1 //===-- Function.cpp - Implement the Global object classes ----------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the Function class for the IR library. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/IR/Function.h" 15 #include "LLVMContextImpl.h" 16 #include "SymbolTableListTraitsImpl.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/CodeGen/ValueTypes.h" 21 #include "llvm/IR/CallSite.h" 22 #include "llvm/IR/DerivedTypes.h" 23 #include "llvm/IR/InstIterator.h" 24 #include "llvm/IR/IntrinsicInst.h" 25 #include "llvm/IR/LLVMContext.h" 26 #include "llvm/IR/Module.h" 27 #include "llvm/Support/ManagedStatic.h" 28 #include "llvm/Support/RWMutex.h" 29 #include "llvm/Support/StringPool.h" 30 #include "llvm/Support/Threading.h" 31 using namespace llvm; 32 33 // Explicit instantiations of SymbolTableListTraits since some of the methods 34 // are not in the public header file... 35 template class llvm::SymbolTableListTraits<Argument, Function>; 36 template class llvm::SymbolTableListTraits<BasicBlock, Function>; 37 38 //===----------------------------------------------------------------------===// 39 // Argument Implementation 40 //===----------------------------------------------------------------------===// 41 42 void Argument::anchor() { } 43 44 Argument::Argument(Type *Ty, const Twine &Name, Function *Par) 45 : Value(Ty, Value::ArgumentVal) { 46 Parent = nullptr; 47 48 if (Par) 49 Par->getArgumentList().push_back(this); 50 setName(Name); 51 } 52 53 void Argument::setParent(Function *parent) { 54 Parent = parent; 55 } 56 57 /// getArgNo - Return the index of this formal argument in its containing 58 /// function. For example in "void foo(int a, float b)" a is 0 and b is 1. 59 unsigned Argument::getArgNo() const { 60 const Function *F = getParent(); 61 assert(F && "Argument is not in a function"); 62 63 Function::const_arg_iterator AI = F->arg_begin(); 64 unsigned ArgIdx = 0; 65 for (; &*AI != this; ++AI) 66 ++ArgIdx; 67 68 return ArgIdx; 69 } 70 71 /// hasNonNullAttr - Return true if this argument has the nonnull attribute on 72 /// it in its containing function. Also returns true if at least one byte is 73 /// known to be dereferenceable and the pointer is in addrspace(0). 74 bool Argument::hasNonNullAttr() const { 75 if (!getType()->isPointerTy()) return false; 76 if (getParent()->getAttributes(). 77 hasAttribute(getArgNo()+1, Attribute::NonNull)) 78 return true; 79 else if (getDereferenceableBytes() > 0 && 80 getType()->getPointerAddressSpace() == 0) 81 return true; 82 return false; 83 } 84 85 /// hasByValAttr - Return true if this argument has the byval attribute on it 86 /// in its containing function. 87 bool Argument::hasByValAttr() const { 88 if (!getType()->isPointerTy()) return false; 89 return getParent()->getAttributes(). 90 hasAttribute(getArgNo()+1, Attribute::ByVal); 91 } 92 93 /// \brief Return true if this argument has the inalloca attribute on it in 94 /// its containing function. 95 bool Argument::hasInAllocaAttr() const { 96 if (!getType()->isPointerTy()) return false; 97 return getParent()->getAttributes(). 98 hasAttribute(getArgNo()+1, Attribute::InAlloca); 99 } 100 101 bool Argument::hasByValOrInAllocaAttr() const { 102 if (!getType()->isPointerTy()) return false; 103 AttributeSet Attrs = getParent()->getAttributes(); 104 return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) || 105 Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca); 106 } 107 108 unsigned Argument::getParamAlignment() const { 109 assert(getType()->isPointerTy() && "Only pointers have alignments"); 110 return getParent()->getParamAlignment(getArgNo()+1); 111 112 } 113 114 uint64_t Argument::getDereferenceableBytes() const { 115 assert(getType()->isPointerTy() && 116 "Only pointers have dereferenceable bytes"); 117 return getParent()->getDereferenceableBytes(getArgNo()+1); 118 } 119 120 uint64_t Argument::getDereferenceableOrNullBytes() const { 121 assert(getType()->isPointerTy() && 122 "Only pointers have dereferenceable bytes"); 123 return getParent()->getDereferenceableOrNullBytes(getArgNo()+1); 124 } 125 126 /// hasNestAttr - Return true if this argument has the nest attribute on 127 /// it in its containing function. 