xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 12a4dc4c34890d7d158ac95a0fb3e63281e596a0)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "SymbolTableListTraitsImpl.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/None.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/ADT/StringRef.h"
24 #include "llvm/CodeGen/ValueTypes.h"
25 #include "llvm/IR/Argument.h"
26 #include "llvm/IR/Attributes.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/CallSite.h"
29 #include "llvm/IR/Constant.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/GlobalValue.h"
33 #include "llvm/IR/InstIterator.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/IntrinsicInst.h"
37 #include "llvm/IR/Intrinsics.h"
38 #include "llvm/IR/LLVMContext.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/Metadata.h"
41 #include "llvm/IR/Module.h"
42 #include "llvm/IR/SymbolTableListTraits.h"
43 #include "llvm/IR/Type.h"
44 #include "llvm/IR/Use.h"
45 #include "llvm/IR/User.h"
46 #include "llvm/IR/Value.h"
47 #include "llvm/IR/ValueSymbolTable.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/Compiler.h"
50 #include "llvm/Support/ErrorHandling.h"
51 #include <algorithm>
52 #include <cassert>
53 #include <cstddef>
54 #include <cstdint>
55 #include <cstring>
56 #include <string>
57 
58 using namespace llvm;
59 using ProfileCount = Function::ProfileCount;
60 
61 // Explicit instantiations of SymbolTableListTraits since some of the methods
62 // are not in the public header file...
63 template class llvm::SymbolTableListTraits<BasicBlock>;
64 
65 //===----------------------------------------------------------------------===//
66 // Argument Implementation
67 //===----------------------------------------------------------------------===//
68 
69 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
70     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
71   setName(Name);
72 }
73 
74 void Argument::setParent(Function *parent) {
75   Parent = parent;
76 }
77 
78 bool Argument::hasNonNullAttr() const {
79   if (!getType()->isPointerTy()) return false;
80   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
81     return true;
82   else if (getDereferenceableBytes() > 0 &&
83            getType()->getPointerAddressSpace() == 0)
84     return true;
85   return false;
86 }
87 
88 bool Argument::hasByValAttr() const {
89   if (!getType()->isPointerTy()) return false;
90   return hasAttribute(Attribute::ByVal);
91 }
92 
93 bool Argument::hasSwiftSelfAttr() const {
94   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
95 }
96 
97 bool Argument::hasSwiftErrorAttr() const {
98   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
99 }
100 
101 bool Argument::hasInAllocaAttr() const {
102   if (!getType()->isPointerTy()) return false;
103   return hasAttribute(Attribute::InAlloca);
104 }
105 
106 bool Argument::hasByValOrInAllocaAttr() const {
107   if (!getType()->isPointerTy()) return false;
108   AttributeList Attrs = getParent()->getAttributes();
109   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
110          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
111 }
112 
113 unsigned Argument::getParamAlignment() const {
114   assert(getType()->isPointerTy() && "Only pointers have alignments");
115   return getParent()->getParamAlignment(getArgNo());
116 }
117 
118 uint64_t Argument::getDereferenceableBytes() const {
119   assert(getType()->isPointerTy() &&
120          "Only pointers have dereferenceable bytes");
121   return getParent()->getParamDereferenceableBytes(getArgNo());
122 }
123 
124 uint64_t Argument::getDereferenceableOrNullBytes() const {
125   assert(getType()->isPointerTy() &&
126          "Only pointers have dereferenceable bytes");
127   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
128 }
129 
130 bool Argument::hasNestAttr() const {
131   if (!getType()->isPointerTy()) return false;
132   return hasAttribute(Attribute::Nest);
133 }
134 
135 bool Argument::hasNoAliasAttr() const {
136   if (!getType()->isPointerTy()) return false;
137   return hasAttribute(Attribute::NoAlias);
138 }
139 
140 bool Argument::hasNoCaptureAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   return hasAttribute(Attribute::NoCapture);
143 }
144 
145 bool Argument::hasStructRetAttr() const {
146   if (!getType()->isPointerTy()) return false;
147   return hasAttribute(Attribute::StructRet);
148 }
149 
150 bool Argument::hasReturnedAttr() const {
151   return hasAttribute(Attribute::Returned);
152 }
153 
154 bool Argument::hasZExtAttr() const {
155   return hasAttribute(Attribute::ZExt);
156 }
157 
158 bool Argument::hasSExtAttr() const {
159   return hasAttribute(Attribute::SExt);
160 }
161 
162 bool Argument::onlyReadsMemory() const {
163   AttributeList Attrs = getParent()->getAttributes();
164   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
165          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
166 }
167 
168 void Argument::addAttrs(AttrBuilder &B) {
169   AttributeList AL = getParent()->getAttributes();
170   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
171   getParent()->setAttributes(AL);
172 }
173 
174 void Argument::addAttr(Attribute::AttrKind Kind) {
175   getParent()->addParamAttr(getArgNo(), Kind);
176 }
177 
178 void Argument::addAttr(Attribute Attr) {
179   getParent()->addParamAttr(getArgNo(), Attr);
180 }
181 
182 void Argument::removeAttr(Attribute::AttrKind Kind) {
183   getParent()->removeParamAttr(getArgNo(), Kind);
184 }
185 
186 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
187   return getParent()->hasParamAttribute(getArgNo(), Kind);
188 }
189 
190 //===----------------------------------------------------------------------===//
191 // Helper Methods in Function
192 //===----------------------------------------------------------------------===//
193 
194 LLVMContext &Function::getContext() const {
195   return getType()->getContext();
196 }
197 
198 void Function::removeFromParent() {
199   getParent()->getFunctionList().remove(getIterator());
200 }
201 
202 void Function::eraseFromParent() {
203   getParent()->getFunctionList().erase(getIterator());
204 }
205 
206 //===----------------------------------------------------------------------===//
207 // Function Implementation
208 //===----------------------------------------------------------------------===//
209 
210 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
211                    Module *ParentModule)
212     : GlobalObject(Ty, Value::FunctionVal,
213                    OperandTraits<Function>::op_begin(this), 0, Linkage, name),
214       NumArgs(Ty->getNumParams()) {
215   assert(FunctionType::isValidReturnType(getReturnType()) &&
216          "invalid return type");
217   setGlobalObjectSubClassData(0);
218 
219   // We only need a symbol table for a function if the context keeps value names
220   if (!getContext().shouldDiscardValueNames())
221     SymTab = make_unique<ValueSymbolTable>();
222 
223   // If the function has arguments, mark them as lazily built.
