1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the Function class for the IR library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/IR/Function.h" 14 #include "SymbolTableListTraitsImpl.h" 15 #include "llvm/ADT/ArrayRef.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/ADT/StringRef.h" 23 #include "llvm/IR/Argument.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/BasicBlock.h" 26 #include "llvm/IR/Constant.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/InstIterator.h" 31 #include "llvm/IR/Instruction.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/LLVMContext.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/SymbolTableListTraits.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Use.h" 42 #include "llvm/IR/User.h" 43 #include "llvm/IR/Value.h" 44 #include "llvm/IR/ValueSymbolTable.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/Compiler.h" 47 #include "llvm/Support/ErrorHandling.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstddef> 51 #include <cstdint> 52 #include <cstring> 53 #include <string> 54 55 using namespace llvm; 56 using ProfileCount = Function::ProfileCount; 57 58 // Explicit instantiations of SymbolTableListTraits since some of the methods 59 // are not in the public header file... 60 template class llvm::SymbolTableListTraits<BasicBlock>; 61 62 //===----------------------------------------------------------------------===// 63 // Argument Implementation 64 //===----------------------------------------------------------------------===// 65 66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 67 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 68 setName(Name); 69 } 70 71 void Argument::setParent(Function *parent) { 72 Parent = parent; 73 } 74 75 bool Argument::hasNonNullAttr() const { 76 if (!getType()->isPointerTy()) return false; 77 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 78 return true; 79 else if (getDereferenceableBytes() > 0 && 80 !NullPointerIsDefined(getParent(), 81 getType()->getPointerAddressSpace())) 82 return true; 83 return false; 84 } 85 86 bool Argument::hasByValAttr() const { 87 if (!getType()->isPointerTy()) return false; 88 return hasAttribute(Attribute::ByVal); 89 } 90 91 bool Argument::hasSwiftSelfAttr() const { 92 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 93 } 94 95 bool Argument::hasSwiftErrorAttr() const { 96 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 97 } 98 99 bool Argument::hasInAllocaAttr() const { 100 if (!getType()->isPointerTy()) return false; 101 return hasAttribute(Attribute::InAlloca); 102 } 103 104 bool Argument::hasByValOrInAllocaAttr() const { 105 if (!getType()->isPointerTy()) return false; 106 AttributeList Attrs = getParent()->getAttributes(); 107 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 108 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 109 } 110 111 unsigned Argument::getParamAlignment() const { 112 assert(getType()->isPointerTy() && "Only pointers have alignments"); 113 return getParent()->getParamAlignment(getArgNo()); 114 } 115 116 uint64_t Argument::getDereferenceableBytes() const { 117 assert(getType()->isPointerTy() && 118 "Only pointers have dereferenceable bytes"); 119 return getParent()->getParamDereferenceableBytes(getArgNo()); 120 } 121 122 uint64_t Argument::getDereferenceableOrNullBytes() const { 123 assert(getType()->isPointerTy() && 124 "Only pointers have dereferenceable bytes"); 125 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 126 } 127 128 bool Argument::hasNestAttr() const { 129 if (!getType()->isPointerTy()) return false; 130 return hasAttribute(Attribute::Nest); 131 } 132 133 bool Argument::hasNoAliasAttr() const { 134 if (!getType()->isPointerTy()) return false; 135 return hasAttribute(Attribute::NoAlias); 136 } 137 138 bool Argument::hasNoCaptureAttr() const { 139 if (!getType()->isPointerTy()) return false; 140 return hasAttribute(Attribute::NoCapture); 141 } 142 143 bool Argument::hasStructRetAttr() const { 144 if (!getType()->isPointerTy()) return false; 145 return hasAttribute(Attribute::StructRet); 146 } 147 148 bool Argument::hasReturnedAttr() const { 149 return hasAttribute(Attribute::Returned); 150 } 151 152 bool Argument::hasZExtAttr() const { 153 return hasAttribute(Attribute::ZExt); 154 } 155 156 bool Argument::hasSExtAttr() const { 157 return hasAttribute(Attribute::SExt); 158 } 159 160 bool Argument::onlyReadsMemory() const { 161 AttributeList Attrs = getParent()->getAttributes(); 162 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 163 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 164 } 165 166 void Argument::addAttrs(AttrBuilder &B) { 167 AttributeList AL = getParent()->getAttributes(); 168 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 169 getParent()->setAttributes(AL); 170 } 171 172 void Argument::addAttr(Attribute::AttrKind Kind) { 173 getParent()->addParamAttr(getArgNo(), Kind); 174 } 175 176 void Argument::addAttr(Attribute Attr) { 177 getParent()->addParamAttr(getArgNo(), Attr); 178 } 179 180 void Argument::removeAttr(Attribute::AttrKind Kind) { 181 getParent()->removeParamAttr(getArgNo(), Kind); 182 } 183 184 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 185 return getParent()->hasParamAttribute(getArgNo(), Kind); 186 } 187 188 //===----------------------------------------------------------------------===// 189 // Helper Methods in Function 190 //===----------------------------------------------------------------------===// 191 192 LLVMContext &Function::getContext() const { 193 return getType()->getContext(); 194 } 195 196 unsigned Function::getInstructionCount() const { 197 unsigned NumInstrs = 0; 198 for (const BasicBlock &BB : BasicBlocks) 199 NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(), 200 BB.instructionsWithoutDebug().end()); 201 return NumInstrs; 202 } 203 204 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage, 205 const Twine &N, Module &M) { 206 return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M); 207 } 208 209 void Function::removeFromParent() { 210 getParent()->getFunctionList().remove(getIterator()); 211 } 212 213 void Function::eraseFromParent() { 214 getParent()->getFunctionList().erase(getIterator()); 215 } 216 217 //===----------------------------------------------------------------------===// 218 // Function Implementation 219 //===----------------------------------------------------------------------===// 220 221 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) { 222 // If AS == -1 and we are passed a valid module pointer we place the function 223 // in the program address space. Otherwise we default to AS0. 