128 bool Argument::hasNestAttr() const { 129 if (!getType()->isPointerTy()) return false; 130 return getParent()->getAttributes(). 131 hasAttribute(getArgNo()+1, Attribute::Nest); 132 } 133 134 /// hasNoAliasAttr - Return true if this argument has the noalias attribute on 135 /// it in its containing function. 136 bool Argument::hasNoAliasAttr() const { 137 if (!getType()->isPointerTy()) return false; 138 return getParent()->getAttributes(). 139 hasAttribute(getArgNo()+1, Attribute::NoAlias); 140 } 141 142 /// hasNoCaptureAttr - Return true if this argument has the nocapture attribute 143 /// on it in its containing function. 144 bool Argument::hasNoCaptureAttr() const { 145 if (!getType()->isPointerTy()) return false; 146 return getParent()->getAttributes(). 147 hasAttribute(getArgNo()+1, Attribute::NoCapture); 148 } 149 150 /// hasSRetAttr - Return true if this argument has the sret attribute on 151 /// it in its containing function. 152 bool Argument::hasStructRetAttr() const { 153 if (!getType()->isPointerTy()) return false; 154 if (this != getParent()->arg_begin()) 155 return false; // StructRet param must be first param 156 return getParent()->getAttributes(). 157 hasAttribute(1, Attribute::StructRet); 158 } 159 160 /// hasReturnedAttr - Return true if this argument has the returned attribute on 161 /// it in its containing function. 162 bool Argument::hasReturnedAttr() const { 163 return getParent()->getAttributes(). 164 hasAttribute(getArgNo()+1, Attribute::Returned); 165 } 166 167 /// hasZExtAttr - Return true if this argument has the zext attribute on it in 168 /// its containing function. 169 bool Argument::hasZExtAttr() const { 170 return getParent()->getAttributes(). 171 hasAttribute(getArgNo()+1, Attribute::ZExt); 172 } 173 174 /// hasSExtAttr Return true if this argument has the sext attribute on it in its 175 /// containing function. 176 bool Argument::hasSExtAttr() const { 177 return getParent()->getAttributes(). 178 hasAttribute(getArgNo()+1, Attribute::SExt); 179 } 180 181 /// Return true if this argument has the readonly or readnone attribute on it 182 /// in its containing function. 183 bool Argument::onlyReadsMemory() const { 184 return getParent()->getAttributes(). 185 hasAttribute(getArgNo()+1, Attribute::ReadOnly) || 186 getParent()->getAttributes(). 187 hasAttribute(getArgNo()+1, Attribute::ReadNone); 188 } 189 190 /// addAttr - Add attributes to an argument. 191 void Argument::addAttr(AttributeSet AS) { 192 assert(AS.getNumSlots() <= 1 && 193 "Trying to add more than one attribute set to an argument!"); 194 AttrBuilder B(AS, AS.getSlotIndex(0)); 195 getParent()->addAttributes(getArgNo() + 1, 196 AttributeSet::get(Parent->getContext(), 197 getArgNo() + 1, B)); 198 } 199 200 /// removeAttr - Remove attributes from an argument. 201 void Argument::removeAttr(AttributeSet AS) { 202 assert(AS.getNumSlots() <= 1 && 203 "Trying to remove more than one attribute set from an argument!"); 204 AttrBuilder B(AS, AS.getSlotIndex(0)); 205 getParent()->removeAttributes(getArgNo() + 1, 206 AttributeSet::get(Parent->getContext(), 207 getArgNo() + 1, B)); 208 } 209 210 //===----------------------------------------------------------------------===// 211 // Helper Methods in Function 212 //===----------------------------------------------------------------------===// 213 214 bool Function::isMaterializable() const { 215 return getGlobalObjectSubClassData() & IsMaterializableBit; 216 } 217 218 void Function::setIsMaterializable(bool V) { 219 setGlobalObjectBit(IsMaterializableBit, V); 220 } 221 222 LLVMContext &Function::getContext() const { 223 return getType()->getContext(); 224 } 225 226 FunctionType *Function::getFunctionType() const { return Ty; } 227 228 bool Function::isVarArg() const { 229 return getFunctionType()->isVarArg(); 230 } 231 232 Type *Function::getReturnType() const { 233 return getFunctionType()->getReturnType(); 234 } 235 236 void Function::removeFromParent() { 237 getParent()->getFunctionList().remove(this); 238 } 239 240 void Function::eraseFromParent() { 241 getParent()->getFunctionList().erase(this); 242 } 243 244 //===----------------------------------------------------------------------===// 245 // Function Implementation 246 //===----------------------------------------------------------------------===// 247 248 Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name, 249 Module *ParentModule) 250 : GlobalObject(PointerType::getUnqual(Ty), Value::FunctionVal, nullptr, 0, 251 Linkage, name), 252 Ty(Ty) { 253 assert(FunctionType::isValidReturnType(getReturnType()) && 254 "invalid return type"); 255 setGlobalObjectSubClassData(0); 256 SymTab = new ValueSymbolTable(); 257 258 // If the function has arguments, mark them as lazily built. 