xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 1275a2dec8564ced4a4679bcb82fdaa241a87805)
1 //===-- Function.cpp - Implement the Global object classes ----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the Function class for the IR library.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/IR/Function.h"
15 #include "LLVMContextImpl.h"
16 #include "SymbolTableListTraitsImpl.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/CodeGen/ValueTypes.h"
20 #include "llvm/IR/CallSite.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DerivedTypes.h"
23 #include "llvm/IR/InstIterator.h"
24 #include "llvm/IR/IntrinsicInst.h"
25 #include "llvm/IR/LLVMContext.h"
26 #include "llvm/IR/MDBuilder.h"
27 #include "llvm/IR/Metadata.h"
28 #include "llvm/IR/Module.h"
29 using namespace llvm;
30 
31 // Explicit instantiations of SymbolTableListTraits since some of the methods
32 // are not in the public header file...
33 template class llvm::SymbolTableListTraits<Argument>;
34 template class llvm::SymbolTableListTraits<BasicBlock>;
35 
36 //===----------------------------------------------------------------------===//
37 // Argument Implementation
38 //===----------------------------------------------------------------------===//
39 
40 void Argument::anchor() { }
41 
42 Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
43   : Value(Ty, Value::ArgumentVal) {
44   Parent = nullptr;
45 
46   if (Par)
47     Par->getArgumentList().push_back(this);
48   setName(Name);
49 }
50 
51 void Argument::setParent(Function *parent) {
52   Parent = parent;
53 }
54 
55 unsigned Argument::getArgNo() const {
56   const Function *F = getParent();
57   assert(F && "Argument is not in a function");
58 
59   Function::const_arg_iterator AI = F->arg_begin();
60   unsigned ArgIdx = 0;
61   for (; &*AI != this; ++AI)
62     ++ArgIdx;
63 
64   return ArgIdx;
65 }
66 
67 bool Argument::hasNonNullAttr() const {
68   if (!getType()->isPointerTy()) return false;
69   if (getParent()->getAttributes().
70         hasAttribute(getArgNo()+1, Attribute::NonNull))
71     return true;
72   else if (getDereferenceableBytes() > 0 &&
73            getType()->getPointerAddressSpace() == 0)
74     return true;
75   return false;
76 }
77 
78 bool Argument::hasByValAttr() const {
79   if (!getType()->isPointerTy()) return false;
80   return hasAttribute(Attribute::ByVal);
81 }
82 
83 bool Argument::hasSwiftSelfAttr() const {
84   return getParent()->getAttributes().
85     hasAttribute(getArgNo()+1, Attribute::SwiftSelf);
86 }
87 
88 bool Argument::hasSwiftErrorAttr() const {
89   return getParent()->getAttributes().
90     hasAttribute(getArgNo()+1, Attribute::SwiftError);
91 }
92 
93 bool Argument::hasInAllocaAttr() const {
94   if (!getType()->isPointerTy()) return false;
95   return hasAttribute(Attribute::InAlloca);
96 }
97 
98 bool Argument::hasByValOrInAllocaAttr() const {
99   if (!getType()->isPointerTy()) return false;
100   AttributeSet Attrs = getParent()->getAttributes();
101   return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
102          Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
103 }
104 
105 unsigned Argument::getParamAlignment() const {
106   assert(getType()->isPointerTy() && "Only pointers have alignments");
107   return getParent()->getParamAlignment(getArgNo()+1);
108 
109 }
110 
111 uint64_t Argument::getDereferenceableBytes() const {
112   assert(getType()->isPointerTy() &&
113          "Only pointers have dereferenceable bytes");
114   return getParent()->getDereferenceableBytes(getArgNo()+1);
115 }
116 
117 uint64_t Argument::getDereferenceableOrNullBytes() const {
118   assert(getType()->isPointerTy() &&
119          "Only pointers have dereferenceable bytes");
120   return getParent()->getDereferenceableOrNullBytes(getArgNo()+1);
121 }
122 
123 bool Argument::hasNestAttr() const {
124   if (!getType()->isPointerTy()) return false;
125   return hasAttribute(Attribute::Nest);
126 }
127 
128 bool Argument::hasNoAliasAttr() const {
129   if (!getType()->isPointerTy()) return false;
130   return hasAttribute(Attribute::NoAlias);
131 }
132 
133 bool Argument::hasNoCaptureAttr() const {
134   if (!getType()->isPointerTy()) return false;
135   return hasAttribute(Attribute::NoCapture);
136 }
137 
138 bool Argument::hasStructRetAttr() const {
139   if (!getType()->isPointerTy()) return false;
140   return hasAttribute(Attribute::StructRet);
141 }
142 
143 bool Argument::hasReturnedAttr() const {
144   return hasAttribute(Attribute::Returned);
145 }
146 
147 bool Argument::hasZExtAttr() const {
148   return hasAttribute(Attribute::ZExt);
149 }
150 
151 bool Argument::hasSExtAttr() const {
152   return hasAttribute(Attribute::SExt);
153 }
154 
155 bool Argument::onlyReadsMemory() const {
156   return getParent()->getAttributes().
157       hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
158       getParent()->getAttributes().
