xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 0d822da2bdda30a6a79971f9d160c82a4566f6a6)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CommandLine.h"
64 #include "llvm/Support/Compiler.h"
65 #include "llvm/Support/ErrorHandling.h"
66 #include <algorithm>
67 #include <cassert>
68 #include <cstddef>
69 #include <cstdint>
70 #include <cstring>
71 #include <string>
72 
73 using namespace llvm;
74 using ProfileCount = Function::ProfileCount;
75 
76 // Explicit instantiations of SymbolTableListTraits since some of the methods
77 // are not in the public header file...
78 template class llvm::SymbolTableListTraits<BasicBlock>;
79 
80 static cl::opt<unsigned> NonGlobalValueMaxNameSize(
81     "non-global-value-max-name-size", cl::Hidden, cl::init(1024),
82     cl::desc("Maximum size for the name of non-global values."));
83 
84 //===----------------------------------------------------------------------===//
85 // Argument Implementation
86 //===----------------------------------------------------------------------===//
87 
88 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
89     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
90   setName(Name);
91 }
92 
93 void Argument::setParent(Function *parent) {
94   Parent = parent;
95 }
96 
97 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
98   if (!getType()->isPointerTy()) return false;
99   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
100       (AllowUndefOrPoison ||
101        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
102     return true;
103   else if (getDereferenceableBytes() > 0 &&
104            !NullPointerIsDefined(getParent(),
105                                  getType()->getPointerAddressSpace()))
106     return true;
107   return false;
108 }
109 
110 bool Argument::hasByValAttr() const {
111   if (!getType()->isPointerTy()) return false;
112   return hasAttribute(Attribute::ByVal);
113 }
114 
115 bool Argument::hasByRefAttr() const {
116   if (!getType()->isPointerTy())
117     return false;
118   return hasAttribute(Attribute::ByRef);
119 }
120 
121 bool Argument::hasSwiftSelfAttr() const {
122   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
123 }
124 
125 bool Argument::hasSwiftErrorAttr() const {
126   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
127 }
128 
129 bool Argument::hasInAllocaAttr() const {
130   if (!getType()->isPointerTy()) return false;
131   return hasAttribute(Attribute::InAlloca);
132 }
133 
134 bool Argument::hasPreallocatedAttr() const {
135   if (!getType()->isPointerTy())
136     return false;
137   return hasAttribute(Attribute::Preallocated);
138 }
139 
140 bool Argument::hasPassPointeeByValueCopyAttr() const {
141   if (!getType()->isPointerTy()) return false;
142   AttributeList Attrs = getParent()->getAttributes();
143   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
144          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
145          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated);
146 }
147 
148 bool Argument::hasPointeeInMemoryValueAttr() const {
149   if (!getType()->isPointerTy())
150     return false;
151   AttributeList Attrs = getParent()->getAttributes();
152   return Attrs.hasParamAttr(getArgNo(), Attribute::ByVal) ||
153          Attrs.hasParamAttr(getArgNo(), Attribute::StructRet) ||
154          Attrs.hasParamAttr(getArgNo(), Attribute::InAlloca) ||
155          Attrs.hasParamAttr(getArgNo(), Attribute::Preallocated) ||
156          Attrs.hasParamAttr(getArgNo(), Attribute::ByRef);
157 }
158 
159 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
160 /// parameter type.
161 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
162   // FIXME: All the type carrying attributes are mutually exclusive, so there
163   // should be a single query to get the stored type that handles any of them.
164   if (Type *ByValTy = ParamAttrs.getByValType())
165     return ByValTy;
166   if (Type *ByRefTy = ParamAttrs.getByRefType())
167     return ByRefTy;
168   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
169     return PreAllocTy;
170   if (Type *InAllocaTy = ParamAttrs.getInAllocaType())
171     return InAllocaTy;
172   if (Type *SRetTy = ParamAttrs.getStructRetType())
173     return SRetTy;
174 
175   return nullptr;
176 }
177 
178 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
179   AttributeSet ParamAttrs =
180       getParent()->getAttributes().getParamAttrs(getArgNo());
181   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
182     return DL.getTypeAllocSize(MemTy);
183   return 0;
184 }
185 
186 Type *Argument::getPointeeInMemoryValueType() const {
187   AttributeSet ParamAttrs =
188       getParent()->getAttributes().getParamAttrs(getArgNo());
189   return getMemoryParamAllocType(ParamAttrs, getType());
190 }
191 
192 unsigned Argument::getParamAlignment() const {
193   assert(getType()->isPointerTy() && "Only pointers have alignments");
194   return getParent()->getParamAlignment(getArgNo());
195 }
196 
197 MaybeAlign Argument::getParamAlign() const {
198   assert(getType()->isPointerTy() && "Only pointers have alignments");
199   return getParent()->getParamAlign(getArgNo());
200 }
201 
202 MaybeAlign Argument::getParamStackAlign() const {
203   return getParent()->getParamStackAlign(getArgNo());
204 }
205 
206 Type *Argument::getParamByValType() const {
207   assert(getType()->isPointerTy() && "Only pointers have byval types");
208   return getParent()->getParamByValType(getArgNo());
209 }
210 
211 Type *Argument::getParamStructRetType() const {
212   assert(getType()->isPointerTy() && "Only pointers have sret types");
213   return getParent()->getParamStructRetType(getArgNo());
214 }
215 
216 Type *Argument::getParamByRefType() const {
217   assert(getType()->isPointerTy() && "Only pointers have byref types");
218   return getParent()->getParamByRefType(getArgNo());
219 }
220 
221 Type *Argument::getParamInAllocaType() const {
222   assert(getType()->isPointerTy() && "Only pointers have inalloca types");
223   return getParent()->getParamInAllocaType(getArgNo());
224 }
225 
226 uint64_t Argument::getDereferenceableBytes() const {
227   assert(getType()->isPointerTy() &&
228          "Only pointers have dereferenceable bytes");
229   return getParent()->getParamDereferenceableBytes(getArgNo());
230 }
231 
232 uint64_t Argument::getDereferenceableOrNullBytes() const {
233   assert(getType()->isPointerTy() &&
234          "Only pointers have dereferenceable bytes");
235   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
236 }
237 
238 bool Argument::hasNestAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::Nest);
241 }
242 
243 bool Argument::hasNoAliasAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoAlias);
246 }
247 
248 bool Argument::hasNoCaptureAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::NoCapture);
251 }
252 
253 bool Argument::hasNoFreeAttr() const {
254   if (!getType()->isPointerTy()) return false;
255   return hasAttribute(Attribute::NoFree);
256 }
257 
258 bool Argument::hasStructRetAttr() const {
259   if (!getType()->isPointerTy()) return false;
260   return hasAttribute(Attribute::StructRet);
261 }
262 
263 bool Argument::hasInRegAttr() const {
264   return hasAttribute(Attribute::InReg);
265 }
266 
267 bool Argument::hasReturnedAttr() const {
268   return hasAttribute(Attribute::Returned);
269 }
270 
271 bool Argument::hasZExtAttr() const {
272   return hasAttribute(Attribute::ZExt);
273 }
274 
275 bool Argument::hasSExtAttr() const {
276   return hasAttribute(Attribute::SExt);
277 }
278 
279 bool Argument::onlyReadsMemory() const {
280   AttributeList Attrs = getParent()->getAttributes();
281   return Attrs.hasParamAttr(getArgNo(), Attribute::ReadOnly) ||
282          Attrs.hasParamAttr(getArgNo(), Attribute::ReadNone);
283 }
284 
285 void Argument::addAttrs(AttrBuilder &B) {
286   AttributeList AL = getParent()->getAttributes();
287   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
288   getParent()->setAttributes(AL);
289 }
290 
291 void Argument::addAttr(Attribute::AttrKind Kind) {
292   getParent()->addParamAttr(getArgNo(), Kind);
293 }
294 
295 void Argument::addAttr(Attribute Attr) {
296   getParent()->addParamAttr(getArgNo(), Attr);
297 }
298 
299 void Argument::removeAttr(Attribute::AttrKind Kind) {
300   getParent()->removeParamAttr(getArgNo(), Kind);
301 }
302 
303 void Argument::removeAttrs(const AttrBuilder &B) {
304   AttributeList AL = getParent()->getAttributes();
305   AL = AL.removeParamAttributes(Parent->getContext(), getArgNo(), B);
306   getParent()->setAttributes(AL);
307 }
308 
309 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
310   return getParent()->hasParamAttribute(getArgNo(), Kind);
311 }
312 
313 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
314   return getParent()->getParamAttribute(getArgNo(), Kind);
315 }
316 
317 //===----------------------------------------------------------------------===//
318 // Helper Methods in Function
319 //===----------------------------------------------------------------------===//
320 
321 LLVMContext &Function::getContext() const {
322   return getType()->getContext();
323 }
324 
325 unsigned Function::getInstructionCount() const {
326   unsigned NumInstrs = 0;
327   for (const BasicBlock &BB : BasicBlocks)
328     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
329                                BB.instructionsWithoutDebug().end());
330   return NumInstrs;
331 }
332 
333 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
334                            const Twine &N, Module &M) {
335   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
336 }
337 
338 Function *Function::createWithDefaultAttr(FunctionType *Ty,
339                                           LinkageTypes Linkage,
340                                           unsigned AddrSpace, const Twine &N,
341                                           Module *M) {
342   auto *F = new Function(Ty, Linkage, AddrSpace, N, M);
343   AttrBuilder B;
344   if (M->getUwtable())
345     B.addAttribute(Attribute::UWTable);
346   switch (M->getFramePointer()) {
347   case FramePointerKind::None:
348     // 0 ("none") is the default.