259 if (Ty->getNumParams()) 260 setValueSubclassData(1); // Set the "has lazy arguments" bit. 261 262 if (ParentModule) 263 ParentModule->getFunctionList().push_back(this); 264 265 // Ensure intrinsics have the right parameter attributes. 266 if (unsigned IID = getIntrinsicID()) 267 setAttributes(Intrinsic::getAttributes(getContext(), Intrinsic::ID(IID))); 268 269 } 270 271 Function::~Function() { 272 dropAllReferences(); // After this it is safe to delete instructions. 273 274 // Delete all of the method arguments and unlink from symbol table... 275 ArgumentList.clear(); 276 delete SymTab; 277 278 // Remove the function from the on-the-side GC table. 279 clearGC(); 280 281 // Remove the intrinsicID from the Cache. 282 if (getValueName() && isIntrinsic()) 283 getContext().pImpl->IntrinsicIDCache.erase(this); 284 } 285 286 void Function::BuildLazyArguments() const { 287 // Create the arguments vector, all arguments start out unnamed. 288 FunctionType *FT = getFunctionType(); 289 for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) { 290 assert(!FT->getParamType(i)->isVoidTy() && 291 "Cannot have void typed arguments!"); 292 ArgumentList.push_back(new Argument(FT->getParamType(i))); 293 } 294 295 // Clear the lazy arguments bit. 296 unsigned SDC = getSubclassDataFromValue(); 297 const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0)); 298 } 299 300 size_t Function::arg_size() const { 301 return getFunctionType()->getNumParams(); 302 } 303 bool Function::arg_empty() const { 304 return getFunctionType()->getNumParams() == 0; 305 } 306 307 void Function::setParent(Module *parent) { 308 Parent = parent; 309 } 310 311 // dropAllReferences() - This function causes all the subinstructions to "let 312 // go" of all references that they are maintaining. This allows one to 313 // 'delete' a whole class at a time, even though there may be circular 314 // references... first all references are dropped, and all use counts go to 315 // zero. Then everything is deleted for real. Note that no operations are 316 // valid on an object that has "dropped all references", except operator 317 // delete. 318 // 319 void Function::dropAllReferences() { 320 setIsMaterializable(false); 321 322 for (iterator I = begin(), E = end(); I != E; ++I) 323 I->dropAllReferences(); 324 325 // Delete all basic blocks. They are now unused, except possibly by 326 // blockaddresses, but BasicBlock's destructor takes care of those. 327 while (!BasicBlocks.empty()) 328 BasicBlocks.begin()->eraseFromParent(); 329 330 // Prefix and prologue data are stored in a side table. 331 setPrefixData(nullptr); 332 setPrologueData(nullptr); 333 334 // Metadata is stored in a side-table. 335 clearMetadata(); 336 } 337 338 void Function::addAttribute(unsigned i, Attribute::AttrKind attr) { 339 AttributeSet PAL = getAttributes(); 340 PAL = PAL.addAttribute(getContext(), i, attr); 341 setAttributes(PAL); 342 } 343 344 void Function::addAttributes(unsigned i, AttributeSet attrs) { 345 AttributeSet PAL = getAttributes(); 346 PAL = PAL.addAttributes(getContext(), i, attrs); 347 setAttributes(PAL); 348 } 349 350 void Function::removeAttributes(unsigned i, AttributeSet attrs) { 351 AttributeSet PAL = getAttributes(); 352 PAL = PAL.removeAttributes(getContext(), i, attrs); 353 setAttributes(PAL); 354 } 355 356 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) { 357 AttributeSet PAL = getAttributes(); 358 PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes); 359 setAttributes(PAL); 360 } 361 362 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) { 363 AttributeSet PAL = getAttributes(); 364 PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes); 365 setAttributes(PAL); 