1 //===- Function.cpp - Implement the Global object classes -----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "SymbolTableListTraitsImpl.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseSet.h" 18 #include "llvm/ADT/None.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/ADT/StringRef.h" 24 #include "llvm/CodeGen/ValueTypes.h" 25 #include "llvm/IR/Argument.h" 26 #include "llvm/IR/Attributes.h" 27 #include "llvm/IR/BasicBlock.h" 28 #include "llvm/IR/CallSite.h" 29 #include "llvm/IR/Constant.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/GlobalValue.h" 33 #include "llvm/IR/InstIterator.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/IntrinsicInst.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/LLVMContext.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Metadata.h" 41 #include "llvm/IR/Module.h" 42 #include "llvm/IR/SymbolTableListTraits.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/Use.h" 45 #include "llvm/IR/User.h" 46 #include "llvm/IR/Value.h" 47 #include "llvm/IR/ValueSymbolTable.h" 48 #include "llvm/Support/Casting.h" 49 #include "llvm/Support/Compiler.h" 50 #include "llvm/Support/ErrorHandling.h" 51 #include <algorithm> 52 #include <cassert> 53 #include <cstddef> 54 #include <cstdint> 55 #include <cstring> 56 #include <string> 57 58 using namespace llvm; 59 using ProfileCount = Function::ProfileCount; 60 61 // Explicit instantiations of SymbolTableListTraits since some of the methods 62 // are not in the public header file... 63 template class llvm::SymbolTableListTraits<BasicBlock>; 64 65 //===----------------------------------------------------------------------===// 66 // Argument Implementation 67 //===----------------------------------------------------------------------===// 68 69 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo) 70 : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) { 71 setName(Name); 72 } 73 74 void Argument::setParent(Function *parent) { 75 Parent = parent; 76 } 77 78 bool Argument::hasNonNullAttr() const { 79 if (!getType()->isPointerTy()) return false; 80 if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 bool Argument::hasByValAttr() const { 89 if (!getType()->isPointerTy()) return false; 90 return hasAttribute(Attribute::ByVal); 91 } 92 93 bool Argument::hasSwiftSelfAttr() const { 94 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf); 95 } 96 97 bool Argument::hasSwiftErrorAttr() const { 98 return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError); 99 } 100 101 bool Argument::hasInAllocaAttr() const { 102 if (!getType()->isPointerTy()) return false; 103 return hasAttribute(Attribute::InAlloca); 104 } 105 106 bool Argument::hasByValOrInAllocaAttr() const { 107 if (!getType()->isPointerTy()) return false; 108 AttributeList Attrs = getParent()->getAttributes(); 109 return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) || 110 Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca); 111 } 112 113 unsigned Argument::getParamAlignment() const { 114 assert(getType()->isPointerTy() && "Only pointers have alignments"); 115 return getParent()->getParamAlignment(getArgNo()); 116 } 117 118 uint64_t Argument::getDereferenceableBytes() const { 119 assert(getType()->isPointerTy() && 120 "Only pointers have dereferenceable bytes"); 121 return getParent()->getParamDereferenceableBytes(getArgNo()); 122 } 123 124 uint64_t Argument::getDereferenceableOrNullBytes() const { 125 assert(getType()->isPointerTy() && 126 "Only pointers have dereferenceable bytes"); 127 return getParent()->getParamDereferenceableOrNullBytes(getArgNo()); 128 } 129 130 bool Argument::hasNestAttr() const { 131 if (!getType()->isPointerTy()) return false; 132 return hasAttribute(Attribute::Nest); 133 } 134 135 bool Argument::hasNoAliasAttr() const { 136 if (!getType()->isPointerTy()) return false; 137 return hasAttribute(Attribute::NoAlias); 138 } 139 140 bool Argument::hasNoCaptureAttr() const { 141 if (!getType()->isPointerTy()) return false; 142 return hasAttribute(Attribute::NoCapture); 143 } 144 145 bool Argument::hasStructRetAttr() const { 146 if (!getType()->isPointerTy()) return false; 147 return hasAttribute(Attribute::StructRet); 148 } 149 150 bool Argument::hasReturnedAttr() const { 151 return hasAttribute(Attribute::Returned); 152 } 153 154 bool Argument::hasZExtAttr() const { 155 return hasAttribute(Attribute::ZExt); 156 } 157 158 bool Argument::hasSExtAttr() const { 159 return hasAttribute(Attribute::SExt); 160 } 161 162 bool Argument::onlyReadsMemory() const { 163 AttributeList Attrs = getParent()->getAttributes(); 164 return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) || 165 Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone); 166 } 167 168 void Argument::addAttrs(AttrBuilder &B) { 169 AttributeList AL = getParent()->getAttributes(); 170 AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B); 171 getParent()->setAttributes(AL); 172 } 173 174 void Argument::addAttr(Attribute::AttrKind Kind) { 175 getParent()->addParamAttr(getArgNo(), Kind); 176 } 177 178 void Argument::addAttr(Attribute Attr) { 179 getParent()->addParamAttr(getArgNo(), Attr); 180 } 181 182 void Argument::removeAttr(Attribute::AttrKind Kind) { 183 getParent()->removeParamAttr(getArgNo(), Kind); 184 } 185 186 bool Argument::hasAttribute(Attribute::AttrKind Kind) const { 187 return getParent()->hasParamAttribute(getArgNo(), Kind); 188 } 189 190 //===----------------------------------------------------------------------===// 191 // Helper Methods in Function 192 //===----------------------------------------------------------------------===// 193 194 LLVMContext &Function::getContext() const { 195 return getType()->getContext(); 196 } 197 198 void Function::removeFromParent() { 199 getParent()->getFunctionList().remove(getIterator()); 200 } 201 202 void Function::eraseFromParent() { 203 getParent()->getFunctionList().erase(getIterator()); 204 } 205 206 //===----------------------------------------------------------------------===// 207 // Function Implementation 208 //===----------------------------------------------------------------------===// 209 210 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 211 Module *ParentModule) 212 : GlobalObject(Ty, Value::FunctionVal, 213 OperandTraits<Function>::op_begin(this), 0, Linkage, name), 214 NumArgs(Ty->getNumParams()) { 215 assert(FunctionType::isValidReturnType(getReturnType()) && 216 "invalid return type"); 217 setGlobalObjectSubClassData(0); 218 219 // We only need a symbol table for a function if the context keeps value names 220 if (!getContext().shouldDiscardValueNames()) 221 SymTab = make_unique<ValueSymbolTable>(); 222 223 // If the function has arguments, mark them as lazily built. 