349     break;
350   case FramePointerKind::NonLeaf:
351     B.addAttribute("frame-pointer", "non-leaf");
352     break;
353   case FramePointerKind::All:
354     B.addAttribute("frame-pointer", "all");
355     break;
356   }
357   F->addAttributes(AttributeList::FunctionIndex, B);
358   return F;
359 }
360 
361 void Function::removeFromParent() {
362   getParent()->getFunctionList().remove(getIterator());
363 }
364 
365 void Function::eraseFromParent() {
366   getParent()->getFunctionList().erase(getIterator());
367 }
368 
369 //===----------------------------------------------------------------------===//
370 // Function Implementation
371 //===----------------------------------------------------------------------===//
372 
373 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
374   // If AS == -1 and we are passed a valid module pointer we place the function
375   // in the program address space. Otherwise we default to AS0.
376   if (AddrSpace == static_cast<unsigned>(-1))
377     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
378   return AddrSpace;
379 }
380 
381 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
382                    const Twine &name, Module *ParentModule)
383     : GlobalObject(Ty, Value::FunctionVal,
384                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
385                    computeAddrSpace(AddrSpace, ParentModule)),
386       NumArgs(Ty->getNumParams()) {
387   assert(FunctionType::isValidReturnType(getReturnType()) &&
388          "invalid return type");
389   setGlobalObjectSubClassData(0);
390 
391   // We only need a symbol table for a function if the context keeps value names
392   if (!getContext().shouldDiscardValueNames())
393     SymTab = std::make_unique<ValueSymbolTable>(NonGlobalValueMaxNameSize);
394 
395   // If the function has arguments, mark them as lazily built.
396   if (Ty->getNumParams())
397     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
398 
399   if (ParentModule)
400     ParentModule->getFunctionList().push_back(this);
401 
402   HasLLVMReservedName = getName().startswith("llvm.");
403   // Ensure intrinsics have the right parameter attributes.
404   // Note, the IntID field will have been set in Value::setName if this function
405   // name is a valid intrinsic ID.
406   if (IntID)
407     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
408 }
409 
410 Function::~Function() {
411   dropAllReferences();    // After this it is safe to delete instructions.
412 
413   // Delete all of the method arguments and unlink from symbol table...
414   if (Arguments)
415     clearArguments();
416 
417   // Remove the function from the on-the-side GC table.
418   clearGC();
419 }
420 
421 void Function::BuildLazyArguments() const {
422   // Create the arguments vector, all arguments start out unnamed.
423   auto *FT = getFunctionType();
424   if (NumArgs > 0) {
425     Arguments = std::allocator<Argument>().allocate(NumArgs);
426     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
427       Type *ArgTy = FT->getParamType(i);
428       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
429       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
430     }
431   }
432 
433   // Clear the lazy arguments bit.
434   unsigned SDC = getSubclassDataFromValue();
435   SDC &= ~(1 << 0);
436   const_cast<Function*>(this)->setValueSubclassData(SDC);
437   assert(!hasLazyArguments());
438 }
439 
440 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
441   return MutableArrayRef<Argument>(Args, Count);
442 }
443 
444 bool Function::isConstrainedFPIntrinsic() const {
445   switch (getIntrinsicID()) {
446 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
447   case Intrinsic::INTRINSIC:
448 #include "llvm/IR/ConstrainedOps.def"
449     return true;
450 #undef INSTRUCTION
451   default:
452     return false;
453   }
454 }
455 
456 void Function::clearArguments() {
457   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
458     A.setName("");
459     A.~Argument();
460   }
461   std::allocator<Argument>().deallocate(Arguments, NumArgs);
462   Arguments = nullptr;
463 }
464 
465 void Function::stealArgumentListFrom(Function &Src) {
466   assert(isDeclaration() && "Expected no references to current arguments");
467 
468   // Drop the current arguments, if any, and set the lazy argument bit.
469   if (!hasLazyArguments()) {
470     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
471                         [](const Argument &A) { return A.use_empty(); }) &&
472            "Expected arguments to be unused in declaration");
473     clearArguments();
474     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
475   }
476 
477   // Nothing to steal if Src has lazy arguments.
478   if (Src.hasLazyArguments())
479     return;
480 
481   // Steal arguments from Src, and fix the lazy argument bits.
482   assert(arg_size() == Src.arg_size());
483   Arguments = Src.Arguments;
484   Src.Arguments = nullptr;
485   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
486     // FIXME: This does the work of transferNodesFromList inefficiently.
487     SmallString<128> Name;
488     if (A.hasName())
489       Name = A.getName();
490     if (!Name.empty())
491       A.setName("");
492     A.setParent(this);
493     if (!Name.empty())
494       A.setName(Name);
495   }
496 
497   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
498   assert(!hasLazyArguments());
499   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
500 }
501 
502 // dropAllReferences() - This function causes all the subinstructions to "let
503 // go" of all references that they are maintaining.  This allows one to
504 // 'delete' a whole class at a time, even though there may be circular
505 // references... first all references are dropped, and all use counts go to
506 // zero.  Then everything is deleted for real.  Note that no operations are
507 // valid on an object that has "dropped all references", except operator
508 // delete.
509 //
510 void Function::dropAllReferences() {
511   setIsMaterializable(false);
512 
513   for (BasicBlock &BB : *this)
514     BB.dropAllReferences();
515 
516   // Delete all basic blocks. They are now unused, except possibly by
517   // blockaddresses, but BasicBlock's destructor takes care of those.
518   while (!BasicBlocks.empty())
519     BasicBlocks.begin()->eraseFromParent();
520 
521   // Drop uses of any optional data (real or placeholder).