224   if (Ty->getNumParams())
225     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
226 
227   if (ParentModule)
228     ParentModule->getFunctionList().push_back(this);
229 
230   HasLLVMReservedName = getName().startswith("llvm.");
231   // Ensure intrinsics have the right parameter attributes.
232   // Note, the IntID field will have been set in Value::setName if this function
233   // name is a valid intrinsic ID.
234   if (IntID)
235     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
236 }
237 
238 Function::~Function() {
239   dropAllReferences();    // After this it is safe to delete instructions.
240 
241   // Delete all of the method arguments and unlink from symbol table...
242   if (Arguments)
243     clearArguments();
244 
245   // Remove the function from the on-the-side GC table.
246   clearGC();
247 }
248 
249 void Function::BuildLazyArguments() const {
250   // Create the arguments vector, all arguments start out unnamed.
251   auto *FT = getFunctionType();
252   if (NumArgs > 0) {
253     Arguments = std::allocator<Argument>().allocate(NumArgs);
254     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
255       Type *ArgTy = FT->getParamType(i);
256       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
257       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
258     }
259   }
260 
261   // Clear the lazy arguments bit.
262   unsigned SDC = getSubclassDataFromValue();
263   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
264   assert(!hasLazyArguments());
265 }
266 
267 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
268   return MutableArrayRef<Argument>(Args, Count);
269 }
270 
271 void Function::clearArguments() {
272   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
273     A.setName("");
274     A.~Argument();
275   }
276   std::allocator<Argument>().deallocate(Arguments, NumArgs);
277   Arguments = nullptr;
278 }
279 
280 void Function::stealArgumentListFrom(Function &Src) {
281   assert(isDeclaration() && "Expected no references to current arguments");
282 
283   // Drop the current arguments, if any, and set the lazy argument bit.
284   if (!hasLazyArguments()) {
285     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
286                         [](const Argument &A) { return A.use_empty(); }) &&
287            "Expected arguments to be unused in declaration");
288     clearArguments();
289     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
290   }
291 
292   // Nothing to steal if Src has lazy arguments.
293   if (Src.hasLazyArguments())
294     return;
295 
296   // Steal arguments from Src, and fix the lazy argument bits.
297   assert(arg_size() == Src.arg_size());
298   Arguments = Src.Arguments;
299   Src.Arguments = nullptr;
300   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
301     // FIXME: This does the work of transferNodesFromList inefficiently.
302     SmallString<128> Name;
303     if (A.hasName())
304       Name = A.getName();
305     if (!Name.empty())
306       A.setName("");
307     A.setParent(this);
308     if (!Name.empty())
309       A.setName(Name);
310   }
311 
312   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
313   assert(!hasLazyArguments());
314   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
315 }
316 
317 // dropAllReferences() - This function causes all the subinstructions to "let
318 // go" of all references that they are maintaining.  This allows one to
319 // 'delete' a whole class at a time, even though there may be circular
320 // references... first all references are dropped, and all use counts go to
321 // zero.  Then everything is deleted for real.  Note that no operations are
322 // valid on an object that has "dropped all references", except operator
323 // delete.
324 //
325 void Function::dropAllReferences() {
326   setIsMaterializable(false);
327 
328   for (BasicBlock &BB : *this)
329     BB.dropAllReferences();
330 
331   // Delete all basic blocks. They are now unused, except possibly by
332   // blockaddresses, but BasicBlock's destructor takes care of those.
333   while (!BasicBlocks.empty())
334     BasicBlocks.begin()->eraseFromParent();
335 
336   // Drop uses of any optional data (real or placeholder).
337   if (getNumOperands()) {
338     User::dropAllReferences();
339     setNumHungOffUseOperands(0);
340     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
341   }
342 
343   // Metadata is stored in a side-table.