224 if (Ty->getNumParams()) 225 setValueSubclassData(1); // Set the "has lazy arguments" bit. 226 227 if (ParentModule) 228 ParentModule->getFunctionList().push_back(this); 229 230 HasLLVMReservedName = getName().startswith("llvm."); 231 // Ensure intrinsics have the right parameter attributes. 232 // Note, the IntID field will have been set in Value::setName if this function 233 // name is a valid intrinsic ID. 234 if (IntID) 235 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 236 } 237 238 Function::~Function() { 239 dropAllReferences(); // After this it is safe to delete instructions. 240 241 // Delete all of the method arguments and unlink from symbol table... 242 if (Arguments) 243 clearArguments(); 244 245 // Remove the function from the on-the-side GC table. 246 clearGC(); 247 } 248 249 void Function::BuildLazyArguments() const { 250 // Create the arguments vector, all arguments start out unnamed. 251 auto *FT = getFunctionType(); 252 if (NumArgs > 0) { 253 Arguments = std::allocator<Argument>().allocate(NumArgs); 254 for (unsigned i = 0, e = NumArgs; i != e; ++i) { 255 Type *ArgTy = FT->getParamType(i); 256 assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!"); 257 new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i); 258 } 259 } 260 261 // Clear the lazy arguments bit. 262 unsigned SDC = getSubclassDataFromValue(); 263 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 264 assert(!hasLazyArguments()); 265 } 266 267 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) { 268 return MutableArrayRef<Argument>(Args, Count); 269 } 270 271 void Function::clearArguments() { 272 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 273 A.setName(""); 274 A.~Argument(); 275 } 276 std::allocator<Argument>().deallocate(Arguments, NumArgs); 277 Arguments = nullptr; 278 } 279 280 void Function::stealArgumentListFrom(Function &Src) { 281 assert(isDeclaration() && "Expected no references to current arguments"); 282 283 // Drop the current arguments, if any, and set the lazy argument bit. 284 if (!hasLazyArguments()) { 285 assert(llvm::all_of(makeArgArray(Arguments, NumArgs), 286 [](const Argument &A) { return A.use_empty(); }) && 287 "Expected arguments to be unused in declaration"); 288 clearArguments(); 289 setValueSubclassData(getSubclassDataFromValue() | (1 << 0)); 290 } 291 292 // Nothing to steal if Src has lazy arguments. 293 if (Src.hasLazyArguments()) 294 return; 295 296 // Steal arguments from Src, and fix the lazy argument bits. 297 assert(arg_size() == Src.arg_size()); 298 Arguments = Src.Arguments; 299 Src.Arguments = nullptr; 300 for (Argument &A : makeArgArray(Arguments, NumArgs)) { 301 // FIXME: This does the work of transferNodesFromList inefficiently. 302 SmallString<128> Name; 303 if (A.hasName()) 304 Name = A.getName(); 305 if (!Name.empty()) 306 A.setName(""); 307 A.setParent(this); 308 if (!Name.empty()) 309 A.setName(Name); 310 } 311 312 setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0)); 313 assert(!hasLazyArguments()); 314 Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0)); 315 } 316 317 // dropAllReferences() - This function causes all the subinstructions to "let 318 // go" of all references that they are maintaining. This allows one to 319 // 'delete' a whole class at a time, even though there may be circular 320 // references... first all references are dropped, and all use counts go to 321 // zero. Then everything is deleted for real. Note that no operations are 322 // valid on an object that has "dropped all references", except operator 323 // delete. 324 // 325 void Function::dropAllReferences() { 326 setIsMaterializable(false); 327 328 for (BasicBlock &BB : *this) 329 BB.dropAllReferences(); 330 331 // Delete all basic blocks. They are now unused, except possibly by 332 // blockaddresses, but BasicBlock's destructor takes care of those. 333 while (!BasicBlocks.empty()) 334 BasicBlocks.begin()->eraseFromParent(); 335 336 // Drop uses of any optional data (real or placeholder). 337 if (getNumOperands()) { 338 User::dropAllReferences(); 339 setNumHungOffUseOperands(0); 340 setValueSubclassData(getSubclassDataFromValue() & ~0xe); 341 } 342 343 // Metadata is stored in a side-table. 344 clearMetadata(); 345 } 346 347 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) { 348 AttributeList PAL = getAttributes(); 349 PAL = PAL.addAttribute(getContext(), i, Kind); 350 setAttributes(PAL); 351 } 352 353 void Function::addAttribute(unsigned i, Attribute Attr) { 354 AttributeList PAL = getAttributes(); 355 PAL = PAL.addAttribute(getContext(), i, Attr); 356 setAttributes(PAL); 357 } 358 359 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) { 360 AttributeList PAL = getAttributes(); 361 PAL = PAL.addAttributes(getContext(), i, Attrs); 362 setAttributes(PAL); 363 } 364 365 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 366 AttributeList PAL = getAttributes(); 367 PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind); 368 setAttributes(PAL); 369 } 370 371 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) { 372 AttributeList PAL = getAttributes(); 373 PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr); 374 