224 if (AddrSpace == static_cast<unsigned>(-1)) 225 return M ? M->getDataLayout().getProgramAddressSpace() : 0; 226 return AddrSpace; 227 } 228 229 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace, 230 const Twine &name, Module *ParentModule) 231 : GlobalObject(Ty, Value::FunctionVal, 232 OperandTraits<Function>::op_begin(this), 0, Linkage, name, 233 computeAddrSpace(AddrSpace, ParentModule)), 234 NumArgs(Ty->getNumParams()) { 235 assert(FunctionType::isValidReturnType(getReturnType()) && 236 "invalid return type"); 237 setGlobalObjectSubClassData(0); 238 239 // We only need a symbol table for a function if the context keeps value names 240 if (!getContext().shouldDiscardValueNames()) 241 SymTab = make_unique<ValueSymbolTable>(); 242 243 // If the function has arguments, mark them as lazily built. 244 if (Ty->getNumParams()) 245 setValueSubclassData(1); // Set the "has lazy arguments" bit. 246 247 if (ParentModule) 248 ParentModule->getFunctionList().push_back(this); 249 250 HasLLVMReservedName = getName().startswith("llvm."); 251 // Ensure intrinsics have the right parameter attributes. 252 // Note, the IntID field will have been set in Value::setName if this function 253 // name is a valid intrinsic ID. 254 if (IntID) 255 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 256 } 257 258 Function::~Function() { 259 dropAllReferences(); // After this it is safe to delete instructions. 260 261 // Delete all of the method arguments and unlink from symbol table... 262 if (Arguments) 263 clearArguments(); 264 265 // Remove the function from the on-the-side GC table. 266 clearGC(); 267 } 268 269 void Function::BuildLazyArguments() const { 270 // Create the arguments vector, all arguments start out unnamed. 271 auto *FT = getFunctionType(); 272 if (NumArgs > 0) { 273 Arguments = std::allocator<Argument>().allocate(NumArgs); 274 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 275 Type *ArgTy = FT->getParamType(i); 276 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 277 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 278 } 279 } 280 281 // Clear the lazy arguments bit. 282 unsigned SDC = getSubclassDataFromValue(); 283 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 284 assert(!hasLazyArguments()); 285 } 286 287 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 288 return MutableArrayRef<Argument>(Args, Count); 289 } 290 291 void Function::clearArguments() { 292 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 293 A.setName(""); 294 A.~Argument(); 295 } 296 std::allocator<Argument>().deallocate(Arguments, NumArgs); 297 Arguments = nullptr; 298 } 299 300 void Function::stealArgumentListFrom(Function &Src) { 301 assert(isDeclaration() && "Expected no references to current arguments"); 302 303 // Drop the current arguments, if any, and set the lazy argument bit. 304 if (!hasLazyArguments()) { 305 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 306 [](const Argument &A) { return A.use_empty(); }) && 307 "Expected arguments to be unused in declaration"); 308 clearArguments(); 309 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 310 } 311 312 // Nothing to steal if Src has lazy arguments. 313 if (Src.hasLazyArguments()) 314 return; 315 316 // Steal arguments from Src, and fix the lazy argument bits. 317 assert(arg_size() == Src.arg_size()); 318 Arguments = Src.Arguments; 319 Src.Arguments = nullptr; 320 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 321 // FIXME: This does the work of transferNodesFromList inefficiently. 322 SmallString<128> Name; 323 if (A.hasName()) 324 Name = A.getName(); 325 if (!Name.empty()) 326 A.setName(""); 327 A.setParent(this); 328 if (!Name.empty()) 329 A.setName(Name); 330 } 331 332 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 333 assert(!hasLazyArguments()); 334 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 335 } 336 337 // dropAllReferences() - This function causes all the subinstructions to "let 338 // go" of all references that they are maintaining. This allows one to 339 // 'delete' a whole class at a time, even though there may be circular 340 // references... first all references are dropped, and all use counts go to 341 // zero. Then everything is deleted for real. Note that no operations are 342 // valid on an object that has "dropped all references", except operator 343 // delete. 344 // 345 void Function::dropAllReferences() { 346 setIsMaterializable(false); 347 348 for (BasicBlock &BB : *this) 349 BB.dropAllReferences(); 350 351 // Delete all basic blocks. They are now unused, except possibly by 352 // blockaddresses, but BasicBlock's destructor takes care of those. 353 while (!BasicBlocks.empty()) 354 BasicBlocks.begin()->eraseFromParent(); 355 356 // Drop uses of any optional data (real or placeholder). 357 if (getNumOperands()) { 358 User::dropAllReferences(); 359 setNumHungOffUseOperands(0); 360 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 361 } 362 363 // Metadata is stored in a side-table. 