344   clearMetadata();
345 }
346 
347 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
348   AttributeList PAL = getAttributes();
349   PAL = PAL.addAttribute(getContext(), i, Kind);
350   setAttributes(PAL);
351 }
352 
353 void Function::addAttribute(unsigned i, Attribute Attr) {
354   AttributeList PAL = getAttributes();
355   PAL = PAL.addAttribute(getContext(), i, Attr);
356   setAttributes(PAL);
357 }
358 
359 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
360   AttributeList PAL = getAttributes();
361   PAL = PAL.addAttributes(getContext(), i, Attrs);
362   setAttributes(PAL);
363 }
364 
365 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
366   AttributeList PAL = getAttributes();
367   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
368   setAttributes(PAL);
369 }
370 
371 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
372   AttributeList PAL = getAttributes();
373   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
374   setAttributes(PAL);
375 }
376 
377 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
378   AttributeList PAL = getAttributes();
379   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
380   setAttributes(PAL);
381 }
382 
383 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
384   AttributeList PAL = getAttributes();
385   PAL = PAL.removeAttribute(getContext(), i, Kind);
386   setAttributes(PAL);
387 }
388 
389 void Function::removeAttribute(unsigned i, StringRef Kind) {
390   AttributeList PAL = getAttributes();
391   PAL = PAL.removeAttribute(getContext(), i, Kind);
392   setAttributes(PAL);
393 }
394 
395 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
396   AttributeList PAL = getAttributes();
397   PAL = PAL.removeAttributes(getContext(), i, Attrs);
398   setAttributes(PAL);
399 }
400 
401 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
402   AttributeList PAL = getAttributes();
403   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
404   setAttributes(PAL);
405 }
406 
407 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
408   AttributeList PAL = getAttributes();
409   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
410   setAttributes(PAL);
411 }
412 
413 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
414   AttributeList PAL = getAttributes();
415   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
416   setAttributes(PAL);
417 }
418 
419 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
420   AttributeList PAL = getAttributes();
421   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
422   setAttributes(PAL);
423 }
424 
425 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
426   AttributeList PAL = getAttributes();
427   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
428   setAttributes(PAL);
429 }
430 
431 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
432   AttributeList PAL = getAttributes();
433   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
434   setAttributes(PAL);
435 }
436 
437 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
438                                                  uint64_t Bytes) {
439   AttributeList PAL = getAttributes();
440   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
441   setAttributes(PAL);
442 }
443 
444 const std::string &Function::getGC() const {
445   assert(hasGC() && "Function has no collector");
446   return getContext().getGC(*this);
447 }
448 
449 void Function::setGC(std::string Str) {
450   setValueSubclassDataBit(14, !Str.empty());
451   getContext().setGC(*this, std::move(Str));
452 }
453 
454 void Function::clearGC() {
455   if (!hasGC())
456     return;
457   getContext().deleteGC(*this);
458   setValueSubclassDataBit(14, false);
459 }
460 
461 /// Copy all additional attributes (those not needed to create a Function) from
462 /// the Function Src to this one.
463 void Function::copyAttributesFrom(const Function *Src) {
464   GlobalObject::copyAttributesFrom(Src);
465   setCallingConv(Src->getCallingConv());
466   setAttributes(Src->getAttributes());
467   if (Src->hasGC())
468     setGC(Src->getGC());
469   else
470     clearGC();
471   if (Src->hasPersonalityFn())
472     setPersonalityFn(Src->getPersonalityFn());
473   if (Src->hasPrefixData())
474     setPrefixData(Src->getPrefixData());
475   if (Src->hasPrologueData())
476     setPrologueData(Src->getPrologueData());
477 }
478 
479 /// Table of string intrinsic names indexed by enum value.
480 static const char * const IntrinsicNameTable[] = {
481   "not_intrinsic",
482 #define GET_INTRINSIC_NAME_TABLE
483 #include "llvm/IR/Intrinsics.gen"
484 #undef GET_INTRINSIC_NAME_TABLE
485 };
486 
487 /// Table of per-target intrinsic name tables.
488 #define GET_INTRINSIC_TARGET_DATA
489 #include "llvm/IR/Intrinsics.gen"
490 #undef GET_INTRINSIC_TARGET_DATA
491 
492 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
493 /// target as \c Name, or the generic table if \c Name is not target specific.
494 ///
495 /// Returns the relevant slice of \c IntrinsicNameTable
496 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
497   assert(Name.startswith("llvm."));
498 
499   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
500   // Drop "llvm." and take the first dotted component. That will be the target
501   // if this is target specific.
502   StringRef Target = Name.drop_front(5).split('.').first;
503   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
504                              [](const IntrinsicTargetInfo &TI,
505                                 StringRef Target) { return TI.Name < Target; });
506   // We've either found the target or just fall back to the generic set, which
507   // is always first.
508   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
509   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
510 }
511 
512 /// \brief This does the actual lookup of an intrinsic ID which
513 /// matches the given function name.
514 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
515   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
516   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
517   if (Idx == -1)
518     return Intrinsic::not_intrinsic;
519 
520   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
521   // an index into a sub-table.
522   int Adjust = NameTable.data() - IntrinsicNameTable;
523   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
524 
525   // If the intrinsic is not overloaded, require an exact match. If it is
526   // overloaded, require either exact or prefix match.
527   const auto MatchSize = strlen(NameTable[Idx]);
528   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
529   bool IsExactMatch = Name.size() == MatchSize;
530   return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
531 }
532 
533 void Function::recalculateIntrinsicID() {
534   StringRef Name = getName();
535   if (!Name.startswith("llvm.")) {
536     HasLLVMReservedName = false;
537     IntID = Intrinsic::not_intrinsic;
538     return;
539   }
540   HasLLVMReservedName = true;
541   IntID = lookupIntrinsicID(Name);
542 }
543 
544 /// Returns a stable mangling for the type specified for use in the name
545 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
546 /// of named types is simply their name.  Manglings for unnamed types consist
547 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
548 /// combined with the mangling of their component types.  A vararg function
549 /// type will have a suffix of 'vararg'.  Since function types can contain
550 /// other function types, we close a function type mangling with suffix 'f'
551 /// which can't be confused with it's prefix.  This ensures we don't have
552 /// collisions between two unrelated function types. Otherwise, you might
553 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
554 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
555 /// cases) fall back to the MVT codepath, where they could be mangled to
556 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
557 /// everything.
