 case IIT_STRUCT2: { 684 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 685 686 for (unsigned i = 0; i != StructElts; ++i) 687 DecodeIITType(NextElt, Infos, OutputTable); 688 return; 689 } 690 } 691 llvm_unreachable("unhandled"); 692 } 693 694 695 #define GET_INTRINSIC_GENERATOR_GLOBAL 696 #include "llvm/IR/Intrinsics.gen" 697 #undef GET_INTRINSIC_GENERATOR_GLOBAL 698 699 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 700 SmallVectorImpl<IITDescriptor> &T){ 701 // Check to see if the intrinsic's type was expressible by the table. 702 unsigned TableVal = IIT_Table[id-1]; 703 704 // Decode the TableVal into an array of IITValues. 705 SmallVector<unsigned char, 8> IITValues; 706 ArrayRef<unsigned char> IITEntries; 707 unsigned NextElt = 0; 708 if ((TableVal >> 31) != 0) { 709 // This is an offset into the IIT_LongEncodingTable. 710 IITEntries = IIT_LongEncodingTable; 711 712 // Strip sentinel bit. 713 NextElt = (TableVal << 1) >> 1; 714 } else { 715 // Decode the TableVal into an array of IITValues. If the entry was encoded 716 // into a single word in the table itself, decode it now. 717 do { 718 IITValues.push_back(TableVal & 0xF); 719 TableVal >>= 4; 720 } while (TableVal); 721 722 IITEntries = IITValues; 723 NextElt = 0; 724 } 725 726 // Okay, decode the table into the output vector of IITDescriptors. 727 DecodeIITType(NextElt, IITEntries, T); 728 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 729 DecodeIITType(NextElt, IITEntries, T); 730 } 731 732 733 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 734 ArrayRef<Type*> Tys, LLVMContext &Context) { 735 using namespace Intrinsic; 736 IITDescriptor D = Infos.front(); 737 Infos = Infos.slice(1); 738 739 switch (D.Kind) { 740 case IITDescriptor::Void: return Type::getVoidTy(Context); 741 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 742 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 743 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 744 case IITDescriptor::Half: return Type::getHalfTy(Context); 745 case IITDescriptor::Float: return Type::getFloatTy(Context); 746 case IITDescriptor::Double: return Type::getDoubleTy(Context); 747 748 case IITDescriptor::Integer: 749 return IntegerType::get(Context, D.Integer_Width); 750 case IITDescriptor::Vector: 751 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 752 case IITDescriptor::Pointer: 753 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 754 D.Pointer_AddressSpace); 755 case IITDescriptor::Struct: { 756 Type *Elts[5]; 757 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 758 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 759 Elts[i] = DecodeFixedType(Infos, Tys, Context); 760 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 761 } 762 763 case IITDescriptor::Argument: 764 return Tys[D.getArgumentNumber()]; 765 case IITDescriptor::ExtendArgument: { 766 Type *Ty = Tys[D.getArgumentNumber()]; 767 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 768 return VectorType::getExtendedElementVectorType(VTy); 769 770 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 771 } 772 case IITDescriptor::TruncArgument: { 773 Type *Ty = Tys[D.getArgumentNumber()]; 774 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 775 return VectorType::getTruncatedElementVectorType(VTy); 776 777 IntegerType *ITy = cast<IntegerType>(Ty); 778 assert(ITy->getBitWidth() % 2 == 0); 779 return IntegerType::get(Context, ITy->getBitWidth() / 2); 780 } 781 case IITDescriptor::HalfVecArgument: 782 return VectorType::getHalfElementsVectorType(cast<VectorType>( 783 Tys[D.getArgumentNumber()])); 784 case IITDescriptor::SameVecWidthArgument: { 785 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 786 Type *Ty = Tys[D.getArgumentNumber()]; 787 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 788 return VectorType::get(EltTy, VTy->getNumElements()); 789 } 790 llvm_unreachable("unhandled"); 791 } 792 case IITDescriptor::PtrToArgument: { 793 Type *Ty = Tys[D.getArgumentNumber()]; 794 return PointerType::getUnqual(Ty); 795 } 796 case IITDescriptor::VecOfPtrsToElt: { 797 Type *Ty = Tys[D.getArgumentNumber()]; 798 VectorType *VTy = dyn_cast<VectorType>(Ty); 799 if (!VTy) 800 llvm_unreachable("Expected an argument of Vector Type"); 801 Type *EltTy = VTy->getVectorElementType(); 802 return VectorType::get(PointerType::getUnqual(EltTy), 803 VTy->getNumElements()); 804 } 805 } 806 llvm_unreachable("unhandled"); 807 } 808 809 810 811 FunctionType *Intrinsic::getType(LLVMContext &Context, 812 ID id, ArrayRef<Type*> Tys) { 813 SmallVector<IITDescriptor, 8> Table; 814 getIntrinsicInfoTableEntries(id, Table); 815 816 ArrayRef<IITDescriptor> TableRef = Table; 817 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 818 819 SmallVector<Type*, 8> ArgTys; 820 while (!TableRef.empty()) 821 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 822 823 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 824 // If we see void type as the type of the last argument, it is vararg intrinsic 825 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 826 ArgTys.pop_back(); 827 return FunctionType::get(ResultTy, ArgTys, true); 828 } 829 return FunctionType::get(ResultTy, ArgTys, false); 830 } 831 832 bool Intrinsic::isOverloaded(ID id) { 833 #define GET_INTRINSIC_OVERLOAD_TABLE 834 #include "llvm/IR/Intrinsics.gen" 835 #undef GET_INTRINSIC_OVERLOAD_TABLE 836 } 837 838 /// This defines the "Intrinsic::getAttributes(ID id)" method. 