setAttributes(PAL); 375 } 376 377 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 378 AttributeList PAL = getAttributes(); 379 PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs); 380 setAttributes(PAL); 381 } 382 383 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) { 384 AttributeList PAL = getAttributes(); 385 PAL = PAL.removeAttribute(getContext(), i, Kind); 386 setAttributes(PAL); 387 } 388 389 void Function::removeAttribute(unsigned i, StringRef Kind) { 390 AttributeList PAL = getAttributes(); 391 PAL = PAL.removeAttribute(getContext(), i, Kind); 392 setAttributes(PAL); 393 } 394 395 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) { 396 AttributeList PAL = getAttributes(); 397 PAL = PAL.removeAttributes(getContext(), i, Attrs); 398 setAttributes(PAL); 399 } 400 401 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) { 402 AttributeList PAL = getAttributes(); 403 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 404 setAttributes(PAL); 405 } 406 407 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) { 408 AttributeList PAL = getAttributes(); 409 PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind); 410 setAttributes(PAL); 411 } 412 413 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) { 414 AttributeList PAL = getAttributes(); 415 PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs); 416 setAttributes(PAL); 417 } 418 419 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 420 AttributeList PAL = getAttributes(); 421 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 422 setAttributes(PAL); 423 } 424 425 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) { 426 AttributeList PAL = getAttributes(); 427 PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes); 428 setAttributes(PAL); 429 } 430 431 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 432 AttributeList PAL = getAttributes(); 433 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 434 setAttributes(PAL); 435 } 436 437 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo, 438 uint64_t Bytes) { 439 AttributeList PAL = getAttributes(); 440 PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes); 441 setAttributes(PAL); 442 } 443 444 const std::string &Function::getGC() const { 445 assert(hasGC() && "Function has no collector"); 446 return getContext().getGC(*this); 447 } 448 449 void Function::setGC(std::string Str) { 450 setValueSubclassDataBit(14, !Str.empty()); 451 getContext().setGC(*this, std::move(Str)); 452 } 453 454 void Function::clearGC() { 455 if (!hasGC()) 456 return; 457 getContext().deleteGC(*this); 458 setValueSubclassDataBit(14, false); 459 } 460 461 /// Copy all additional attributes (those not needed to create a Function) from 462 /// the Function Src to this one. 463 void Function::copyAttributesFrom(const Function *Src) { 464 GlobalObject::copyAttributesFrom(Src); 465 setCallingConv(Src->getCallingConv()); 466 setAttributes(Src->getAttributes()); 467 if (Src->hasGC()) 468 setGC(Src->getGC()); 469 else 470 clearGC(); 471 if (Src->hasPersonalityFn()) 472 setPersonalityFn(Src->getPersonalityFn()); 473 if (Src->hasPrefixData()) 474 setPrefixData(Src->getPrefixData()); 475 if (Src->hasPrologueData()) 476 setPrologueData(Src->getPrologueData()); 477 } 478 479 /// Table of string intrinsic names indexed by enum value. 480 static const char * const IntrinsicNameTable[] = { 481 "not_intrinsic", 482 #define GET_INTRINSIC_NAME_TABLE 483 #include "llvm/IR/Intrinsics.gen" 484 #undef GET_INTRINSIC_NAME_TABLE 485 }; 486 487 /// Table of per-target intrinsic name tables. 488 #define GET_INTRINSIC_TARGET_DATA 489 #include "llvm/IR/Intrinsics.gen" 490 #undef GET_INTRINSIC_TARGET_DATA 491 492 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same 493 /// target as \c Name, or the generic table if \c Name is not target specific. 494 /// 495 /// Returns the relevant slice of \c IntrinsicNameTable 496 static ArrayRef<const char *> findTargetSubtable(StringRef Name) { 497 assert(Name.startswith("llvm.")); 498 499 ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos); 500 // Drop "llvm." and take the first dotted component. That will be the target 501 // if this is target specific. 502 StringRef Target = Name.drop_front(5).split('.').first; 503 auto It = std::lower_bound(Targets.begin(), Targets.end(), Target, 504 [](const IntrinsicTargetInfo &TI, 505 StringRef Target) { return TI.Name < Target; }); 506 // We've either found the target or just fall back to the generic set, which 507 // is always first. 508 const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0]; 509 return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count); 510 } 511 512 /// \brief This does the actual lookup of an intrinsic ID which 513 /// matches the given function name. 514 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) { 515 ArrayRef<const char *> NameTable = findTargetSubtable(Name); 516 int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name); 517 if (Idx == -1) 518 return Intrinsic::not_intrinsic; 519 520 // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have 521 // an index into a sub-table. 522 int Adjust = NameTable.data() - IntrinsicNameTable; 523 Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust); 524 525 // If the intrinsic is not overloaded, require an exact match. If it is 526 // overloaded, require either exact or prefix match. 