558 static std::string getMangledTypeStr(Type* Ty) {
559   std::string Result;
560   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
561     Result += "p" + utostr(PTyp->getAddressSpace()) +
562       getMangledTypeStr(PTyp->getElementType());
563   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
564     Result += "a" + utostr(ATyp->getNumElements()) +
565       getMangledTypeStr(ATyp->getElementType());
566   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
567     if (!STyp->isLiteral()) {
568       Result += "s_";
569       Result += STyp->getName();
570     } else {
571       Result += "sl_";
572       for (auto Elem : STyp->elements())
573         Result += getMangledTypeStr(Elem);
574     }
575     // Ensure nested structs are distinguishable.
576     Result += "s";
577   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
578     Result += "f_" + getMangledTypeStr(FT->getReturnType());
579     for (size_t i = 0; i < FT->getNumParams(); i++)
580       Result += getMangledTypeStr(FT->getParamType(i));
581     if (FT->isVarArg())
582       Result += "vararg";
583     // Ensure nested function types are distinguishable.
584     Result += "f";
585   } else if (isa<VectorType>(Ty))
586     Result += "v" + utostr(Ty->getVectorNumElements()) +
587       getMangledTypeStr(Ty->getVectorElementType());
588   else if (Ty)
589     Result += EVT::getEVT(Ty).getEVTString();
590   return Result;
591 }
592 
593 StringRef Intrinsic::getName(ID id) {
594   assert(id < num_intrinsics && "Invalid intrinsic ID!");
595   assert(!isOverloaded(id) &&
596          "This version of getName does not support overloading");
597   return IntrinsicNameTable[id];
598 }
599 
600 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
601   assert(id < num_intrinsics && "Invalid intrinsic ID!");
602   std::string Result(IntrinsicNameTable[id]);
603   for (Type *Ty : Tys) {
604     Result += "." + getMangledTypeStr(Ty);
605   }
606   return Result;
607 }
608 
609 /// IIT_Info - These are enumerators that describe the entries returned by the
610 /// getIntrinsicInfoTableEntries function.
611 ///
612 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
613 enum IIT_Info {
614   // Common values should be encoded with 0-15.
615   IIT_Done = 0,
616   IIT_I1   = 1,
617   IIT_I8   = 2,
618   IIT_I16  = 3,
619   IIT_I32  = 4,
620   IIT_I64  = 5,
621   IIT_F16  = 6,
622   IIT_F32  = 7,
623   IIT_F64  = 8,
624   IIT_V2   = 9,
625   IIT_V4   = 10,
626   IIT_V8   = 11,
627   IIT_V16  = 12,
628   IIT_V32  = 13,
629   IIT_PTR  = 14,
630   IIT_ARG  = 15,
631 
632   // Values from 16+ are only encodable with the inefficient encoding.
633   IIT_V64  = 16,
634   IIT_MMX  = 17,
635   IIT_TOKEN = 18,
636   IIT_METADATA = 19,
637   IIT_EMPTYSTRUCT = 20,
638   IIT_STRUCT2 = 21,
639   IIT_STRUCT3 = 22,
640   IIT_STRUCT4 = 23,
641   IIT_STRUCT5 = 24,
642   IIT_EXTEND_ARG = 25,
643   IIT_TRUNC_ARG = 26,
644   IIT_ANYPTR = 27,
645   IIT_V1   = 28,
646   IIT_VARARG = 29,
647   IIT_HALF_VEC_ARG = 30,
648   IIT_SAME_VEC_WIDTH_ARG = 31,
649   IIT_PTR_TO_ARG = 32,
650   IIT_PTR_TO_ELT = 33,
651   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
652   IIT_I128 = 35,
653   IIT_V512 = 36,
654   IIT_V1024 = 37,
655   IIT_STRUCT6 = 38,
656   IIT_STRUCT7 = 39,
657   IIT_STRUCT8 = 40
658 };
659 
660 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
661                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
662   using namespace Intrinsic;
663 
664   IIT_Info Info = IIT_Info(Infos[NextElt++]);
665   unsigned StructElts = 2;
666 
667   switch (Info) {
668   case IIT_Done:
669     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
670     return;
671   case IIT_VARARG:
672     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
673     return;
674   case IIT_MMX:
675     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
676     return;
677   case IIT_TOKEN:
678     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
679     return;
680   case IIT_METADATA:
681     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
682     return;
683   case IIT_F16:
684     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
685     return;
686   case IIT_F32:
687     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
688     return;
689   case IIT_F64:
690     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
691     return;
692   case IIT_I1:
693     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
694     return;
695   case IIT_I8:
696     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
697     return;
698   case IIT_I16:
699     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
700     return;
701   case IIT_I32:
702     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
703     return;
704   case IIT_I64:
705     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
706     return;
707   case IIT_I128:
708     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
709     return;
710   case IIT_V1:
711     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
712     DecodeIITType(NextElt, Infos, OutputTable);
713     return;
714   case IIT_V2:
715     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
716     DecodeIITType(NextElt, Infos, OutputTable);
717     return;
718   case IIT_V4:
719     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
720     DecodeIITType(NextElt, Infos, OutputTable);
721     return;
722   case IIT_V8:
723     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
724     DecodeIITType(NextElt, Infos, OutputTable);
725     return;
726   case IIT_V16:
727     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
728     DecodeIITType(NextElt, Infos, OutputTable);
729     return;
730   case IIT_V32:
731     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
732     DecodeIITType(NextElt, Infos, OutputTable);
733     return;
734   case IIT_V64:
735     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
736     DecodeIITType(NextElt, Infos, OutputTable);
737     return;
738   case IIT_V512:
739     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
740     DecodeIITType(NextElt, Infos, OutputTable);
741     return;
742   case IIT_V1024:
743     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
744     DecodeIITType(NextElt, Infos, OutputTable);
745     return;
746   case IIT_PTR:
747     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
748     DecodeIITType(NextElt, Infos, OutputTable);
749     return;
750   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
751     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
752                                              Infos[NextElt++]));
753     DecodeIITType(NextElt, Infos, OutputTable);
754     return;
755   }
756   case IIT_ARG: {
757     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
758     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
759     return;
760   }
761   case IIT_EXTEND_ARG: {
762     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
763     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
764                                              ArgInfo));
765     return;
766   }
767   case IIT_TRUNC_ARG: {
768     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
769     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
770                                              ArgInfo));
771     return;
772   }
773   case IIT_HALF_VEC_ARG: {
774     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
775     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
776                                              ArgInfo));
777     return;
778   }
779   case IIT_SAME_VEC_WIDTH_ARG: {
780     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
781     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
782                                              ArgInfo));
783     return;
784   }
785   case IIT_PTR_TO_ARG: {
786     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
787     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
788                                              ArgInfo));
789     return;
790   }
791   case IIT_PTR_TO_ELT: {
792     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
793     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
794     return;
795   }
796   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
797     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
798     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
799     OutputTable.push_back(
800         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
801     return;
802   }
803   case IIT_EMPTYSTRUCT:
804     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
805     return;
806   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
807   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
808   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
809   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
810   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
811   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
812   case IIT_STRUCT2: {
813     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
814 
815     for (unsigned i = 0; i != StructElts; ++i)
816       DecodeIITType(NextElt, Infos, OutputTable);
817     return;
818   }
819   }
820   llvm_unreachable("unhandled");
821 }
822 
823 #define GET_INTRINSIC_GENERATOR_GLOBAL
824 #include "llvm/IR/Intrinsics.gen"
825 #undef GET_INTRINSIC_GENERATOR_GLOBAL
826 
827 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
828                                              SmallVectorImpl<IITDescriptor> &T){
829   // Check to see if the intrinsic's type was expressible by the table.
830   unsigned TableVal = IIT_Table[id-1];
831 
832   // Decode the TableVal into an array of IITValues.
833   SmallVector<unsigned char, 8> IITValues;
834   ArrayRef<unsigned char> IITEntries;
835   unsigned NextElt = 0;
836   if ((TableVal >> 31) != 0) {
837     // This is an offset into the IIT_LongEncodingTable.
838     IITEntries = IIT_LongEncodingTable;
839 
840     // Strip sentinel bit.
841     NextElt = (TableVal << 1) >> 1;
842   } else {
843     // Decode the TableVal into an array of IITValues.  If the entry was encoded
844     // into a single word in the table itself, decode it now.
845     do {
846       IITValues.push_back(TableVal & 0xF);
847       TableVal >>= 4;
848     } while (TableVal);
849 
850     IITEntries = IITValues;
851     NextElt = 0;
852   }
853 
854   // Okay, decode the table into the output vector of IITDescriptors.
855   DecodeIITType(NextElt, IITEntries, T);
856   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
857     DecodeIITType(NextElt, IITEntries, T);
858 }
859 
860 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
861                              ArrayRef<Type*> Tys, LLVMContext &Context) {
862   using namespace Intrinsic;
863 
864   IITDescriptor D = Infos.front();
865   Infos = Infos.slice(1);
866 
867   switch (D.Kind) {
868   case IITDescriptor::Void: return Type::getVoidTy(Context);
869   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
870   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
871   case IITDescriptor::Token: return Type::getTokenTy(Context);
872   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
873   case IITDescriptor::Half: return Type::getHalfTy(Context);
874   case IITDescriptor::Float: return Type::getFloatTy(Context);
875   case IITDescriptor::Double: return Type::getDoubleTy(Context);
876 
877   case IITDescriptor::Integer:
878     return IntegerType::get(Context, D.Integer_Width);
879   case IITDescriptor::Vector:
880     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
881   case IITDescriptor::Pointer:
882     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
883                             D.Pointer_AddressSpace);
884   case IITDescriptor::Struct: {
885     SmallVector<Type *, 8> Elts;
886     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
887       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
888     return StructType::get(Context, Elts);
889   }
890   case IITDescriptor::Argument:
891     return Tys[D.getArgumentNumber()];
892   case IITDescriptor::ExtendArgument: {
893     Type *Ty = Tys[D.getArgumentNumber()];
894     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
895       return VectorType::getExtendedElementVectorType(VTy);
896 