364 clearMetadata(); 365 } 366 367 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 368 AttributeList PAL = getAttributes(); 369 PAL = PAL.addAttribute(getContext(), i, Kind); 370 setAttributes(PAL); 371 } 372 373 void Function::addAttribute(unsigned i, Attribute Attr) { 374 AttributeList PAL = getAttributes(); 375 PAL = PAL.addAttribute(getContext(), i, Attr); 376 setAttributes(PAL); 377 } 378 379 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 380 AttributeList PAL = getAttributes(); 381 PAL = PAL.addAttributes(getContext(), i, Attrs); 382 setAttributes(PAL); 383 } 384 385 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 386 AttributeList PAL = getAttributes(); 387 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 388 setAttributes(PAL); 389 } 390 391 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 392 AttributeList PAL = getAttributes(); 393 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 394 setAttributes(PAL); 395 } 396 397 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 398 AttributeList PAL = getAttributes(); 399 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 400 setAttributes(PAL); 401 } 402 403 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 404 AttributeList PAL = getAttributes(); 405 PAL = PAL.removeAttribute(getContext(), i, Kind); 406 setAttributes(PAL); 407 } 408 409 void Function::removeAttribute(unsigned i, StringRef Kind) { 410 AttributeList PAL = getAttributes(); 411 PAL = PAL.removeAttribute(getContext(), i, Kind); 412 setAttributes(PAL); 413 } 414 415 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 416 AttributeList PAL = getAttributes(); 417 PAL = PAL.removeAttributes(getContext(), i, Attrs); 418 setAttributes(PAL); 419 } 420 421 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 422 AttributeList PAL = getAttributes(); 423 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 424 setAttributes(PAL); 425 } 426 427 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 428 AttributeList PAL = getAttributes(); 429 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 430 setAttributes(PAL); 431 } 432 433 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 434 AttributeList PAL = getAttributes(); 435 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 436 setAttributes(PAL); 437 } 438 439 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 440 AttributeList PAL = getAttributes(); 441 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 442 setAttributes(PAL); 443 } 444 445 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 446 AttributeList PAL = getAttributes(); 447 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 448 setAttributes(PAL); 449 } 450 451 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 452 AttributeList PAL = getAttributes(); 453 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 454 setAttributes(PAL); 455 } 456 457 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 458 uint64_t Bytes) { 459 AttributeList PAL = getAttributes(); 460 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 461 setAttributes(PAL); 462 } 463 464 const std::string &Function::getGC() const { 465 assert(hasGC() && "Function has no collector"); 466 return getContext().getGC(*this); 467 } 468 469 void Function::setGC(std::string Str) { 470 setValueSubclassDataBit(14, !Str.empty()); 471 getContext().setGC(*this, std::move(Str)); 472 } 473 474 void Function::clearGC() { 475 if (!hasGC()) 476 return; 477 getContext().deleteGC(*this); 478 setValueSubclassDataBit(14, false); 479 } 480 481 /// Copy all additional attributes (those not needed to create a Function) from 482 /// the Function Src to this one. 483 void Function::copyAttributesFrom(const Function *Src) { 484 GlobalObject::copyAttributesFrom(Src); 485 setCallingConv(Src->getCallingConv()); 486 setAttributes(Src->getAttributes()); 487 if (Src->hasGC()) 488 setGC(Src->getGC()); 489 else 490 clearGC(); 491 if (Src->hasPersonalityFn()) 492 setPersonalityFn(Src->getPersonalityFn()); 493 if (Src->hasPrefixData()) 494 setPrefixData(Src->getPrefixData()); 495 if (Src->hasPrologueData()) 496 setPrologueData(Src->getPrologueData()); 497 } 498 499 /// Table of string intrinsic names indexed by enum value. 500 static const char * const IntrinsicNameTable[] = { 501 "not_intrinsic", 502 #define GET_INTRINSIC_NAME_TABLE 503 #include "llvm/IR/IntrinsicImpl.inc" 504 #undef GET_INTRINSIC_NAME_TABLE 505 }; 506 507 /// Table of per-target intrinsic name tables. 508 #define GET_INTRINSIC_TARGET_DATA 509 #include "llvm/IR/IntrinsicImpl.inc" 510 #undef GET_INTRINSIC_TARGET_DATA 511 512 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 513 /// target as \c Name, or the generic table if \c Name is not target specific. 514 /// 515 /// Returns the relevant slice of \c IntrinsicNameTable 516 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 517 assert(Name.startswith("llvm.")); 518 519 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 520 // Drop "llvm." and take the first dotted component. That will be the target 521 // if this is target specific. 522 StringRef Target = Name.drop_front(5).split('.').first; 523 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 524 [](const IntrinsicTargetInfo &TI, 525 StringRef Target) { return TI.Name < Target; }); 526 // We've either found the target or just fall back to the generic set, which 527 // is always first. 528 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 529 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 530 } 531 532 /// This does the actual lookup of an intrinsic ID which 533 /// matches the given function name. 534 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 535 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 536 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 537 if (Idx == -1) 538 return Intrinsic::not_intrinsic; 539 540 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 541 // an index into a sub-table. 542 int Adjust = NameTable.data() - IntrinsicNameTable; 543 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 544 545 // If the intrinsic is not overloaded, require an exact match. If it is 546 // overloaded, require either exact or prefix match. 