527 const auto MatchSize = strlen(NameTable[Idx]); 528 assert(Name.size() >= MatchSize && "Expected either exact or prefix match"); 529 bool IsExactMatch = Name.size() == MatchSize; 530 return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic; 531 } 532 533 void Function::recalculateIntrinsicID() { 534 StringRef Name = getName(); 535 if (!Name.startswith("llvm.")) { 536 HasLLVMReservedName = false; 537 IntID = Intrinsic::not_intrinsic; 538 return; 539 } 540 HasLLVMReservedName = true; 541 IntID = lookupIntrinsicID(Name); 542 } 543 544 /// Returns a stable mangling for the type specified for use in the name 545 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 546 /// of named types is simply their name. Manglings for unnamed types consist 547 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 548 /// combined with the mangling of their component types. A vararg function 549 /// type will have a suffix of 'vararg'. Since function types can contain 550 /// other function types, we close a function type mangling with suffix 'f' 551 /// which can't be confused with it's prefix. This ensures we don't have 552 /// collisions between two unrelated function types. Otherwise, you might 553 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 554 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 555 /// cases) fall back to the MVT codepath, where they could be mangled to 556 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 557 /// everything. 558 static std::string getMangledTypeStr(Type* Ty) { 559 std::string Result; 560 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 561 Result += "p" + utostr(PTyp->getAddressSpace()) + 562 getMangledTypeStr(PTyp->getElementType()); 563 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 564 Result += "a" + utostr(ATyp->getNumElements()) + 565 getMangledTypeStr(ATyp->getElementType()); 566 } else if (StructType *STyp = dyn_cast<StructType>(Ty)) { 567 if (!STyp->isLiteral()) { 568 Result += "s_"; 569 Result += STyp->getName(); 570 } else { 571 Result += "sl_"; 572 for (auto Elem : STyp->elements()) 573 Result += getMangledTypeStr(Elem); 574 } 575 // Ensure nested structs are distinguishable. 576 Result += "s"; 577 } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) { 578 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 579 for (size_t i = 0; i < FT->getNumParams(); i++) 580 Result += getMangledTypeStr(FT->getParamType(i)); 581 if (FT->isVarArg()) 582 Result += "vararg"; 583 // Ensure nested function types are distinguishable. 584 Result += "f"; 585 } else if (isa<VectorType>(Ty)) 586 Result += "v" + utostr(Ty->getVectorNumElements()) + 587 getMangledTypeStr(Ty->getVectorElementType()); 588 else if (Ty) 589 Result += EVT::getEVT(Ty).getEVTString(); 590 return Result; 591 } 592 593 StringRef Intrinsic::getName(ID id) { 594 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 595 assert(!isOverloaded(id) && 596 "This version of getName does not support overloading"); 597 return IntrinsicNameTable[id]; 598 } 599 600 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 601 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 602 std::string Result(IntrinsicNameTable[id]); 603 for (Type *Ty : Tys) { 604 Result += "." + getMangledTypeStr(Ty); 605 } 606 return Result; 607 } 608 609 /// IIT_Info - These are enumerators that describe the entries returned by the 610 /// getIntrinsicInfoTableEntries function. 611 /// 612 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 613 enum IIT_Info { 614 // Common values should be encoded with 0-15. 615 IIT_Done = 0, 616 IIT_I1 = 1, 617 IIT_I8 = 2, 618 IIT_I16 = 3, 619 IIT_I32 = 4, 620 IIT_I64 = 5, 621 IIT_F16 = 6, 622 IIT_F32 = 7, 623 IIT_F64 = 8, 624 IIT_V2 = 9, 625 IIT_V4 = 10, 626 IIT_V8 = 11, 627 IIT_V16 = 12, 628 IIT_V32 = 13, 629 IIT_PTR = 14, 630 IIT_ARG = 15, 631 632 // Values from 16+ are only encodable with the inefficient encoding. 633 IIT_V64 = 16, 634 IIT_MMX = 17, 635 IIT_TOKEN = 18, 636 IIT_METADATA = 19, 637 IIT_EMPTYSTRUCT = 20, 638 IIT_STRUCT2 = 21, 639 IIT_STRUCT3 = 22, 640 IIT_STRUCT4 = 23, 641 IIT_STRUCT5 = 24, 642 IIT_EXTEND_ARG = 25, 643 IIT_TRUNC_ARG = 26, 644 IIT_ANYPTR = 27, 645 IIT_V1 = 28, 646 IIT_VARARG = 29, 647 IIT_HALF_VEC_ARG = 30, 648 IIT_SAME_VEC_WIDTH_ARG = 31, 649 IIT_PTR_TO_ARG = 32, 650 IIT_PTR_TO_ELT = 33, 651 IIT_VEC_OF_ANYPTRS_TO_ELT = 34, 652 IIT_I128 = 35, 653 IIT_V512 = 36, 654 IIT_V1024 = 37, 655 IIT_STRUCT6 = 38, 656 IIT_STRUCT7 = 39, 657 IIT_STRUCT8 = 40 658 }; 659 660 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 661 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 662 using namespace Intrinsic; 663 664 IIT_Info Info = IIT_Info(Infos[NextElt++]); 665 unsigned StructElts = 2; 666 667 switch (Info) { 668 case IIT_Done: 669 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 670 return; 671 case IIT_VARARG: 672 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 673 return; 674 case IIT_MMX: 675 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 676 return; 677 case IIT_TOKEN: 678 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0)); 679 return; 680 case IIT_METADATA: 681 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 682 return; 683 case IIT_F16: 684 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 685 return; 686 case IIT_F32: 687 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 688 return; 689 case IIT_F64: 690 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 691 return; 692 case IIT_I1: 693 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 694 return; 695 case IIT_I8: 696 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 697 return; 698 case IIT_I16: 699 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 700 return; 701 case IIT_I32: 702 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 703 return; 704 case IIT_I64: 705 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 706 return; 707 case IIT_I128: 708 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 709 return; 710 case IIT_V1: 711 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 712 DecodeIITType(NextElt, Infos, OutputTable); 713 return; 714 case IIT_V2: 715 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 716 DecodeIITType(NextElt, Infos, OutputTable); 717 return; 718 case IIT_V4: 719 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 720 DecodeIITType(NextElt, Infos, OutputTable); 721 return; 722 case IIT_V8: 723 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 724 DecodeIITType(NextElt, Infos, OutputTable); 725 return; 726 case