366 } 367 368 // Maintain the GC name for each function in an on-the-side table. This saves 369 // allocating an additional word in Function for programs which do not use GC 370 // (i.e., most programs) at the cost of increased overhead for clients which do 371 // use GC. 372 static DenseMap<const Function*,PooledStringPtr> *GCNames; 373 static StringPool *GCNamePool; 374 static ManagedStatic<sys::SmartRWMutex<true> > GCLock; 375 376 bool Function::hasGC() const { 377 sys::SmartScopedReader<true> Reader(*GCLock); 378 return GCNames && GCNames->count(this); 379 } 380 381 const char *Function::getGC() const { 382 assert(hasGC() && "Function has no collector"); 383 sys::SmartScopedReader<true> Reader(*GCLock); 384 return *(*GCNames)[this]; 385 } 386 387 void Function::setGC(const char *Str) { 388 sys::SmartScopedWriter<true> Writer(*GCLock); 389 if (!GCNamePool) 390 GCNamePool = new StringPool(); 391 if (!GCNames) 392 GCNames = new DenseMap<const Function*,PooledStringPtr>(); 393 (*GCNames)[this] = GCNamePool->intern(Str); 394 } 395 396 void Function::clearGC() { 397 sys::SmartScopedWriter<true> Writer(*GCLock); 398 if (GCNames) { 399 GCNames->erase(this); 400 if (GCNames->empty()) { 401 delete GCNames; 402 GCNames = nullptr; 403 if (GCNamePool->empty()) { 404 delete GCNamePool; 405 GCNamePool = nullptr; 406 } 407 } 408 } 409 } 410 411 /// copyAttributesFrom - copy all additional attributes (those not needed to 412 /// create a Function) from the Function Src to this one. 413 void Function::copyAttributesFrom(const GlobalValue *Src) { 414 assert(isa<Function>(Src) && "Expected a Function!"); 415 GlobalObject::copyAttributesFrom(Src); 416 const Function *SrcF = cast<Function>(Src); 417 setCallingConv(SrcF->getCallingConv()); 418 setAttributes(SrcF->getAttributes()); 419 if (SrcF->hasGC()) 420 setGC(SrcF->getGC()); 421 else 422 clearGC(); 423 if (SrcF->hasPrefixData()) 424 setPrefixData(SrcF->getPrefixData()); 425 else 426 setPrefixData(nullptr); 427 if (SrcF->hasPrologueData()) 428 setPrologueData(SrcF->getPrologueData()); 429 else 430 setPrologueData(nullptr); 431 } 432 433 /// getIntrinsicID - This method returns the ID number of the specified 434 /// function, or Intrinsic::not_intrinsic if the function is not an 435 /// intrinsic, or if the pointer is null. This value is always defined to be 436 /// zero to allow easy checking for whether a function is intrinsic or not. The 437 /// particular intrinsic functions which correspond to this value are defined in 438 /// llvm/Intrinsics.h. Results are cached in the LLVM context, subsequent 439 /// requests for the same ID return results much faster from the cache. 440 /// 441 unsigned Function::getIntrinsicID() const { 442 const ValueName *ValName = this->getValueName(); 443 if (!ValName || !isIntrinsic()) 444 return 0; 445 446 LLVMContextImpl::IntrinsicIDCacheTy &IntrinsicIDCache = 447 getContext().pImpl->IntrinsicIDCache; 448 if (!IntrinsicIDCache.count(this)) { 449 unsigned Id = lookupIntrinsicID(); 450 IntrinsicIDCache[this]=Id; 451 return Id; 452 } 453 return IntrinsicIDCache[this]; 454 } 455 456 /// This private method does the actual lookup of an intrinsic ID when the query 457 /// could not be answered from the cache. 458 unsigned Function::lookupIntrinsicID() const { 459 const ValueName *ValName = this->getValueName(); 460 unsigned Len = ValName->getKeyLength(); 461 const char *Name = ValName->getKeyData(); 462 463 #define GET_FUNCTION_RECOGNIZER 464 #include "llvm/IR/Intrinsics.gen" 465 #undef GET_FUNCTION_RECOGNIZER 466 467 return 0; 468 } 469 470 /// Returns a stable mangling for the type specified for use in the name 471 /// mangling scheme used by 'any' types in intrinsic signatures. The mangling 472 /// of named types is simply their name. Manglings for unnamed types consist 473 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions) 474 /// combined with the mangling of their component types. A vararg function 475 /// type will have a suffix of 'vararg'. Since function types can contain 476 /// other function types, we close a function type mangling with suffix 'f' 477 /// which can't be confused with it's prefix. This ensures we don't have 478 /// collisions between two unrelated function types. Otherwise, you might 479 /// parse ffXX as f(fXX) or f(fX)X. (X is a placeholder for any other type.) 480 /// Manglings of integers, floats, and vectors ('i', 'f', and 'v' prefix in most 481 /// cases) fall back to the MVT codepath, where they could be mangled to 482 /// 'x86mmx', for example; matching on derived types is not sufficient to mangle 483 /// everything. 