547 const auto MatchSize = strlen(NameTable[Idx]); 548 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 549 bool IsExactMatch = Name.size() == MatchSize; 550 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 551 } 552 553 void Function::recalculateIntrinsicID() { 554 StringRef Name = getName(); 555 if (!Name.startswith("llvm.")) { 556 HasLLVMReservedName = false; 557 IntID = Intrinsic::not_intrinsic; 558 return; 559 } 560 HasLLVMReservedName = true; 561 IntID = lookupIntrinsicID(Name); 562 } 563 564 /// Returns a stable mangling for the type specified for use in the name 565 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 566 /// of named types is simply their name. Manglings for unnamed types consist 567 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 568 /// combined with the mangling of their component types. A vararg function 569 /// type will have a suffix of 'vararg'. Since function types can contain 570 /// other function types, we close a function type mangling with suffix 'f' 571 /// which can't be confused with it's prefix. This ensures we don't have 572 /// collisions between two unrelated function types. Otherwise, you might 573 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 574 /// 575 static std::string getMangledTypeStr(Type* Ty) { 576 std::string Result; 577 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 578 Result += "p" + utostr(PTyp->getAddressSpace()) + 579 getMangledTypeStr(PTyp->getElementType()); 580 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 581 Result += "a" + utostr(ATyp->getNumElements()) + 582 getMangledTypeStr(ATyp->getElementType()); 583 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 584 if (!STyp->isLiteral()) { 585 Result += "s_"; 586 Result += STyp->getName(); 587 } else { 588 Result += "sl_"; 589 for (auto Elem : STyp->elements()) 590 Result += getMangledTypeStr(Elem); 591 } 592 // Ensure nested structs are distinguishable. 593 Result += "s"; 594 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 595 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 596 for (size_t i = 0; i < FT->getNumParams(); i++) 597 Result += getMangledTypeStr(FT->getParamType(i)); 598 if (FT->isVarArg()) 599 Result += "vararg"; 600 // Ensure nested function types are distinguishable. 601 Result += "f"; 602 } else if (isa<VectorType>(Ty)) { 603 Result += "v" + utostr(Ty->getVectorNumElements()) + 604 getMangledTypeStr(Ty->getVectorElementType()); 605 } else if (Ty) { 606 switch (Ty->getTypeID()) { 607 default: llvm_unreachable("Unhandled type"); 608 case Type::VoidTyID: Result += "isVoid"; break; 609 case Type::MetadataTyID: Result += "Metadata"; break; 610 case Type::HalfTyID: Result += "f16"; break; 611 case Type::FloatTyID: Result += "f32"; break; 612 case Type::DoubleTyID: Result += "f64"; break; 613 case Type::X86_FP80TyID: Result += "f80"; break; 614 case Type::FP128TyID: Result += "f128"; break; 615 case Type::PPC_FP128TyID: Result += "ppcf128"; break; 616 case Type::X86_MMXTyID: Result += "x86mmx"; break; 617 case Type::IntegerTyID: 618 Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth()); 619 break; 620 } 621 } 622 return Result; 623 } 624 625 StringRef Intrinsic::getName(ID id) { 626 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 627 assert(!isOverloaded(id) && 628 "This version of getName does not support overloading"); 629 return IntrinsicNameTable[id]; 630 } 631 632 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 633 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 634 std::string Result(IntrinsicNameTable[id]); 635 for (Type *Ty : Tys) { 636 Result += "." + getMangledTypeStr(Ty); 637 } 638 return Result; 639 } 640 641 /// IIT_Info - These are enumerators that describe the entries returned by the 642 /// getIntrinsicInfoTableEntries function. 643 /// 644 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 645 enum IIT_Info { 646 // Common values should be encoded with 0-15. 647 IIT_Done = 0, 648 IIT_I1 = 1, 649 IIT_I8 = 2, 650 IIT_I16 = 3, 651 IIT_I32 = 4, 652 IIT_I64 = 5, 653 IIT_F16 = 6, 654 IIT_F32 = 7, 655 IIT_F64 = 8, 656 IIT_V2 = 9, 657 IIT_V4 = 10, 658 IIT_V8 = 11, 659 IIT_V16 = 12, 660 IIT_V32 = 13, 661 IIT_PTR = 14, 662 IIT_ARG = 15, 663 664 // Values from 16+ are only encodable with the inefficient encoding. 665 IIT_V64 = 16, 666 IIT_MMX = 17, 667 IIT_TOKEN = 18, 668 IIT_METADATA = 19, 669 IIT_EMPTYSTRUCT = 20, 670 IIT_STRUCT2 = 21, 671 IIT_STRUCT3 = 22, 672 IIT_STRUCT4 = 23, 673 IIT_STRUCT5 = 24, 674 IIT_EXTEND_ARG = 25, 675 IIT_TRUNC_ARG = 26, 676 IIT_ANYPTR = 27, 677 IIT_V1 = 28, 678 IIT_VARARG = 29, 679 IIT_HALF_VEC_ARG = 30, 680 IIT_SAME_VEC_WIDTH_ARG = 31, 681 IIT_PTR_TO_ARG = 32, 682 IIT_PTR_TO_ELT = 33, 683 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 684 IIT_I128 = 35, 685 IIT_V512 = 36, 686 IIT_V1024 = 37, 687 IIT_STRUCT6 = 38, 688 IIT_STRUCT7 = 39, 689 IIT_STRUCT8 = 40, 690 IIT_F128 = 41 691 }; 692 693 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 694 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 695 using namespace Intrinsic; 696 697 IIT_Info Info = IIT_Info(Infos[NextElt++]); 698 unsigned StructElts = 2; 699 700 switch (Info) { 701 case IIT_Done: 702 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 703 return; 704 case IIT_VARARG: 705 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 706 return; 707 case IIT_MMX: 708 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 709 return; 710 case IIT_TOKEN: 711 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 712 return; 713 case IIT_METADATA: 714 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 715 return; 716 case IIT_F16: 717 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 718 return; 719 case IIT_F32: 720 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 721 return; 722 case IIT_F64: 723 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 724 return; 725 case IIT_F128: 726 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0)); 727 return; 728 case IIT_I1: 729 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 730 return; 731 case IIT_I8: 732 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 733 return; 734 case IIT_I16: 735 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 736 return; 737 case IIT_I32: 738 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 739 return; 740 case IIT_I64: 741 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 742 return; 743 case IIT_I128: 744 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 745 return; 746 case IIT_V1: 747 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 748 DecodeIITType(NextElt, Infos, OutputTable); 749 return; 750 case