1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InstIterator.h" 25 #include "llvm/IR/IntrinsicInst.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/MDBuilder.h" 28 #include "llvm/IR/Metadata.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/Support/ManagedStatic.h" 31 #include "llvm/Support/RWMutex.h" 32 #include "llvm/Support/StringPool.h" 33 #include "llvm/Support/Threading.h" 34 using namespace llvm; 35 36 // Explicit instantiations of SymbolTableListTraits since some of the methods 37 // are not in the public header file... 38 template class llvm::SymbolTableListTraits<Argument, Function>; 39 template class llvm::SymbolTableListTraits<BasicBlock, Function>; 40 41 //===----------------------------------------------------------------------===// 42 // Argument Implementation 43 //===----------------------------------------------------------------------===// 44 45 void Argument::anchor() { } 46 47 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 48 : Value(Ty, Value::ArgumentVal) { 49 Parent = nullptr; 50 51 if (Par) 52 Par->getArgumentList().push_back(this); 53 setName(Name); 54 } 55 56 void Argument::setParent(Function *parent) { 57 Parent = parent; 58 } 59 60 /// getArgNo - Return the index of this formal argument in its containing 61 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 62 unsigned Argument::getArgNo() const { 63 const Function *F = getParent(); 64 assert(F && "Argument is not in a function"); 65 66 Function::const_arg_iterator AI = F->arg_begin(); 67 unsigned ArgIdx = 0; 68 for (; &*AI != this; ++AI) 69 ++ArgIdx; 70 71 return ArgIdx; 72 } 73 74 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 75 /// it in its containing function. Also returns true if at least one byte is 76 /// known to be dereferenceable and the pointer is in addrspace(0). 77 bool Argument::hasNonNullAttr() const { 78 if (!getType()->isPointerTy()) return false; 79 if (getParent()->getAttributes(). 80 hasAttribute(getArgNo()+1, Attribute::NonNull)) 81 return true; 82 else if (getDereferenceableBytes() > 0 && 83 getType()->getPointerAddressSpace() == 0) 84 return true; 85 return false; 86 } 87 88 /// hasByValAttr - Return true if this argument has the byval attribute on it 89 /// in its containing function. 90 bool Argument::hasByValAttr() const { 91 if (!getType()->isPointerTy()) return false; 92 return getParent()->getAttributes(). 93 hasAttribute(getArgNo()+1, Attribute::ByVal); 94 } 95 96 /// \brief Return true if this argument has the inalloca attribute on it in 97 /// its containing function. 98 bool Argument::hasInAllocaAttr() const { 99 if (!getType()->isPointerTy()) return false; 100 return getParent()->getAttributes(). 101 hasAttribute(getArgNo()+1, Attribute::InAlloca); 102 } 103 104 bool Argument::hasByValOrInAllocaAttr() const { 105 if (!getType()->isPointerTy()) return false; 106 AttributeSet Attrs = getParent()->getAttributes(); 107 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 108 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 109 } 110 111 unsigned Argument::getParamAlignment() const { 112 assert(getType()->isPointerTy() && "Only pointers have alignments"); 113 return getParent()->getParamAlignment(getArgNo()+1); 114 115 } 116 117 uint64_t Argument::getDereferenceableBytes() const { 118 assert(getType()->isPointerTy() && 119 "Only pointers have dereferenceable bytes"); 120 return getParent()->getDereferenceableBytes(getArgNo()+1); 121 } 122 123 uint64_t Argument::getDereferenceableOrNullBytes() const { 124 assert(getType()->isPointerTy() && 125 "Only pointers have dereferenceable bytes"); 126 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 127 } 128 129 /// hasNestAttr - Return true if this argument has the nest attribute on 130 /// it in its containing function. 131 bool Argument::hasNestAttr() const { 132 if (!getType()->isPointerTy()) return false; 133 return getParent()->getAttributes(). 134 hasAttribute(getArgNo()+1, Attribute::Nest); 135 } 136 137 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 138 /// it in its containing function. 