522   if (getNumOperands()) {
523     User::dropAllReferences();
524     setNumHungOffUseOperands(0);
525     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
526   }
527 
528   // Metadata is stored in a side-table.
529   clearMetadata();
530 }
531 
532 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
533   AttributeList PAL = getAttributes();
534   PAL = PAL.addAttribute(getContext(), i, Kind);
535   setAttributes(PAL);
536 }
537 
538 void Function::addAttribute(unsigned i, Attribute Attr) {
539   AttributeList PAL = getAttributes();
540   PAL = PAL.addAttribute(getContext(), i, Attr);
541   setAttributes(PAL);
542 }
543 
544 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
545   AttributeList PAL = getAttributes();
546   PAL = PAL.addAttributes(getContext(), i, Attrs);
547   setAttributes(PAL);
548 }
549 
550 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
551   AttributeList PAL = getAttributes();
552   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
553   setAttributes(PAL);
554 }
555 
556 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
557   AttributeList PAL = getAttributes();
558   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
559   setAttributes(PAL);
560 }
561 
562 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
563   AttributeList PAL = getAttributes();
564   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
565   setAttributes(PAL);
566 }
567 
568 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
569   AttributeList PAL = getAttributes();
570   PAL = PAL.removeAttribute(getContext(), i, Kind);
571   setAttributes(PAL);
572 }
573 
574 void Function::removeAttribute(unsigned i, StringRef Kind) {
575   AttributeList PAL = getAttributes();
576   PAL = PAL.removeAttribute(getContext(), i, Kind);
577   setAttributes(PAL);
578 }
579 
580 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
581   AttributeList PAL = getAttributes();
582   PAL = PAL.removeAttributes(getContext(), i, Attrs);
583   setAttributes(PAL);
584 }
585 
586 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
587   AttributeList PAL = getAttributes();
588   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
589   setAttributes(PAL);
590 }
591 
592 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
593   AttributeList PAL = getAttributes();
594   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
595   setAttributes(PAL);
596 }
597 
598 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
599   AttributeList PAL = getAttributes();
600   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
601   setAttributes(PAL);
602 }
603 
604 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
605   AttributeList PAL = getAttributes();
606   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
607   setAttributes(PAL);
608 }
609 
610 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
611                                                  uint64_t Bytes) {
612   AttributeList PAL = getAttributes();
613   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
614   setAttributes(PAL);
615 }
616 
617 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
618   if (&FPType == &APFloat::IEEEsingle()) {
619     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
620     StringRef Val = Attr.getValueAsString();
621     if (!Val.empty())
622       return parseDenormalFPAttribute(Val);
623 
624     // If the f32 variant of the attribute isn't specified, try to use the
625     // generic one.
626   }
627 
628   Attribute Attr = getFnAttribute("denormal-fp-math");
629   return parseDenormalFPAttribute(Attr.getValueAsString());
630 }
631 
632 const std::string &Function::getGC() const {
633   assert(hasGC() && "Function has no collector");
634   return getContext().getGC(*this);
635 }
636 
637 void Function::setGC(std::string Str) {
638   setValueSubclassDataBit(14, !Str.empty());
639   getContext().setGC(*this, std::move(Str));
640 }
641 
642 void Function::clearGC() {
643   if (!hasGC())
644     return;
645   getContext().deleteGC(*this);
646   setValueSubclassDataBit(14, false);
647 }
648 
649 bool Function::hasStackProtectorFnAttr() const {
650   return hasFnAttribute(Attribute::StackProtect) ||
651          hasFnAttribute(Attribute::StackProtectStrong) ||
652          hasFnAttribute(Attribute::StackProtectReq);
653 }
654 
655 /// Copy all additional attributes (those not needed to create a Function) from
656 /// the Function Src to this one.
657 void Function::copyAttributesFrom(const Function *Src) {
658   GlobalObject::copyAttributesFrom(Src);
659   setCallingConv(Src->getCallingConv());
660   setAttributes(Src->getAttributes());
661   if (Src->hasGC())
662     setGC(Src->getGC());
663   else
664     clearGC();
665   if (Src->hasPersonalityFn())
666     setPersonalityFn(Src->getPersonalityFn());
667   if (Src->hasPrefixData())
668     setPrefixData(Src->getPrefixData());
669   if (Src->hasPrologueData())
670     setPrologueData(Src->getPrologueData());
671 }
672 
673 /// Table of string intrinsic names indexed by enum value.
674 static const char * const IntrinsicNameTable[] = {
675   "not_intrinsic",
676 #define GET_INTRINSIC_NAME_TABLE
677 #include "llvm/IR/IntrinsicImpl.inc"
678 #undef GET_INTRINSIC_NAME_TABLE
679 };
680 
681 /// Table of per-target intrinsic name tables.
682 #define GET_INTRINSIC_TARGET_DATA
683 #include "llvm/IR/IntrinsicImpl.inc"
684 #undef GET_INTRINSIC_TARGET_DATA
685 
686 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
687   return IID > TargetInfos[0].Count;
688 }
689 
690 bool Function::isTargetIntrinsic() const {
691   return isTargetIntrinsic(IntID);
692 }
693 
694 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
695 /// target as \c Name, or the generic table if \c Name is not target specific.
696 ///
697 /// Returns the relevant slice of \c IntrinsicNameTable
698 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
699   assert(Name.startswith("llvm."));
700 
701   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
702   // Drop "llvm." and take the first dotted component. That will be the target
703   // if this is target specific.
704   StringRef Target = Name.drop_front(5).split('.').first;
705   auto It = partition_point(
706       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
707   // We've either found the target or just fall back to the generic set, which
708   // is always first.
709   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
710   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
711 }
712 
713 /// This does the actual lookup of an intrinsic ID which
714 /// matches the given function name.
715 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
716   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
717   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
718   if (Idx == -1)
719     return Intrinsic::not_intrinsic;
720 
721   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
722   // an index into a sub-table.
723   int Adjust = NameTable.data() - IntrinsicNameTable;
724   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
725 
726   // If the intrinsic is not overloaded, require an exact match. If it is
727   // overloaded, require either exact or prefix match.
728   const auto MatchSize = strlen(NameTable[Idx]);
729   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
730   bool IsExactMatch = Name.size() == MatchSize;
731   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
732                                                      : Intrinsic::not_intrinsic;
733 }
734 
735 void Function::recalculateIntrinsicID() {
736   StringRef Name = getName();
737   if (!Name.startswith("llvm.")) {
738     HasLLVMReservedName = false;
739     IntID = Intrinsic::not_intrinsic;
740     return;
741   }
742   HasLLVMReservedName = true;
743   IntID = lookupIntrinsicID(Name);
744 }
745 
746 /// Returns a stable mangling for the type specified for use in the name
747 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
748 /// of named types is simply their name.  Manglings for unnamed types consist
749 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
750 /// combined with the mangling of their component types.  A vararg function
751 /// type will have a suffix of 'vararg'.  Since function types can contain
752 /// other function types, we close a function type mangling with suffix 'f'
753 /// which can't be confused with it's prefix.  This ensures we don't have
754 /// collisions between two unrelated function types. Otherwise, you might
755 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
756 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
757 /// indicating that extra care must be taken to ensure a unique name.
758 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
759   std::string Result;
760   if (PointerType *PTyp = dyn_cast<PointerType>(Ty)) {
761     Result += "p" + utostr(PTyp->getAddressSpace());
762     // Opaque pointer doesn't have pointee type information, so we just mangle
763     // address space for opaque pointer.