484 static std::string getMangledTypeStr(Type* Ty) { 485 std::string Result; 486 if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) { 487 Result += "p" + llvm::utostr(PTyp->getAddressSpace()) + 488 getMangledTypeStr(PTyp->getElementType()); 489 } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) { 490 Result += "a" + llvm::utostr(ATyp->getNumElements()) + 491 getMangledTypeStr(ATyp->getElementType()); 492 } else if (StructType* STyp = dyn_cast<StructType>(Ty)) { 493 if (!STyp->isLiteral()) 494 Result += STyp->getName(); 495 else 496 llvm_unreachable("TODO: implement literal types"); 497 } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) { 498 Result += "f_" + getMangledTypeStr(FT->getReturnType()); 499 for (size_t i = 0; i < FT->getNumParams(); i++) 500 Result += getMangledTypeStr(FT->getParamType(i)); 501 if (FT->isVarArg()) 502 Result += "vararg"; 503 // Ensure nested function types are distinguishable. 504 Result += "f"; 505 } else if (Ty) 506 Result += EVT::getEVT(Ty).getEVTString(); 507 return Result; 508 } 509 510 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) { 511 assert(id < num_intrinsics && "Invalid intrinsic ID!"); 512 static const char * const Table[] = { 513 "not_intrinsic", 514 #define GET_INTRINSIC_NAME_TABLE 515 #include "llvm/IR/Intrinsics.gen" 516 #undef GET_INTRINSIC_NAME_TABLE 517 }; 518 if (Tys.empty()) 519 return Table[id]; 520 std::string Result(Table[id]); 521 for (unsigned i = 0; i < Tys.size(); ++i) { 522 Result += "." + getMangledTypeStr(Tys[i]); 523 } 524 return Result; 525 } 526 527 528 /// IIT_Info - These are enumerators that describe the entries returned by the 529 /// getIntrinsicInfoTableEntries function. 530 /// 531 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter! 532 enum IIT_Info { 533 // Common values should be encoded with 0-15. 534 IIT_Done = 0, 535 IIT_I1 = 1, 536 IIT_I8 = 2, 537 IIT_I16 = 3, 538 IIT_I32 = 4, 539 IIT_I64 = 5, 540 IIT_F16 = 6, 541 IIT_F32 = 7, 542 IIT_F64 = 8, 543 IIT_V2 = 9, 544 IIT_V4 = 10, 545 IIT_V8 = 11, 546 IIT_V16 = 12, 547 IIT_V32 = 13, 548 IIT_PTR = 14, 549 IIT_ARG = 15, 550 551 // Values from 16+ are only encodable with the inefficient encoding. 552 IIT_V64 = 16, 553 IIT_MMX = 17, 554 IIT_METADATA = 18, 555 IIT_EMPTYSTRUCT = 19, 556 IIT_STRUCT2 = 20, 557 IIT_STRUCT3 = 21, 558 IIT_STRUCT4 = 22, 559 IIT_STRUCT5 = 23, 560 IIT_EXTEND_ARG = 24, 561 IIT_TRUNC_ARG = 25, 562 IIT_ANYPTR = 26, 563 IIT_V1 = 27, 564 IIT_VARARG = 28, 565 IIT_HALF_VEC_ARG = 29, 566 IIT_SAME_VEC_WIDTH_ARG = 30, 567 IIT_PTR_TO_ARG = 31, 568 IIT_VEC_OF_PTRS_TO_ELT = 32 569 }; 570 571 572 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos, 573 SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) { 574 IIT_Info Info = IIT_Info(Infos[NextElt++]); 575 unsigned StructElts = 2; 576 using namespace Intrinsic; 577 578 switch (Info) { 579 case IIT_Done: 580 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0)); 581 return; 582 case IIT_VARARG: 583 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0)); 584 return; 585 case IIT_MMX: 586 OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0)); 587 return; 588 case IIT_METADATA: 589 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0)); 590 return; 591 case IIT_F16: 592 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0)); 593 return; 594 case IIT_F32: 595 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0)); 596 return; 597 case IIT_F64: 598 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0)); 599 return; 600 case IIT_I1: 601 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1)); 602 return; 603 case IIT_I8: 604 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8)); 605 return; 606 case IIT_I16: 607 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16)); 608 return; 609 case IIT_I32: 610 