139 bool Argument::hasNoAliasAttr() const { 140 if (!getType()->isPointerTy()) return false; 141 return getParent()->getAttributes(). 142 hasAttribute(getArgNo()+1, Attribute::NoAlias); 143 } 144 145 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 146 /// on it in its containing function. 147 bool Argument::hasNoCaptureAttr() const { 148 if (!getType()->isPointerTy()) return false; 149 return getParent()->getAttributes(). 150 hasAttribute(getArgNo()+1, Attribute::NoCapture); 151 } 152 153 /// hasSRetAttr - Return true if this argument has the sret attribute on 154 /// it in its containing function. 155 bool Argument::hasStructRetAttr() const { 156 if (!getType()->isPointerTy()) return false; 157 return getParent()->getAttributes(). 158 hasAttribute(getArgNo()+1, Attribute::StructRet); 159 } 160 161 /// hasReturnedAttr - Return true if this argument has the returned attribute on 162 /// it in its containing function. 163 bool Argument::hasReturnedAttr() const { 164 return getParent()->getAttributes(). 165 hasAttribute(getArgNo()+1, Attribute::Returned); 166 } 167 168 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 169 /// its containing function. 170 bool Argument::hasZExtAttr() const { 171 return getParent()->getAttributes(). 172 hasAttribute(getArgNo()+1, Attribute::ZExt); 173 } 174 175 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 176 /// containing function. 177 bool Argument::hasSExtAttr() const { 178 return getParent()->getAttributes(). 179 hasAttribute(getArgNo()+1, Attribute::SExt); 180 } 181 182 /// Return true if this argument has the readonly or readnone attribute on it 183 /// in its containing function. 184 bool Argument::onlyReadsMemory() const { 185 return getParent()->getAttributes(). 186 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 187 getParent()->getAttributes(). 188 hasAttribute(getArgNo()+1, Attribute::ReadNone); 189 } 190 191 /// addAttr - Add attributes to an argument. 192 void Argument::addAttr(AttributeSet AS) { 193 assert(AS.getNumSlots() <= 1 && 194 "Trying to add more than one attribute set to an argument!"); 195 AttrBuilder B(AS, AS.getSlotIndex(0)); 196 getParent()->addAttributes(getArgNo() + 1, 197 AttributeSet::get(Parent->getContext(), 198 getArgNo() + 1, B)); 199 } 200 201 /// removeAttr - Remove attributes from an argument. 202 void Argument::removeAttr(AttributeSet AS) { 203 assert(AS.getNumSlots() <= 1 && 204 "Trying to remove more than one attribute set from an argument!"); 205 AttrBuilder B(AS, AS.getSlotIndex(0)); 206 getParent()->removeAttributes(getArgNo() + 1, 207 AttributeSet::get(Parent->getContext(), 208 getArgNo() + 1, B)); 209 } 210 211 //===----------------------------------------------------------------------===// 212 // Helper Methods in Function 213 //===----------------------------------------------------------------------===// 214 215 bool Function::isMaterializable() const { 216 return getGlobalObjectSubClassData() & IsMaterializableBit; 217 } 218 219 void Function::setIsMaterializable(bool V) { 220 setGlobalObjectBit(IsMaterializableBit, V); 221 } 222 223 LLVMContext &Function::getContext() const { 224 return getType()->getContext(); 225 } 226 227 FunctionType *Function::getFunctionType() const { return Ty; } 228 229 bool Function::isVarArg() const { 230 return getFunctionType()->isVarArg(); 231 } 232 233 Type *Function::getReturnType() const { 234 return getFunctionType()->getReturnType(); 235 } 236 237 void Function::removeFromParent() { 238 getParent()->getFunctionList().remove(this); 239 } 240 241 void Function::eraseFromParent() { 242 getParent()->getFunctionList().erase(this); 243 } 244 245 //===----------------------------------------------------------------------===// 246 // Function Implementation 247 //===----------------------------------------------------------------------===// 248 249 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 250 Module *ParentModule) 251 : GlobalObject(PointerType::getUnqual(Ty), Value::FunctionVal, nullptr, 0, 252 Linkage, name), 253 Ty(Ty) { 254 assert(FunctionType::isValidReturnType(getReturnType()) && 255 "invalid return type"); 256 setGlobalObjectSubClassData(0); 257 SymTab = new ValueSymbolTable(); 258 259 // If the function has arguments, mark them as lazily built. 