764     if (!PTyp->isOpaque())
765       Result += getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
766   } else if (ArrayType *ATyp = dyn_cast<ArrayType>(Ty)) {
767     Result += "a" + utostr(ATyp->getNumElements()) +
768               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
769   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
770     if (!STyp->isLiteral()) {
771       Result += "s_";
772       if (STyp->hasName())
773         Result += STyp->getName();
774       else
775         HasUnnamedType = true;
776     } else {
777       Result += "sl_";
778       for (auto Elem : STyp->elements())
779         Result += getMangledTypeStr(Elem, HasUnnamedType);
780     }
781     // Ensure nested structs are distinguishable.
782     Result += "s";
783   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
784     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
785     for (size_t i = 0; i < FT->getNumParams(); i++)
786       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
787     if (FT->isVarArg())
788       Result += "vararg";
789     // Ensure nested function types are distinguishable.
790     Result += "f";
791   } else if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
792     ElementCount EC = VTy->getElementCount();
793     if (EC.isScalable())
794       Result += "nx";
795     Result += "v" + utostr(EC.getKnownMinValue()) +
796               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
797   } else if (Ty) {
798     switch (Ty->getTypeID()) {
799     default: llvm_unreachable("Unhandled type");
800     case Type::VoidTyID:      Result += "isVoid";   break;
801     case Type::MetadataTyID:  Result += "Metadata"; break;
802     case Type::HalfTyID:      Result += "f16";      break;
803     case Type::BFloatTyID:    Result += "bf16";     break;
804     case Type::FloatTyID:     Result += "f32";      break;
805     case Type::DoubleTyID:    Result += "f64";      break;
806     case Type::X86_FP80TyID:  Result += "f80";      break;
807     case Type::FP128TyID:     Result += "f128";     break;
808     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
809     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
810     case Type::X86_AMXTyID:   Result += "x86amx";   break;
811     case Type::IntegerTyID:
812       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
813       break;
814     }
815   }
816   return Result;
817 }
818 
819 StringRef Intrinsic::getBaseName(ID id) {
820   assert(id < num_intrinsics && "Invalid intrinsic ID!");
821   return IntrinsicNameTable[id];
822 }
823 
824 StringRef Intrinsic::getName(ID id) {
825   assert(id < num_intrinsics && "Invalid intrinsic ID!");
826   assert(!Intrinsic::isOverloaded(id) &&
827          "This version of getName does not support overloading");
828   return getBaseName(id);
829 }
830 
831 static std::string getIntrinsicNameImpl(Intrinsic::ID Id, ArrayRef<Type *> Tys,
832                                         Module *M, FunctionType *FT,
833                                         bool EarlyModuleCheck) {
834 
835   assert(Id < Intrinsic::num_intrinsics && "Invalid intrinsic ID!");
836   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
837          "This version of getName is for overloaded intrinsics only");
838   (void)EarlyModuleCheck;
839   assert((!EarlyModuleCheck || M ||
840           !any_of(Tys, [](Type *T) { return isa<PointerType>(T); })) &&
841          "Intrinsic overloading on pointer types need to provide a Module");
842   bool HasUnnamedType = false;
843   std::string Result(Intrinsic::getBaseName(Id));
844   for (Type *Ty : Tys)
845     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
846   if (HasUnnamedType) {
847     assert(M && "unnamed types need a module");
848     if (!FT)
849       FT = Intrinsic::getType(M->getContext(), Id, Tys);
850     else
851       assert((FT == Intrinsic::getType(M->getContext(), Id, Tys)) &&
852              "Provided FunctionType must match arguments");
853     return M->getUniqueIntrinsicName(Result, Id, FT);
854   }
855   return Result;
856 }
857 
858 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
859                                FunctionType *FT) {
860   assert(M && "We need to have a Module");
861   return getIntrinsicNameImpl(Id, Tys, M, FT, true);
862 }
863 
864 std::string Intrinsic::getNameNoUnnamedTypes(ID Id, ArrayRef<Type *> Tys) {
865   return getIntrinsicNameImpl(Id, Tys, nullptr, nullptr, false);
866 }
867 
868 /// IIT_Info - These are enumerators that describe the entries returned by the
869 /// getIntrinsicInfoTableEntries function.
870 ///
871 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
872 enum IIT_Info {
873   // Common values should be encoded with 0-15.
874   IIT_Done = 0,
875   IIT_I1   = 1,
876   IIT_I8   = 2,
877   IIT_I16  = 3,
878   IIT_I32  = 4,
879   IIT_I64  = 5,
880   IIT_F16  = 6,
881   IIT_F32  = 7,
882   IIT_F64  = 8,
883   IIT_V2   = 9,
884   IIT_V4   = 10,
885   IIT_V8   = 11,
886   IIT_V16  = 12,
887   IIT_V32  = 13,
888   IIT_PTR  = 14,
889   IIT_ARG  = 15,
890 
891   // Values from 16+ are only encodable with the inefficient encoding.
892   IIT_V64  = 16,
893   IIT_MMX  = 17,
894   IIT_TOKEN = 18,
895   IIT_METADATA = 19,
896   IIT_EMPTYSTRUCT = 20,
897   IIT_STRUCT2 = 21,
898   IIT_STRUCT3 = 22,
899   IIT_STRUCT4 = 23,
900   IIT_STRUCT5 = 24,
901   IIT_EXTEND_ARG = 25,
902   IIT_TRUNC_ARG = 26,
903   IIT_ANYPTR = 27,
904   IIT_V1   = 28,
905   IIT_VARARG = 29,
906   IIT_HALF_VEC_ARG = 30,
907   IIT_SAME_VEC_WIDTH_ARG = 31,
908   IIT_PTR_TO_ARG = 32,
909   IIT_PTR_TO_ELT = 33,
910   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
911   IIT_I128 = 35,
912   IIT_V512 = 36,
913   IIT_V1024 = 37,
914   IIT_STRUCT6 = 38,
915   IIT_STRUCT7 = 39,
916   IIT_STRUCT8 = 40,
917   IIT_F128 = 41,
918   IIT_VEC_ELEMENT = 42,
919   IIT_SCALABLE_VEC = 43,
920   IIT_SUBDIVIDE2_ARG = 44,
921   IIT_SUBDIVIDE4_ARG = 45,
922   IIT_VEC_OF_BITCASTS_TO_INT = 46,
923   IIT_V128 = 47,
924   IIT_BF16 = 48,
925   IIT_STRUCT9 = 49,
926   IIT_V256 = 50,
927   IIT_AMX  = 51
928 };
929 
930 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
931                       IIT_Info LastInfo,
932                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
933   using namespace Intrinsic;
934 
935   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
936 
937   IIT_Info Info = IIT_Info(Infos[NextElt++]);
938   unsigned StructElts = 2;
939 
940   switch (Info) {
941   case IIT_Done:
942     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
943     return;
944   case IIT_VARARG:
945     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
946     return;
947   case IIT_MMX:
948     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
949     return;
950   case IIT_AMX:
951     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
952     return;
953   case IIT_TOKEN:
954     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
955     return;
956   case IIT_METADATA:
957     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
958     return;
959   case IIT_F16:
960     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
961     return;
962   case IIT_BF16:
963     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
964     return;
965   case IIT_F32:
966     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
967     return;
968   case IIT_F64:
969     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
970     return;
971   case IIT_F128:
972     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
973     return;
974   case IIT_I1:
975     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
976     return;
977   case IIT_I8:
978     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
979     return;
980   case IIT_I16:
981     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
982     return;
983   case IIT_I32:
984     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
985     return;
986   case IIT_I64:
987     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
988     return;
989   case IIT_I128:
990     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
991     return;
992   case IIT_V1:
993     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
994     DecodeIITType(NextElt, Infos, Info, OutputTable);
995     return;
996   case IIT_V2:
997     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
998     DecodeIITType(NextElt, Infos, Info, OutputTable);
999     return;
1000   case IIT_V4:
1001     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
1002     DecodeIITType(NextElt, Infos, Info, OutputTable);
1003     return;
1004   case IIT_V8:
1005     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
1006     DecodeIITType(NextElt, Infos, Info, OutputTable);
1007     return;
1008   case IIT_V16:
1009     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
1010     DecodeIITType(NextElt, Infos, Info, OutputTable);
1011     return;
1012   case IIT_V32:
1013     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
1014     DecodeIITType(NextElt, Infos, Info, OutputTable);
1015     return;
1016   case IIT_V64:
1017     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
1018     DecodeIITType(NextElt, Infos, Info, OutputTable);