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32)); 611 return; 612 case IIT_I64: 613 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64)); 614 return; 615 case IIT_V1: 616 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1)); 617 DecodeIITType(NextElt, Infos, OutputTable); 618 return; 619 case IIT_V2: 620 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2)); 621 DecodeIITType(NextElt, Infos, OutputTable); 622 return; 623 case IIT_V4: 624 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4)); 625 DecodeIITType(NextElt, Infos, OutputTable); 626 return; 627 case IIT_V8: 628 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8)); 629 DecodeIITType(NextElt, Infos, OutputTable); 630 return; 631 case IIT_V16: 632 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16)); 633 DecodeIITType(NextElt, Infos, OutputTable); 634 return; 635 case IIT_V32: 636 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32)); 637 DecodeIITType(NextElt, Infos, OutputTable); 638 return; 639 case IIT_V64: 640 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64)); 641 DecodeIITType(NextElt, Infos, OutputTable); 642 return; 643 case IIT_PTR: 644 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0)); 645 DecodeIITType(NextElt, Infos, OutputTable); 646 return; 647 case IIT_ANYPTR: { // [ANYPTR addrspace, subtype] 648 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 649 Infos[NextElt++])); 650 DecodeIITType(NextElt, Infos, OutputTable); 651 return; 652 } 653 case IIT_ARG: { 654 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 655 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo)); 656 return; 657 } 658 case IIT_EXTEND_ARG: { 659 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 660 OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument, 661 ArgInfo)); 662 return; 663 } 664 case IIT_TRUNC_ARG: { 665 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 666 OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument, 667 ArgInfo)); 668 return; 669 } 670 case IIT_HALF_VEC_ARG: { 671 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 672 OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument, 673 ArgInfo)); 674 return; 675 } 676 case IIT_SAME_VEC_WIDTH_ARG: { 677 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 678 OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument, 679 ArgInfo)); 680 return; 681 } 682 case IIT_PTR_TO_ARG: { 683 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 684 OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument, 685 ArgInfo)); 686 return; 687 } 688 case IIT_VEC_OF_PTRS_TO_ELT: { 689 unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]); 690 OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt, 691 ArgInfo)); 692 return; 693 } 694 case IIT_EMPTYSTRUCT: 695 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0)); 696 return; 697 case IIT_STRUCT5: ++StructElts; // FALL THROUGH. 698 case IIT_STRUCT4: ++StructElts; // FALL THROUGH. 699 case IIT_STRUCT3: ++StructElts; // FALL THROUGH. 700 case IIT_STRUCT2: { 701 OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts)); 702 703 for (unsigned i = 0; i != StructElts; ++i) 704 DecodeIITType(NextElt, Infos, OutputTable); 705 return; 706 } 707 } 708 llvm_unreachable("unhandled"); 709 } 710 711 712 #define GET_INTRINSIC_GENERATOR_GLOBAL 713 #include "llvm/IR/Intrinsics.gen" 714 #undef GET_INTRINSIC_GENERATOR_GLOBAL 715 716 void Intrinsic::getIntrinsicInfoTableEntries(ID id, 717 SmallVectorImpl<IITDescriptor> &T){ 718 // Check to see if the intrinsic's type was expressible by the table. 719 unsigned TableVal = IIT_Table[id-1]; 720 721 // Decode the TableVal into an array of IITValues. 722 SmallVector<unsigned char, 8> IITValues; 723 ArrayRef<unsigned char> IITEntries; 724 unsigned NextElt = 0; 725 if ((TableVal >> 31) != 0) { 726 // This is an offset into the IIT_LongEncodingTable. 727 IITEntries = IIT_LongEncodingTable; 728 729 // Strip sentinel bit. 730 NextElt = (TableVal << 1) >> 1; 731 } else { 732 // Decode the TableVal into an array of IITValues. If the entry was encoded 733 // into a single word in the table itself, decode it now. 734 do { 735 IITValues.push_back(TableVal & 0xF); 736 TableVal >>= 4; 737 } while (TableVal); 738 739 IITEntries = IITValues; 740 NextElt = 0; 741 } 742 743 // Okay, decode the table into the output vector of IITDescriptors. 