260 if (Ty->getNumParams()) 261 setValueSubclassData(1); // Set the "has lazy arguments" bit. 262 263 if (ParentModule) 264 ParentModule->getFunctionList().push_back(this); 265 266 // Ensure intrinsics have the right parameter attributes. 267 // Note, the IntID field will have been set in Value::setName if this function 268 // name is a valid intrinsic ID. 269 if (IntID) 270 setAttributes(Intrinsic::getAttributes(getContext(), IntID)); 271 } 272 273 Function::~Function() { 274 dropAllReferences(); // After this it is safe to delete instructions. 275 276 // Delete all of the method arguments and unlink from symbol table... 277 ArgumentList.clear(); 278 delete SymTab; 279 280 // Remove the function from the on-the-side GC table. 281 clearGC(); 282 } 283 284 void Function::BuildLazyArguments() const { 285 // Create the arguments vector, all arguments start out unnamed. 286 FunctionType *FT = getFunctionType(); 287 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 288 assert(!FT->getParamType(i)->isVoidTy() && 289 "Cannot have void typed arguments!"); 290 ArgumentList.push_back(new Argument(FT->getParamType(i))); 291 } 292 293 // Clear the lazy arguments bit. 294 unsigned SDC = getSubclassDataFromValue(); 295 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 296 } 297 298 size_t Function::arg_size() const { 299 return getFunctionType()->getNumParams(); 300 } 301 bool Function::arg_empty() const { 302 return getFunctionType()->getNumParams() == 0; 303 } 304 305 void Function::setParent(Module *parent) { 306 Parent = parent; 307 } 308 309 // dropAllReferences() - This function causes all the subinstructions to "let 310 // go" of all references that they are maintaining. This allows one to 311 // 'delete' a whole class at a time, even though there may be circular 312 // references... first all references are dropped, and all use counts go to 313 // zero. Then everything is deleted for real. Note that no operations are 314 // valid on an object that has "dropped all references", except operator 315 // delete. 316 // 317 void Function::dropAllReferences() { 318 setIsMaterializable(false); 319 320 for (iterator I = begin(), E = end(); I != E; ++I) 321 I->dropAllReferences(); 322 323 // Delete all basic blocks. They are now unused, except possibly by 324 // blockaddresses, but BasicBlock's destructor takes care of those. 325 while (!BasicBlocks.empty()) 326 BasicBlocks.begin()->eraseFromParent(); 327 328 // Prefix and prologue data are stored in a side table. 329 setPrefixData(nullptr); 330 setPrologueData(nullptr); 331 332 // Metadata is stored in a side-table. 333 clearMetadata(); 334 } 335 336 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 337 AttributeSet PAL = getAttributes(); 338 PAL = PAL.addAttribute(getContext(), i, attr); 339 setAttributes(PAL); 340 } 341 342 void Function::addAttributes(unsigned i, AttributeSet attrs) { 343 AttributeSet PAL = getAttributes(); 344 PAL = PAL.addAttributes(getContext(), i, attrs); 345 setAttributes(PAL); 346 } 347 348 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 349 AttributeSet PAL = getAttributes(); 350 PAL = PAL.removeAttributes(getContext(), i, attrs); 351 setAttributes(PAL); 352 } 353 354 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 355 AttributeSet PAL = getAttributes(); 356 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 357 setAttributes(PAL); 358 } 359 360 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 361 AttributeSet PAL = getAttributes(); 362 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 363 setAttributes(PAL); 364 } 365 366 // Maintain the GC name for each function in an on-the-side table. This saves 367 // allocating an additional word in Function for programs which do not use GC 368 // (i.e., most programs) at the cost of increased overhead for clients