159       hasAttribute(getArgNo()+1, Attribute::ReadNone);
160 }
161 
162 void Argument::addAttr(AttributeSet AS) {
163   assert(AS.getNumSlots() <= 1 &&
164          "Trying to add more than one attribute set to an argument!");
165   AttrBuilder B(AS, AS.getSlotIndex(0));
166   getParent()->addAttributes(getArgNo() + 1,
167                              AttributeSet::get(Parent->getContext(),
168                                                getArgNo() + 1, B));
169 }
170 
171 void Argument::removeAttr(AttributeSet AS) {
172   assert(AS.getNumSlots() <= 1 &&
173          "Trying to remove more than one attribute set from an argument!");
174   AttrBuilder B(AS, AS.getSlotIndex(0));
175   getParent()->removeAttributes(getArgNo() + 1,
176                                 AttributeSet::get(Parent->getContext(),
177                                                   getArgNo() + 1, B));
178 }
179 
180 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
181   return getParent()->hasAttribute(getArgNo() + 1, Kind);
182 }
183 
184 //===----------------------------------------------------------------------===//
185 // Helper Methods in Function
186 //===----------------------------------------------------------------------===//
187 
188 LLVMContext &Function::getContext() const {
189   return getType()->getContext();
190 }
191 
192 void Function::removeFromParent() {
193   getParent()->getFunctionList().remove(getIterator());
194 }
195 
196 void Function::eraseFromParent() {
197   getParent()->getFunctionList().erase(getIterator());
198 }
199 
200 //===----------------------------------------------------------------------===//
201 // Function Implementation
202 //===----------------------------------------------------------------------===//
203 
204 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
205                    Module *ParentModule)
206     : GlobalObject(Ty, Value::FunctionVal,
207                    OperandTraits<Function>::op_begin(this), 0, Linkage, name) {
208   assert(FunctionType::isValidReturnType(getReturnType()) &&
209          "invalid return type");
210   setGlobalObjectSubClassData(0);
211 
212   // We only need a symbol table for a function if the context keeps value names
213   if (!getContext().shouldDiscardValueNames())
214     SymTab = make_unique<ValueSymbolTable>();
215 
216   // If the function has arguments, mark them as lazily built.
217   if (Ty->getNumParams())
218     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
219 
220   if (ParentModule)
221     ParentModule->getFunctionList().push_back(this);
222 
223   HasLLVMReservedName = getName().startswith("llvm.");
224   // Ensure intrinsics have the right parameter attributes.
225   // Note, the IntID field will have been set in Value::setName if this function
226   // name is a valid intrinsic ID.
227   if (IntID)
228     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
229 }
230 
231 Function::~Function() {
232   dropAllReferences();    // After this it is safe to delete instructions.
233 
234   // Delete all of the method arguments and unlink from symbol table...
235   ArgumentList.clear();
236 
237   // Remove the function from the on-the-side GC table.
238   clearGC();
239 }
240 
241 void Function::BuildLazyArguments() const {
242   // Create the arguments vector, all arguments start out unnamed.
243   FunctionType *FT = getFunctionType();
244   for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
245     assert(!FT->getParamType(i)->isVoidTy() &&
246            "Cannot have void typed arguments!");
247     ArgumentList.push_back(new Argument(FT->getParamType(i)));
248   }
249 
250   // Clear the lazy arguments bit.
251   unsigned SDC = getSubclassDataFromValue();
252   const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
253 }
254 
255 void Function::stealArgumentListFrom(Function &Src) {
256   assert(isDeclaration() && "Expected no references to current arguments");
257 
258   // Drop the current arguments, if any, and set the lazy argument bit.
259   if (!hasLazyArguments()) {
260     assert(llvm::all_of(ArgumentList,
261                         [](const Argument &A) { return A.use_empty(); }) &&
262            "Expected arguments to be unused in declaration");
263     ArgumentList.clear();
264     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
265   }
266 
267   // Nothing to steal if Src has lazy arguments.
268   if (Src.hasLazyArguments())
269     return;
270 
271   // Steal arguments from Src, and fix the lazy argument bits.
272   ArgumentList.splice(ArgumentList.end(), Src.ArgumentList);
273   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
274   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
275 }
276 
277 // dropAllReferences() - This function causes all the subinstructions to "let
278 // go" of all references that they are maintaining.  This allows one to
279 // 'delete' a whole class at a time, even though there may be circular
280 // references... first all references are dropped, and all use counts go to
281 // zero.  Then everything is deleted for real.  Note that no operations are
282 // valid on an object that has "dropped all references", except operator
283 // delete.
284 //
285 void Function::dropAllReferences() {
286   setIsMaterializable(false);
287 
288   for (BasicBlock &BB : *this)
289     BB.dropAllReferences();
290 
291   // Delete all basic blocks. They are now unused, except possibly by
292   // blockaddresses, but BasicBlock's destructor takes care of those.
293   while (!BasicBlocks.empty())
294     BasicBlocks.begin()->eraseFromParent();
295 
296   // Drop uses of any optional data (real or placeholder).
297   if (getNumOperands()) {
298     User::dropAllReferences();
299     setNumHungOffUseOperands(0);
300     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
301   }
302 
303   // Metadata is stored in a side-table.