897     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
898   }
899   case IITDescriptor::TruncArgument: {
900     Type *Ty = Tys[D.getArgumentNumber()];
901     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
902       return VectorType::getTruncatedElementVectorType(VTy);
903 
904     IntegerType *ITy = cast<IntegerType>(Ty);
905     assert(ITy->getBitWidth() % 2 == 0);
906     return IntegerType::get(Context, ITy->getBitWidth() / 2);
907   }
908   case IITDescriptor::HalfVecArgument:
909     return VectorType::getHalfElementsVectorType(cast<VectorType>(
910                                                   Tys[D.getArgumentNumber()]));
911   case IITDescriptor::SameVecWidthArgument: {
912     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
913     Type *Ty = Tys[D.getArgumentNumber()];
914     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
915       return VectorType::get(EltTy, VTy->getNumElements());
916     }
917     llvm_unreachable("unhandled");
918   }
919   case IITDescriptor::PtrToArgument: {
920     Type *Ty = Tys[D.getArgumentNumber()];
921     return PointerType::getUnqual(Ty);
922   }
923   case IITDescriptor::PtrToElt: {
924     Type *Ty = Tys[D.getArgumentNumber()];
925     VectorType *VTy = dyn_cast<VectorType>(Ty);
926     if (!VTy)
927       llvm_unreachable("Expected an argument of Vector Type");
928     Type *EltTy = VTy->getVectorElementType();
929     return PointerType::getUnqual(EltTy);
930   }
931   case IITDescriptor::VecOfAnyPtrsToElt:
932     // Return the overloaded type (which determines the pointers address space)
933     return Tys[D.getOverloadArgNumber()];
934   }
935   llvm_unreachable("unhandled");
936 }
937 
938 FunctionType *Intrinsic::getType(LLVMContext &Context,
939                                  ID id, ArrayRef<Type*> Tys) {
940   SmallVector<IITDescriptor, 8> Table;
941   getIntrinsicInfoTableEntries(id, Table);
942 
943   ArrayRef<IITDescriptor> TableRef = Table;
944   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
945 
946   SmallVector<Type*, 8> ArgTys;
947   while (!TableRef.empty())
948     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
949 
950   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
951   // If we see void type as the type of the last argument, it is vararg intrinsic
952   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
953     ArgTys.pop_back();
954     return FunctionType::get(ResultTy, ArgTys, true);
955   }
956   return FunctionType::get(ResultTy, ArgTys, false);
957 }
958 
959 bool Intrinsic::isOverloaded(ID id) {
960 #define GET_INTRINSIC_OVERLOAD_TABLE
961 #include "llvm/IR/Intrinsics.gen"
962 #undef GET_INTRINSIC_OVERLOAD_TABLE
963 }
964 
965 bool Intrinsic::isLeaf(ID id) {
966   switch (id) {
967   default:
968     return true;
969 
970   case Intrinsic::experimental_gc_statepoint:
971   case Intrinsic::experimental_patchpoint_void:
972   case Intrinsic::experimental_patchpoint_i64:
973     return false;
974   }
975 }
976 
977 /// This defines the "Intrinsic::getAttributes(ID id)" method.
978 #define GET_INTRINSIC_ATTRIBUTES
979 #include "llvm/IR/Intrinsics.gen"
980 #undef GET_INTRINSIC_ATTRIBUTES
981 
982 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
983   // There can never be multiple globals with the same name of different types,
984   // because intrinsics must be a specific type.
985   return
986     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
987                                           getType(M->getContext(), id, Tys)));
988 }
989 
990 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
991 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
992 #include "llvm/IR/Intrinsics.gen"
993 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
994 
995 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
996 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
997 #include "llvm/IR/Intrinsics.gen"
998 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
999 
1000 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1001                                    SmallVectorImpl<Type*> &ArgTys) {
1002   using namespace Intrinsic;
1003 
1004   // If we ran out of descriptors, there are too many arguments.
1005   if (Infos.empty()) return true;
1006   IITDescriptor D = Infos.front();
1007   Infos = Infos.slice(1);
1008 
1009   switch (D.Kind) {
1010     case IITDescriptor::Void: return !Ty->isVoidTy();
1011     case IITDescriptor::VarArg: return true;
1012     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1013     case IITDescriptor::Token: return !Ty->isTokenTy();
1014     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1015     case IITDescriptor::Half: return !Ty->isHalfTy();
1016     case IITDescriptor::Float: return !Ty->isFloatTy();
1017     case IITDescriptor::Double: return !Ty->isDoubleTy();
1018     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1019     case IITDescriptor::Vector: {
1020       VectorType *VT = dyn_cast<VectorType>(Ty);
1021       return !VT || VT->getNumElements() != D.Vector_Width ||
1022              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
1023     }
1024     case IITDescriptor::Pointer: {
1025       PointerType *PT = dyn_cast<PointerType>(Ty);
1026       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1027              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
1028     }
1029 
1030     case IITDescriptor::Struct: {
1031       StructType *ST = dyn_cast<StructType>(Ty);
1032       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1033         return true;
1034 
1035       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1036         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
1037           return true;
1038       return false;
1039     }
1040 
1041     case IITDescriptor::Argument:
1042       // Two cases here - If this is the second occurrence of an argument, verify
1043       // that the later instance matches the previous instance.
1044       if (D.getArgumentNumber() < ArgTys.size())
1045         return Ty != ArgTys[D.getArgumentNumber()];
1046 
1047           // Otherwise, if this is the first instance of an argument, record it and
1048           // verify the "Any" kind.