IIT_V16: 727 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 728 DecodeIITType(NextElt, Infos, OutputTable); 729 return; 730 case IIT_V32: 731 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 732 DecodeIITType(NextElt, Infos, OutputTable); 733 return; 734 case IIT_V64: 735 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 736 DecodeIITType(NextElt, Infos, OutputTable); 737 return; 738 case IIT_V512: 739 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512)); 740 DecodeIITType(NextElt, Infos, OutputTable); 741 return; 742 case IIT_V1024: 743 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024)); 744 DecodeIITType(NextElt, Infos, OutputTable); 745 return; 746 case IIT_PTR: 747 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 748 DecodeIITType(NextElt, Infos, OutputTable); 749 return; 750 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 751 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 752 Infos[NextElt++])); 753 DecodeIITType(NextElt, Infos, OutputTable); 754 return; 755 } 756 case IIT_ARG: { 757 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 758 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 759 return; 760 } 761 case IIT_EXTEND_ARG: { 762 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 763 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 764 ArgInfo)); 765 return; 766 } 767 case IIT_TRUNC_ARG: { 768 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 769 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 770 ArgInfo)); 771 return; 772 } 773 case IIT_HALF_VEC_ARG: { 774 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 775 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 776 ArgInfo)); 777 return; 778 } 779 case IIT_SAME_VEC_WIDTH_ARG: { 780 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 781 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 782 ArgInfo)); 783 return; 784 } 785 case IIT_PTR_TO_ARG: { 786 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 787 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 788 ArgInfo)); 789 return; 790 } 791 case IIT_PTR_TO_ELT: { 792 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 793 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo)); 794 return; 795 } 796 case IIT_VEC_OF_ANYPTRS_TO_ELT: { 797 unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 798 unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 799 OutputTable.push_back( 800 IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo)); 801 return; 802 } 803 case IIT_EMPTYSTRUCT: 804 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 805 return; 806 case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH; 807 case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH; 808 case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH; 809 case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH; 810 case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH; 811 case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH; 812 case IIT_STRUCT2: { 813 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 814 815 for (unsigned i = 0; i != StructElts; ++i) 816 DecodeIITType(NextElt, Infos, OutputTable); 817 return; 818 } 819 } 820 llvm_unreachable("unhandled"); 821 } 822 823 #define GET_INTRINSIC_GENERATOR_GLOBAL 824 #include "llvm/IR/Intrinsics.gen" 825 #undef GET_INTRINSIC_GENERATOR_GLOBAL 826 827 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 828 SmallVectorImpl<IITDescriptor> &T){ 829 // Check to see if the intrinsic's type was expressible by the table. 830 unsigned TableVal = IIT_Table[id-1]; 831 832 // Decode the TableVal into an array of IITValues. 833 SmallVector<unsigned char, 8> IITValues; 834 ArrayRef<unsigned char> IITEntries; 835 unsigned NextElt = 0; 836 if ((TableVal >> 31) != 0) { 837 // This is an offset into the IIT_LongEncodingTable. 838 IITEntries = IIT_LongEncodingTable; 839 840 // Strip sentinel bit. 841 NextElt = (TableVal << 1) >> 1; 842 } else { 843 // Decode the TableVal into an array of IITValues. If the entry was encoded 844 // into a single word in the table itself, decode it now. 845 do { 846 IITValues.push_back(TableVal & 0xF); 847 TableVal >>= 4; 848 } while (TableVal); 849 850 IITEntries = IITValues; 851 NextElt = 0; 852 } 853 854 // Okay, decode the table into the output vector of IITDescriptors. 855 DecodeIITType(NextElt, IITEntries, T); 856 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 857 DecodeIITType(NextElt, IITEntries, T); 858 } 859 860 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 861 ArrayRef<Type*> Tys, LLVMContext &Context) { 862 using namespace Intrinsic; 863 864 IITDescriptor D = Infos.front(); 865 Infos = Infos.slice(1); 866 867 switch (D.Kind) { 868 case IITDescriptor::Void: return Type::getVoidTy(Context); 869 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 870 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 871 case IITDescriptor::Token: return Type::getTokenTy(Context); 872 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 873 case IITDescriptor::Half: return Type::getHalfTy(Context); 874 case IITDescriptor::Float: return Type::getFloatTy(Context); 875 case IITDescriptor::Double: return Type::getDoubleTy(Context); 876 877 case IITDescriptor::Integer: 878 return IntegerType::get(Context, D.Integer_Width); 879 case IITDescriptor::Vector: 880 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 881 case IITDescriptor::Pointer: 882 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 883 D.Pointer_AddressSpace); 884 case IITDescriptor::Struct: { 885 SmallVector<Type *, 8> Elts; 886 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 887 Elts.push_back(DecodeFixedType(Infos, Tys, Context)); 888 return StructType::get(Context, Elts); 889 } 890 case IITDescriptor::Argument: 891 return Tys[D.getArgumentNumber()]; 892 case IITDescriptor::ExtendArgument: { 893 Type *Ty = Tys[D.getArgumentNumber()]; 894 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 895 return