IIT_V2: 751 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 752 DecodeIITType(NextElt, Infos, OutputTable); 753 return; 754 case IIT_V4: 755 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 756 DecodeIITType(NextElt, Infos, OutputTable); 757 return; 758 case IIT_V8: 759 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 760 DecodeIITType(NextElt, Infos, OutputTable); 761 return; 762 case IIT_V16: 763 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 764 DecodeIITType(NextElt, Infos, OutputTable); 765 return; 766 case IIT_V32: 767 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 768 DecodeIITType(NextElt, Infos, OutputTable); 769 return; 770 case IIT_V64: 771 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 772 DecodeIITType(NextElt, Infos, OutputTable); 773 return; 774 case IIT_V512: 775 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 776 DecodeIITType(NextElt, Infos, OutputTable); 777 return; 778 case IIT_V1024: 779 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 780 DecodeIITType(NextElt, Infos, OutputTable); 781 return; 782 case IIT_PTR: 783 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 784 DecodeIITType(NextElt, Infos, OutputTable); 785 return; 786 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 787 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 788 Infos[NextElt++])); 789 DecodeIITType(NextElt, Infos, OutputTable); 790 return; 791 } 792 case IIT_ARG: { 793 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 794 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 795 return; 796 } 797 case IIT_EXTEND_ARG: { 798 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 799 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 800 ArgInfo)); 801 return; 802 } 803 case IIT_TRUNC_ARG: { 804 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 805 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 806 ArgInfo)); 807 return; 808 } 809 case IIT_HALF_VEC_ARG: { 810 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 811 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 812 ArgInfo)); 813 return; 814 } 815 case IIT_SAME_VEC_WIDTH_ARG: { 816 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 817 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 818 ArgInfo)); 819 return; 820 } 821 case IIT_PTR_TO_ARG: { 822 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 823 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 824 ArgInfo)); 825 return; 826 } 827 case IIT_PTR_TO_ELT: { 828 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 829 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 830 return; 831 } 832 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 833 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 834 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 835 OutputTable.push_back( 836 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 837 return; 838 } 839 case IIT_EMPTYSTRUCT: 840 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 841 return; 842 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 843 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 844 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 845 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 846 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 847 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 848 case IIT_STRUCT2: { 849 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 850 851 for (unsigned i = 0; i != StructElts; ++i) 852 DecodeIITType(NextElt, Infos, OutputTable); 853 return; 854 } 855 } 856 llvm_unreachable("unhandled"); 857 } 858 859 #define GET_INTRINSIC_GENERATOR_GLOBAL 860 #include "llvm/IR/IntrinsicImpl.inc" 861 #undef GET_INTRINSIC_GENERATOR_GLOBAL 862 863 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 864 SmallVectorImpl<IITDescriptor> &T){ 865 // Check to see if the intrinsic's type was expressible by the table. 866 unsigned TableVal = IIT_Table[id-1]; 867 868 // Decode the TableVal into an array of IITValues. 869 SmallVector<unsigned char, 8> IITValues; 870 ArrayRef<unsigned char> IITEntries; 871 unsigned NextElt = 0; 872 if ((TableVal >> 31) != 0) { 873 // This is an offset into the IIT_LongEncodingTable. 874 IITEntries = IIT_LongEncodingTable; 875 876 // Strip sentinel bit. 877 NextElt = (TableVal << 1) >> 1; 878 } else { 879 // Decode the TableVal into an array of IITValues. If the entry was encoded 880 // into a single word in the table itself, decode it now. 881 do { 882 IITValues.push_back(TableVal & 0xF); 883 TableVal >>= 4; 884 } while (TableVal); 885 886 IITEntries = IITValues; 887 NextElt = 0; 888 } 889 890 // Okay, decode the table into the output vector of IITDescriptors. 891 DecodeIITType(NextElt, IITEntries, T); 892 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 893 DecodeIITType(NextElt, IITEntries, T); 894 } 895 896 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 897 ArrayRef<Type*> Tys, LLVMContext &Context) { 898 using namespace Intrinsic; 899 900 IITDescriptor D = Infos.front(); 901 Infos = Infos.slice(1); 902 903 switch (D.Kind) { 904 case IITDescriptor::Void: return Type::getVoidTy(Context); 905 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 906 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 907 case IITDescriptor::Token: return Type::getTokenTy(Context); 908 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 909 case IITDescriptor::Half: return Type::getHalfTy(Context); 910 case IITDescriptor::Float: return Type::getFloatTy(Context); 911 case IITDescriptor::Double: return Type::getDoubleTy(Context); 912 case IITDescriptor::Quad: return Type::getFP128Ty(Context); 913 914 case IITDescriptor::Integer: 915 return IntegerType::get(Context, D.Integer_Width); 916 case IITDescriptor::Vector: 917 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 918 case IITDescriptor::Pointer: 919 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 920 D.Pointer_AddressSpace); 921 case IITDescriptor::Struct: { 922 SmallVector<Type *, 8> Elts; 923 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 924 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 925 