304   clearMetadata();
305 }
306 
307 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
308   AttributeSet PAL = getAttributes();
309   PAL = PAL.addAttribute(getContext(), i, Kind);
310   setAttributes(PAL);
311 }
312 
313 void Function::addAttribute(unsigned i, Attribute Attr) {
314   AttributeSet PAL = getAttributes();
315   PAL = PAL.addAttribute(getContext(), i, Attr);
316   setAttributes(PAL);
317 }
318 
319 void Function::addAttributes(unsigned i, AttributeSet Attrs) {
320   AttributeSet PAL = getAttributes();
321   PAL = PAL.addAttributes(getContext(), i, Attrs);
322   setAttributes(PAL);
323 }
324 
325 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
326   AttributeSet PAL = getAttributes();
327   PAL = PAL.removeAttribute(getContext(), i, Kind);
328   setAttributes(PAL);
329 }
330 
331 void Function::removeAttribute(unsigned i, StringRef Kind) {
332   AttributeSet PAL = getAttributes();
333   PAL = PAL.removeAttribute(getContext(), i, Kind);
334   setAttributes(PAL);
335 }
336 
337 void Function::removeAttributes(unsigned i, AttributeSet Attrs) {
338   AttributeSet PAL = getAttributes();
339   PAL = PAL.removeAttributes(getContext(), i, Attrs);
340   setAttributes(PAL);
341 }
342 
343 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
344   AttributeSet PAL = getAttributes();
345   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
346   setAttributes(PAL);
347 }
348 
349 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
350   AttributeSet PAL = getAttributes();
351   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
352   setAttributes(PAL);
353 }
354 
355 const std::string &Function::getGC() const {
356   assert(hasGC() && "Function has no collector");
357   return getContext().getGC(*this);
358 }
359 
360 void Function::setGC(std::string Str) {
361   setValueSubclassDataBit(14, !Str.empty());
362   getContext().setGC(*this, std::move(Str));
363 }
364 
365 void Function::clearGC() {
366   if (!hasGC())
367     return;
368   getContext().deleteGC(*this);
369   setValueSubclassDataBit(14, false);
370 }
371 
372 /// Copy all additional attributes (those not needed to create a Function) from
373 /// the Function Src to this one.
374 void Function::copyAttributesFrom(const GlobalValue *Src) {
375   GlobalObject::copyAttributesFrom(Src);
376   const Function *SrcF = dyn_cast<Function>(Src);
377   if (!SrcF)
378     return;
379 
380   setCallingConv(SrcF->getCallingConv());
381   setAttributes(SrcF->getAttributes());
382   if (SrcF->hasGC())
383     setGC(SrcF->getGC());
384   else
385     clearGC();
386   if (SrcF->hasPersonalityFn())
387     setPersonalityFn(SrcF->getPersonalityFn());
388   if (SrcF->hasPrefixData())
389     setPrefixData(SrcF->getPrefixData());
390   if (SrcF->hasPrologueData())
391     setPrologueData(SrcF->getPrologueData());
392 }
393 
394 /// Table of string intrinsic names indexed by enum value.
395 static const char * const IntrinsicNameTable[] = {
396   "not_intrinsic",
397 #define GET_INTRINSIC_NAME_TABLE
398 #include "llvm/IR/Intrinsics.gen"
399 #undef GET_INTRINSIC_NAME_TABLE
400 };
401 
402 /// Table of per-target intrinsic name tables.
403 #define GET_INTRINSIC_TARGET_DATA
404 #include "llvm/IR/Intrinsics.gen"
405 #undef GET_INTRINSIC_TARGET_DATA
406 
407 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
408 /// target as \c Name, or the generic table if \c Name is not target specific.
409 ///
410 /// Returns the relevant slice of \c IntrinsicNameTable
411 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
412   assert(Name.startswith("llvm."));
413 
414   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
415   // Drop "llvm." and take the first dotted component. That will be the target
416   // if this is target specific.
417   StringRef Target = Name.drop_front(5).split('.').first;
418   auto It = std::lower_bound(Targets.begin(), Targets.end(), Target,
419                              [](const IntrinsicTargetInfo &TI,
420                                 StringRef Target) { return TI.Name < Target; });
421   // We've either found the target or just fall back to the generic set, which
422   // is always first.
423   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
424   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
425 }
426 
427 /// \brief This does the actual lookup of an intrinsic ID which
428 /// matches the given function name.
429 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
430   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
431   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
432   if (Idx == -1)
433     return Intrinsic::not_intrinsic;
434 
435   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
436   // an index into a sub-table.
437   int Adjust = NameTable.data() - IntrinsicNameTable;
438   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
439 
440   // If the intrinsic is not overloaded, require an exact match. If it is
441   // overloaded, require a prefix match.
442   bool IsPrefixMatch = Name.size() > strlen(NameTable[Idx]);
443   return IsPrefixMatch == isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
444 }
445 
446 void Function::recalculateIntrinsicID() {
447   StringRef Name = getName();
448   if (!Name.startswith("llvm.")) {
449     HasLLVMReservedName = false;
450     IntID = Intrinsic::not_intrinsic;
451     return;
452   }
453   HasLLVMReservedName = true;
454   IntID = lookupIntrinsicID(Name);
455 }
456 
457 /// Returns a stable mangling for the type specified for use in the name
458 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
459 /// of named types is simply their name.  Manglings for unnamed types consist
460 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
461 /// combined with the mangling of their component types.  A vararg function
462 /// type will have a suffix of 'vararg'.  Since function types can contain
463 /// other function types, we close a function type mangling with suffix 'f'
464 /// which can't be confused with it's prefix.  This ensures we don't have
465 /// collisions between two unrelated function types. Otherwise, you might
466 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
467 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most
468 /// cases) fall back to the MVT codepath, where they could be mangled to
469 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle
470 /// everything.