VectorType::getExtendedElementVectorType(VTy); 896 897 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 898 } 899 case IITDescriptor::TruncArgument: { 900 Type *Ty = Tys[D.getArgumentNumber()]; 901 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 902 return VectorType::getTruncatedElementVectorType(VTy); 903 904 IntegerType *ITy = cast<IntegerType>(Ty); 905 assert(ITy->getBitWidth() % 2 == 0); 906 return IntegerType::get(Context, ITy->getBitWidth() / 2); 907 } 908 case IITDescriptor::HalfVecArgument: 909 return VectorType::getHalfElementsVectorType(cast<VectorType>( 910 Tys[D.getArgumentNumber()])); 911 case IITDescriptor::SameVecWidthArgument: { 912 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 913 Type *Ty = Tys[D.getArgumentNumber()]; 914 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 915 return VectorType::get(EltTy, VTy->getNumElements()); 916 } 917 llvm_unreachable("unhandled"); 918 } 919 case IITDescriptor::PtrToArgument: { 920 Type *Ty = Tys[D.getArgumentNumber()]; 921 return PointerType::getUnqual(Ty); 922 } 923 case IITDescriptor::PtrToElt: { 924 Type *Ty = Tys[D.getArgumentNumber()]; 925 VectorType *VTy = dyn_cast<VectorType>(Ty); 926 if (!VTy) 927 llvm_unreachable("Expected an argument of Vector Type"); 928 Type *EltTy = VTy->getVectorElementType(); 929 return PointerType::getUnqual(EltTy); 930 } 931 case IITDescriptor::VecOfAnyPtrsToElt: 932 // Return the overloaded type (which determines the pointers address space) 933 return Tys[D.getOverloadArgNumber()]; 934 } 935 llvm_unreachable("unhandled"); 936 } 937 938 FunctionType *Intrinsic::getType(LLVMContext &Context, 939 ID id, ArrayRef<Type*> Tys) { 940 SmallVector<IITDescriptor, 8> Table; 941 getIntrinsicInfoTableEntries(id, Table); 942 943 ArrayRef<IITDescriptor> TableRef = Table; 944 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 945 946 SmallVector<Type*, 8> ArgTys; 947 while (!TableRef.empty()) 948 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 949 950 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 951 // If we see void type as the type of the last argument, it is vararg intrinsic 952 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 953 ArgTys.pop_back(); 954 return FunctionType::get(ResultTy, ArgTys, true); 955 } 956 return FunctionType::get(ResultTy, ArgTys, false); 957 } 958 959 bool Intrinsic::isOverloaded(ID id) { 960 #define GET_INTRINSIC_OVERLOAD_TABLE 961 #include "llvm/IR/Intrinsics.gen" 962 #undef GET_INTRINSIC_OVERLOAD_TABLE 963 } 964 965 bool Intrinsic::isLeaf(ID id) { 966 switch (id) { 967 default: 968 return true; 969 970 case Intrinsic::experimental_gc_statepoint: 971 case Intrinsic::experimental_patchpoint_void: 972 case Intrinsic::experimental_patchpoint_i64: 973 return false; 974 } 975 } 976 977 /// This defines the "Intrinsic::getAttributes(ID id)" method. 978 #define GET_INTRINSIC_ATTRIBUTES 979 #include "llvm/IR/Intrinsics.gen" 980 #undef GET_INTRINSIC_ATTRIBUTES 981 982 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 983 // There can never be multiple globals with the same name of different types, 984 // because intrinsics must be a specific type. 985 return 986 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 987 getType(M->getContext(), id, Tys))); 988 } 989 990 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 991 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 992 #include "llvm/IR/Intrinsics.gen" 993 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 994 995 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 996 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 997 #include "llvm/IR/Intrinsics.gen" 998 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 999 1000 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos, 1001 SmallVectorImpl<Type*> &ArgTys) { 1002 using namespace Intrinsic; 1003 1004 // If we ran out of descriptors, there are too many arguments. 1005 if (Infos.empty()) return true; 1006 IITDescriptor D = Infos.front(); 1007 Infos = Infos.slice(1); 1008 1009 switch (D.Kind) { 1010 case IITDescriptor::Void: return !Ty->isVoidTy(); 1011 case IITDescriptor::VarArg: return true; 1012 case IITDescriptor::MMX: return !Ty->isX86_MMXTy(); 1013 case IITDescriptor::Token: return !Ty->isTokenTy(); 1014 case IITDescriptor::Metadata: return !Ty->isMetadataTy(); 1015 case IITDescriptor::Half: return !Ty->isHalfTy(); 1016 case IITDescriptor::Float: return !Ty->isFloatTy(); 1017 case IITDescriptor::Double: return !Ty->isDoubleTy(); 1018 case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width); 1019 case IITDescriptor::Vector: { 1020 VectorType *VT = dyn_cast<VectorType>(Ty); 1021 return !VT || VT->getNumElements() != D.Vector_Width || 1022 matchIntrinsicType(VT->getElementType(), Infos, ArgTys); 1023 } 1024 case IITDescriptor::Pointer: { 1025 PointerType *PT = dyn_cast<PointerType>(Ty); 1026 return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace || 1027 matchIntrinsicType(PT->getElementType(), Infos, ArgTys); 1028 } 1029 1030 case IITDescriptor::Struct: { 1031 StructType *ST = dyn_cast<StructType>(Ty); 1032 if (!ST || ST->getNumElements() != D.Struct_NumElements) 1033 return true; 1034 1035 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 1036 if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys)) 1037 return true; 1038 return false; 1039 } 1040 1041 case IITDescriptor::Argument: 1042 // Two cases here - If this is the second occurrence of an argument, verify 1043 // that the later instance matches the previous instance. 