1049           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
1050           ArgTys.push_back(Ty);
1051 
1052           switch (D.getArgumentKind()) {
1053             case IITDescriptor::AK_Any:        return false; // Success
1054             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1055             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1056             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1057             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1058           }
1059           llvm_unreachable("all argument kinds not covered");
1060 
1061     case IITDescriptor::ExtendArgument: {
1062       // This may only be used when referring to a previous vector argument.
1063       if (D.getArgumentNumber() >= ArgTys.size())
1064         return true;
1065 
1066       Type *NewTy = ArgTys[D.getArgumentNumber()];
1067       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1068         NewTy = VectorType::getExtendedElementVectorType(VTy);
1069       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1070         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1071       else
1072         return true;
1073 
1074       return Ty != NewTy;
1075     }
1076     case IITDescriptor::TruncArgument: {
1077       // This may only be used when referring to a previous vector argument.
1078       if (D.getArgumentNumber() >= ArgTys.size())
1079         return true;
1080 
1081       Type *NewTy = ArgTys[D.getArgumentNumber()];
1082       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1083         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1084       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1085         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1086       else
1087         return true;
1088 
1089       return Ty != NewTy;
1090     }
1091     case IITDescriptor::HalfVecArgument:
1092       // This may only be used when referring to a previous vector argument.
1093       return D.getArgumentNumber() >= ArgTys.size() ||
1094              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1095              VectorType::getHalfElementsVectorType(
1096                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1097     case IITDescriptor::SameVecWidthArgument: {
1098       if (D.getArgumentNumber() >= ArgTys.size())
1099         return true;
1100       VectorType * ReferenceType =
1101         dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1102       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1103       if (!ThisArgType || !ReferenceType ||
1104           (ReferenceType->getVectorNumElements() !=
1105            ThisArgType->getVectorNumElements()))
1106         return true;
1107       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1108                                 Infos, ArgTys);
1109     }
1110     case IITDescriptor::PtrToArgument: {
1111       if (D.getArgumentNumber() >= ArgTys.size())
1112         return true;
1113       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1114       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1115       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1116     }
1117     case IITDescriptor::PtrToElt: {
1118       if (D.getArgumentNumber() >= ArgTys.size())
1119         return true;
1120       VectorType * ReferenceType =
1121         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1122       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1123 
1124       return (!ThisArgType || !ReferenceType ||
1125               ThisArgType->getElementType() != ReferenceType->getElementType());
1126     }
1127     case IITDescriptor::VecOfAnyPtrsToElt: {
1128       unsigned RefArgNumber = D.getRefArgNumber();
1129 
1130       // This may only be used when referring to a previous argument.
1131       if (RefArgNumber >= ArgTys.size())
1132         return true;
1133 
1134       // Record the overloaded type
1135       assert(D.getOverloadArgNumber() == ArgTys.size() &&
1136              "Table consistency error");
1137       ArgTys.push_back(Ty);
1138 
1139       // Verify the overloaded type "matches" the Ref type.
1140       // i.e. Ty is a vector with the same width as Ref.
1141       // Composed of pointers to the same element type as Ref.
1142       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1143       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1144       if (!ThisArgVecTy || !ReferenceType ||
1145           (ReferenceType->getVectorNumElements() !=
1146            ThisArgVecTy->getVectorNumElements()))
1147         return true;
1148       PointerType *ThisArgEltTy =
1149               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1150       if (!ThisArgEltTy)
1151         return true;
1152       return ThisArgEltTy->getElementType() !=
1153              ReferenceType->getVectorElementType();
1154     }
1155   }
1156   llvm_unreachable("unhandled");
1157 }
1158 
1159 bool
1160 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1161                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1162   // If there are no descriptors left, then it can't be a vararg.
1163   if (Infos.empty())
1164     return isVarArg;
1165 
1166   // There should be only one descriptor remaining at this point.
1167   if (Infos.size() != 1)
1168     return true;
1169 
1170   // Check and verify the descriptor.
1171   IITDescriptor D = Infos.front();
1172   Infos = Infos.slice(1);
1173   if (D.Kind == IITDescriptor::VarArg)
1174     return !isVarArg;
1175 
1176   return true;
1177 }
1178 
1179 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1180   Intrinsic::ID ID = F->getIntrinsicID();
1181   if (!ID)
1182     return None;
1183 
1184   FunctionType *FTy = F->getFunctionType();
1185   // Accumulate an array of overloaded types for the given intrinsic
1186   SmallVector<Type *, 4> ArgTys;
1187   {
1188     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1189     getIntrinsicInfoTableEntries(ID, Table);
1190     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1191 
1192     // If we encounter any problems matching the signature with the descriptor
1193     // just give up remangling. It's up to verifier to report the discrepancy.
1194     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1195       return None;
1196     for (auto Ty : FTy->params())
1197       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1198         return None;
1199     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1200       return None;
1201   }
1202 
1203   StringRef Name = F->getName();
1204   if (Name == Intrinsic::getName(ID, ArgTys))
1205     return None;
1206 
1207   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1208   NewDecl->setCallingConv(F->getCallingConv());
1209   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1210   return NewDecl;
1211 }
1212 
1213 /// hasAddressTaken - returns true if there are any uses of this function
1214 /// other than direct calls or invokes to it.