return StructType::get(Context, Elts); 926 } 927 case IITDescriptor::Argument: 928 return Tys[D.getArgumentNumber()]; 929 case IITDescriptor::ExtendArgument: { 930 Type *Ty = Tys[D.getArgumentNumber()]; 931 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 932 return VectorType::getExtendedElementVectorType(VTy); 933 934 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 935 } 936 case IITDescriptor::TruncArgument: { 937 Type *Ty = Tys[D.getArgumentNumber()]; 938 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 939 return VectorType::getTruncatedElementVectorType(VTy); 940 941 IntegerType *ITy = cast<IntegerType>(Ty); 942 assert(ITy->getBitWidth() % 2 == 0); 943 return IntegerType::get(Context, ITy->getBitWidth() / 2); 944 } 945 case IITDescriptor::HalfVecArgument: 946 return VectorType::getHalfElementsVectorType(cast<VectorType>( 947 Tys[D.getArgumentNumber()])); 948 case IITDescriptor::SameVecWidthArgument: { 949 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 950 Type *Ty = Tys[D.getArgumentNumber()]; 951 if (auto *VTy = dyn_cast<VectorType>(Ty)) 952 return VectorType::get(EltTy, VTy->getNumElements()); 953 return EltTy; 954 } 955 case IITDescriptor::PtrToArgument: { 956 Type *Ty = Tys[D.getArgumentNumber()]; 957 return PointerType::getUnqual(Ty); 958 } 959 case IITDescriptor::PtrToElt: { 960 Type *Ty = Tys[D.getArgumentNumber()]; 961 VectorType *VTy = dyn_cast<VectorType>(Ty); 962 if (!VTy) 963 llvm_unreachable("Expected an argument of Vector Type"); 964 Type *EltTy = VTy->getVectorElementType(); 965 return PointerType::getUnqual(EltTy); 966 } 967 case IITDescriptor::VecOfAnyPtrsToElt: 968 // Return the overloaded type (which determines the pointers address space) 969 return Tys[D.getOverloadArgNumber()]; 970 } 971 llvm_unreachable("unhandled"); 972 } 973 974 FunctionType *Intrinsic::getType(LLVMContext &Context, 975 ID id, ArrayRef<Type*> Tys) { 976 SmallVector<IITDescriptor, 8> Table; 977 getIntrinsicInfoTableEntries(id, Table); 978 979 ArrayRef<IITDescriptor> TableRef = Table; 980 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 981 982 SmallVector<Type*, 8> ArgTys; 983 while (!TableRef.empty()) 984 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 985 986 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 987 // If we see void type as the type of the last argument, it is vararg intrinsic 988 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 989 ArgTys.pop_back(); 990 return FunctionType::get(ResultTy, ArgTys, true); 991 } 992 return FunctionType::get(ResultTy, ArgTys, false); 993 } 994 995 bool Intrinsic::isOverloaded(ID id) { 996 #define GET_INTRINSIC_OVERLOAD_TABLE 997 #include "llvm/IR/IntrinsicImpl.inc" 998 #undef GET_INTRINSIC_OVERLOAD_TABLE 999 } 1000 1001 bool Intrinsic::isLeaf(ID id) { 1002 switch (id) { 1003 default: 1004 return true; 1005 1006 case Intrinsic::experimental_gc_statepoint: 1007 case Intrinsic::experimental_patchpoint_void: 1008 case Intrinsic::experimental_patchpoint_i64: 1009 return false; 1010 } 1011 } 1012 1013 /// This defines the "Intrinsic::getAttributes(ID id)" method. 1014 #define GET_INTRINSIC_ATTRIBUTES 1015 #include "llvm/IR/IntrinsicImpl.inc" 1016 #undef GET_INTRINSIC_ATTRIBUTES 1017 1018 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 1019 // There can never be multiple globals with the same name of different types, 1020 // because intrinsics must be a specific type. 1021 return cast<Function>( 1022 M->getOrInsertFunction(getName(id, Tys), 1023 getType(M->getContext(), id, Tys)) 1024 .getCallee()); 1025 } 1026 1027 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 1028 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1029 #include "llvm/IR/IntrinsicImpl.inc" 1030 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 1031 1032 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 1033 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1034 #include "llvm/IR/IntrinsicImpl.inc" 1035 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 1036 1037 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1038 SmallVectorImpl<Type*> &ArgTys) { 1039 using namespace Intrinsic; 1040 1041 // If we ran out of descriptors, there are too many arguments. 1042 if (Infos.empty()) return true; 1043 IITDescriptor D = Infos.front(); 1044 Infos = Infos.slice(1); 1045 1046 switch (D.Kind) { 1047 case IITDescriptor::Void: return !Ty->isVoidTy(); 1048 case IITDescriptor::VarArg: return true; 1049 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1050 case IITDescriptor::Token: return !Ty->isTokenTy(); 1051 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1052 case IITDescriptor::Half: return !Ty->isHalfTy(); 1053 case IITDescriptor::Float: return !Ty->isFloatTy(); 1054 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1055 case IITDescriptor::Quad: return !Ty->isFP128Ty(); 1056 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1057 case IITDescriptor::Vector: { 1058 VectorType *VT = dyn_cast<VectorType>(Ty); 1059 return !VT || VT->getNumElements() != D.Vector_Width || 1060 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 1061 } 1062 case IITDescriptor::Pointer: { 1063 PointerType *PT = dyn_cast<PointerType>(Ty); 1064 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1065 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 1066 } 1067 1068 case IITDescriptor::Struct: { 1069 StructType *ST = dyn_cast<StructType>(Ty); 1070 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1071 return true; 1072 1073 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1074 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 1075 return true; 1076 return false; 1077 } 1078 1079 case IITDescriptor::Argument: 1080 // Two cases here - If this is the second occurrence of an argument, verify 1081 // that the later instance matches the previous instance. 