471 static std::string getMangledTypeStr(Type* Ty) {
472   std::string Result;
473   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
474     Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
475       getMangledTypeStr(PTyp->getElementType());
476   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
477     Result += "a" + llvm::utostr(ATyp->getNumElements()) +
478       getMangledTypeStr(ATyp->getElementType());
479   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
480     if (!STyp->isLiteral()) {
481       Result += "s_";
482       Result += STyp->getName();
483     } else {
484       Result += "sl_";
485       for (auto Elem : STyp->elements())
486         Result += getMangledTypeStr(Elem);
487     }
488     // Ensure nested structs are distinguishable.
489     Result += "s";
490   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
491     Result += "f_" + getMangledTypeStr(FT->getReturnType());
492     for (size_t i = 0; i < FT->getNumParams(); i++)
493       Result += getMangledTypeStr(FT->getParamType(i));
494     if (FT->isVarArg())
495       Result += "vararg";
496     // Ensure nested function types are distinguishable.
497     Result += "f";
498   } else if (isa<VectorType>(Ty))
499     Result += "v" + utostr(Ty->getVectorNumElements()) +
500       getMangledTypeStr(Ty->getVectorElementType());
501   else if (Ty)
502     Result += EVT::getEVT(Ty).getEVTString();
503   return Result;
504 }
505 
506 StringRef Intrinsic::getName(ID id) {
507   assert(id < num_intrinsics && "Invalid intrinsic ID!");
508   assert(!isOverloaded(id) &&
509          "This version of getName does not support overloading");
510   return IntrinsicNameTable[id];
511 }
512 
513 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
514   assert(id < num_intrinsics && "Invalid intrinsic ID!");
515   std::string Result(IntrinsicNameTable[id]);
516   for (Type *Ty : Tys) {
517     Result += "." + getMangledTypeStr(Ty);
518   }
519   return Result;
520 }
521 
522 
523 /// IIT_Info - These are enumerators that describe the entries returned by the
524 /// getIntrinsicInfoTableEntries function.
525 ///
526 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
527 enum IIT_Info {
528   // Common values should be encoded with 0-15.
529   IIT_Done = 0,
530   IIT_I1   = 1,
531   IIT_I8   = 2,
532   IIT_I16  = 3,
533   IIT_I32  = 4,
534   IIT_I64  = 5,
535   IIT_F16  = 6,
536   IIT_F32  = 7,
537   IIT_F64  = 8,
538   IIT_V2   = 9,
539   IIT_V4   = 10,
540   IIT_V8   = 11,
541   IIT_V16  = 12,
542   IIT_V32  = 13,
543   IIT_PTR  = 14,
544   IIT_ARG  = 15,
545 
546   // Values from 16+ are only encodable with the inefficient encoding.
547   IIT_V64  = 16,
548   IIT_MMX  = 17,
549   IIT_TOKEN = 18,
550   IIT_METADATA = 19,
551   IIT_EMPTYSTRUCT = 20,
552   IIT_STRUCT2 = 21,
553   IIT_STRUCT3 = 22,
554   IIT_STRUCT4 = 23,
555   IIT_STRUCT5 = 24,
556   IIT_EXTEND_ARG = 25,
557   IIT_TRUNC_ARG = 26,
558   IIT_ANYPTR = 27,
559   IIT_V1   = 28,
560   IIT_VARARG = 29,
561   IIT_HALF_VEC_ARG = 30,
562   IIT_SAME_VEC_WIDTH_ARG = 31,
563   IIT_PTR_TO_ARG = 32,
564   IIT_PTR_TO_ELT = 33,
565   IIT_VEC_OF_PTRS_TO_ELT = 34,
566   IIT_I128 = 35,
567   IIT_V512 = 36,
568   IIT_V1024 = 37
569 };
570 
571 
572 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
573                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
574   IIT_Info Info = IIT_Info(Infos[NextElt++]);
575   unsigned StructElts = 2;
576   using namespace Intrinsic;
577 
578   switch (Info) {
579   case IIT_Done:
580     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
581     return;
582   case IIT_VARARG:
583     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
584     return;
585   case IIT_MMX:
586     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
587     return;
588   case IIT_TOKEN:
589     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
590     return;
591   case IIT_METADATA:
592     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
593     return;
594   case IIT_F16:
595     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
596     return;
597   case IIT_F32:
598     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
599     return;
600   case IIT_F64:
601     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
602     return;
603   case IIT_I1:
604     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
605     return;
606   case IIT_I8:
607     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
608     return;
609   case IIT_I16:
610     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
611     return;
612   case IIT_I32:
613     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
614     return;
615   case IIT_I64:
616     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
617     return;
618   case IIT_I128:
619     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
620     return;
621   case IIT_V1:
622     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
623     DecodeIITType(NextElt, Infos, OutputTable);
624     return;
625   case IIT_V2:
626     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
627     DecodeIITType(NextElt, Infos, OutputTable);
628     return;
629   case IIT_V4:
630     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
631     DecodeIITType(NextElt, Infos, OutputTable);
632     return;
633   case IIT_V8:
634     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
635     DecodeIITType(NextElt, Infos, OutputTable);
636     return;
637   case IIT_V16:
638     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
639     DecodeIITType(NextElt, Infos, OutputTable);
640     return;
641   case IIT_V32:
642     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
643     DecodeIITType(NextElt, Infos, OutputTable);
644     return;
645   case IIT_V64:
646     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
647     DecodeIITType(NextElt, Infos, OutputTable);
648     return;
649   case IIT_V512:
650     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
651     DecodeIITType(NextElt, Infos, OutputTable);
652     return;
653   case IIT_V1024:
654     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
655     DecodeIITType(NextElt, Infos, OutputTable);
656     return;
657   case IIT_PTR:
658     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
659     DecodeIITType(NextElt, Infos, OutputTable);
660     return;
661   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
662     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
663                                              Infos[NextElt++]));
664     DecodeIITType(NextElt, Infos, OutputTable);
665     return;
666   }
667   case IIT_ARG: {
668     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
669     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
670     return;
671   }
672   case IIT_EXTEND_ARG: {
673     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
674     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
675                                              ArgInfo));
676     return;
677   }
678   case IIT_TRUNC_ARG: {
679     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
680     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
681                                              ArgInfo));
682     return;
683   }
684   case IIT_HALF_VEC_ARG: {
685     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
686     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
687                                              ArgInfo));
688     return;
689   }
690   case IIT_SAME_VEC_WIDTH_ARG: {
691     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
692     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
693                                              ArgInfo));
694     return;
695   }
696   case IIT_PTR_TO_ARG: {
697     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
698     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
699                                              ArgInfo));
700     return;
701   }
702   case IIT_PTR_TO_ELT: {
703     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
704     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
705     return;
706   }
707   case IIT_VEC_OF_PTRS_TO_ELT: {
708     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
709     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
710                                              ArgInfo));
711     return;
712   }
713   case IIT_EMPTYSTRUCT:
714     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
715     return;
716   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
717   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
718   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
719   case IIT_STRUCT2: {
720     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
721 
722     for (unsigned i = 0; i != StructElts; ++i)
723       DecodeIITType(NextElt, Infos, OutputTable);
724     return;
725   }
726   }
727   llvm_unreachable("unhandled");
728 }
729 
730 
731 #define GET_INTRINSIC_GENERATOR_GLOBAL
732 #include "llvm/IR/Intrinsics.gen"
733 #undef GET_INTRINSIC_GENERATOR_GLOBAL
734 
735 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
736                                              SmallVectorImpl<IITDescriptor> &T){
737   // Check to see if the intrinsic's type was expressible by the table.
738   unsigned TableVal = IIT_Table[id-1];
739 
740   // Decode the TableVal into an array of IITValues.
741   SmallVector<unsigned char, 8> IITValues;
742   ArrayRef<unsigned char> IITEntries;
743   unsigned NextElt = 0;
744   if ((TableVal >> 31) != 0) {
745     // This is an offset into the IIT_LongEncodingTable.
746     IITEntries = IIT_LongEncodingTable;
747 
748     // Strip sentinel bit.
749     NextElt = (TableVal << 1) >> 1;
750   } else {
751     // Decode the TableVal into an array of IITValues.  If the entry was encoded
752     // into a single word in the table itself, decode it now.
753     do {
754       IITValues.push_back(TableVal & 0xF);
755       TableVal >>= 4;
756     } while (TableVal);
757 
758     IITEntries = IITValues;
759     NextElt = 0;
760   }
761 
762   // Okay, decode the table into the output vector of IITDescriptors.
763   DecodeIITType(NextElt, IITEntries, T);
764   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
765     DecodeIITType(NextElt, IITEntries, T);
766 }
767 
768 
769 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
770                              ArrayRef<Type*> Tys, LLVMContext &Context) {
771   using namespace Intrinsic;
772   IITDescriptor D = Infos.front();
773   Infos = Infos.slice(1);
774 
775   switch (D.Kind) {
776   case IITDescriptor::Void: return Type::getVoidTy(Context);
777   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
778   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
779   case IITDescriptor::Token: return Type::getTokenTy(Context);
780   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
781   case IITDescriptor::Half: return Type::getHalfTy(Context);
782   case IITDescriptor::Float: return Type::getFloatTy(Context);
783   case IITDescriptor::Double: return Type::getDoubleTy(Context);
784 
785   case IITDescriptor::Integer:
786     return IntegerType::get(Context, D.Integer_Width);
787   case IITDescriptor::Vector:
788     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
789   case IITDescriptor::Pointer:
790     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
791                             D.Pointer_AddressSpace);
792   case IITDescriptor::Struct: {
793     Type *Elts[5];
794     assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
795     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
796       Elts[i] = DecodeFixedType(Infos, Tys, Context);
797     return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
798   }
799 
800   case IITDescriptor::Argument:
801     return Tys[D.getArgumentNumber()];
802   case IITDescriptor::ExtendArgument: {
803     Type *Ty = Tys[D.getArgumentNumber()];
804     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
805       return VectorType::getExtendedElementVectorType(VTy);
806 
807     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
808   }
809   case IITDescriptor::TruncArgument: {