1215 bool Function::hasAddressTaken(const User* *PutOffender) const {
1216   for (const Use &U : uses()) {
1217     const User *FU = U.getUser();
1218     if (isa<BlockAddress>(FU))
1219       continue;
1220     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1221       if (PutOffender)
1222         *PutOffender = FU;
1223       return true;
1224     }
1225     ImmutableCallSite CS(cast<Instruction>(FU));
1226     if (!CS.isCallee(&U)) {
1227       if (PutOffender)
1228         *PutOffender = FU;
1229       return true;
1230     }
1231   }
1232   return false;
1233 }
1234 
1235 bool Function::isDefTriviallyDead() const {
1236   // Check the linkage
1237   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1238       !hasAvailableExternallyLinkage())
1239     return false;
1240 
1241   // Check if the function is used by anything other than a blockaddress.
1242   for (const User *U : users())
1243     if (!isa<BlockAddress>(U))
1244       return false;
1245 
1246   return true;
1247 }
1248 
1249 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1250 /// setjmp or other function that gcc recognizes as "returning twice".
1251 bool Function::callsFunctionThatReturnsTwice() const {
1252   for (const_inst_iterator
1253          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1254     ImmutableCallSite CS(&*I);
1255     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1256       return true;
1257   }
1258 
1259   return false;
1260 }
1261 
1262 Constant *Function::getPersonalityFn() const {
1263   assert(hasPersonalityFn() && getNumOperands());
1264   return cast<Constant>(Op<0>());
1265 }
1266 
1267 void Function::setPersonalityFn(Constant *Fn) {
1268   setHungoffOperand<0>(Fn);
1269   setValueSubclassDataBit(3, Fn != nullptr);
1270 }
1271 
1272 Constant *Function::getPrefixData() const {
1273   assert(hasPrefixData() && getNumOperands());
1274   return cast<Constant>(Op<1>());
1275 }
1276 
1277 void Function::setPrefixData(Constant *PrefixData) {
1278   setHungoffOperand<1>(PrefixData);
1279   setValueSubclassDataBit(1, PrefixData != nullptr);
1280 }
1281 
1282 Constant *Function::getPrologueData() const {
1283   assert(hasPrologueData() && getNumOperands());
1284   return cast<Constant>(Op<2>());
1285 }
1286 
1287 void Function::setPrologueData(Constant *PrologueData) {
1288   setHungoffOperand<2>(PrologueData);
1289   setValueSubclassDataBit(2, PrologueData != nullptr);
1290 }
1291 
1292 void Function::allocHungoffUselist() {
1293   // If we've already allocated a uselist, stop here.
1294   if (getNumOperands())
1295     return;
1296 
1297   allocHungoffUses(3, /*IsPhi=*/ false);
1298   setNumHungOffUseOperands(3);
1299 
1300   // Initialize the uselist with placeholder operands to allow traversal.
1301   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1302   Op<0>().set(CPN);
1303   Op<1>().set(CPN);
1304   Op<2>().set(CPN);
1305 }
1306 
1307 template <int Idx>
1308 void Function::setHungoffOperand(Constant *C) {
1309   if (C) {
1310     allocHungoffUselist();
1311     Op<Idx>().set(C);
1312   } else if (getNumOperands()) {
1313     Op<Idx>().set(
1314         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1315   }
1316 }
1317 
1318 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1319   assert(Bit < 16 && "SubclassData contains only 16 bits");
1320   if (On)
1321     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1322   else
1323     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1324 }
1325 
1326 void Function::setEntryCount(ProfileCount Count,
1327                              const DenseSet<GlobalValue::GUID> *S) {
1328   assert(Count.hasValue());
1329 #if !defined(NDEBUG)
1330   auto PrevCount = getEntryCount();
1331   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1332 #endif
1333   MDBuilder MDB(getContext());
1334   setMetadata(
1335       LLVMContext::MD_prof,
1336       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1337 }
1338 
1339 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1340                              const DenseSet<GlobalValue::GUID> *Imports) {
1341   setEntryCount(ProfileCount(Count, Type), Imports);
1342 }
1343 
1344 ProfileCount Function::getEntryCount() const {
1345   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1346   if (MD && MD->getOperand(0))
1347     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1348       if (MDS->getString().equals("function_entry_count")) {
1349         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1350         uint64_t Count = CI->getValue().getZExtValue();
1351         // A value of -1 is used for SamplePGO when there were no samples.
1352         // Treat this the same as unknown.
1353         if (Count == (uint64_t)-1)
1354           return ProfileCount::getInvalid();
1355         return ProfileCount(Count, PCT_Real);
1356       } else if (MDS->getString().equals("synthetic_function_entry_count")) {
1357         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1358         uint64_t Count = CI->getValue().getZExtValue();
1359         return ProfileCount(Count, PCT_Synthetic);
1360       }
1361     }
1362   return ProfileCount::getInvalid();
1363 }
1364 
1365 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1366   DenseSet<GlobalValue::GUID> R;
1367   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1368     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1369       if (MDS->getString().equals("function_entry_count"))
1370         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1371           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1372                        ->getValue()
1373                        .getZExtValue());
1374   return R;
1375 }
1376 
1377 void Function::setSectionPrefix(StringRef Prefix) {
1378   MDBuilder MDB(getContext());
1379   setMetadata(LLVMContext::MD_section_prefix,
1380               MDB.createFunctionSectionPrefix(Prefix));
1381 }
1382 
1383 Optional<StringRef> Function::getSectionPrefix() const {
1384   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1385     assert(dyn_cast<MDString>(MD->getOperand(0))
1386                ->getString()
1387                .equals("function_section_prefix") &&
1388            "Metadata not match");
1389     return dyn_cast<MDString>(MD->getOperand(1))->getString();
1390   }
1391   return None;
1392 }
1393