744 DecodeIITType(NextElt, IITEntries, T); 745 while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0) 746 DecodeIITType(NextElt, IITEntries, T); 747 } 748 749 750 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos, 751 ArrayRef<Type*> Tys, LLVMContext &Context) { 752 using namespace Intrinsic; 753 IITDescriptor D = Infos.front(); 754 Infos = Infos.slice(1); 755 756 switch (D.Kind) { 757 case IITDescriptor::Void: return Type::getVoidTy(Context); 758 case IITDescriptor::VarArg: return Type::getVoidTy(Context); 759 case IITDescriptor::MMX: return Type::getX86_MMXTy(Context); 760 case IITDescriptor::Metadata: return Type::getMetadataTy(Context); 761 case IITDescriptor::Half: return Type::getHalfTy(Context); 762 case IITDescriptor::Float: return Type::getFloatTy(Context); 763 case IITDescriptor::Double: return Type::getDoubleTy(Context); 764 765 case IITDescriptor::Integer: 766 return IntegerType::get(Context, D.Integer_Width); 767 case IITDescriptor::Vector: 768 return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width); 769 case IITDescriptor::Pointer: 770 return PointerType::get(DecodeFixedType(Infos, Tys, Context), 771 D.Pointer_AddressSpace); 772 case IITDescriptor::Struct: { 773 Type *Elts[5]; 774 assert(D.Struct_NumElements <= 5 && "Can't handle this yet"); 775 for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i) 776 Elts[i] = DecodeFixedType(Infos, Tys, Context); 777 return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements)); 778 } 779 780 case IITDescriptor::Argument: 781 return Tys[D.getArgumentNumber()]; 782 case IITDescriptor::ExtendArgument: { 783 Type *Ty = Tys[D.getArgumentNumber()]; 784 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 785 return VectorType::getExtendedElementVectorType(VTy); 786 787 return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth()); 788 } 789 case IITDescriptor::TruncArgument: { 790 Type *Ty = Tys[D.getArgumentNumber()]; 791 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) 792 return VectorType::getTruncatedElementVectorType(VTy); 793 794 IntegerType *ITy = cast<IntegerType>(Ty); 795 assert(ITy->getBitWidth() % 2 == 0); 796 return IntegerType::get(Context, ITy->getBitWidth() / 2); 797 } 798 case IITDescriptor::HalfVecArgument: 799 return VectorType::getHalfElementsVectorType(cast<VectorType>( 800 Tys[D.getArgumentNumber()])); 801 case IITDescriptor::SameVecWidthArgument: { 802 Type *EltTy = DecodeFixedType(Infos, Tys, Context); 803 Type *Ty = Tys[D.getArgumentNumber()]; 804 if (VectorType *VTy = dyn_cast<VectorType>(Ty)) { 805 return VectorType::get(EltTy, VTy->getNumElements()); 806 } 807 llvm_unreachable("unhandled"); 808 } 809 case IITDescriptor::PtrToArgument: { 810 Type *Ty = Tys[D.getArgumentNumber()]; 811 return PointerType::getUnqual(Ty); 812 } 813 case IITDescriptor::VecOfPtrsToElt: { 814 Type *Ty = Tys[D.getArgumentNumber()]; 815 VectorType *VTy = dyn_cast<VectorType>(Ty); 816 if (!VTy) 817 llvm_unreachable("Expected an argument of Vector Type"); 818 Type *EltTy = VTy->getVectorElementType(); 819 return VectorType::get(PointerType::getUnqual(EltTy), 820 VTy->getNumElements()); 821 } 822 } 823 llvm_unreachable("unhandled"); 824 } 825 826 827 828 FunctionType *Intrinsic::getType(LLVMContext &Context, 829 ID id, ArrayRef<Type*> Tys) { 830 SmallVector<IITDescriptor, 8> Table; 831 getIntrinsicInfoTableEntries(id, Table); 832 833 ArrayRef<IITDescriptor> TableRef = Table; 834 Type *ResultTy = DecodeFixedType(TableRef, Tys, Context); 835 836 SmallVector<Type*, 8> ArgTys; 837 while (!TableRef.empty()) 838 ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context)); 839 840 // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg 841 // If we see void type as the type of the last argument, it is vararg intrinsic 842 if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) { 843 ArgTys.pop_back(); 844 return FunctionType::get(ResultTy, ArgTys, true); 845 } 846 return FunctionType::get(ResultTy, ArgTys, false); 847 } 848 849 bool Intrinsic::isOverloaded(ID id) { 850 #define GET_INTRINSIC_OVERLOAD_TABLE 851 #include "llvm/IR/Intrinsics.gen" 852 #undef GET_INTRINSIC_OVERLOAD_TABLE 853 } 854 855 /// This defines the "Intrinsic::getAttributes(ID id)" method. 