xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 0f45c16f2caa7c035e5c3edd40af9e0d51ad6ba7)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <string>
72 
73 using namespace llvm;
74 using ProfileCount = Function::ProfileCount;
75 
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits<BasicBlock>;
79 
80 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
81     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
82     cl::desc("Maximum size for the name of non-global values."));
83 
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
87 
88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
89     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
90   setName(Name);
91 }
92 
93 void Argument::setParent(Function *parent) {
94   Parent = parent;
95 }
96 
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
98   if (!getType()->isPointerTy()) return false;
99   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
100       (AllowUndefOrPoison ||
101        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
102     return true;
103   else if (getDereferenceableBytes() > 0 &&
104            !NullPointerIsDefined(getParent(),
105                                  getType()->getPointerAddressSpace()))
106     return true;
107   return false;
108 }
109 
110 bool Argument::hasByValAttr() const {
111   if (!getType()->isPointerTy()) return false;
112   return hasAttribute(Attribute::ByVal);
113 }
114 
115 bool Argument::hasByRefAttr() const {
116   if (!getType()->isPointerTy())
117     return false;
118   return hasAttribute(Attribute::ByRef);
119 }
120 
121 bool Argument::hasSwiftSelfAttr() const {
122   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
123 }
124 
125 bool Argument::hasSwiftErrorAttr() const {
126   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
127 }
128 
129 bool Argument::hasInAllocaAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::InAlloca);
132 }
133 
134 bool Argument::hasPreallocatedAttr() const {
135   if (!getType()->isPointerTy())
136     return false;
137   return hasAttribute(Attribute::Preallocated);
138 }
139 
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
146 }
147 
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149   if (!getType()->isPointerTy())
150     return false;
151   AttributeList Attrs = getParent()->getAttributes();
152   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
156          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
157 }
158 
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
160 /// parameter type.
161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
162   // FIXME: All the type carrying attributes are mutually exclusive, so there
163   // should be a single query to get the stored type that handles any of them.
164   if (Type *ByValTy = ParamAttrs.getByValType())
165     return ByValTy;
166   if (Type *ByRefTy = ParamAttrs.getByRefType())
167     return ByRefTy;
168   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
169     return PreAllocTy;
170   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
171     return InAllocaTy;
172   if (Type *SRetTy = ParamAttrs.getStructRetType())
173     return SRetTy;
174 
175   return nullptr;
176 }
177 
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttrs(getArgNo());
181   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
182     return DL.getTypeAllocSize(MemTy);
183   return 0;
184 }
185 
186 Type *Argument::getPointeeInMemoryValueType() const {
187   AttributeSet ParamAttrs =
188       getParent()->getAttributes().getParamAttrs(getArgNo());
189   return getMemoryParamAllocType(ParamAttrs, getType());
190 }
191 
192 unsigned Argument::getParamAlignment() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlignment(getArgNo());
195 }
196 
197 MaybeAlign Argument::getParamAlign() const {
198   assert(getType()->isPointerTy() && "Only pointers have alignments");
199   return getParent()->getParamAlign(getArgNo());
200 }
201 
202 MaybeAlign Argument::getParamStackAlign() const {
203   return getParent()->getParamStackAlign(getArgNo());
204 }
205 
206 Type *Argument::getParamByValType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByValType(getArgNo());
209 }
210 
211 Type *Argument::getParamStructRetType() const {
212   assert(getType()->isPointerTy() && "Only pointers have sret types");
213   return getParent()->getParamStructRetType(getArgNo());
214 }
215 
216 Type *Argument::getParamByRefType() const {
217   assert(getType()->isPointerTy() && "Only pointers have byref types");
218   return getParent()->getParamByRefType(getArgNo());
219 }
220 
221 Type *Argument::getParamInAllocaType() const {
222   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
223   return getParent()->getParamInAllocaType(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableBytes(getArgNo());
230 }
231 
232 uint64_t Argument::getDereferenceableOrNullBytes() const {
233   assert(getType()->isPointerTy() &&
234          "Only pointers have dereferenceable bytes");
235   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
236 }
237 
238 bool Argument::hasNestAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::Nest);
241 }
242 
243 bool Argument::hasNoAliasAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoAlias);
246 }
247 
248 bool Argument::hasNoCaptureAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::NoCapture);
251 }
252 
253 bool Argument::hasNoFreeAttr() const {
254   if (!getType()->isPointerTy()) return false;
255   return hasAttribute(Attribute::NoFree);
256 }
257 
258 bool Argument::hasStructRetAttr() const {
259   if (!getType()->isPointerTy()) return false;
260   return hasAttribute(Attribute::StructRet);
261 }
262 
263 bool Argument::hasInRegAttr() const {
264   return hasAttribute(Attribute::InReg);
265 }
266 
267 bool Argument::hasReturnedAttr() const {
268   return hasAttribute(Attribute::Returned);
269 }
270 
271 bool Argument::hasZExtAttr() const {
272   return hasAttribute(Attribute::ZExt);
273 }
274 
275 bool Argument::hasSExtAttr() const {
276   return hasAttribute(Attribute::SExt);
277 }
278 
279 bool Argument::onlyReadsMemory() const {
280   AttributeList Attrs = getParent()->getAttributes();
281   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
282          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
283 }
284 
285 void Argument::addAttrs(AttrBuilder &B) {
286   AttributeList AL = getParent()->getAttributes();
287   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
288   getParent()->setAttributes(AL);
289 }
290 
291 void Argument::addAttr(Attribute::AttrKind Kind) {
292   getParent()->addParamAttr(getArgNo(), Kind);
293 }
294 
295 void Argument::addAttr(Attribute Attr) {
296   getParent()->addParamAttr(getArgNo(), Attr);
297 }
298 
299 void Argument::removeAttr(Attribute::AttrKind Kind) {
300   getParent()->removeParamAttr(getArgNo(), Kind);
301 }
302 
303 void Argument::removeAttrs(const AttrBuilder &B) {
304   AttributeList AL = getParent()->getAttributes();
305   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B);
306   getParent()->setAttributes(AL);
307 }
308 
309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
310   return getParent()->hasParamAttribute(getArgNo(), Kind);
311 }
312 
313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
314   return getParent()->getParamAttribute(getArgNo(), Kind);
315 }
316 
317 //===----------------------------------------------------------------------===//
318 // Helper Methods in Function
319 //===----------------------------------------------------------------------===//
320 
321 LLVMContext &Function::getContext() const {
322   return getType()->getContext();
323 }
324 
325 unsigned Function::getInstructionCount() const {
326   unsigned NumInstrs = 0;
327   for (const BasicBlock &BB : BasicBlocks)
328     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
329                                BB.instructionsWithoutDebug().end());
330   return NumInstrs;
331 }
332 
333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
334                            const Twine &N, Module &M) {
335   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
336 }
337 
338 Function *Function::createWithDefaultAttr(FunctionType *Ty,
339                                           LinkageTypes Linkage,
340                                           unsigned AddrSpace, const Twine &N,
341                                           Module *M) {
342   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
343   AttrBuilder B;
344   if (M->getUwtable())
345     B.addAttribute(Attribute::UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   F->addFnAttrs(B);
358   return F;
359 }
360 
361 void Function::removeFromParent() {
362   getParent()->getFunctionList().remove(getIterator());
363 }
364 
365 void Function::eraseFromParent() {
366   getParent()->getFunctionList().erase(getIterator());
367 }
368 
369 //===----------------------------------------------------------------------===//
370 // Function Implementation
371 //===----------------------------------------------------------------------===//
372 
373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
374   // If AS == -1 and we are passed a valid module pointer we place the function
375   // in the program address space. Otherwise we default to AS0.