810     Type *Ty = Tys[D.getArgumentNumber()];
811     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
812       return VectorType::getTruncatedElementVectorType(VTy);
813 
814     IntegerType *ITy = cast<IntegerType>(Ty);
815     assert(ITy->getBitWidth() % 2 == 0);
816     return IntegerType::get(Context, ITy->getBitWidth() / 2);
817   }
818   case IITDescriptor::HalfVecArgument:
819     return VectorType::getHalfElementsVectorType(cast<VectorType>(
820                                                   Tys[D.getArgumentNumber()]));
821   case IITDescriptor::SameVecWidthArgument: {
822     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
823     Type *Ty = Tys[D.getArgumentNumber()];
824     if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
825       return VectorType::get(EltTy, VTy->getNumElements());
826     }
827     llvm_unreachable("unhandled");
828   }
829   case IITDescriptor::PtrToArgument: {
830     Type *Ty = Tys[D.getArgumentNumber()];
831     return PointerType::getUnqual(Ty);
832   }
833   case IITDescriptor::PtrToElt: {
834     Type *Ty = Tys[D.getArgumentNumber()];
835     VectorType *VTy = dyn_cast<VectorType>(Ty);
836     if (!VTy)
837       llvm_unreachable("Expected an argument of Vector Type");
838     Type *EltTy = VTy->getVectorElementType();
839     return PointerType::getUnqual(EltTy);
840   }
841   case IITDescriptor::VecOfPtrsToElt: {
842     Type *Ty = Tys[D.getArgumentNumber()];
843     VectorType *VTy = dyn_cast<VectorType>(Ty);
844     if (!VTy)
845       llvm_unreachable("Expected an argument of Vector Type");
846     Type *EltTy = VTy->getVectorElementType();
847     return VectorType::get(PointerType::getUnqual(EltTy),
848                            VTy->getNumElements());
849   }
850  }
851   llvm_unreachable("unhandled");
852 }
853 
854 
855 
856 FunctionType *Intrinsic::getType(LLVMContext &Context,
857                                  ID id, ArrayRef<Type*> Tys) {
858   SmallVector<IITDescriptor, 8> Table;
859   getIntrinsicInfoTableEntries(id, Table);
860 
861   ArrayRef<IITDescriptor> TableRef = Table;
862   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
863 
864   SmallVector<Type*, 8> ArgTys;
865   while (!TableRef.empty())
866     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
867 
868   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
869   // If we see void type as the type of the last argument, it is vararg intrinsic
870   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
871     ArgTys.pop_back();
872     return FunctionType::get(ResultTy, ArgTys, true);
873   }
874   return FunctionType::get(ResultTy, ArgTys, false);
875 }
876 
877 bool Intrinsic::isOverloaded(ID id) {
878 #define GET_INTRINSIC_OVERLOAD_TABLE
879 #include "llvm/IR/Intrinsics.gen"
880 #undef GET_INTRINSIC_OVERLOAD_TABLE
881 }
882 
883 bool Intrinsic::isLeaf(ID id) {
884   switch (id) {
885   default:
886     return true;
887 
888   case Intrinsic::experimental_gc_statepoint:
889   case Intrinsic::experimental_patchpoint_void:
890   case Intrinsic::experimental_patchpoint_i64:
891     return false;
892   }
893 }
894 
895 /// This defines the "Intrinsic::getAttributes(ID id)" method.
896 #define GET_INTRINSIC_ATTRIBUTES
897 #include "llvm/IR/Intrinsics.gen"
898 #undef GET_INTRINSIC_ATTRIBUTES
899 
900 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
901   // There can never be multiple globals with the same name of different types,
902   // because intrinsics must be a specific type.
903   return
904     cast<Function>(M->getOrInsertFunction(getName(id, Tys),
905                                           getType(M->getContext(), id, Tys)));
906 }
907 
908 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
909 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
910 #include "llvm/IR/Intrinsics.gen"
911 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
912 
913 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
914 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
915 #include "llvm/IR/Intrinsics.gen"
916 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
917 
918 bool Intrinsic::matchIntrinsicType(Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
919                                    SmallVectorImpl<Type*> &ArgTys) {
920   using namespace Intrinsic;
921 
922   // If we ran out of descriptors, there are too many arguments.
923   if (Infos.empty()) return true;
924   IITDescriptor D = Infos.front();
925   Infos = Infos.slice(1);
926 
927   switch (D.Kind) {
928     case IITDescriptor::Void: return !Ty->isVoidTy();
929     case IITDescriptor::VarArg: return true;
930     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
931     case IITDescriptor::Token: return !Ty->isTokenTy();
932     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
933     case IITDescriptor::Half: return !Ty->isHalfTy();
934     case IITDescriptor::Float: return !Ty->isFloatTy();
935     case IITDescriptor::Double: return !Ty->isDoubleTy();
936     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
937     case IITDescriptor::Vector: {
938       VectorType *VT = dyn_cast<VectorType>(Ty);
939       return !VT || VT->getNumElements() != D.Vector_Width ||
940              matchIntrinsicType(VT->getElementType(), Infos, ArgTys);
941     }
942     case IITDescriptor::Pointer: {
943       PointerType *PT = dyn_cast<PointerType>(Ty);
944       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
945              matchIntrinsicType(PT->getElementType(), Infos, ArgTys);
946     }
947 
948     case IITDescriptor::Struct: {
949       StructType *ST = dyn_cast<StructType>(Ty);
950       if (!ST || ST->getNumElements() != D.Struct_NumElements)
951         return true;
952 
953       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
954         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys))
955           return true;
956       return false;
957     }
958 
959     case IITDescriptor::Argument:
960       // Two cases here - If this is the second occurrence of an argument, verify
961       // that the later instance matches the previous instance.