which do 369 // use GC. 370 static DenseMap<const Function*,PooledStringPtr> *GCNames; 371 static StringPool *GCNamePool; 372 static ManagedStatic<sys::SmartRWMutex<true> > GCLock; 373 374 bool Function::hasGC() const { 375 sys::SmartScopedReader<true> Reader(*GCLock); 376 return GCNames && GCNames->count(this); 377 } 378 379 const char *Function::getGC() const { 380 assert(hasGC() && "Function has no collector"); 381 sys::SmartScopedReader<true> Reader(*GCLock); 382 return *(*GCNames)[this]; 383 } 384 385 void Function::setGC(const char *Str) { 386 sys::SmartScopedWriter<true> Writer(*GCLock); 387 if (!GCNamePool) 388 GCNamePool = new StringPool(); 389 if (!GCNames) 390 GCNames = new DenseMap<const Function*,PooledStringPtr>(); 391 (*GCNames)[this] = GCNamePool->intern(Str); 392 } 393 394 void Function::clearGC() { 395 sys::SmartScopedWriter<true> Writer(*GCLock); 396 if (GCNames) { 397 GCNames->erase(this); 398 if (GCNames->empty()) { 399 delete GCNames; 400 GCNames = nullptr; 401 if (GCNamePool->empty()) { 402 delete GCNamePool; 403 GCNamePool = nullptr; 404 } 405 } 406 } 407 } 408 409 /// copyAttributesFrom - copy all additional attributes (those not needed to 410 /// create a Function) from the Function Src to this one. 411 void Function::copyAttributesFrom(const GlobalValue *Src) { 412 assert(isa<Function>(Src) && "Expected a Function!"); 413 GlobalObject::copyAttributesFrom(Src); 414 const Function *SrcF = cast<Function>(Src); 415 setCallingConv(SrcF->getCallingConv()); 416 setAttributes(SrcF->getAttributes()); 417 if (SrcF->hasGC()) 418 setGC(SrcF->getGC()); 419 else 420 clearGC(); 421 if (SrcF->hasPrefixData()) 422 setPrefixData(SrcF->getPrefixData()); 423 else 424 setPrefixData(nullptr); 425 if (SrcF->hasPrologueData()) 426 setPrologueData(SrcF->getPrologueData()); 427 else 428 setPrologueData(nullptr); 429 } 430 431 /// \brief This does the actual lookup of an intrinsic ID which 432 /// matches the given function name. 433 static Intrinsic::ID lookupIntrinsicID(const ValueName *ValName) { 434 unsigned Len = ValName->getKeyLength(); 435 const char *Name = ValName->getKeyData(); 436 437 #define GET_FUNCTION_RECOGNIZER 438 #include "llvm/IR/Intrinsics.gen" 439 #undef GET_FUNCTION_RECOGNIZER 440 441 return Intrinsic::not_intrinsic; 442 } 443 444 void Function::recalculateIntrinsicID() { 445 const ValueName *ValName = this->getValueName(); 446 if (!ValName || !isIntrinsic()) { 447 IntID = Intrinsic::not_intrinsic; 448 return; 449 } 450 IntID = lookupIntrinsicID(ValName); 451 } 452 453 /// Returns a stable mangling for the type specified for use in the name 454 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 455 /// of named types is simply their name. Manglings for unnamed types consist 456 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 457 /// combined with the mangling of their component types. A vararg function 458 /// type will have a suffix of 'vararg'. Since function types can contain 459 /// other function types, we close a function type mangling with suffix 'f' 460 /// which can't be confused with it's prefix. This ensures we don't have 461 /// collisions between two unrelated function types. Otherwise, you might 462 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 463 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 464 /// cases) fall back to the MVT codepath, where they could be mangled to 465 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 466 /// everything. 467 static std::string getMangledTypeStr(Type* Ty) { 468 std::string Result; 469 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 470 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 471 getMangledTypeStr(PTyp->getElementType()); 472 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 473 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 474 getMangledTypeStr(ATyp->getElementType()); 475 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 476 assert(!STyp->isLiteral() && "TODO: implement literal types"); 477 Result += STyp->getName(); 478 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 479 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 480 for (size_t i = 0; i < FT->getNumParams(); i++) 481 Result += getMangledTypeStr(FT->getParamType(i)); 482 if (FT->isVarArg()) 483 Result += "vararg"; 484 // Ensure nested function types are distinguishable. 