1044 if (D.getArgumentNumber() < ArgTys.size()) 1045 return Ty != ArgTys[D.getArgumentNumber()]; 1046 1047 // Otherwise, if this is the first instance of an argument, record it and 1048 // verify the "Any" kind. 1049 assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error"); 1050 ArgTys.push_back(Ty); 1051 1052 switch (D.getArgumentKind()) { 1053 case IITDescriptor::AK_Any: return false; // Success 1054 case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy(); 1055 case IITDescriptor::AK_AnyFloat: return !Ty->isFPOrFPVectorTy(); 1056 case IITDescriptor::AK_AnyVector: return !isa<VectorType>(Ty); 1057 case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty); 1058 } 1059 llvm_unreachable("all argument kinds not covered"); 1060 1061 case IITDescriptor::ExtendArgument: { 1062 // This may only be used when referring to a previous vector argument. 1063 if (D.getArgumentNumber() >= ArgTys.size()) 1064 return true; 1065 1066 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1067 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1068 NewTy = VectorType::getExtendedElementVectorType(VTy); 1069 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1070 NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth()); 1071 else 1072 return true; 1073 1074 return Ty != NewTy; 1075 } 1076 case IITDescriptor::TruncArgument: { 1077 // This may only be used when referring to a previous vector argument. 1078 if (D.getArgumentNumber() >= ArgTys.size()) 1079 return true; 1080 1081 Type *NewTy = ArgTys[D.getArgumentNumber()]; 1082 if (VectorType *VTy = dyn_cast<VectorType>(NewTy)) 1083 NewTy = VectorType::getTruncatedElementVectorType(VTy); 1084 else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy)) 1085 NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2); 1086 else 1087 return true; 1088 1089 return Ty != NewTy; 1090 } 1091 case IITDescriptor::HalfVecArgument: 1092 // This may only be used when referring to a previous vector argument. 1093 return D.getArgumentNumber() >= ArgTys.size() || 1094 !isa<VectorType>(ArgTys[D.getArgumentNumber()]) || 1095 VectorType::getHalfElementsVectorType( 1096 cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty; 1097 case IITDescriptor::SameVecWidthArgument: { 1098 if (D.getArgumentNumber() >= ArgTys.size()) 1099 return true; 1100 VectorType * ReferenceType = 1101 dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]); 1102 VectorType *ThisArgType = dyn_cast<VectorType>(Ty); 1103 if (!ThisArgType || !ReferenceType || 1104 (ReferenceType->getVectorNumElements() != 1105 ThisArgType->getVectorNumElements())) 1106 return true; 1107 return matchIntrinsicType(ThisArgType->getVectorElementType(), 1108 Infos, ArgTys); 1109 } 1110 case IITDescriptor::PtrToArgument: { 1111 if (D.getArgumentNumber() >= ArgTys.size()) 1112 return true; 1113 Type * ReferenceType = ArgTys[D.getArgumentNumber()]; 1114 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1115 return (!ThisArgType || ThisArgType->getElementType() != ReferenceType); 1116 } 1117 case IITDescriptor::PtrToElt: { 1118 if (D.getArgumentNumber() >= ArgTys.size()) 1119 return true; 1120 VectorType * ReferenceType = 1121 dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]); 1122 PointerType *ThisArgType = dyn_cast<PointerType>(Ty); 1123 1124 return (!ThisArgType || !ReferenceType || 1125 ThisArgType->getElementType() != ReferenceType->getElementType()); 1126 } 1127 case IITDescriptor::VecOfAnyPtrsToElt: { 1128 unsigned RefArgNumber = D.getRefArgNumber(); 1129 1130 // This may only be used when referring to a previous argument. 1131 if (RefArgNumber >= ArgTys.size()) 1132 return true; 1133 1134 // Record the overloaded type 1135 assert(D.getOverloadArgNumber() == ArgTys.size() && 1136 "Table consistency error"); 1137 ArgTys.push_back(Ty); 1138 1139 // Verify the overloaded type "matches" the Ref type. 1140 // i.e. Ty is a vector with the same width as Ref. 1141 // Composed of pointers to the same element type as Ref. 1142 VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]); 1143 VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty); 1144 if (!ThisArgVecTy || !ReferenceType || 1145 (ReferenceType->getVectorNumElements() != 1146 ThisArgVecTy->getVectorNumElements())) 1147 return true; 1148 PointerType *ThisArgEltTy = 1149 dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType()); 1150 if (!ThisArgEltTy) 1151 return true; 1152 return ThisArgEltTy->getElementType() != 1153 ReferenceType->getVectorElementType(); 1154 } 1155 } 1156 llvm_unreachable("unhandled"); 1157 } 1158 1159 bool 1160 Intrinsic::matchIntrinsicVarArg(bool isVarArg, 1161 ArrayRef<Intrinsic::IITDescriptor> &Infos) { 1162 // If there are no descriptors left, then it can't be a vararg. 1163 if (Infos.empty()) 1164 return isVarArg; 1165 1166 // There should be only one descriptor remaining at this point. 1167 if (Infos.size() != 1) 1168 return true; 1169 1170 // Check and verify the descriptor. 1171 IITDescriptor D = Infos.front(); 1172 Infos = Infos.slice(1); 1173 if (D.Kind == IITDescriptor::VarArg) 1174 return !isVarArg; 1175 1176 return true; 1177 } 1178 1179 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) { 1180 Intrinsic::ID ID = F->getIntrinsicID(); 1181 if (!ID) 1182 return None; 1183 1184 FunctionType *FTy = F->getFunctionType(); 1185 // Accumulate an array of overloaded types for the given intrinsic 1186 SmallVector<Type *, 4> ArgTys; 1187 { 1188 SmallVector<Intrinsic::IITDescriptor, 8> Table; 1189 getIntrinsicInfoTableEntries(ID, Table); 1190 ArrayRef<Intrinsic::IITDescriptor> TableRef = Table; 1191 1192 // If we encounter any problems matching the signature with the descriptor 1193 // just give up remangling. It's up to verifier to report the discrepancy. 