856 #define GET_INTRINSIC_ATTRIBUTES 857 #include "llvm/IR/Intrinsics.gen" 858 #undef GET_INTRINSIC_ATTRIBUTES 859 860 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) { 861 // There can never be multiple globals with the same name of different types, 862 // because intrinsics must be a specific type. 863 return 864 cast<Function>(M->getOrInsertFunction(getName(id, Tys), 865 getType(M->getContext(), id, Tys))); 866 } 867 868 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method. 869 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 870 #include "llvm/IR/Intrinsics.gen" 871 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN 872 873 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method. 874 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 875 #include "llvm/IR/Intrinsics.gen" 876 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN 877 878 /// hasAddressTaken - returns true if there are any uses of this function 879 /// other than direct calls or invokes to it. 880 bool Function::hasAddressTaken(const User* *PutOffender) const { 881 for (const Use &U : uses()) { 882 const User *FU = U.getUser(); 883 if (isa<BlockAddress>(FU)) 884 continue; 885 if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU)) 886 return PutOffender ? (*PutOffender = FU, true) : true; 887 ImmutableCallSite CS(cast<Instruction>(FU)); 888 if (!CS.isCallee(&U)) 889 return PutOffender ? (*PutOffender = FU, true) : true; 890 } 891 return false; 892 } 893 894 bool Function::isDefTriviallyDead() const { 895 // Check the linkage 896 if (!hasLinkOnceLinkage() && !hasLocalLinkage() && 897 !hasAvailableExternallyLinkage()) 898 return false; 899 900 // Check if the function is used by anything other than a blockaddress. 901 for (const User *U : users()) 902 if (!isa<BlockAddress>(U)) 903 return false; 904 905 return true; 906 } 907 908 /// callsFunctionThatReturnsTwice - Return true if the function has a call to 909 /// setjmp or other function that gcc recognizes as "returning twice". 910 bool Function::callsFunctionThatReturnsTwice() const { 911 for (const_inst_iterator 912 I = inst_begin(this), E = inst_end(this); I != E; ++I) { 913 ImmutableCallSite CS(&*I); 914 if (CS && CS.hasFnAttr(Attribute::ReturnsTwice)) 915 return true; 916 } 917 918 return false; 919 } 920 921 Constant *Function::getPrefixData() const { 922 assert(hasPrefixData()); 923 const LLVMContextImpl::PrefixDataMapTy &PDMap = 924 getContext().pImpl->PrefixDataMap; 925 assert(PDMap.find(this) != PDMap.end()); 926 return cast<Constant>(PDMap.find(this)->second->getReturnValue()); 927 } 928 929 void Function::setPrefixData(Constant *PrefixData) { 930 if (!PrefixData && !hasPrefixData()) 931 return; 932 933 unsigned SCData = getSubclassDataFromValue(); 934 LLVMContextImpl::PrefixDataMapTy &PDMap = getContext().pImpl->PrefixDataMap; 935 ReturnInst *&PDHolder = PDMap[this]; 936 if (PrefixData) { 937 if (PDHolder) 938 PDHolder->setOperand(0, PrefixData); 939 else 940 PDHolder = ReturnInst::Create(getContext(), PrefixData); 941 SCData |= (1<<1); 942 } else { 943 delete PDHolder; 944 PDMap.erase(this); 945 SCData &= ~(1<<1); 946 } 947 setValueSubclassData(SCData); 948 } 949 950 Constant *Function::getPrologueData() const { 951 assert(hasPrologueData()); 952 const LLVMContextImpl::PrologueDataMapTy &SOMap = 953 getContext().pImpl->PrologueDataMap; 954 assert(SOMap.find(this) != SOMap.end()); 955 return cast<Constant>(SOMap.find(this)->second->getReturnValue()); 956 } 957 958 void Function::setPrologueData(Constant *PrologueData) { 959 if (!PrologueData && !hasPrologueData()) 960 return; 961 962 unsigned PDData = getSubclassDataFromValue(); 963 LLVMContextImpl::PrologueDataMapTy &PDMap = getContext().pImpl->PrologueDataMap; 964 ReturnInst *&PDHolder = PDMap[this]; 965 if (PrologueData) { 966 if (PDHolder) 967 PDHolder->setOperand(0, PrologueData); 968 else 969 PDHolder = ReturnInst::Create(getContext(), PrologueData); 970 PDData |= (1<<2); 971 } else { 972 delete PDHolder; 973 PDMap.erase(this); 974 PDData &= ~(1<<2); 975 } 976 setValueSubclassData(PDData); 977 } 978