962       if (D.getArgumentNumber() < ArgTys.size())
963         return Ty != ArgTys[D.getArgumentNumber()];
964 
965           // Otherwise, if this is the first instance of an argument, record it and
966           // verify the "Any" kind.
967           assert(D.getArgumentNumber() == ArgTys.size() && "Table consistency error");
968           ArgTys.push_back(Ty);
969 
970           switch (D.getArgumentKind()) {
971             case IITDescriptor::AK_Any:        return false; // Success
972             case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
973             case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
974             case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
975             case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
976           }
977           llvm_unreachable("all argument kinds not covered");
978 
979     case IITDescriptor::ExtendArgument: {
980       // This may only be used when referring to a previous vector argument.
981       if (D.getArgumentNumber() >= ArgTys.size())
982         return true;
983 
984       Type *NewTy = ArgTys[D.getArgumentNumber()];
985       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
986         NewTy = VectorType::getExtendedElementVectorType(VTy);
987       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
988         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
989       else
990         return true;
991 
992       return Ty != NewTy;
993     }
994     case IITDescriptor::TruncArgument: {
995       // This may only be used when referring to a previous vector argument.
996       if (D.getArgumentNumber() >= ArgTys.size())
997         return true;
998 
999       Type *NewTy = ArgTys[D.getArgumentNumber()];
1000       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1001         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1002       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1003         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1004       else
1005         return true;
1006 
1007       return Ty != NewTy;
1008     }
1009     case IITDescriptor::HalfVecArgument:
1010       // This may only be used when referring to a previous vector argument.
1011       return D.getArgumentNumber() >= ArgTys.size() ||
1012              !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1013              VectorType::getHalfElementsVectorType(
1014                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1015     case IITDescriptor::SameVecWidthArgument: {
1016       if (D.getArgumentNumber() >= ArgTys.size())
1017         return true;
1018       VectorType * ReferenceType =
1019         dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1020       VectorType *ThisArgType = dyn_cast<VectorType>(Ty);
1021       if (!ThisArgType || !ReferenceType ||
1022           (ReferenceType->getVectorNumElements() !=
1023            ThisArgType->getVectorNumElements()))
1024         return true;
1025       return matchIntrinsicType(ThisArgType->getVectorElementType(),
1026                                 Infos, ArgTys);
1027     }
1028     case IITDescriptor::PtrToArgument: {
1029       if (D.getArgumentNumber() >= ArgTys.size())
1030         return true;
1031       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1032       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1033       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1034     }
1035     case IITDescriptor::PtrToElt: {
1036       if (D.getArgumentNumber() >= ArgTys.size())
1037         return true;
1038       VectorType * ReferenceType =
1039         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1040       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1041 
1042       return (!ThisArgType || !ReferenceType ||
1043               ThisArgType->getElementType() != ReferenceType->getElementType());
1044     }
1045     case IITDescriptor::VecOfPtrsToElt: {
1046       if (D.getArgumentNumber() >= ArgTys.size())
1047         return true;
1048       VectorType * ReferenceType =
1049               dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1050       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1051       if (!ThisArgVecTy || !ReferenceType ||
1052           (ReferenceType->getVectorNumElements() !=
1053            ThisArgVecTy->getVectorNumElements()))
1054         return true;
1055       PointerType *ThisArgEltTy =
1056               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1057       if (!ThisArgEltTy)
1058         return true;
1059       return ThisArgEltTy->getElementType() !=
1060              ReferenceType->getVectorElementType();
1061     }
1062   }
1063   llvm_unreachable("unhandled");
1064 }
1065 
1066 bool
1067 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1068                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1069   // If there are no descriptors left, then it can't be a vararg.
1070   if (Infos.empty())
1071     return isVarArg;
1072 
1073   // There should be only one descriptor remaining at this point.
1074   if (Infos.size() != 1)
1075     return true;
1076 
1077   // Check and verify the descriptor.
1078   IITDescriptor D = Infos.front();
1079   Infos = Infos.slice(1);
1080   if (D.Kind == IITDescriptor::VarArg)
1081     return !isVarArg;
1082 
1083   return true;
1084 }
1085 
1086 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1087   Intrinsic::ID ID = F->getIntrinsicID();
1088   if (!ID)
1089     return None;
1090 
1091   FunctionType *FTy = F->getFunctionType();
1092   // Accumulate an array of overloaded types for the given intrinsic
1093   SmallVector<Type *, 4> ArgTys;
1094   {
1095     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1096     getIntrinsicInfoTableEntries(ID, Table);
1097     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1098 
1099     // If we encounter any problems matching the signature with the descriptor
1100     // just give up remangling. It's up to verifier to report the discrepancy.
1101     if (Intrinsic::matchIntrinsicType(FTy->getReturnType(), TableRef, ArgTys))
1102       return None;
1103     for (auto Ty : FTy->params())
1104       if (Intrinsic::matchIntrinsicType(Ty, TableRef, ArgTys))
1105         return None;
1106     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1107       return None;
1108   }
1109 
1110   StringRef Name = F->getName();
1111   if (Name == Intrinsic::getName(ID, ArgTys))
1112     return None;
1113 
1114   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1115   NewDecl->setCallingConv(F->getCallingConv());
1116   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1117   return NewDecl;
1118 }
1119 
1120 /// hasAddressTaken - returns true if there are any uses of this function
1121 /// other than direct calls or invokes to it.