485 Result += "f"; 486 } else if (Ty) 487 Result += EVT::getEVT(Ty).getEVTString(); 488 return Result; 489 } 490 491 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 492 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 493 static const char * const Table[] = { 494 "not_intrinsic", 495 #define GET_INTRINSIC_NAME_TABLE 496 #include "llvm/IR/Intrinsics.gen" 497 #undef GET_INTRINSIC_NAME_TABLE 498 }; 499 if (Tys.empty()) 500 return Table[id]; 501 std::string Result(Table[id]); 502 for (unsigned i = 0; i < Tys.size(); ++i) { 503 Result += "." + getMangledTypeStr(Tys[i]); 504 } 505 return Result; 506 } 507 508 509 /// IIT_Info - These are enumerators that describe the entries returned by the 510 /// getIntrinsicInfoTableEntries function. 511 /// 512 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 513 enum IIT_Info { 514 // Common values should be encoded with 0-15. 515 IIT_Done = 0, 516 IIT_I1 = 1, 517 IIT_I8 = 2, 518 IIT_I16 = 3, 519 IIT_I32 = 4, 520 IIT_I64 = 5, 521 IIT_F16 = 6, 522 IIT_F32 = 7, 523 IIT_F64 = 8, 524 IIT_V2 = 9, 525 IIT_V4 = 10, 526 IIT_V8 = 11, 527 IIT_V16 = 12, 528 IIT_V32 = 13, 529 IIT_PTR = 14, 530 IIT_ARG = 15, 531 532 // Values from 16+ are only encodable with the inefficient encoding. 533 IIT_V64 = 16, 534 IIT_MMX = 17, 535 IIT_METADATA = 18, 536 IIT_EMPTYSTRUCT = 19, 537 IIT_STRUCT2 = 20, 538 IIT_STRUCT3 = 21, 539 IIT_STRUCT4 = 22, 540 IIT_STRUCT5 = 23, 541 IIT_EXTEND_ARG = 24, 542 IIT_TRUNC_ARG = 25, 543 IIT_ANYPTR = 26, 544 IIT_V1 = 27, 545 IIT_VARARG = 28, 546 IIT_HALF_VEC_ARG = 29, 547 IIT_SAME_VEC_WIDTH_ARG = 30, 548 IIT_PTR_TO_ARG = 31, 549 IIT_VEC_OF_PTRS_TO_ELT = 32, 550 IIT_I128 = 33 551 }; 552 553 554 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 555 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 556 IIT_Info Info = IIT_Info(Infos[NextElt++]); 557 unsigned StructElts = 2; 558 using namespace Intrinsic; 559 560 switch (Info) { 561 case IIT_Done: 562 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 563 return; 564 case IIT_VARARG: 565 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 566 return; 567 case IIT_MMX: 568 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 569 return; 570 case IIT_METADATA: 571 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 572 return; 573 case IIT_F16: 574 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 575 return; 576 case IIT_F32: 577 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 578 return; 579 case IIT_F64: 580 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 581 return; 582 case IIT_I1: 583 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 584 return; 585 case IIT_I8: 586 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 587 return; 588 case IIT_I16: 589 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 590 return; 591 case IIT_I32: 592 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 593 return; 594 case IIT_I64: 595 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 596 return; 597 case IIT_I128: 598 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128)); 599 return; 600 case IIT_V1: 601 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 602 DecodeIITType(NextElt, Infos, OutputTable); 603 return; 604 case IIT_V2: 605 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 606 DecodeIITType(NextElt, Infos, OutputTable); 607 return; 608 case IIT_V4: 609 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 610 DecodeIITType(NextElt, Infos, OutputTable); 611 return; 612 case IIT_V8: 613 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 614 DecodeIITType(NextElt, Infos, OutputTable); 615 return; 616 case IIT_V16: 617 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 618 DecodeIITType(NextElt, Infos, OutputTable); 619 return; 620 