376   if (AddrSpace == static_cast<unsigned>(-1))
377     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
378   return AddrSpace;
379 }
380 
381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
382                    const Twine &name, Module *ParentModule)
383     : GlobalObject(Ty, Value::FunctionVal,
384                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
385                    computeAddrSpace(AddrSpace, ParentModule)),
386       NumArgs(Ty->getNumParams()) {
387   assert(FunctionType::isValidReturnType(getReturnType()) &&
388          "invalid return type");
389   setGlobalObjectSubClassData(0);
390 
391   // We only need a symbol table for a function if the context keeps value names
392   if (!getContext().shouldDiscardValueNames())
393     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
394 
395   // If the function has arguments, mark them as lazily built.
396   if (Ty->getNumParams())
397     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
398 
399   if (ParentModule)
400     ParentModule->getFunctionList().push_back(this);
401 
402   HasLLVMReservedName = getName().startswith("llvm.");
403   // Ensure intrinsics have the right parameter attributes.
404   // Note, the IntID field will have been set in Value::setName if this function
405   // name is a valid intrinsic ID.
406   if (IntID)
407     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
408 }
409 
410 Function::~Function() {
411   dropAllReferences();    // After this it is safe to delete instructions.
412 
413   // Delete all of the method arguments and unlink from symbol table...
414   if (Arguments)
415     clearArguments();
416 
417   // Remove the function from the on-the-side GC table.
418   clearGC();
419 }
420 
421 void Function::BuildLazyArguments() const {
422   // Create the arguments vector, all arguments start out unnamed.
423   auto *FT = getFunctionType();
424   if (NumArgs > 0) {
425     Arguments = std::allocator<Argument>().allocate(NumArgs);
426     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
427       Type *ArgTy = FT->getParamType(i);
428       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
429       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
430     }
431   }
432 
433   // Clear the lazy arguments bit.
434   unsigned SDC = getSubclassDataFromValue();
435   SDC &= ~(1 << 0);
436   const_cast<Function*>(this)->setValueSubclassData(SDC);
437   assert(!hasLazyArguments());
438 }
439 
440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
441   return MutableArrayRef<Argument>(Args, Count);
442 }
443 
444 bool Function::isConstrainedFPIntrinsic() const {
445   switch (getIntrinsicID()) {
446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
447   case Intrinsic::INTRINSIC:
448 #include "llvm/IR/ConstrainedOps.def"
449     return true;
450 #undef INSTRUCTION
451   default:
452     return false;
453   }
454 }
455 
456 void Function::clearArguments() {
457   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
458     A.setName("");
459     A.~Argument();
460   }
461   std::allocator<Argument>().deallocate(Arguments, NumArgs);
462   Arguments = nullptr;
463 }
464 
465 void Function::stealArgumentListFrom(Function &Src) {
466   assert(isDeclaration() && "Expected no references to current arguments");
467 
468   // Drop the current arguments, if any, and set the lazy argument bit.
469   if (!hasLazyArguments()) {
470     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
471                         [](const Argument &A) { return A.use_empty(); }) &&
472            "Expected arguments to be unused in declaration");
473     clearArguments();
474     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
475   }
476 
477   // Nothing to steal if Src has lazy arguments.
478   if (Src.hasLazyArguments())
479     return;
480 
481   // Steal arguments from Src, and fix the lazy argument bits.
482   assert(arg_size() == Src.arg_size());
483   Arguments = Src.Arguments;
484   Src.Arguments = nullptr;
485   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
486     // FIXME: This does the work of transferNodesFromList inefficiently.
487     SmallString<128> Name;
488     if (A.hasName())
489       Name = A.getName();
490     if (!Name.empty())
491       A.setName("");
492     A.setParent(this);
493     if (!Name.empty())
494       A.setName(Name);
495   }
496 
497   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
498   assert(!hasLazyArguments());
499   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
500 }
501 
502 // dropAllReferences() - This function causes all the subinstructions to "let
503 // go" of all references that they are maintaining.  This allows one to
504 // 'delete' a whole class at a time, even though there may be circular
505 // references... first all references are dropped, and all use counts go to
506 // zero.  Then everything is deleted for real.  Note that no operations are
507 // valid on an object that has "dropped all references", except operator
508 // delete.
509 //
510 void Function::dropAllReferences() {
511   setIsMaterializable(false);
512 
513   for (BasicBlock &BB : *this)
514     BB.dropAllReferences();
515 
516   // Delete all basic blocks. They are now unused, except possibly by
517   // blockaddresses, but BasicBlock's destructor takes care of those.
518   while (!BasicBlocks.empty())
519     BasicBlocks.begin()->eraseFromParent();
520 
521   // Drop uses of any optional data (real or placeholder).
522   if (getNumOperands()) {
523     User::dropAllReferences();
524     setNumHungOffUseOperands(0);
525     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
526   }
527 
528   // Metadata is stored in a side-table.
529   clearMetadata();
530 }
531 
532 void Function::addAttribute(unsigned i, Attribute Attr) {
533   AttributeSets = AttributeSets.addAttribute(getContext(), i, Attr);
534 }
535 
536 void Function::addFnAttr(Attribute::AttrKind Kind) {
537   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind);
538 }
539 
540 void Function::addFnAttr(StringRef Kind, StringRef Val) {
541   AttributeSets = AttributeSets.addFnAttribute(getContext(), Kind, Val);
542 }
543 
544 void Function::addFnAttr(Attribute Attr) {
545   AttributeSets = AttributeSets.addFnAttribute(getContext(), Attr);
546 }
547 
548 void Function::addFnAttrs(const AttrBuilder &Attrs) {
549   AttributeSets = AttributeSets.addFnAttributes(getContext(), Attrs);
550 }
551 
552 void Function::addRetAttr(Attribute::AttrKind Kind) {
553   AttributeSets = AttributeSets.addRetAttribute(getContext(), Kind);
554 }
555 
556 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
557   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Kind);
558 }
559 
560 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
561   AttributeSets = AttributeSets.addParamAttribute(getContext(), ArgNo, Attr);
562 }
563 
564 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
565   AttributeSets = AttributeSets.addParamAttributes(getContext(), ArgNo, Attrs);
566 }
567 
568 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
569   AttributeSets = AttributeSets.removeAttribute(getContext(), i, Kind);
570 }
571 
572 void Function::removeAttribute(unsigned i, StringRef Kind) {
573   AttributeSets = AttributeSets.removeAttribute(getContext(), i, Kind);
574 }
575 
576 void Function::removeFnAttr(Attribute::AttrKind Kind) {
577   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
578 }
579 
580 void Function::removeFnAttr(StringRef Kind) {
581   AttributeSets = AttributeSets.removeFnAttribute(getContext(), Kind);
582 }
583 
584 void Function::removeFnAttrs(const AttrBuilder &Attrs) {
585   AttributeSets = AttributeSets.removeFnAttributes(getContext(), Attrs);
586 }
587 
588 void Function::removeRetAttr(Attribute::AttrKind Kind) {
589   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
590 }
591 
592 void Function::removeRetAttr(StringRef Kind) {
593   AttributeSets = AttributeSets.removeRetAttribute(getContext(), Kind);
594 }
595 
596 void Function::removeRetAttrs(const AttrBuilder &Attrs) {
597   AttributeSets = AttributeSets.removeRetAttributes(getContext(), Attrs);
598 }
599 
600 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
601   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
602 }
603 
604 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
605   AttributeSets = AttributeSets.removeParamAttribute(getContext(), ArgNo, Kind);
606 }
607 
608 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
609   AttributeSets =
610       AttributeSets.removeParamAttributes(getContext(), ArgNo, Attrs);
611 }
612 
613 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
614   AttributeSets =
615       AttributeSets.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
616 }
617 
618 bool Function::hasFnAttribute(Attribute::AttrKind Kind) const {
619   return AttributeSets.hasFnAttr(Kind);
620 }
621 
622 bool Function::hasFnAttribute(StringRef Kind) const {
623   return AttributeSets.hasFnAttr(Kind);
624 }
625 
626 bool Function::hasRetAttribute(Attribute::AttrKind Kind) const {
627   return AttributeSets.hasRetAttr(Kind);
628 }
629 
630 bool Function::hasParamAttribute(unsigned ArgNo,
631                                  Attribute::AttrKind Kind) const {
632   return AttributeSets.hasParamAttr(ArgNo, Kind);
633 }
634 
635 Attribute Function::getAttribute(unsigned i, Attribute::AttrKind Kind) const {
636   return AttributeSets.getAttribute(i, Kind);
637 }
638 
639 Attribute Function::getAttribute(unsigned i, StringRef Kind) const {
640   return AttributeSets.getAttribute(i, Kind);
641 }
642 
643 Attribute Function::getFnAttribute(Attribute::AttrKind Kind) const {
644   return AttributeSets.getFnAttr(Kind);
645 }
646 
647 Attribute Function::getFnAttribute(StringRef Kind) const {
648   return AttributeSets.getFnAttr(Kind);
649 }
650 
651 /// gets the specified attribute from the list of attributes.