1122 bool Function::hasAddressTaken(const User* *PutOffender) const {
1123   for (const Use &U : uses()) {
1124     const User *FU = U.getUser();
1125     if (isa<BlockAddress>(FU))
1126       continue;
1127     if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) {
1128       if (PutOffender)
1129         *PutOffender = FU;
1130       return true;
1131     }
1132     ImmutableCallSite CS(cast<Instruction>(FU));
1133     if (!CS.isCallee(&U)) {
1134       if (PutOffender)
1135         *PutOffender = FU;
1136       return true;
1137     }
1138   }
1139   return false;
1140 }
1141 
1142 bool Function::isDefTriviallyDead() const {
1143   // Check the linkage
1144   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1145       !hasAvailableExternallyLinkage())
1146     return false;
1147 
1148   // Check if the function is used by anything other than a blockaddress.
1149   for (const User *U : users())
1150     if (!isa<BlockAddress>(U))
1151       return false;
1152 
1153   return true;
1154 }
1155 
1156 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1157 /// setjmp or other function that gcc recognizes as "returning twice".
1158 bool Function::callsFunctionThatReturnsTwice() const {
1159   for (const_inst_iterator
1160          I = inst_begin(this), E = inst_end(this); I != E; ++I) {
1161     ImmutableCallSite CS(&*I);
1162     if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
1163       return true;
1164   }
1165 
1166   return false;
1167 }
1168 
1169 Constant *Function::getPersonalityFn() const {
1170   assert(hasPersonalityFn() && getNumOperands());
1171   return cast<Constant>(Op<0>());
1172 }
1173 
1174 void Function::setPersonalityFn(Constant *Fn) {
1175   setHungoffOperand<0>(Fn);
1176   setValueSubclassDataBit(3, Fn != nullptr);
1177 }
1178 
1179 Constant *Function::getPrefixData() const {
1180   assert(hasPrefixData() && getNumOperands());
1181   return cast<Constant>(Op<1>());
1182 }
1183 
1184 void Function::setPrefixData(Constant *PrefixData) {
1185   setHungoffOperand<1>(PrefixData);
1186   setValueSubclassDataBit(1, PrefixData != nullptr);
1187 }
1188 
1189 Constant *Function::getPrologueData() const {
1190   assert(hasPrologueData() && getNumOperands());
1191   return cast<Constant>(Op<2>());
1192 }
1193 
1194 void Function::setPrologueData(Constant *PrologueData) {
1195   setHungoffOperand<2>(PrologueData);
1196   setValueSubclassDataBit(2, PrologueData != nullptr);
1197 }
1198 
1199 void Function::allocHungoffUselist() {
1200   // If we've already allocated a uselist, stop here.
1201   if (getNumOperands())
1202     return;
1203 
1204   allocHungoffUses(3, /*IsPhi=*/ false);
1205   setNumHungOffUseOperands(3);
1206 
1207   // Initialize the uselist with placeholder operands to allow traversal.
1208   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1209   Op<0>().set(CPN);
1210   Op<1>().set(CPN);
1211   Op<2>().set(CPN);
1212 }
1213 
1214 template <int Idx>
1215 void Function::setHungoffOperand(Constant *C) {
1216   if (C) {
1217     allocHungoffUselist();
1218     Op<Idx>().set(C);
1219   } else if (getNumOperands()) {
1220     Op<Idx>().set(
1221         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1222   }
1223 }
1224 
1225 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1226   assert(Bit < 16 && "SubclassData contains only 16 bits");
1227   if (On)
1228     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1229   else
1230     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1231 }
1232 
1233 void Function::setEntryCount(uint64_t Count,
1234                              const DenseSet<GlobalValue::GUID> *S) {
1235   MDBuilder MDB(getContext());
1236   setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count, S));
1237 }
1238 
1239 Optional<uint64_t> Function::getEntryCount() const {
1240   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1241   if (MD && MD->getOperand(0))
1242     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1243       if (MDS->getString().equals("function_entry_count")) {
1244         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1245         uint64_t Count = CI->getValue().getZExtValue();
1246         if (Count == 0)
1247           return None;
1248         return Count;
1249       }
1250   return None;
1251 }
1252 
1253 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1254   DenseSet<GlobalValue::GUID> R;
1255   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1256     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1257       if (MDS->getString().equals("function_entry_count"))
1258         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1259           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1260                        ->getValue()
1261                        .getZExtValue());
1262   return R;
1263 }
1264 
1265 void Function::setSectionPrefix(StringRef Prefix) {
1266   MDBuilder MDB(getContext());
1267   setMetadata(LLVMContext::MD_section_prefix,
1268               MDB.createFunctionSectionPrefix(Prefix));
1269 }
1270 
1271 Optional<StringRef> Function::getSectionPrefix() const {
1272   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1273     assert(dyn_cast<MDString>(MD->getOperand(0))
1274                ->getString()
1275                .equals("function_section_prefix") &&
1276            "Metadata not match");
1277     return dyn_cast<MDString>(MD->getOperand(1))->getString();
1278   }
1279   return None;
1280 }
1281