case IIT_V32: 621 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 622 DecodeIITType(NextElt, Infos, OutputTable); 623 return; 624 case IIT_V64: 625 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 626 DecodeIITType(NextElt, Infos, OutputTable); 627 return; 628 case IIT_PTR: 629 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 630 DecodeIITType(NextElt, Infos, OutputTable); 631 return; 632 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 633 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 634 Infos[NextElt++])); 635 DecodeIITType(NextElt, Infos, OutputTable); 636 return; 637 } 638 case IIT_ARG: { 639 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 640 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 641 return; 642 } 643 case IIT_EXTEND_ARG: { 644 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 645 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 646 ArgInfo)); 647 return; 648 } 649 case IIT_TRUNC_ARG: { 650 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 651 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 652 ArgInfo)); 653 return; 654 } 655 case IIT_HALF_VEC_ARG: { 656 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 657 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 658 ArgInfo)); 659 return; 660 } 661 case IIT_SAME_VEC_WIDTH_ARG: { 662 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 663 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 664 ArgInfo)); 665 return; 666 } 667 case IIT_PTR_TO_ARG: { 668 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 669 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 670 ArgInfo)); 671 return; 672 } 673 case IIT_VEC_OF_PTRS_TO_ELT: { 674 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 675 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 676 ArgInfo)); 677 return; 678 } 679 case IIT_EMPTYSTRUCT: 680 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 681 return; 682 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 683 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 684 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 685 case IIT_STRUCT2: { 686 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 687 688 for (unsigned i = 0; i != StructElts; ++i) 689 DecodeIITType(NextElt, Infos, OutputTable); 690 return; 691 } 692 } 693 llvm_unreachable("unhandled"); 694 } 695 696 697 #define GET_INTRINSIC_GENERATOR_GLOBAL 698 #include "llvm/IR/Intrinsics.gen" 699 #undef GET_INTRINSIC_GENERATOR_GLOBAL 700 701 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 702 SmallVectorImpl<IITDescriptor> &T){ 703 // Check to see if the intrinsic's type was expressible by the table. 704 unsigned TableVal = IIT_Table[id-1]; 705 706 // Decode the TableVal into an array of IITValues. 707 SmallVector<unsigned char, 8> IITValues; 708 ArrayRef<unsigned char> IITEntries; 709 unsigned NextElt = 0; 710 if ((TableVal >> 31) != 0) { 711 // This is an offset into the IIT_LongEncodingTable. 712 IITEntries = IIT_LongEncodingTable; 713 714 // Strip sentinel bit. 715 NextElt = (TableVal << 1) >> 1; 716 } else { 717 // Decode the TableVal into an array of IITValues. If the entry was encoded 718 // into a single word in the table itself, decode it now. 719 do { 720 IITValues.push_back(TableVal & 0xF); 721 TableVal >>= 4; 722 } while (TableVal); 723 724 IITEntries = IITValues; 725 NextElt = 0; 726 } 727 728 // Okay, decode the table into the output vector of IITDescriptors. 729 DecodeIITType(NextElt, IITEntries, T); 730 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 731 DecodeIITType(NextElt, IITEntries, T); 732 } 733 734 735 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 736 ArrayRef<Type*> Tys, LLVMContext &Context) { 737 using namespace Intrinsic; 738 IITDescriptor D = Infos.front(); 739 Infos = Infos.slice(1); 740 741 switch (D.Kind) { 742 case IITDescriptor::Void: return Type::getVoidTy(Context); 743 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 744 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 745 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 