652 Attribute Function::getParamAttribute(unsigned ArgNo,
653                                       Attribute::AttrKind Kind) const {
654   return AttributeSets.getParamAttr(ArgNo, Kind);
655 }
656 
657 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
658                                                  uint64_t Bytes) {
659   AttributeSets = AttributeSets.addDereferenceableOrNullParamAttr(getContext(),
660                                                                   ArgNo, Bytes);
661 }
662 
663 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
664   if (&FPType == &APFloat::IEEEsingle()) {
665     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
666     StringRef Val = Attr.getValueAsString();
667     if (!Val.empty())
668       return parseDenormalFPAttribute(Val);
669 
670     // If the f32 variant of the attribute isn't specified, try to use the
671     // generic one.
672   }
673 
674   Attribute Attr = getFnAttribute("denormal-fp-math");
675   return parseDenormalFPAttribute(Attr.getValueAsString());
676 }
677 
678 const std::string &Function::getGC() const {
679   assert(hasGC() && "Function has no collector");
680   return getContext().getGC(*this);
681 }
682 
683 void Function::setGC(std::string Str) {
684   setValueSubclassDataBit(14, !Str.empty());
685   getContext().setGC(*this, std::move(Str));
686 }
687 
688 void Function::clearGC() {
689   if (!hasGC())
690     return;
691   getContext().deleteGC(*this);
692   setValueSubclassDataBit(14, false);
693 }
694 
695 bool Function::hasStackProtectorFnAttr() const {
696   return hasFnAttribute(Attribute::StackProtect) ||
697          hasFnAttribute(Attribute::StackProtectStrong) ||
698          hasFnAttribute(Attribute::StackProtectReq);
699 }
700 
701 /// Copy all additional attributes (those not needed to create a Function) from
702 /// the Function Src to this one.
703 void Function::copyAttributesFrom(const Function *Src) {
704   GlobalObject::copyAttributesFrom(Src);
705   setCallingConv(Src->getCallingConv());
706   setAttributes(Src->getAttributes());
707   if (Src->hasGC())
708     setGC(Src->getGC());
709   else
710     clearGC();
711   if (Src->hasPersonalityFn())
712     setPersonalityFn(Src->getPersonalityFn());
713   if (Src->hasPrefixData())
714     setPrefixData(Src->getPrefixData());
715   if (Src->hasPrologueData())
716     setPrologueData(Src->getPrologueData());
717 }
718 
719 /// Table of string intrinsic names indexed by enum value.
720 static const char * const IntrinsicNameTable[] = {
721   "not_intrinsic",
722 #define GET_INTRINSIC_NAME_TABLE
723 #include "llvm/IR/IntrinsicImpl.inc"
724 #undef GET_INTRINSIC_NAME_TABLE
725 };
726 
727 /// Table of per-target intrinsic name tables.
728 #define GET_INTRINSIC_TARGET_DATA
729 #include "llvm/IR/IntrinsicImpl.inc"
730 #undef GET_INTRINSIC_TARGET_DATA
731 
732 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
733   return IID > TargetInfos[0].Count;
734 }
735 
736 bool Function::isTargetIntrinsic() const {
737   return isTargetIntrinsic(IntID);
738 }
739 
740 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
741 /// target as \c Name, or the generic table if \c Name is not target specific.
742 ///
743 /// Returns the relevant slice of \c IntrinsicNameTable
744 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
745   assert(Name.startswith("llvm."));
746 
747   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
748   // Drop "llvm." and take the first dotted component. That will be the target
749   // if this is target specific.
750   StringRef Target = Name.drop_front(5).split('.').first;
751   auto It = partition_point(
752       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
753   // We've either found the target or just fall back to the generic set, which
754   // is always first.
755   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
756   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
757 }
758 
759 /// This does the actual lookup of an intrinsic ID which
760 /// matches the given function name.
761 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
762   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
763   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
764   if (Idx == -1)
765     return Intrinsic::not_intrinsic;
766 
767   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
768   // an index into a sub-table.
769   int Adjust = NameTable.data() - IntrinsicNameTable;
770   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
771 
772   // If the intrinsic is not overloaded, require an exact match. If it is
773   // overloaded, require either exact or prefix match.
774   const auto MatchSize = strlen(NameTable[Idx]);
775   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
776   bool IsExactMatch = Name.size() == MatchSize;
777   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
778                                                      : Intrinsic::not_intrinsic;
779 }
780 
781 void Function::recalculateIntrinsicID() {
782   StringRef Name = getName();
783   if (!Name.startswith("llvm.")) {
784     HasLLVMReservedName = false;
785     IntID = Intrinsic::not_intrinsic;
786     return;
787   }
788   HasLLVMReservedName = true;
789   IntID = lookupIntrinsicID(Name);
790 }
791 
792 /// Returns a stable mangling for the type specified for use in the name
793 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
794 /// of named types is simply their name.  Manglings for unnamed types consist
795 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
796 /// combined with the mangling of their component types.  A vararg function
797 /// type will have a suffix of 'vararg'.  Since function types can contain
798 /// other function types, we close a function type mangling with suffix 'f'
799 /// which can't be confused with it's prefix.  This ensures we don't have
800 /// collisions between two unrelated function types. Otherwise, you might
801 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
802 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
803 /// indicating that extra care must be taken to ensure a unique name.
804 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
805   std::string Result;
806   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
807     Result += "p" + utostr(PTyp->getAddressSpace());
808     // Opaque pointer doesn't have pointee type information, so we just mangle
809     // address space for opaque pointer.