1194 if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys)) 1195 return None; 1196 for (auto Ty : FTy->params()) 1197 if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys)) 1198 return None; 1199 if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef)) 1200 return None; 1201 } 1202 1203 StringRef Name = F->getName(); 1204 if (Name == Intrinsic::getName(ID, ArgTys)) 1205 return None; 1206 1207 auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys); 1208 NewDecl->setCallingConv(F->getCallingConv()); 1209 assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature"); 1210 return NewDecl; 1211 } 1212 1213 /// hasAddressTaken - returns true if there are any uses of this function 1214 /// other than direct calls or invokes to it. 1215 bool Function::hasAddressTaken(const User* *PutOffender) const { 1216 for (const Use &U : uses()) { 1217 const User *FU = U.getUser(); 1218 if (isa<BlockAddress>(FU)) 1219 continue; 1220 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) { 1221 if (PutOffender) 1222 *PutOffender = FU; 1223 return true; 1224 } 1225 ImmutableCallSite CS(cast<Instruction>(FU)); 1226 if (!CS.isCallee(&U)) { 1227 if (PutOffender) 1228 *PutOffender = FU; 1229 return true; 1230 } 1231 } 1232 return false; 1233 } 1234 1235 bool Function::isDefTriviallyDead() const { 1236 // Check the linkage 1237 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 1238 !hasAvailableExternallyLinkage()) 1239 return false; 1240 1241 // Check if the function is used by anything other than a blockaddress. 1242 for (const User *U : users()) 1243 if (!isa<BlockAddress>(U)) 1244 return false; 1245 1246 return true; 1247 } 1248 1249 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 1250 /// setjmp or other function that gcc recognizes as "returning twice". 1251 bool Function::callsFunctionThatReturnsTwice() const { 1252 for (const_inst_iterator 1253 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 1254 ImmutableCallSite CS(&*I); 1255 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 1256 return true; 1257 } 1258 1259 return false; 1260 } 1261 1262 Constant *Function::getPersonalityFn() const { 1263 assert(hasPersonalityFn() && getNumOperands()); 1264 return cast<Constant>(Op<0>()); 1265 } 1266 1267 void Function::setPersonalityFn(Constant *Fn) { 1268 setHungoffOperand<0>(Fn); 1269 setValueSubclassDataBit(3, Fn != nullptr); 1270 } 1271 1272 Constant *Function::getPrefixData() const { 1273 assert(hasPrefixData() && getNumOperands()); 1274 return cast<Constant>(Op<1>()); 1275 } 1276 1277 void Function::setPrefixData(Constant *PrefixData) { 1278 setHungoffOperand<1>(PrefixData); 1279 setValueSubclassDataBit(1, PrefixData != nullptr); 1280 } 1281 1282 Constant *Function::getPrologueData() const { 1283 assert(hasPrologueData() && getNumOperands()); 1284 return cast<Constant>(Op<2>()); 1285 } 1286 1287 void Function::setPrologueData(Constant *PrologueData) { 1288 setHungoffOperand<2>(PrologueData); 1289 setValueSubclassDataBit(2, PrologueData != nullptr); 1290 } 1291 1292 void Function::allocHungoffUselist() { 1293 // If we've already allocated a uselist, stop here. 1294 if (getNumOperands()) 1295 return; 1296 1297 allocHungoffUses(3, /*IsPhi=*/ false); 1298 setNumHungOffUseOperands(3); 1299 1300 // Initialize the uselist with placeholder operands to allow traversal. 1301 auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)); 1302 Op<0>().set(CPN); 1303 Op<1>().set(CPN); 1304 Op<2>().set(CPN); 1305 } 1306 1307 template <int Idx> 1308 void Function::setHungoffOperand(Constant *C) { 1309 if (C) { 1310 allocHungoffUselist(); 1311 Op<Idx>().set(C); 1312 } else if (getNumOperands()) { 1313 Op<Idx>().set( 1314 ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0))); 1315 } 1316 } 1317 1318 void Function::setValueSubclassDataBit(unsigned Bit, bool On) { 1319 assert(Bit < 16 && "SubclassData contains only 16 bits"); 1320 if (On) 1321 setValueSubclassData(getSubclassDataFromValue() | (1 << Bit)); 1322 else 1323 setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit)); 1324 } 1325 1326 void Function::setEntryCount(ProfileCount Count, 1327 const DenseSet<GlobalValue::GUID> *S) { 1328 assert(Count.hasValue()); 1329 #if !defined(NDEBUG) 1330 auto PrevCount = getEntryCount(); 1331 assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType()); 1332 #endif 1333 MDBuilder MDB(getContext()); 1334 setMetadata( 1335 LLVMContext::MD_prof, 1336 MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S)); 1337 } 1338 1339 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type, 1340 const DenseSet<GlobalValue::GUID> *Imports) { 1341 setEntryCount(ProfileCount(Count, Type), Imports); 1342 } 1343 1344 ProfileCount Function::getEntryCount() const { 1345 MDNode *MD = getMetadata(LLVMContext::MD_prof); 1346 if (MD && MD->getOperand(0)) 1347 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) { 1348 if (MDS->getString().equals("function_entry_count")) { 1349 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1350 uint64_t Count = CI->getValue().getZExtValue(); 1351 // A value of -1 is used for SamplePGO when there were no samples. 1352 // Treat this the same as unknown. 1353 if (Count == (uint64_t)-1) 1354 return ProfileCount::getInvalid(); 1355 return ProfileCount(Count, PCT_Real); 1356 } else if (MDS->getString().equals("synthetic_function_entry_count")) { 1357 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 1358 uint64_t Count = CI->getValue().getZExtValue(); 1359 return ProfileCount(Count, PCT_Synthetic); 1360 } 1361 } 1362 return ProfileCount::getInvalid(); 1363 } 1364 1365 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const { 1366 DenseSet<GlobalValue::GUID> R; 1367 if (MDNode *MD = getMetadata(LLVMContext::MD_prof)) 1368 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 1369 if (MDS->getString().equals("function_entry_count")) 1370 for (unsigned i = 2; i < MD->getNumOperands(); i++) 1371 R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i)) 1372 ->getValue() 1373 .getZExtValue()); 1374 return R; 1375 } 1376 1377 void Function::setSectionPrefix(StringRef Prefix) { 1378 MDBuilder MDB(getContext()); 1379 setMetadata(LLVMContext::MD_section_prefix, 1380 MDB.createFunctionSectionPrefix(Prefix)); 1381 } 1382 1383 Optional<StringRef> Function::getSectionPrefix() const { 1384 if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) { 1385 assert(dyn_cast<MDString>(MD->getOperand(0)) 1386 ->getString() 1387 .equals("function_section_prefix") && 1388 "Metadata not match"); 1389 return dyn_cast<MDString>(MD->getOperand(1))->getString(); 1390 } 1391 return None; 1392 } 1393