1082 if (D.getArgumentNumber() < ArgTys.size()) 1083 return Ty != ArgTys[D.getArgumentNumber()]; 1084 1085 // Otherwise, if this is the first instance of an argument, record it and 1086 // verify the "Any" kind. 1087 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1088 ArgTys.push_back(Ty); 1089 1090 switch (D.getArgumentKind()) { 1091 case IITDescriptor::AK_Any: return false; // Success 1092 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1093 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1094 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1095 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1096 } 1097 llvm_unreachable("all argument kinds not covered"); 1098 1099 case IITDescriptor::ExtendArgument: { 1100 // This may only be used when referring to a previous vector argument. 1101 if (D.getArgumentNumber() >= ArgTys.size()) 1102 return true; 1103 1104 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1105 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1106 NewTy = VectorType::getExtendedElementVectorType(VTy); 1107 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1108 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1109 else 1110 return true; 1111 1112 return Ty != NewTy; 1113 } 1114 case IITDescriptor::TruncArgument: { 1115 // This may only be used when referring to a previous vector argument. 1116 if (D.getArgumentNumber() >= ArgTys.size()) 1117 return true; 1118 1119 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1120 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1121 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1122 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1123 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1124 else 1125 return true; 1126 1127 return Ty != NewTy; 1128 } 1129 case IITDescriptor::HalfVecArgument: 1130 // This may only be used when referring to a previous vector argument. 1131 return D.getArgumentNumber() >= ArgTys.size() || 1132 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1133 VectorType::getHalfElementsVectorType( 1134 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1135 case IITDescriptor::SameVecWidthArgument: { 1136 if (D.getArgumentNumber() >= ArgTys.size()) 1137 return true; 1138 auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1139 auto *ThisArgType = dyn_cast<VectorType>(Ty); 1140 // Both must be vectors of the same number of elements or neither. 1141 if ((ReferenceType != nullptr) != (ThisArgType != nullptr)) 1142 return true; 1143 Type *EltTy = Ty; 1144 if (ThisArgType) { 1145 if (ReferenceType->getVectorNumElements() != 1146 ThisArgType->getVectorNumElements()) 1147 return true; 1148 EltTy = ThisArgType->getVectorElementType(); 1149 } 1150 return matchIntrinsicType(EltTy, Infos, ArgTys); 1151 } 1152 case IITDescriptor::PtrToArgument: { 1153 if (D.getArgumentNumber() >= ArgTys.size()) 1154 return true; 1155 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1156 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1157 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1158 } 1159 case IITDescriptor::PtrToElt: { 1160 if (D.getArgumentNumber() >= ArgTys.size()) 1161 return true; 1162 VectorType * ReferenceType = 1163 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1164 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1165 1166 return (!ThisArgType || !ReferenceType || 1167 ThisArgType->getElementType() != ReferenceType->getElementType()); 1168 } 1169 case IITDescriptor::VecOfAnyPtrsToElt: { 1170 unsigned RefArgNumber = D.getRefArgNumber(); 1171 1172 // This may only be used when referring to a previous argument. 1173 if (RefArgNumber >= ArgTys.size()) 1174 return true; 1175 1176 // Record the overloaded type 1177 assert(D.getOverloadArgNumber() == ArgTys.size() && 1178 "Table consistency error"); 1179 ArgTys.push_back(Ty); 1180 1181 // Verify the overloaded type "matches" the Ref type. 1182 // i.e. Ty is a vector with the same width as Ref. 1183 // Composed of pointers to the same element type as Ref. 1184 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1185 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1186 if (!ThisArgVecTy || !ReferenceType || 1187 (ReferenceType->getVectorNumElements() != 1188 ThisArgVecTy->getVectorNumElements())) 1189 return true; 1190 PointerType *ThisArgEltTy = 1191 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1192 if (!ThisArgEltTy) 1193 return true; 1194 return ThisArgEltTy->getElementType() != 1195 ReferenceType->getVectorElementType(); 1196 } 1197 } 1198 llvm_unreachable("unhandled"); 1199 } 1200 1201 bool 1202 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1203 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1204 // If there are no descriptors left, then it can't be a vararg. 1205 if (Infos.empty()) 1206 return isVarArg; 1207 1208 // There should be only one descriptor remaining at this point. 1209 if (Infos.size() != 1) 1210 return true; 1211 1212 // Check and verify the descriptor. 1213 IITDescriptor D = Infos.front(); 1214 Infos = Infos.slice(1); 1215 if (D.Kind == IITDescriptor::VarArg) 1216 return !isVarArg; 1217 1218 return true; 1219 } 1220 1221 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1222 Intrinsic::ID ID = F->getIntrinsicID(); 1223 if (!ID) 1224 return None; 1225 1226 FunctionType *FTy = F->getFunctionType(); 1227 // Accumulate an array of overloaded types for the given intrinsic 1228 SmallVector<Type *, 4> ArgTys; 1229 { 1230 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1231 getIntrinsicInfoTableEntries(ID, Table); 1232 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1233 1234 // If we encounter any problems matching the signature with the descriptor 1235 // just give up remangling. It's up to verifier to report the discrepancy. 