810     if (!PTyp->isOpaque())
811       Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
812   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
813     Result += "a" + utostr(ATyp->getNumElements()) +
814               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
815   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
816     if (!STyp->isLiteral()) {
817       Result += "s_";
818       if (STyp->hasName())
819         Result += STyp->getName();
820       else
821         HasUnnamedType = true;
822     } else {
823       Result += "sl_";
824       for (auto Elem : STyp->elements())
825         Result += getMangledTypeStr(Elem, HasUnnamedType);
826     }
827     // Ensure nested structs are distinguishable.
828     Result += "s";
829   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
830     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
831     for (size_t i = 0; i < FT->getNumParams(); i++)
832       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
833     if (FT->isVarArg())
834       Result += "vararg";
835     // Ensure nested function types are distinguishable.
836     Result += "f";
837   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
838     ElementCount EC = VTy->getElementCount();
839     if (EC.isScalable())
840       Result += "nx";
841     Result += "v" + utostr(EC.getKnownMinValue()) +
842               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
843   } else if (Ty) {
844     switch (Ty->getTypeID()) {
845     default: llvm_unreachable("Unhandled type");
846     case Type::VoidTyID:      Result += "isVoid";   break;
847     case Type::MetadataTyID:  Result += "Metadata"; break;
848     case Type::HalfTyID:      Result += "f16";      break;
849     case Type::BFloatTyID:    Result += "bf16";     break;
850     case Type::FloatTyID:     Result += "f32";      break;
851     case Type::DoubleTyID:    Result += "f64";      break;
852     case Type::X86_FP80TyID:  Result += "f80";      break;
853     case Type::FP128TyID:     Result += "f128";     break;
854     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
855     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
856     case Type::X86_AMXTyID:   Result += "x86amx";   break;
857     case Type::IntegerTyID:
858       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
859       break;
860     }
861   }
862   return Result;
863 }
864 
865 StringRef Intrinsic::getBaseName(ID id) {
866   assert(id < num_intrinsics && "Invalid intrinsic ID!");
867   return IntrinsicNameTable[id];
868 }
869 
870 StringRef Intrinsic::getName(ID id) {
871   assert(id < num_intrinsics && "Invalid intrinsic ID!");
872   assert(!Intrinsic::isOverloaded(id) &&
873          "This version of getName does not support overloading");
874   return getBaseName(id);
875 }
876 
877 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
878                                         Module *M, FunctionType *FT,
879                                         bool EarlyModuleCheck) {
880 
881   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
882   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
883          "This version of getName is for overloaded intrinsics only");
884   (void)EarlyModuleCheck;
885   assert((!EarlyModuleCheck || M ||
886           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
887          "Intrinsic overloading on pointer types need to provide a Module");
888   bool HasUnnamedType = false;
889   std::string Result(Intrinsic::getBaseName(Id));
890   for (Type *Ty : Tys)
891     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
892   if (HasUnnamedType) {
893     assert(M && "unnamed types need a module");
894     if (!FT)
895       FT = Intrinsic::getType(M->getContext(), Id, Tys);
896     else
897       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
898              "Provided FunctionType must match arguments");
899     return M->getUniqueIntrinsicName(Result, Id, FT);
900   }
901   return Result;
902 }
903 
904 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
905                                FunctionType *FT) {
906   assert(M && "We need to have a Module");
907   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
908 }
909 
910 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
911   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
912 }
913 
914 /// IIT_Info - These are enumerators that describe the entries returned by the
915 /// getIntrinsicInfoTableEntries function.
916 ///
917 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
918 enum IIT_Info {
919   // Common values should be encoded with 0-15.
920   IIT_Done = 0,
921   IIT_I1   = 1,
922   IIT_I8   = 2,
923   IIT_I16  = 3,
924   IIT_I32  = 4,
925   IIT_I64  = 5,
926   IIT_F16  = 6,
927   IIT_F32  = 7,
928   IIT_F64  = 8,
929   IIT_V2   = 9,
930   IIT_V4   = 10,
931   IIT_V8   = 11,
932   IIT_V16  = 12,
933   IIT_V32  = 13,
934   IIT_PTR  = 14,
935   IIT_ARG  = 15,
936 
937   // Values from 16+ are only encodable with the inefficient encoding.
938   IIT_V64  = 16,
939   IIT_MMX  = 17,
940   IIT_TOKEN = 18,
941   IIT_METADATA = 19,
942   IIT_EMPTYSTRUCT = 20,
943   IIT_STRUCT2 = 21,
944   IIT_STRUCT3 = 22,
945   IIT_STRUCT4 = 23,
946   IIT_STRUCT5 = 24,
947   IIT_EXTEND_ARG = 25,
948   IIT_TRUNC_ARG = 26,
949   IIT_ANYPTR = 27,
950   IIT_V1   = 28,
951   IIT_VARARG = 29,
952   IIT_HALF_VEC_ARG = 30,
953   IIT_SAME_VEC_WIDTH_ARG = 31,
954   IIT_PTR_TO_ARG = 32,
955   IIT_PTR_TO_ELT = 33,
956   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
957   IIT_I128 = 35,
958   IIT_V512 = 36,
959   IIT_V1024 = 37,
960   IIT_STRUCT6 = 38,
961   IIT_STRUCT7 = 39,
962   IIT_STRUCT8 = 40,
963   IIT_F128 = 41,
964   IIT_VEC_ELEMENT = 42,
965   IIT_SCALABLE_VEC = 43,
966   IIT_SUBDIVIDE2_ARG = 44,
967   IIT_SUBDIVIDE4_ARG = 45,
968   IIT_VEC_OF_BITCASTS_TO_INT = 46,
969   IIT_V128 = 47,
970   IIT_BF16 = 48,
971   IIT_STRUCT9 = 49,
972   IIT_V256 = 50,
973   IIT_AMX  = 51
974 };
975 
976 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
977                       IIT_Info LastInfo,
978                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
979   using namespace Intrinsic;
980 
981   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
982 
983   IIT_Info Info = IIT_Info(Infos[NextElt++]);
984   unsigned StructElts = 2;
985 
986   switch (Info) {
987   case IIT_Done:
988     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
989     return;
990   case IIT_VARARG:
991     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
992     return;
993   case IIT_MMX:
994     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
995     return;
996   case IIT_AMX:
997     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
998     return;
999   case IIT_TOKEN:
1000     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
1001     return;
1002   case IIT_METADATA:
1003     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
1004     return;
1005   case IIT_F16:
1006     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
1007     return;
1008   case IIT_BF16:
1009     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
1010     return;
1011   case IIT_F32:
1012     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
1013     return;
1014   case IIT_F64:
1015     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
1016     return;
1017   case IIT_F128:
1018     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
1019     return;
1020   case IIT_I1:
1021     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
1022     return;
1023   case IIT_I8:
1024     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
1025     return;
1026   case IIT_I16:
1027     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
1028     return;
1029   case IIT_I32:
1030     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
1031     return;
1032   case IIT_I64:
1033     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
1034     return;
1035   case IIT_I128:
1036     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
1037     return;
1038   case IIT_V1:
1039     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
1040     DecodeIITType(NextElt, Infos, Info, OutputTable);
1041     return;
1042   case IIT_V2:
1043     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
1044     DecodeIITType(NextElt, Infos, Info, OutputTable);
1045     return;
1046   case IIT_V4:
1047     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1048     DecodeIITType(NextElt, Infos, Info, OutputTable);
1049     return;
1050   case IIT_V8:
1051     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1052     DecodeIITType(NextElt, Infos, Info, OutputTable);
1053     return;
1054   case IIT_V16:
1055     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1056     DecodeIITType(NextElt, Infos, Info, OutputTable);
1057     return;
1058   case IIT_V32:
1059     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1060     DecodeIITType(NextElt, Infos, Info, OutputTable);
1061     return;
1062   case IIT_V64:
1063     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1064     DecodeIITType(NextElt, Infos, Info, OutputTable);
1065     return;
1066   case IIT_V128:
1067     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1068     DecodeIITType(NextElt, Infos, Info, OutputTable);
1069     return;
1070   case IIT_V256:
1071     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1072     DecodeIITType(NextElt, Infos, Info, OutputTable);
1073     return;
1074   case IIT_V512:
1075     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1076     DecodeIITType(NextElt, Infos, Info, OutputTable);
1077     return;
1078   case IIT_V1024:
1079     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1080     DecodeIITType(NextElt, Infos, Info, OutputTable);
1081     return;
1082   case IIT_PTR:
1083     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1084     DecodeIITType(NextElt, Infos, Info, OutputTable);
1085     return;
1086   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1087     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1088                                              Infos[NextElt++]));
1089     DecodeIITType(NextElt, Infos, Info, OutputTable);
1090     return;
1091   }
1092   case IIT_ARG: {
1093     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1094     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1095     return;
1096   }
1097   case IIT_EXTEND_ARG: {
1098     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1099     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1100                                              ArgInfo));
1101     return;
1102   }
1103   case IIT_TRUNC_ARG: {
1104     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1105     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1106                                              ArgInfo));
1107     return;
1108   }
1109   case IIT_HALF_VEC_ARG: {
1110     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1111     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1112                                              ArgInfo));
1113     return;
1114   }
1115   case IIT_SAME_VEC_WIDTH_ARG: {
1116     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1117     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1118                                              ArgInfo));
1119     return;
1120   }
1121   case IIT_PTR_TO_ARG: {
1122     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1123     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1124                                              ArgInfo));
1125     return;
1126   }
1127   case IIT_PTR_TO_ELT: {
1128     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1129     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1130     return;
1131   }
1132   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1133     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1134     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1135     OutputTable.push_back(
1136         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1137     return;
1138   }
1139   case IIT_EMPTYSTRUCT:
1140     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1141     return;
1142   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1143   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1144   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1145   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1146   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1147   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1148   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1149   case IIT_STRUCT2: {
1150     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1151 
1152     for (unsigned i = 0; i != StructElts; ++i)
1153       DecodeIITType(NextElt, Infos, Info, OutputTable);
1154     return;
1155   }
1156   case IIT_SUBDIVIDE2_ARG: {
1157     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1158     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1159                                              ArgInfo));
1160     return;
1161   }
1162   case IIT_SUBDIVIDE4_ARG: {
1163     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1164     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1165                                              ArgInfo));
1166     return;
1167   }
1168   case IIT_VEC_ELEMENT: {
1169     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1170     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1171                                              ArgInfo));
1172     return;
1173   }
1174   case IIT_SCALABLE_VEC: {
1175     DecodeIITType(NextElt, Infos, Info, OutputTable);
1176     return;
1177   }
1178   case IIT_VEC_OF_BITCASTS_TO_INT: {
1179     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1180     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1181                                              ArgInfo));
1182     return;
1183   }
1184   }
1185   llvm_unreachable("unhandled");
1186 }
1187 
1188 #define GET_INTRINSIC_GENERATOR_GLOBAL
1189 #include "llvm/IR/IntrinsicImpl.inc"
1190 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1191 
1192 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1193                                              SmallVectorImpl<IITDescriptor> &T){
1194   // Check to see if the intrinsic's type was expressible by the table.
1195   unsigned TableVal = IIT_Table[id-1];
1196 
1197   // Decode the TableVal into an array of IITValues.
1198   SmallVector<unsigned char, 8> IITValues;
1199   ArrayRef<unsigned char> IITEntries;
1200   unsigned NextElt = 0;
1201   if ((TableVal >> 31) != 0) {
1202     // This is an offset into the IIT_LongEncodingTable.
1203     IITEntries = IIT_LongEncodingTable;
1204 
1205     // Strip sentinel bit.
1206     NextElt = (TableVal << 1) >> 1;
1207   } else {
1208     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1209     // into a single word in the table itself, decode it now.
1210     do {
1211       IITValues.push_back(TableVal & 0xF);
1212       TableVal >>= 4;
1213     } while (TableVal);
1214 
1215     IITEntries = IITValues;
1216     NextElt = 0;
1217   }
1218 
1219   // Okay, decode the table into the output vector of IITDescriptors.
1220   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1221   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1222     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1223 }
1224 
1225 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1226                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1227   using namespace Intrinsic;
1228 
1229   IITDescriptor D = Infos.front();
1230   Infos = Infos.slice(1);
1231 
1232   switch (D.Kind) {
1233   case IITDescriptor::Void: return Type::getVoidTy(Context);
1234   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1235   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1236   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1237   case IITDescriptor::Token: return Type::getTokenTy(Context);
1238   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1239   case IITDescriptor::Half: return Type::getHalfTy(Context);
1240   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1241   case IITDescriptor::Float: return Type::getFloatTy(Context);
1242   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1243   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1244 
1245   case IITDescriptor::Integer:
1246     return IntegerType::get(Context, D.Integer_Width);
1247   case IITDescriptor::Vector:
1248     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1249                            D.Vector_Width);
1250   case IITDescriptor::Pointer:
1251     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1252                             D.Pointer_AddressSpace);
1253   case IITDescriptor::Struct: {
1254     SmallVector<Type *, 8> Elts;
1255     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1256       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1257     return StructType::get(Context, Elts);
1258   }
1259   case IITDescriptor::Argument:
1260     return Tys[D.getArgumentNumber()];
1261   case IITDescriptor::ExtendArgument: {
1262     Type *Ty = Tys[D.getArgumentNumber()];
1263     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1264       return VectorType::getExtendedElementVectorType(VTy);
1265 
1266     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1267   }
1268   case IITDescriptor::TruncArgument: {
1269     Type *Ty = Tys[D.getArgumentNumber()];
1270     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1271       return VectorType::getTruncatedElementVectorType(VTy);
1272 
1273     IntegerType *ITy = cast<IntegerType>(Ty);
1274     assert(ITy->getBitWidth() % 2 == 0);
1275     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1276   }
1277   case IITDescriptor::Subdivide2Argument:
1278   case IITDescriptor::Subdivide4Argument: {
1279     Type *Ty = Tys[D.getArgumentNumber()];
1280     VectorType *VTy = dyn_cast<VectorType>(Ty);
1281     assert(VTy && "Expected an argument of Vector Type");
1282     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1283     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1284   }
1285   case IITDescriptor::HalfVecArgument:
1286     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1287                                                   Tys[D.getArgumentNumber()]));