1019     return;
1020   case IIT_V128:
1021     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
1022     DecodeIITType(NextElt, Infos, Info, OutputTable);
1023     return;
1024   case IIT_V256:
1025     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
1026     DecodeIITType(NextElt, Infos, Info, OutputTable);
1027     return;
1028   case IIT_V512:
1029     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
1030     DecodeIITType(NextElt, Infos, Info, OutputTable);
1031     return;
1032   case IIT_V1024:
1033     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
1034     DecodeIITType(NextElt, Infos, Info, OutputTable);
1035     return;
1036   case IIT_PTR:
1037     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
1038     DecodeIITType(NextElt, Infos, Info, OutputTable);
1039     return;
1040   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
1041     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
1042                                              Infos[NextElt++]));
1043     DecodeIITType(NextElt, Infos, Info, OutputTable);
1044     return;
1045   }
1046   case IIT_ARG: {
1047     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1048     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1049     return;
1050   }
1051   case IIT_EXTEND_ARG: {
1052     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1053     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1054                                              ArgInfo));
1055     return;
1056   }
1057   case IIT_TRUNC_ARG: {
1058     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1059     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1060                                              ArgInfo));
1061     return;
1062   }
1063   case IIT_HALF_VEC_ARG: {
1064     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1065     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1066                                              ArgInfo));
1067     return;
1068   }
1069   case IIT_SAME_VEC_WIDTH_ARG: {
1070     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1071     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1072                                              ArgInfo));
1073     return;
1074   }
1075   case IIT_PTR_TO_ARG: {
1076     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1077     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1078                                              ArgInfo));
1079     return;
1080   }
1081   case IIT_PTR_TO_ELT: {
1082     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1083     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1084     return;
1085   }
1086   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1087     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1088     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1089     OutputTable.push_back(
1090         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1091     return;
1092   }
1093   case IIT_EMPTYSTRUCT:
1094     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1095     return;
1096   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1097   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1098   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1099   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1100   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1101   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1102   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1103   case IIT_STRUCT2: {
1104     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1105 
1106     for (unsigned i = 0; i != StructElts; ++i)
1107       DecodeIITType(NextElt, Infos, Info, OutputTable);
1108     return;
1109   }
1110   case IIT_SUBDIVIDE2_ARG: {
1111     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1112     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1113                                              ArgInfo));
1114     return;
1115   }
1116   case IIT_SUBDIVIDE4_ARG: {
1117     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1118     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1119                                              ArgInfo));
1120     return;
1121   }
1122   case IIT_VEC_ELEMENT: {
1123     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1124     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1125                                              ArgInfo));
1126     return;
1127   }
1128   case IIT_SCALABLE_VEC: {
1129     DecodeIITType(NextElt, Infos, Info, OutputTable);
1130     return;
1131   }
1132   case IIT_VEC_OF_BITCASTS_TO_INT: {
1133     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1134     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1135                                              ArgInfo));
1136     return;
1137   }
1138   }
1139   llvm_unreachable("unhandled");
1140 }
1141 
1142 #define GET_INTRINSIC_GENERATOR_GLOBAL
1143 #include "llvm/IR/IntrinsicImpl.inc"
1144 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1145 
1146 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1147                                              SmallVectorImpl<IITDescriptor> &T){
1148   // Check to see if the intrinsic's type was expressible by the table.
1149   unsigned TableVal = IIT_Table[id-1];
1150 
1151   // Decode the TableVal into an array of IITValues.
1152   SmallVector<unsigned char, 8> IITValues;
1153   ArrayRef<unsigned char> IITEntries;
1154   unsigned NextElt = 0;
1155   if ((TableVal >> 31) != 0) {
1156     // This is an offset into the IIT_LongEncodingTable.
1157     IITEntries = IIT_LongEncodingTable;
1158 
1159     // Strip sentinel bit.
1160     NextElt = (TableVal << 1) >> 1;
1161   } else {
1162     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1163     // into a single word in the table itself, decode it now.
1164     do {
1165       IITValues.push_back(TableVal & 0xF);
1166       TableVal >>= 4;
1167     } while (TableVal);
1168 
1169     IITEntries = IITValues;
1170     NextElt = 0;
1171   }
1172 
1173   // Okay, decode the table into the output vector of IITDescriptors.
1174   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1175   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1176     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1177 }
1178 
1179 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1180                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1181   using namespace Intrinsic;
1182 
1183   IITDescriptor D = Infos.front();
1184   Infos = Infos.slice(1);
1185 
1186   switch (D.Kind) {
1187   case IITDescriptor::Void: return Type::getVoidTy(Context);
1188   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1189   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1190   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1191   case IITDescriptor::Token: return Type::getTokenTy(Context);
1192   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1193   case IITDescriptor::Half: return Type::getHalfTy(Context);
1194   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1195   case IITDescriptor::Float: return Type::getFloatTy(Context);
1196   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1197   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1198 
1199   case IITDescriptor::Integer:
1200     return IntegerType::get(Context, D.Integer_Width);
1201   case IITDescriptor::Vector:
1202     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1203                            D.Vector_Width);
1204   case IITDescriptor::Pointer:
1205     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1206                             D.Pointer_AddressSpace);
1207   case IITDescriptor::Struct: {
1208     SmallVector<Type *, 8> Elts;
1209     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1210       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1211     return StructType::get(Context, Elts);
1212   }
1213   case IITDescriptor::Argument:
1214     return Tys[D.getArgumentNumber()];
1215   case IITDescriptor::ExtendArgument: {
1216     Type *Ty = Tys[D.getArgumentNumber()];
1217     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1218       return VectorType::getExtendedElementVectorType(VTy);
1219 
1220     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1221   }
1222   case IITDescriptor::TruncArgument: {
1223     Type *Ty = Tys[D.getArgumentNumber()];
1224     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1225       return VectorType::getTruncatedElementVectorType(VTy);
1226 
1227     IntegerType *ITy = cast<IntegerType>(Ty);
1228     assert(ITy->getBitWidth() % 2 == 0);
1229     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1230   }
1231   case IITDescriptor::Subdivide2Argument:
1232   case IITDescriptor::Subdivide4Argument: {
1233     Type *Ty = Tys[D.getArgumentNumber()];
1234     VectorType *VTy = dyn_cast<VectorType>(Ty);
1235     assert(VTy && "Expected an argument of Vector Type");
1236     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1237     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1238   }
1239   case IITDescriptor::HalfVecArgument:
1240     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1241                                                   Tys[D.getArgumentNumber()]));