1236 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1237 return None; 1238 for (auto Ty : FTy->params()) 1239 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1240 return None; 1241 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1242 return None; 1243 } 1244 1245 StringRef Name = F->getName(); 1246 if (Name == Intrinsic::getName(ID, ArgTys)) 1247 return None; 1248 1249 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1250 NewDecl->setCallingConv(F->getCallingConv()); 1251 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1252 return NewDecl; 1253 } 1254 1255 /// hasAddressTaken - returns true if there are any uses of this function 1256 /// other than direct calls or invokes to it. 1257 bool Function::hasAddressTaken(const User* *PutOffender) const { 1258 for (const Use &U : uses()) { 1259 const User *FU = U.getUser(); 1260 if (isa<BlockAddress>(FU)) 1261 continue; 1262 const auto *Call = dyn_cast<CallBase>(FU); 1263 if (!Call) { 1264 if (PutOffender) 1265 *PutOffender = FU; 1266 return true; 1267 } 1268 if (!Call->isCallee(&U)) { 1269 if (PutOffender) 1270 *PutOffender = FU; 1271 return true; 1272 } 1273 } 1274 return false; 1275 } 1276 1277 bool Function::isDefTriviallyDead() const { 1278 // Check the linkage 1279 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1280 !hasAvailableExternallyLinkage()) 1281 return false; 1282 1283 // Check if the function is used by anything other than a blockaddress. 1284 for (const User *U : users()) 1285 if (!isa<BlockAddress>(U)) 1286 return false; 1287 1288 return true; 1289 } 1290 1291 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1292 /// setjmp or other function that gcc recognizes as "returning twice". 1293 bool Function::callsFunctionThatReturnsTwice() const { 1294 for (const Instruction &I : instructions(this)) 1295 if (const auto *Call = dyn_cast<CallBase>(&I)) 1296 if (Call->hasFnAttr(Attribute::ReturnsTwice)) 1297 return true; 1298 1299 return false; 1300 } 1301 1302 Constant *Function::getPersonalityFn() const { 1303 assert(hasPersonalityFn() && getNumOperands()); 1304 return cast<Constant>(Op<0>()); 1305 } 1306 1307 void Function::setPersonalityFn(Constant *Fn) { 1308 setHungoffOperand<0>(Fn); 1309 setValueSubclassDataBit(3, Fn != nullptr); 1310 } 1311 1312 Constant *Function::getPrefixData() const { 1313 assert(hasPrefixData() && getNumOperands()); 1314 return cast<Constant>(Op<1>()); 1315 } 1316 1317 void Function::setPrefixData(Constant *PrefixData) { 1318 setHungoffOperand<1>(PrefixData); 1319 setValueSubclassDataBit(1, PrefixData != nullptr); 1320 } 1321 1322 Constant *Function::getPrologueData() const { 1323 assert(hasPrologueData() && getNumOperands()); 1324 return cast<Constant>(Op<2>()); 1325 } 1326 1327 void Function::setPrologueData(Constant *PrologueData) { 1328 setHungoffOperand<2>(PrologueData); 1329 setValueSubclassDataBit(2, PrologueData != nullptr); 1330 } 1331 1332 void Function::allocHungoffUselist() { 1333 // If we've already allocated a uselist, stop here. 1334 if (getNumOperands()) 1335 return; 1336 1337 allocHungoffUses(3, /*IsPhi=*/ false); 1338 setNumHungOffUseOperands(3); 1339 1340 // Initialize the uselist with placeholder operands to allow traversal. 1341 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1342 Op<0>().set(CPN); 1343 Op<1>().set(CPN); 1344 Op<2>().set(CPN); 1345 } 1346 1347 template <int Idx> 1348 void Function::setHungoffOperand(Constant *C) { 1349 if (C) { 1350 allocHungoffUselist(); 1351 Op<Idx>().set(C); 1352 } else if (getNumOperands()) { 1353 Op<Idx>().set( 1354 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1355 } 1356 } 1357 1358 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1359 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1360 if (On) 1361 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1362 else 1363 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1364 } 1365 1366 void Function::setEntryCount(ProfileCount Count, 1367 const DenseSet<GlobalValue::GUID> *S) { 1368 assert(Count.hasValue()); 1369 #if !defined(NDEBUG) 1370 auto PrevCount = getEntryCount(); 1371 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1372 #endif 1373 MDBuilder MDB(getContext()); 1374 setMetadata( 1375 LLVMContext::MD_prof, 1376 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1377 } 1378 1379 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1380 const DenseSet<GlobalValue::GUID> *Imports) { 1381 setEntryCount(ProfileCount(Count, Type), Imports); 1382 } 1383 1384 ProfileCount Function::getEntryCount() const { 1385 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1386 if (MD && MD->getOperand(0)) 1387 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1388 if (MDS->getString().equals("function_entry_count")) { 1389 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1390 uint64_t Count = CI->getValue().getZExtValue(); 1391 // A value of -1 is used for SamplePGO when there were no samples. 1392 // Treat this the same as unknown. 1393 if (Count == (uint64_t)-1) 1394 return ProfileCount::getInvalid(); 1395 return ProfileCount(Count, PCT_Real); 1396 } else if (MDS->getString().equals("synthetic_function_entry_count")) { 1397 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1398 uint64_t Count = CI->getValue().getZExtValue(); 1399 return ProfileCount(Count, PCT_Synthetic); 1400 } 1401 } 1402 return ProfileCount::getInvalid(); 1403 } 1404 1405 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1406 DenseSet<GlobalValue::GUID> R; 1407 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1408 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1409 if (MDS->getString().equals("function_entry_count")) 1410 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1411 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1412 ->getValue() 1413 .getZExtValue()); 1414 return R; 1415 } 1416 1417 void Function::setSectionPrefix(StringRef Prefix) { 1418 MDBuilder MDB(getContext()); 1419 setMetadata(LLVMContext::MD_section_prefix, 1420 MDB.createFunctionSectionPrefix(Prefix)); 1421 } 1422 1423 Optional<StringRef> Function::getSectionPrefix() const { 1424 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1425 assert(cast<MDString>(MD->getOperand(0)) 1426 ->getString() 1427 .equals("function_section_prefix") && 1428 "Metadata not match"); 1429 return cast<MDString>(MD->getOperand(1))->getString(); 1430 } 1431 return None; 1432 } 1433 1434 bool Function::nullPointerIsDefined() const { 1435 return getFnAttribute("null-pointer-is-valid") 1436 .getValueAsString() 1437 .equals("true"); 1438 } 1439 1440 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) { 1441 if (F && F->nullPointerIsDefined()) 1442 return true; 1443 1444 if (AS != 0) 1445 return true; 1446 1447 return false; 1448 } 1449