1288   case IITDescriptor::SameVecWidthArgument: {
1289     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1290     Type *Ty = Tys[D.getArgumentNumber()];
1291     if (auto *VTy = dyn_cast<VectorType>(Ty))
1292       return VectorType::get(EltTy, VTy->getElementCount());
1293     return EltTy;
1294   }
1295   case IITDescriptor::PtrToArgument: {
1296     Type *Ty = Tys[D.getArgumentNumber()];
1297     return PointerType::getUnqual(Ty);
1298   }
1299   case IITDescriptor::PtrToElt: {
1300     Type *Ty = Tys[D.getArgumentNumber()];
1301     VectorType *VTy = dyn_cast<VectorType>(Ty);
1302     if (!VTy)
1303       llvm_unreachable("Expected an argument of Vector Type");
1304     Type *EltTy = VTy->getElementType();
1305     return PointerType::getUnqual(EltTy);
1306   }
1307   case IITDescriptor::VecElementArgument: {
1308     Type *Ty = Tys[D.getArgumentNumber()];
1309     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1310       return VTy->getElementType();
1311     llvm_unreachable("Expected an argument of Vector Type");
1312   }
1313   case IITDescriptor::VecOfBitcastsToInt: {
1314     Type *Ty = Tys[D.getArgumentNumber()];
1315     VectorType *VTy = dyn_cast<VectorType>(Ty);
1316     assert(VTy && "Expected an argument of Vector Type");
1317     return VectorType::getInteger(VTy);
1318   }
1319   case IITDescriptor::VecOfAnyPtrsToElt:
1320     // Return the overloaded type (which determines the pointers address space)
1321     return Tys[D.getOverloadArgNumber()];
1322   }
1323   llvm_unreachable("unhandled");
1324 }
1325 
1326 FunctionType *Intrinsic::getType(LLVMContext &Context,
1327                                  ID id, ArrayRef<Type*> Tys) {
1328   SmallVector<IITDescriptor, 8> Table;
1329   getIntrinsicInfoTableEntries(id, Table);
1330 
1331   ArrayRef<IITDescriptor> TableRef = Table;
1332   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1333 
1334   SmallVector<Type*, 8> ArgTys;
1335   while (!TableRef.empty())
1336     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1337 
1338   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1339   // If we see void type as the type of the last argument, it is vararg intrinsic
1340   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1341     ArgTys.pop_back();
1342     return FunctionType::get(ResultTy, ArgTys, true);
1343   }
1344   return FunctionType::get(ResultTy, ArgTys, false);
1345 }
1346 
1347 bool Intrinsic::isOverloaded(ID id) {
1348 #define GET_INTRINSIC_OVERLOAD_TABLE
1349 #include "llvm/IR/IntrinsicImpl.inc"
1350 #undef GET_INTRINSIC_OVERLOAD_TABLE
1351 }
1352 
1353 bool Intrinsic::isLeaf(ID id) {
1354   switch (id) {
1355   default:
1356     return true;
1357 
1358   case Intrinsic::experimental_gc_statepoint:
1359   case Intrinsic::experimental_patchpoint_void:
1360   case Intrinsic::experimental_patchpoint_i64:
1361     return false;
1362   }
1363 }
1364 
1365 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1366 #define GET_INTRINSIC_ATTRIBUTES
1367 #include "llvm/IR/IntrinsicImpl.inc"
1368 #undef GET_INTRINSIC_ATTRIBUTES
1369 
1370 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1371   // There can never be multiple globals with the same name of different types,
1372   // because intrinsics must be a specific type.
1373   auto *FT = getType(M->getContext(), id, Tys);
1374   return cast<Function>(
1375       M->getOrInsertFunction(Tys.empty() ? getName(id)
1376                                          : getName(id, Tys, M, FT),
1377                              getType(M->getContext(), id, Tys))
1378           .getCallee());
1379 }
1380 
1381 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1382 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1383 #include "llvm/IR/IntrinsicImpl.inc"
1384 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1385 
1386 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1387 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1388 #include "llvm/IR/IntrinsicImpl.inc"
1389 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1390 
1391 using DeferredIntrinsicMatchPair =
1392     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1393 
1394 static bool matchIntrinsicType(
1395     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1396     SmallVectorImpl<Type *> &ArgTys,
1397     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1398     bool IsDeferredCheck) {
1399   using namespace Intrinsic;
1400 
1401   // If we ran out of descriptors, there are too many arguments.
1402   if (Infos.empty()) return true;
1403 
1404   // Do this before slicing off the 'front' part
1405   auto InfosRef = Infos;
1406   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1407     DeferredChecks.emplace_back(T, InfosRef);
1408     return false;
1409   };
1410 
1411   IITDescriptor D = Infos.front();
1412   Infos = Infos.slice(1);
1413 
1414   switch (D.Kind) {
1415     case IITDescriptor::Void: return !Ty->isVoidTy();
1416     case IITDescriptor::VarArg: return true;
1417     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1418     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1419     case IITDescriptor::Token: return !Ty->isTokenTy();
1420     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1421     case IITDescriptor::Half: return !Ty->isHalfTy();
1422     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1423     case IITDescriptor::Float: return !Ty->isFloatTy();
1424     case IITDescriptor::Double: return !Ty->isDoubleTy();
1425     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1426     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1427     case IITDescriptor::Vector: {
1428       VectorType *VT = dyn_cast<VectorType>(Ty);
1429       return !VT || VT->getElementCount() != D.Vector_Width ||
1430              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1431                                 DeferredChecks, IsDeferredCheck);
1432     }
1433     case IITDescriptor::Pointer: {
1434       PointerType *PT = dyn_cast<PointerType>(Ty);
1435       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1436         return true;
1437       if (!PT->isOpaque())
1438         return matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1439                                   DeferredChecks, IsDeferredCheck);
1440       // If typed pointers are supported, do not allow using opaque pointer in
1441       // place of fixed pointer type. This would make the intrinsic signature
1442       // non-unique.
1443       if (Ty->getContext().supportsTypedPointers())
1444         return true;
1445       // Consume IIT descriptors relating to the pointer element type.
1446       while (Infos.front().Kind == IITDescriptor::Pointer)
1447         Infos = Infos.slice(1);
1448       Infos = Infos.slice(1);
1449       return false;
1450     }
1451 
1452     case IITDescriptor::Struct: {
1453       StructType *ST = dyn_cast<StructType>(Ty);
1454       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1455         return true;
1456 
1457       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1458         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1459                                DeferredChecks, IsDeferredCheck))
1460           return true;
1461       return false;
1462     }
1463 
1464     case IITDescriptor::Argument:
1465       // If this is the second occurrence of an argument,
1466       // verify that the later instance matches the previous instance.
1467       if (D.getArgumentNumber() < ArgTys.size())
1468         return Ty != ArgTys[D.getArgumentNumber()];
1469 
1470       if (D.getArgumentNumber() > ArgTys.size() ||
1471           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1472         return IsDeferredCheck || DeferCheck(Ty);
1473 
1474       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1475              "Table consistency error");
1476       ArgTys.push_back(Ty);
1477 
1478       switch (D.getArgumentKind()) {
1479         case IITDescriptor::AK_Any:        return false; // Success
1480         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1481         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1482         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1483         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1484         default:                           break;
1485       }
1486       llvm_unreachable("all argument kinds not covered");
1487 
1488     case IITDescriptor::ExtendArgument: {
1489       // If this is a forward reference, defer the check for later.
1490       if (D.getArgumentNumber() >= ArgTys.size())
1491         return IsDeferredCheck || DeferCheck(Ty);
1492 
1493       Type *NewTy = ArgTys[D.getArgumentNumber()];
1494       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1495         NewTy = VectorType::getExtendedElementVectorType(VTy);
1496       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1497         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1498       else
1499         return true;
1500 
1501       return Ty != NewTy;
1502     }
1503     case IITDescriptor::TruncArgument: {
1504       // If this is a forward reference, defer the check for later.