1242   case IITDescriptor::SameVecWidthArgument: {
1243     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1244     Type *Ty = Tys[D.getArgumentNumber()];
1245     if (auto *VTy = dyn_cast<VectorType>(Ty))
1246       return VectorType::get(EltTy, VTy->getElementCount());
1247     return EltTy;
1248   }
1249   case IITDescriptor::PtrToArgument: {
1250     Type *Ty = Tys[D.getArgumentNumber()];
1251     return PointerType::getUnqual(Ty);
1252   }
1253   case IITDescriptor::PtrToElt: {
1254     Type *Ty = Tys[D.getArgumentNumber()];
1255     VectorType *VTy = dyn_cast<VectorType>(Ty);
1256     if (!VTy)
1257       llvm_unreachable("Expected an argument of Vector Type");
1258     Type *EltTy = VTy->getElementType();
1259     return PointerType::getUnqual(EltTy);
1260   }
1261   case IITDescriptor::VecElementArgument: {
1262     Type *Ty = Tys[D.getArgumentNumber()];
1263     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1264       return VTy->getElementType();
1265     llvm_unreachable("Expected an argument of Vector Type");
1266   }
1267   case IITDescriptor::VecOfBitcastsToInt: {
1268     Type *Ty = Tys[D.getArgumentNumber()];
1269     VectorType *VTy = dyn_cast<VectorType>(Ty);
1270     assert(VTy && "Expected an argument of Vector Type");
1271     return VectorType::getInteger(VTy);
1272   }
1273   case IITDescriptor::VecOfAnyPtrsToElt:
1274     // Return the overloaded type (which determines the pointers address space)
1275     return Tys[D.getOverloadArgNumber()];
1276   }
1277   llvm_unreachable("unhandled");
1278 }
1279 
1280 FunctionType *Intrinsic::getType(LLVMContext &Context,
1281                                  ID id, ArrayRef<Type*> Tys) {
1282   SmallVector<IITDescriptor, 8> Table;
1283   getIntrinsicInfoTableEntries(id, Table);
1284 
1285   ArrayRef<IITDescriptor> TableRef = Table;
1286   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1287 
1288   SmallVector<Type*, 8> ArgTys;
1289   while (!TableRef.empty())
1290     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1291 
1292   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1293   // If we see void type as the type of the last argument, it is vararg intrinsic
1294   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1295     ArgTys.pop_back();
1296     return FunctionType::get(ResultTy, ArgTys, true);
1297   }
1298   return FunctionType::get(ResultTy, ArgTys, false);
1299 }
1300 
1301 bool Intrinsic::isOverloaded(ID id) {
1302 #define GET_INTRINSIC_OVERLOAD_TABLE
1303 #include "llvm/IR/IntrinsicImpl.inc"
1304 #undef GET_INTRINSIC_OVERLOAD_TABLE
1305 }
1306 
1307 bool Intrinsic::isLeaf(ID id) {
1308   switch (id) {
1309   default:
1310     return true;
1311 
1312   case Intrinsic::experimental_gc_statepoint:
1313   case Intrinsic::experimental_patchpoint_void:
1314   case Intrinsic::experimental_patchpoint_i64:
1315     return false;
1316   }
1317 }
1318 
1319 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1320 #define GET_INTRINSIC_ATTRIBUTES
1321 #include "llvm/IR/IntrinsicImpl.inc"
1322 #undef GET_INTRINSIC_ATTRIBUTES
1323 
1324 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1325   // There can never be multiple globals with the same name of different types,
1326   // because intrinsics must be a specific type.
1327   auto *FT = getType(M->getContext(), id, Tys);
1328   return cast<Function>(
1329       M->getOrInsertFunction(Tys.empty() ? getName(id)
1330                                          : getName(id, Tys, M, FT),
1331                              getType(M->getContext(), id, Tys))
1332           .getCallee());
1333 }
1334 
1335 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1336 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1337 #include "llvm/IR/IntrinsicImpl.inc"
1338 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1339 
1340 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1341 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1342 #include "llvm/IR/IntrinsicImpl.inc"
1343 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1344 
1345 using DeferredIntrinsicMatchPair =
1346     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1347 
1348 static bool matchIntrinsicType(
1349     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1350     SmallVectorImpl<Type *> &ArgTys,
1351     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1352     bool IsDeferredCheck) {
1353   using namespace Intrinsic;
1354 
1355   // If we ran out of descriptors, there are too many arguments.
1356   if (Infos.empty()) return true;
1357 
1358   // Do this before slicing off the 'front' part
1359   auto InfosRef = Infos;
1360   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1361     DeferredChecks.emplace_back(T, InfosRef);
1362     return false;
1363   };
1364 
1365   IITDescriptor D = Infos.front();
1366   Infos = Infos.slice(1);
1367 
1368   switch (D.Kind) {
1369     case IITDescriptor::Void: return !Ty->isVoidTy();
1370     case IITDescriptor::VarArg: return true;
1371     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1372     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1373     case IITDescriptor::Token: return !Ty->isTokenTy();
1374     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1375     case IITDescriptor::Half: return !Ty->isHalfTy();
1376     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1377     case IITDescriptor::Float: return !Ty->isFloatTy();
1378     case IITDescriptor::Double: return !Ty->isDoubleTy();
1379     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1380     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1381     case IITDescriptor::Vector: {
1382       VectorType *VT = dyn_cast<VectorType>(Ty);
1383       return !VT || VT->getElementCount() != D.Vector_Width ||
1384              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1385                                 DeferredChecks, IsDeferredCheck);
1386     }
1387     case IITDescriptor::Pointer: {
1388       PointerType *PT = dyn_cast<PointerType>(Ty);
1389       if (!PT || PT->getAddressSpace() != D.Pointer_AddressSpace)
1390         return true;
1391       if (!PT->isOpaque())
1392         return matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1393                                   DeferredChecks, IsDeferredCheck);
1394       // If typed pointers are supported, do not allow using opaque pointer in
1395       // place of fixed pointer type. This would make the intrinsic signature
1396       // non-unique.
1397       if (Ty->getContext().supportsTypedPointers())
1398         return true;
1399       // Consume IIT descriptors relating to the pointer element type.
1400       while (Infos.front().Kind == IITDescriptor::Pointer)
1401         Infos = Infos.slice(1);
1402       Infos = Infos.slice(1);
1403       return false;
1404     }
1405 
1406     case IITDescriptor::Struct: {
1407       StructType *ST = dyn_cast<StructType>(Ty);
1408       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1409         return true;
1410 
1411       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1412         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1413                                DeferredChecks, IsDeferredCheck))
1414           return true;
1415       return false;
1416     }
1417 
1418     case IITDescriptor::Argument:
1419       // If this is the second occurrence of an argument,
1420       // verify that the later instance matches the previous instance.
1421       if (D.getArgumentNumber() < ArgTys.size())
1422         return Ty != ArgTys[D.getArgumentNumber()];
1423 
1424       if (D.getArgumentNumber() > ArgTys.size() ||
1425           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1426         return IsDeferredCheck || DeferCheck(Ty);
1427 
1428       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1429              "Table consistency error");
1430       ArgTys.push_back(Ty);
1431 
1432       switch (D.getArgumentKind()) {
1433         case IITDescriptor::AK_Any:        return false; // Success
1434         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1435         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1436         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1437         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1438         default:                           break;
1439       }
1440       llvm_unreachable("all argument kinds not covered");
1441 
1442     case IITDescriptor::ExtendArgument: {
1443       // If this is a forward reference, defer the check for later.
1444       if (D.getArgumentNumber() >= ArgTys.size())
1445         return IsDeferredCheck || DeferCheck(Ty);
1446 
1447       Type *NewTy = ArgTys[D.getArgumentNumber()];
1448       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1449         NewTy = VectorType::getExtendedElementVectorType(VTy);
1450       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1451         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1452       else
1453         return true;
1454 
1455       return Ty != NewTy;
1456     }
1457     case IITDescriptor::TruncArgument: {
1458       // If this is a forward reference, defer the check for later.