746 case IITDescriptor::Half: return Type::getHalfTy(Context); 747 case IITDescriptor::Float: return Type::getFloatTy(Context); 748 case IITDescriptor::Double: return Type::getDoubleTy(Context); 749 750 case IITDescriptor::Integer: 751 return IntegerType::get(Context, D.Integer_Width); 752 case IITDescriptor::Vector: 753 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 754 case IITDescriptor::Pointer: 755 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 756 D.Pointer_AddressSpace); 757 case IITDescriptor::Struct: { 758 Type *Elts[5]; 759 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 760 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 761 Elts[i] = DecodeFixedType(Infos, Tys, Context); 762 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 763 } 764 765 case IITDescriptor::Argument: 766 return Tys[D.getArgumentNumber()]; 767 case IITDescriptor::ExtendArgument: { 768 Type *Ty = Tys[D.getArgumentNumber()]; 769 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 770 return VectorType::getExtendedElementVectorType(VTy); 771 772 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 773 } 774 case IITDescriptor::TruncArgument: { 775 Type *Ty = Tys[D.getArgumentNumber()]; 776 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 777 return VectorType::getTruncatedElementVectorType(VTy); 778 779 IntegerType *ITy = cast<IntegerType>(Ty); 780 assert(ITy->getBitWidth() % 2 == 0); 781 return IntegerType::get(Context, ITy->getBitWidth() / 2); 782 } 783 case IITDescriptor::HalfVecArgument: 784 return VectorType::getHalfElementsVectorType(cast<VectorType>( 785 Tys[D.getArgumentNumber()])); 786 case IITDescriptor::SameVecWidthArgument: { 787 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 788 Type *Ty = Tys[D.getArgumentNumber()]; 789 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 790 return VectorType::get(EltTy, VTy->getNumElements()); 791 } 792 llvm_unreachable("unhandled"); 793 } 794 case IITDescriptor::PtrToArgument: { 795 Type *Ty = Tys[D.getArgumentNumber()]; 796 return PointerType::getUnqual(Ty); 797 } 798 case IITDescriptor::VecOfPtrsToElt: { 799 Type *Ty = Tys[D.getArgumentNumber()]; 800 VectorType *VTy = dyn_cast<VectorType>(Ty); 801 if (!VTy) 802 llvm_unreachable("Expected an argument of Vector Type"); 803 Type *EltTy = VTy->getVectorElementType(); 804 return VectorType::get(PointerType::getUnqual(EltTy), 805 VTy->getNumElements()); 806 } 807 } 808 llvm_unreachable("unhandled"); 809 } 810 811 812 813 FunctionType *Intrinsic::getType(LLVMContext &Context, 814 ID id, ArrayRef<Type*> Tys) { 815 SmallVector<IITDescriptor, 8> Table; 816 getIntrinsicInfoTableEntries(id, Table); 817 818 ArrayRef<IITDescriptor> TableRef = Table; 819 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 820 821 SmallVector<Type*, 8> ArgTys; 822 while (!TableRef.empty()) 823 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 824 825 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 826 // If we see void type as the type of the last argument, it is vararg intrinsic 827 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 828 ArgTys.pop_back(); 829 return FunctionType::get(ResultTy, ArgTys, true); 830 } 831 return FunctionType::get(ResultTy, ArgTys, false); 832 } 833 834 bool Intrinsic::isOverloaded(ID id) { 835 #define GET_INTRINSIC_OVERLOAD_TABLE 836 #include "llvm/IR/Intrinsics.gen" 837 #undef GET_INTRINSIC_OVERLOAD_TABLE 838 } 839 840 /// This defines the "Intrinsic::getAttributes(ID id)" method. 