1505       if (D.getArgumentNumber() >= ArgTys.size())
1506         return IsDeferredCheck || DeferCheck(Ty);
1507 
1508       Type *NewTy = ArgTys[D.getArgumentNumber()];
1509       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1510         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1511       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1512         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1513       else
1514         return true;
1515 
1516       return Ty != NewTy;
1517     }
1518     case IITDescriptor::HalfVecArgument:
1519       // If this is a forward reference, defer the check for later.
1520       if (D.getArgumentNumber() >= ArgTys.size())
1521         return IsDeferredCheck || DeferCheck(Ty);
1522       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1523              VectorType::getHalfElementsVectorType(
1524                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1525     case IITDescriptor::SameVecWidthArgument: {
1526       if (D.getArgumentNumber() >= ArgTys.size()) {
1527         // Defer check and subsequent check for the vector element type.
1528         Infos = Infos.slice(1);
1529         return IsDeferredCheck || DeferCheck(Ty);
1530       }
1531       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1532       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1533       // Both must be vectors of the same number of elements or neither.
1534       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1535         return true;
1536       Type *EltTy = Ty;
1537       if (ThisArgType) {
1538         if (ReferenceType->getElementCount() !=
1539             ThisArgType->getElementCount())
1540           return true;
1541         EltTy = ThisArgType->getElementType();
1542       }
1543       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1544                                 IsDeferredCheck);
1545     }
1546     case IITDescriptor::PtrToArgument: {
1547       if (D.getArgumentNumber() >= ArgTys.size())
1548         return IsDeferredCheck || DeferCheck(Ty);
1549       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1550       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1551       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1552     }
1553     case IITDescriptor::PtrToElt: {
1554       if (D.getArgumentNumber() >= ArgTys.size())
1555         return IsDeferredCheck || DeferCheck(Ty);
1556       VectorType * ReferenceType =
1557         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1558       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1559 
1560       if (!ThisArgType || !ReferenceType)
1561         return true;
1562       if (!ThisArgType->isOpaque())
1563         return ThisArgType->getElementType() != ReferenceType->getElementType();
1564       // If typed pointers are supported, do not allow opaque pointer to ensure
1565       // uniqueness.
1566       return Ty->getContext().supportsTypedPointers();
1567     }
1568     case IITDescriptor::VecOfAnyPtrsToElt: {
1569       unsigned RefArgNumber = D.getRefArgNumber();
1570       if (RefArgNumber >= ArgTys.size()) {
1571         if (IsDeferredCheck)
1572           return true;
1573         // If forward referencing, already add the pointer-vector type and
1574         // defer the checks for later.
1575         ArgTys.push_back(Ty);
1576         return DeferCheck(Ty);
1577       }
1578 
1579       if (!IsDeferredCheck){
1580         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1581                "Table consistency error");
1582         ArgTys.push_back(Ty);
1583       }
1584 
1585       // Verify the overloaded type "matches" the Ref type.
1586       // i.e. Ty is a vector with the same width as Ref.
1587       // Composed of pointers to the same element type as Ref.
1588       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1589       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1590       if (!ThisArgVecTy || !ReferenceType ||
1591           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1592         return true;
1593       PointerType *ThisArgEltTy =
1594           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1595       if (!ThisArgEltTy)
1596         return true;
1597       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1598           ReferenceType->getElementType());
1599     }
1600     case IITDescriptor::VecElementArgument: {
1601       if (D.getArgumentNumber() >= ArgTys.size())
1602         return IsDeferredCheck ? true : DeferCheck(Ty);
1603       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1604       return !ReferenceType || Ty != ReferenceType->getElementType();
1605     }
1606     case IITDescriptor::Subdivide2Argument:
1607     case IITDescriptor::Subdivide4Argument: {
1608       // If this is a forward reference, defer the check for later.
1609       if (D.getArgumentNumber() >= ArgTys.size())
1610         return IsDeferredCheck || DeferCheck(Ty);
1611 
1612       Type *NewTy = ArgTys[D.getArgumentNumber()];
1613       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1614         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1615         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1616         return Ty != NewTy;
1617       }
1618       return true;
1619     }
1620     case IITDescriptor::VecOfBitcastsToInt: {
1621       if (D.getArgumentNumber() >= ArgTys.size())
1622         return IsDeferredCheck || DeferCheck(Ty);
1623       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1624       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1625       if (!ThisArgVecTy || !ReferenceType)
1626         return true;
1627       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1628     }
1629   }
1630   llvm_unreachable("unhandled");
1631 }
1632 
1633 Intrinsic::MatchIntrinsicTypesResult
1634 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1635                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1636                                    SmallVectorImpl<Type *> &ArgTys) {
1637   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1638   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1639                          false))
1640     return MatchIntrinsicTypes_NoMatchRet;
1641 
1642   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1643 
1644   for (auto Ty : FTy->params())
1645     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1646       return MatchIntrinsicTypes_NoMatchArg;
1647 
1648   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1649     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1650     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1651                            true))
1652       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1653                                          : MatchIntrinsicTypes_NoMatchArg;
1654   }
1655 
1656   return MatchIntrinsicTypes_Match;
1657 }
1658 
1659 bool
1660 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1661                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1662   // If there are no descriptors left, then it can't be a vararg.
1663   if (Infos.empty())
1664     return isVarArg;
1665 
1666   // There should be only one descriptor remaining at this point.
1667   if (Infos.size() != 1)
1668     return true;
1669 
1670   // Check and verify the descriptor.
1671   IITDescriptor D = Infos.front();
1672   Infos = Infos.slice(1);
1673   if (D.Kind == IITDescriptor::VarArg)
1674     return !isVarArg;
1675 
1676   return true;
1677 }
1678 
1679 bool Intrinsic::getIntrinsicSignature(Function *F,
1680                                       SmallVectorImpl<Type *> &ArgTys) {
1681   Intrinsic::ID ID = F->getIntrinsicID();
1682   if (!ID)
1683     return false;
1684 
1685   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1686   getIntrinsicInfoTableEntries(ID, Table);
1687   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1688 
1689   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1690                                          ArgTys) !=
1691       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1692     return false;
1693   }
1694   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1695                                       TableRef))
1696     return false;
1697   return true;
1698 }
1699 
1700 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1701   SmallVector<Type *, 4> ArgTys;
1702   if (!getIntrinsicSignature(F, ArgTys))
1703     return None;
1704 
1705   Intrinsic::ID ID = F->getIntrinsicID();
1706   StringRef Name = F->getName();
1707   std::string WantedName =
1708       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1709   if (Name == WantedName)
1710     return None;
1711 
1712   Function *NewDecl = [&] {
1713     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1714       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1715         if (ExistingF->getFunctionType() == F->getFunctionType())
1716           return ExistingF;
1717 
1718       // The name already exists, but is not a function or has the wrong
1719       // prototype. Make place for the new one by renaming the old version.
1720       // Either this old version will be removed later on or the module is
1721       // invalid and we'll get an error.
1722       ExistingGV->setName(WantedName + ".renamed");
1723     }
1724     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1725   }();
1726 
1727   NewDecl->setCallingConv(F->getCallingConv());
1728   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1729          "Shouldn't change the signature");
1730   return NewDecl;
1731 }
1732 
1733 /// hasAddressTaken - returns true if there are any uses of this function
1734 /// other than direct calls or invokes to it. Optionally ignores callback
1735 /// uses, assume like pointer annotation calls, and references in llvm.used
1736 /// and llvm.compiler.used variables.