1459       if (D.getArgumentNumber() >= ArgTys.size())
1460         return IsDeferredCheck || DeferCheck(Ty);
1461 
1462       Type *NewTy = ArgTys[D.getArgumentNumber()];
1463       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1464         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1465       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1466         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1467       else
1468         return true;
1469 
1470       return Ty != NewTy;
1471     }
1472     case IITDescriptor::HalfVecArgument:
1473       // If this is a forward reference, defer the check for later.
1474       if (D.getArgumentNumber() >= ArgTys.size())
1475         return IsDeferredCheck || DeferCheck(Ty);
1476       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1477              VectorType::getHalfElementsVectorType(
1478                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1479     case IITDescriptor::SameVecWidthArgument: {
1480       if (D.getArgumentNumber() >= ArgTys.size()) {
1481         // Defer check and subsequent check for the vector element type.
1482         Infos = Infos.slice(1);
1483         return IsDeferredCheck || DeferCheck(Ty);
1484       }
1485       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1486       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1487       // Both must be vectors of the same number of elements or neither.
1488       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1489         return true;
1490       Type *EltTy = Ty;
1491       if (ThisArgType) {
1492         if (ReferenceType->getElementCount() !=
1493             ThisArgType->getElementCount())
1494           return true;
1495         EltTy = ThisArgType->getElementType();
1496       }
1497       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1498                                 IsDeferredCheck);
1499     }
1500     case IITDescriptor::PtrToArgument: {
1501       if (D.getArgumentNumber() >= ArgTys.size())
1502         return IsDeferredCheck || DeferCheck(Ty);
1503       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1504       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1505       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1506     }
1507     case IITDescriptor::PtrToElt: {
1508       if (D.getArgumentNumber() >= ArgTys.size())
1509         return IsDeferredCheck || DeferCheck(Ty);
1510       VectorType * ReferenceType =
1511         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1512       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1513 
1514       if (!ThisArgType || !ReferenceType)
1515         return true;
1516       if (!ThisArgType->isOpaque())
1517         return ThisArgType->getElementType() != ReferenceType->getElementType();
1518       // If typed pointers are supported, do not allow opaque pointer to ensure
1519       // uniqueness.
1520       return Ty->getContext().supportsTypedPointers();
1521     }
1522     case IITDescriptor::VecOfAnyPtrsToElt: {
1523       unsigned RefArgNumber = D.getRefArgNumber();
1524       if (RefArgNumber >= ArgTys.size()) {
1525         if (IsDeferredCheck)
1526           return true;
1527         // If forward referencing, already add the pointer-vector type and
1528         // defer the checks for later.
1529         ArgTys.push_back(Ty);
1530         return DeferCheck(Ty);
1531       }
1532 
1533       if (!IsDeferredCheck){
1534         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1535                "Table consistency error");
1536         ArgTys.push_back(Ty);
1537       }
1538 
1539       // Verify the overloaded type "matches" the Ref type.
1540       // i.e. Ty is a vector with the same width as Ref.
1541       // Composed of pointers to the same element type as Ref.
1542       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1543       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1544       if (!ThisArgVecTy || !ReferenceType ||
1545           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1546         return true;
1547       PointerType *ThisArgEltTy =
1548           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1549       if (!ThisArgEltTy)
1550         return true;
1551       return !ThisArgEltTy->isOpaqueOrPointeeTypeMatches(
1552           ReferenceType->getElementType());
1553     }
1554     case IITDescriptor::VecElementArgument: {
1555       if (D.getArgumentNumber() >= ArgTys.size())
1556         return IsDeferredCheck ? true : DeferCheck(Ty);
1557       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1558       return !ReferenceType || Ty != ReferenceType->getElementType();
1559     }
1560     case IITDescriptor::Subdivide2Argument:
1561     case IITDescriptor::Subdivide4Argument: {
1562       // If this is a forward reference, defer the check for later.
1563       if (D.getArgumentNumber() >= ArgTys.size())
1564         return IsDeferredCheck || DeferCheck(Ty);
1565 
1566       Type *NewTy = ArgTys[D.getArgumentNumber()];
1567       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1568         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1569         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1570         return Ty != NewTy;
1571       }
1572       return true;
1573     }
1574     case IITDescriptor::VecOfBitcastsToInt: {
1575       if (D.getArgumentNumber() >= ArgTys.size())
1576         return IsDeferredCheck || DeferCheck(Ty);
1577       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1578       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1579       if (!ThisArgVecTy || !ReferenceType)
1580         return true;
1581       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1582     }
1583   }
1584   llvm_unreachable("unhandled");
1585 }
1586 
1587 Intrinsic::MatchIntrinsicTypesResult
1588 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1589                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1590                                    SmallVectorImpl<Type *> &ArgTys) {
1591   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1592   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1593                          false))
1594     return MatchIntrinsicTypes_NoMatchRet;
1595 
1596   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1597 
1598   for (auto Ty : FTy->params())
1599     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1600       return MatchIntrinsicTypes_NoMatchArg;
1601 
1602   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1603     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1604     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1605                            true))
1606       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1607                                          : MatchIntrinsicTypes_NoMatchArg;
1608   }
1609 
1610   return MatchIntrinsicTypes_Match;
1611 }
1612 
1613 bool
1614 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1615                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1616   // If there are no descriptors left, then it can't be a vararg.
1617   if (Infos.empty())
1618     return isVarArg;
1619 
1620   // There should be only one descriptor remaining at this point.
1621   if (Infos.size() != 1)
1622     return true;
1623 
1624   // Check and verify the descriptor.
1625   IITDescriptor D = Infos.front();
1626   Infos = Infos.slice(1);
1627   if (D.Kind == IITDescriptor::VarArg)
1628     return !isVarArg;
1629 
1630   return true;
1631 }
1632 
1633 bool Intrinsic::getIntrinsicSignature(Function *F,
1634                                       SmallVectorImpl<Type *> &ArgTys) {
1635   Intrinsic::ID ID = F->getIntrinsicID();
1636   if (!ID)
1637     return false;
1638 
1639   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1640   getIntrinsicInfoTableEntries(ID, Table);
1641   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1642 
1643   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1644                                          ArgTys) !=
1645       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1646     return false;
1647   }
1648   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1649                                       TableRef))
1650     return false;
1651   return true;
1652 }
1653 
1654 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1655   SmallVector<Type *, 4> ArgTys;
1656   if (!getIntrinsicSignature(F, ArgTys))
1657     return None;
1658 
1659   Intrinsic::ID ID = F->getIntrinsicID();
1660   StringRef Name = F->getName();
1661   std::string WantedName =
1662       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType());
1663   if (Name == WantedName)
1664     return None;
1665 
1666   Function *NewDecl = [&] {
1667     if (auto *ExistingGV = F->getParent()->getNamedValue(WantedName)) {
1668       if (auto *ExistingF = dyn_cast<Function>(ExistingGV))
1669         if (ExistingF->getFunctionType() == F->getFunctionType())
1670           return ExistingF;
1671 
1672       // The name already exists, but is not a function or has the wrong
1673       // prototype. Make place for the new one by renaming the old version.
1674       // Either this old version will be removed later on or the module is
1675       // invalid and we'll get an error.
1676       ExistingGV->setName(WantedName + ".renamed");
1677     }
1678     return Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1679   }();
1680 
1681   NewDecl->setCallingConv(F->getCallingConv());
1682   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1683          "Shouldn't change the signature");
1684   return NewDecl;
1685 }
1686 
1687 /// hasAddressTaken - returns true if there are any uses of this function
1688 /// other than direct calls or invokes to it. Optionally ignores callback
1689 /// uses, assume like pointer annotation calls, and references in llvm.used
1690 /// and llvm.compiler.used variables.