841 #define GET_INTRINSIC_ATTRIBUTES 842 #include "llvm/IR/Intrinsics.gen" 843 #undef GET_INTRINSIC_ATTRIBUTES 844 845 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 846 // There can never be multiple globals with the same name of different types, 847 // because intrinsics must be a specific type. 848 return 849 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 850 getType(M->getContext(), id, Tys))); 851 } 852 853 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 854 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 855 #include "llvm/IR/Intrinsics.gen" 856 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 857 858 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 859 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 860 #include "llvm/IR/Intrinsics.gen" 861 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 862 863 /// hasAddressTaken - returns true if there are any uses of this function 864 /// other than direct calls or invokes to it. 865 bool Function::hasAddressTaken(const User* *PutOffender) const { 866 for (const Use &U : uses()) { 867 const User *FU = U.getUser(); 868 if (isa<BlockAddress>(FU)) 869 continue; 870 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) 871 return PutOffender ? (*PutOffender = FU, true) : true; 872 ImmutableCallSite CS(cast<Instruction>(FU)); 873 if (!CS.isCallee(&U)) 874 return PutOffender ? (*PutOffender = FU, true) : true; 875 } 876 return false; 877 } 878 879 bool Function::isDefTriviallyDead() const { 880 // Check the linkage 881 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 882 !hasAvailableExternallyLinkage()) 883 return false; 884 885 // Check if the function is used by anything other than a blockaddress. 886 for (const User *U : users()) 887 if (!isa<BlockAddress>(U)) 888 return false; 889 890 return true; 891 } 892 893 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 894 /// setjmp or other function that gcc recognizes as "returning twice". 895 bool Function::callsFunctionThatReturnsTwice() const { 896 for (const_inst_iterator 897 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 898 ImmutableCallSite CS(&*I); 899 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 900 return true; 901 } 902 903 return false; 904 } 905 906 Constant *Function::getPrefixData() const { 907 assert(hasPrefixData()); 908 const LLVMContextImpl::PrefixDataMapTy &PDMap = 909 getContext().pImpl->PrefixDataMap; 910 assert(PDMap.find(this) != PDMap.end()); 911 return cast<Constant>(PDMap.find(this)->second->getReturnValue()); 912 } 913 914 void Function::setPrefixData(Constant *PrefixData) { 915 if (!PrefixData && !hasPrefixData()) 916 return; 917 918 unsigned SCData = getSubclassDataFromValue(); 919 LLVMContextImpl::PrefixDataMapTy &PDMap = getContext().pImpl->PrefixDataMap; 920 ReturnInst *&PDHolder = PDMap[this]; 921 if (PrefixData) { 922 if (PDHolder) 923 PDHolder->setOperand(0, PrefixData); 924 else 925 PDHolder = ReturnInst::Create(getContext(), PrefixData); 926 SCData |= (1<<1); 927 } else { 928 delete PDHolder; 929 PDMap.erase(this); 930 SCData &= ~(1<<1); 931 } 932 setValueSubclassData(SCData); 933 } 934 935 Constant *Function::getPrologueData() const { 936 assert(hasPrologueData()); 937 const LLVMContextImpl::PrologueDataMapTy &SOMap = 938 getContext().pImpl->PrologueDataMap; 939 assert(SOMap.find(this) != SOMap.end()); 940 return cast<Constant>(SOMap.find(this)->second->getReturnValue()); 941 } 942 943 void Function::setPrologueData(Constant *PrologueData) { 944 if (!PrologueData && !hasPrologueData()) 945 return; 946 947 unsigned PDData = getSubclassDataFromValue(); 948 LLVMContextImpl::PrologueDataMapTy &PDMap = getContext().pImpl->PrologueDataMap; 949 ReturnInst *&PDHolder = PDMap[this]; 950 if (PrologueData) { 951 if (PDHolder) 952 PDHolder->setOperand(0, PrologueData); 953 else 954 PDHolder = ReturnInst::Create(getContext(), PrologueData); 955 PDData |= (1<<2); 956 } else { 957 delete PDHolder; 958 PDMap.erase(this); 959 PDData &= ~(1<<2); 960 } 961 setValueSubclassData(PDData); 962 } 963 964 void Function::setEntryCount(uint64_t Count) { 965 MDBuilder MDB(getContext()); 966 setMetadata(LLVMContext::MD_prof, MDB.createFunctionEntryCount(Count)); 967 } 968 969 Optional<uint64_t> Function::getEntryCount() const { 970 MDNode *MD = getMetadata(LLVMContext::MD_prof); 971 if (MD && MD->getOperand(0)) 972 if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) 973 if (MDS->getString().equals("function_entry_count")) { 974 ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1)); 975 return CI->getValue().getZExtValue(); 976 } 977 return None; 978 } 979