839 #define GET_INTRINSIC_ATTRIBUTES 840 #include "llvm/IR/Intrinsics.gen" 841 #undef GET_INTRINSIC_ATTRIBUTES 842 843 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 844 // There can never be multiple globals with the same name of different types, 845 // because intrinsics must be a specific type. 846 return 847 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 848 getType(M->getContext(), id, Tys))); 849 } 850 851 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 852 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 853 #include "llvm/IR/Intrinsics.gen" 854 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 855 856 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 857 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 858 #include "llvm/IR/Intrinsics.gen" 859 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 860 861 /// hasAddressTaken - returns true if there are any uses of this function 862 /// other than direct calls or invokes to it. 863 bool Function::hasAddressTaken(const User* *PutOffender) const { 864 for (const Use &U : uses()) { 865 const User *FU = U.getUser(); 866 if (isa<BlockAddress>(FU)) 867 continue; 868 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) 869 return PutOffender ? (*PutOffender = FU, true) : true; 870 ImmutableCallSite CS(cast<Instruction>(FU)); 871 if (!CS.isCallee(&U)) 872 return PutOffender ? (*PutOffender = FU, true) : true; 873 } 874 return false; 875 } 876 877 bool Function::isDefTriviallyDead() const { 878 // Check the linkage 879 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 880 !hasAvailableExternallyLinkage()) 881 return false; 882 883 // Check if the function is used by anything other than a blockaddress. 884 for (const User *U : users()) 885 if (!isa<BlockAddress>(U)) 886 return false; 887 888 return true; 889 } 890 891 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 892 /// setjmp or other function that gcc recognizes as "returning twice". 893 bool Function::callsFunctionThatReturnsTwice() const { 894 for (const_inst_iterator 895 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 896 ImmutableCallSite CS(&*I); 897 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 898 return true; 899 } 900 901 return false; 902 } 903 904 Constant *Function::getPrefixData() const { 905 assert(hasPrefixData()); 906 const LLVMContextImpl::PrefixDataMapTy &PDMap = 907 getContext().pImpl->PrefixDataMap; 908 assert(PDMap.find(this) != PDMap.end()); 909 return cast<Constant>(PDMap.find(this)->second->getReturnValue()); 910 } 911 912 void Function::setPrefixData(Constant *PrefixData) { 913 if (!PrefixData && !hasPrefixData()) 914 return; 915 916 unsigned SCData = getSubclassDataFromValue(); 917 LLVMContextImpl::PrefixDataMapTy &PDMap = getContext().pImpl->PrefixDataMap; 918 ReturnInst *&PDHolder = PDMap[this]; 919 if (PrefixData) { 920 if (PDHolder) 921 PDHolder->setOperand(0, PrefixData); 922 else 923 PDHolder = ReturnInst::Create(getContext(), PrefixData); 924 SCData |= (1<<1); 925 } else { 926 delete PDHolder; 927 PDMap.erase(this); 928 SCData &= ~(1<<1); 929 } 930 setValueSubclassData(SCData); 931 } 932 933 Constant *Function::getPrologueData() const { 934 assert(hasPrologueData()); 935 const LLVMContextImpl::PrologueDataMapTy &SOMap = 936 getContext().pImpl->PrologueDataMap; 937 assert(SOMap.find(this) != SOMap.end()); 938 return cast<Constant>(SOMap.find(this)->second->getReturnValue()); 939 } 940 941 void Function::setPrologueData(Constant *PrologueData) { 942 if (!PrologueData && !hasPrologueData()) 943 return; 944 945 unsigned PDData = getSubclassDataFromValue(); 946 LLVMContextImpl::PrologueDataMapTy &PDMap = getContext().pImpl->PrologueDataMap; 947 ReturnInst *&PDHolder = PDMap[this]; 948 if (PrologueData) { 949 if (PDHolder) 950 PDHolder->setOperand(0, PrologueData); 951 else 952 PDHolder = ReturnInst::Create(getContext(), PrologueData); 953 PDData |= (1<<2); 954 } else { 955 delete PDHolder; 956 PDMap.erase(this); 957 PDData &= ~(1<<2); 958 } 959 setValueSubclassData(PDData); 960 } 961