1691 bool Function::hasAddressTaken(const User **PutOffender,
1692                                bool IgnoreCallbackUses,
1693                                bool IgnoreAssumeLikeCalls,
1694                                bool IgnoreLLVMUsed) const {
1695   for (const Use &U : uses()) {
1696     const User *FU = U.getUser();
1697     if (isa<BlockAddress>(FU))
1698       continue;
1699 
1700     if (IgnoreCallbackUses) {
1701       AbstractCallSite ACS(&U);
1702       if (ACS && ACS.isCallbackCall())
1703         continue;
1704     }
1705 
1706     const auto *Call = dyn_cast<CallBase>(FU);
1707     if (!Call) {
1708       if (IgnoreAssumeLikeCalls) {
1709         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1710           if (FI->isCast() && !FI->user_empty() &&
1711               llvm::all_of(FU->users(), [](const User *U) {
1712                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1713                   return I->isAssumeLikeIntrinsic();
1714                 return false;
1715               }))
1716             continue;
1717         }
1718       }
1719       if (IgnoreLLVMUsed && !FU->user_empty()) {
1720         const User *FUU = FU;
1721         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1722             !FU->user_begin()->user_empty())
1723           FUU = *FU->user_begin();
1724         if (llvm::all_of(FUU->users(), [](const User *U) {
1725               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1726                 return GV->hasName() &&
1727                        (GV->getName().equals("llvm.compiler.used") ||
1728                         GV->getName().equals("llvm.used"));
1729               return false;
1730             }))
1731           continue;
1732       }
1733       if (PutOffender)
1734         *PutOffender = FU;
1735       return true;
1736     }
1737     if (!Call->isCallee(&U)) {
1738       if (PutOffender)
1739         *PutOffender = FU;
1740       return true;
1741     }
1742   }
1743   return false;
1744 }
1745 
1746 bool Function::isDefTriviallyDead() const {
1747   // Check the linkage
1748   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1749       !hasAvailableExternallyLinkage())
1750     return false;
1751 
1752   // Check if the function is used by anything other than a blockaddress.
1753   for (const User *U : users())
1754     if (!isa<BlockAddress>(U))
1755       return false;
1756 
1757   return true;
1758 }
1759 
1760 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1761 /// setjmp or other function that gcc recognizes as "returning twice".
1762 bool Function::callsFunctionThatReturnsTwice() const {
1763   for (const Instruction &I : instructions(this))
1764     if (const auto *Call = dyn_cast<CallBase>(&I))
1765       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1766         return true;
1767 
1768   return false;
1769 }
1770 
1771 Constant *Function::getPersonalityFn() const {
1772   assert(hasPersonalityFn() && getNumOperands());
1773   return cast<Constant>(Op<0>());
1774 }
1775 
1776 void Function::setPersonalityFn(Constant *Fn) {
1777   setHungoffOperand<0>(Fn);
1778   setValueSubclassDataBit(3, Fn != nullptr);
1779 }
1780 
1781 Constant *Function::getPrefixData() const {
1782   assert(hasPrefixData() && getNumOperands());
1783   return cast<Constant>(Op<1>());
1784 }
1785 
1786 void Function::setPrefixData(Constant *PrefixData) {
1787   setHungoffOperand<1>(PrefixData);
1788   setValueSubclassDataBit(1, PrefixData != nullptr);
1789 }
1790 
1791 Constant *Function::getPrologueData() const {
1792   assert(hasPrologueData() && getNumOperands());
1793   return cast<Constant>(Op<2>());
1794 }
1795 
1796 void Function::setPrologueData(Constant *PrologueData) {
1797   setHungoffOperand<2>(PrologueData);
1798   setValueSubclassDataBit(2, PrologueData != nullptr);
1799 }
1800 
1801 void Function::allocHungoffUselist() {
1802   // If we've already allocated a uselist, stop here.
1803   if (getNumOperands())
1804     return;
1805 
1806   allocHungoffUses(3, /*IsPhi=*/ false);
1807   setNumHungOffUseOperands(3);
1808 
1809   // Initialize the uselist with placeholder operands to allow traversal.
1810   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1811   Op<0>().set(CPN);
1812   Op<1>().set(CPN);
1813   Op<2>().set(CPN);
1814 }
1815 
1816 template <int Idx>
1817 void Function::setHungoffOperand(Constant *C) {
1818   if (C) {
1819     allocHungoffUselist();
1820     Op<Idx>().set(C);
1821   } else if (getNumOperands()) {
1822     Op<Idx>().set(
1823         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1824   }
1825 }
1826 
1827 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1828   assert(Bit < 16 && "SubclassData contains only 16 bits");
1829   if (On)
1830     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1831   else
1832     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1833 }
1834 
1835 void Function::setEntryCount(ProfileCount Count,
1836                              const DenseSet<GlobalValue::GUID> *S) {
1837   assert(Count.hasValue());
1838 #if !defined(NDEBUG)
1839   auto PrevCount = getEntryCount();
1840   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1841 #endif
1842 
1843   auto ImportGUIDs = getImportGUIDs();
1844   if (S == nullptr && ImportGUIDs.size())
1845     S = &ImportGUIDs;
1846 
1847   MDBuilder MDB(getContext());
1848   setMetadata(
1849       LLVMContext::MD_prof,
1850       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1851 }
1852 
1853 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1854                              const DenseSet<GlobalValue::GUID> *Imports) {
1855   setEntryCount(ProfileCount(Count, Type), Imports);
1856 }
1857 
1858 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1859   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1860   if (MD && MD->getOperand(0))
1861     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1862       if (MDS->getString().equals("function_entry_count")) {
1863         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1864         uint64_t Count = CI->getValue().getZExtValue();
1865         // A value of -1 is used for SamplePGO when there were no samples.
1866         // Treat this the same as unknown.
1867         if (Count == (uint64_t)-1)
1868           return ProfileCount::getInvalid();
1869         return ProfileCount(Count, PCT_Real);
1870       } else if (AllowSynthetic &&
1871                  MDS->getString().equals("synthetic_function_entry_count")) {
1872         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1873         uint64_t Count = CI->getValue().getZExtValue();
1874         return ProfileCount(Count, PCT_Synthetic);
1875       }
1876     }
1877   return ProfileCount::getInvalid();
1878 }
1879 
1880 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1881   DenseSet<GlobalValue::GUID> R;
1882   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1883     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1884       if (MDS->getString().equals("function_entry_count"))
1885         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1886           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1887                        ->getValue()
1888                        .getZExtValue());
1889   return R;
1890 }
1891 
1892 void Function::setSectionPrefix(StringRef Prefix) {
1893   MDBuilder MDB(getContext());
1894   setMetadata(LLVMContext::MD_section_prefix,
1895               MDB.createFunctionSectionPrefix(Prefix));
1896 }
1897 
1898 Optional<StringRef> Function::getSectionPrefix() const {
1899   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1900     assert(cast<MDString>(MD->getOperand(0))
1901                ->getString()
1902                .equals("function_section_prefix") &&
1903            "Metadata not match");
1904     return cast<MDString>(MD->getOperand(1))->getString();
1905   }
1906   return None;
1907 }
1908 
1909 bool Function::nullPointerIsDefined() const {
1910   return hasFnAttribute(Attribute::NullPointerIsValid);
1911 }
1912 
1913 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1914   if (F && F->nullPointerIsDefined())
1915     return true;
1916 
1917   if (AS != 0)
1918     return true;
1919 
1920   return false;
1921 }
1922