1737 bool Function::hasAddressTaken(const User **PutOffender,
1738                                bool IgnoreCallbackUses,
1739                                bool IgnoreAssumeLikeCalls,
1740                                bool IgnoreLLVMUsed) const {
1741   for (const Use &U : uses()) {
1742     const User *FU = U.getUser();
1743     if (isa<BlockAddress>(FU))
1744       continue;
1745 
1746     if (IgnoreCallbackUses) {
1747       AbstractCallSite ACS(&U);
1748       if (ACS && ACS.isCallbackCall())
1749         continue;
1750     }
1751 
1752     const auto *Call = dyn_cast<CallBase>(FU);
1753     if (!Call) {
1754       if (IgnoreAssumeLikeCalls) {
1755         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1756           if (FI->isCast() && !FI->user_empty() &&
1757               llvm::all_of(FU->users(), [](const User *U) {
1758                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1759                   return I->isAssumeLikeIntrinsic();
1760                 return false;
1761               }))
1762             continue;
1763         }
1764       }
1765       if (IgnoreLLVMUsed && !FU->user_empty()) {
1766         const User *FUU = FU;
1767         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1768             !FU->user_begin()->user_empty())
1769           FUU = *FU->user_begin();
1770         if (llvm::all_of(FUU->users(), [](const User *U) {
1771               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1772                 return GV->hasName() &&
1773                        (GV->getName().equals("llvm.compiler.used") ||
1774                         GV->getName().equals("llvm.used"));
1775               return false;
1776             }))
1777           continue;
1778       }
1779       if (PutOffender)
1780         *PutOffender = FU;
1781       return true;
1782     }
1783     if (!Call->isCallee(&U)) {
1784       if (PutOffender)
1785         *PutOffender = FU;
1786       return true;
1787     }
1788   }
1789   return false;
1790 }
1791 
1792 bool Function::isDefTriviallyDead() const {
1793   // Check the linkage
1794   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1795       !hasAvailableExternallyLinkage())
1796     return false;
1797 
1798   // Check if the function is used by anything other than a blockaddress.
1799   for (const User *U : users())
1800     if (!isa<BlockAddress>(U))
1801       return false;
1802 
1803   return true;
1804 }
1805 
1806 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1807 /// setjmp or other function that gcc recognizes as "returning twice".
1808 bool Function::callsFunctionThatReturnsTwice() const {
1809   for (const Instruction &I : instructions(this))
1810     if (const auto *Call = dyn_cast<CallBase>(&I))
1811       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1812         return true;
1813 
1814   return false;
1815 }
1816 
1817 Constant *Function::getPersonalityFn() const {
1818   assert(hasPersonalityFn() && getNumOperands());
1819   return cast<Constant>(Op<0>());
1820 }
1821 
1822 void Function::setPersonalityFn(Constant *Fn) {
1823   setHungoffOperand<0>(Fn);
1824   setValueSubclassDataBit(3, Fn != nullptr);
1825 }
1826 
1827 Constant *Function::getPrefixData() const {
1828   assert(hasPrefixData() && getNumOperands());
1829   return cast<Constant>(Op<1>());
1830 }
1831 
1832 void Function::setPrefixData(Constant *PrefixData) {
1833   setHungoffOperand<1>(PrefixData);
1834   setValueSubclassDataBit(1, PrefixData != nullptr);
1835 }
1836 
1837 Constant *Function::getPrologueData() const {
1838   assert(hasPrologueData() && getNumOperands());
1839   return cast<Constant>(Op<2>());
1840 }
1841 
1842 void Function::setPrologueData(Constant *PrologueData) {
1843   setHungoffOperand<2>(PrologueData);
1844   setValueSubclassDataBit(2, PrologueData != nullptr);
1845 }
1846 
1847 void Function::allocHungoffUselist() {
1848   // If we've already allocated a uselist, stop here.
1849   if (getNumOperands())
1850     return;
1851 
1852   allocHungoffUses(3, /*IsPhi=*/ false);
1853   setNumHungOffUseOperands(3);
1854 
1855   // Initialize the uselist with placeholder operands to allow traversal.
1856   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1857   Op<0>().set(CPN);
1858   Op<1>().set(CPN);
1859   Op<2>().set(CPN);
1860 }
1861 
1862 template <int Idx>
1863 void Function::setHungoffOperand(Constant *C) {
1864   if (C) {
1865     allocHungoffUselist();
1866     Op<Idx>().set(C);
1867   } else if (getNumOperands()) {
1868     Op<Idx>().set(
1869         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1870   }
1871 }
1872 
1873 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1874   assert(Bit < 16 && "SubclassData contains only 16 bits");
1875   if (On)
1876     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1877   else
1878     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1879 }
1880 
1881 void Function::setEntryCount(ProfileCount Count,
1882                              const DenseSet<GlobalValue::GUID> *S) {
1883   assert(Count.hasValue());
1884 #if !defined(NDEBUG)
1885   auto PrevCount = getEntryCount();
1886   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1887 #endif
1888 
1889   auto ImportGUIDs = getImportGUIDs();
1890   if (S == nullptr && ImportGUIDs.size())
1891     S = &ImportGUIDs;
1892 
1893   MDBuilder MDB(getContext());
1894   setMetadata(
1895       LLVMContext::MD_prof,
1896       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1897 }
1898 
1899 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1900                              const DenseSet<GlobalValue::GUID> *Imports) {
1901   setEntryCount(ProfileCount(Count, Type), Imports);
1902 }
1903 
1904 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1905   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1906   if (MD && MD->getOperand(0))
1907     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1908       if (MDS->getString().equals("function_entry_count")) {
1909         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1910         uint64_t Count = CI->getValue().getZExtValue();
1911         // A value of -1 is used for SamplePGO when there were no samples.
1912         // Treat this the same as unknown.
1913         if (Count == (uint64_t)-1)
1914           return ProfileCount::getInvalid();
1915         return ProfileCount(Count, PCT_Real);
1916       } else if (AllowSynthetic &&
1917                  MDS->getString().equals("synthetic_function_entry_count")) {
1918         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1919         uint64_t Count = CI->getValue().getZExtValue();
1920         return ProfileCount(Count, PCT_Synthetic);
1921       }
1922     }
1923   return ProfileCount::getInvalid();
1924 }
1925 
1926 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1927   DenseSet<GlobalValue::GUID> R;
1928   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1929     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1930       if (MDS->getString().equals("function_entry_count"))
1931         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1932           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1933                        ->getValue()
1934                        .getZExtValue());
1935   return R;
1936 }
1937 
1938 void Function::setSectionPrefix(StringRef Prefix) {
1939   MDBuilder MDB(getContext());
1940   setMetadata(LLVMContext::MD_section_prefix,
1941               MDB.createFunctionSectionPrefix(Prefix));
1942 }
1943 
1944 Optional<StringRef> Function::getSectionPrefix() const {
1945   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1946     assert(cast<MDString>(MD->getOperand(0))
1947                ->getString()
1948                .equals("function_section_prefix") &&
1949            "Metadata not match");
1950     return cast<MDString>(MD->getOperand(1))->getString();
1951   }
1952   return None;
1953 }
1954 
1955 bool Function::nullPointerIsDefined() const {
1956   return hasFnAttribute(Attribute::NullPointerIsValid);
1957 }
1958 
1959 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1960   if (F && F->nullPointerIsDefined())
1961     return true;
1962 
1963   if (AS != 0)
1964     return true;
1965 
1966   return false;
1967 }
1968