xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 04790d9cfba35073d56047544502c387c5657bb1)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/AbstractCallSite.h"
24 #include "llvm/IR/Argument.h"
25 #include "llvm/IR/Attributes.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Constant.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/GlobalValue.h"
31 #include "llvm/IR/InstIterator.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/IntrinsicsAArch64.h"
37 #include "llvm/IR/IntrinsicsAMDGPU.h"
38 #include "llvm/IR/IntrinsicsARM.h"
39 #include "llvm/IR/IntrinsicsBPF.h"
40 #include "llvm/IR/IntrinsicsHexagon.h"
41 #include "llvm/IR/IntrinsicsMips.h"
42 #include "llvm/IR/IntrinsicsNVPTX.h"
43 #include "llvm/IR/IntrinsicsPowerPC.h"
44 #include "llvm/IR/IntrinsicsR600.h"
45 #include "llvm/IR/IntrinsicsRISCV.h"
46 #include "llvm/IR/IntrinsicsS390.h"
47 #include "llvm/IR/IntrinsicsVE.h"
48 #include "llvm/IR/IntrinsicsWebAssembly.h"
49 #include "llvm/IR/IntrinsicsX86.h"
50 #include "llvm/IR/IntrinsicsXCore.h"
51 #include "llvm/IR/LLVMContext.h"
52 #include "llvm/IR/MDBuilder.h"
53 #include "llvm/IR/Metadata.h"
54 #include "llvm/IR/Module.h"
55 #include "llvm/IR/Operator.h"
56 #include "llvm/IR/SymbolTableListTraits.h"
57 #include "llvm/IR/Type.h"
58 #include "llvm/IR/Use.h"
59 #include "llvm/IR/User.h"
60 #include "llvm/IR/Value.h"
61 #include "llvm/IR/ValueSymbolTable.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/Compiler.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include <algorithm>
66 #include <cassert>
67 #include <cstddef>
68 #include <cstdint>
69 #include <cstring>
70 #include <string>
71 
72 using namespace llvm;
73 using ProfileCount = Function::ProfileCount;
74 
75 // Explicit instantiations of SymbolTableListTraits since some of the methods
76 // are not in the public header file...
77 template class llvm::SymbolTableListTraits<BasicBlock>;
78 
79 //===----------------------------------------------------------------------===//
80 // Argument Implementation
81 //===----------------------------------------------------------------------===//
82 
83 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
84     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
85   setName(Name);
86 }
87 
88 void Argument::setParent(Function *parent) {
89   Parent = parent;
90 }
91 
92 bool Argument::hasNonNullAttr(bool AllowUndefOrPoison) const {
93   if (!getType()->isPointerTy()) return false;
94   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull) &&
95       (AllowUndefOrPoison ||
96        getParent()->hasParamAttribute(getArgNo(), Attribute::NoUndef)))
97     return true;
98   else if (getDereferenceableBytes() > 0 &&
99            !NullPointerIsDefined(getParent(),
100                                  getType()->getPointerAddressSpace()))
101     return true;
102   return false;
103 }
104 
105 bool Argument::hasByValAttr() const {
106   if (!getType()->isPointerTy()) return false;
107   return hasAttribute(Attribute::ByVal);
108 }
109 
110 bool Argument::hasByRefAttr() const {
111   if (!getType()->isPointerTy())
112     return false;
113   return hasAttribute(Attribute::ByRef);
114 }
115 
116 bool Argument::hasSwiftSelfAttr() const {
117   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
118 }
119 
120 bool Argument::hasSwiftErrorAttr() const {
121   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
122 }
123 
124 bool Argument::hasInAllocaAttr() const {
125   if (!getType()->isPointerTy()) return false;
126   return hasAttribute(Attribute::InAlloca);
127 }
128 
129 bool Argument::hasPreallocatedAttr() const {
130   if (!getType()->isPointerTy())
131     return false;
132   return hasAttribute(Attribute::Preallocated);
133 }
134 
135 bool Argument::hasPassPointeeByValueCopyAttr() const {
136   if (!getType()->isPointerTy()) return false;
137   AttributeList Attrs = getParent()->getAttributes();
138   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
139          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
140          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated);
141 }
142 
143 bool Argument::hasPointeeInMemoryValueAttr() const {
144   if (!getType()->isPointerTy())
145     return false;
146   AttributeList Attrs = getParent()->getAttributes();
147   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
148          Attrs.hasParamAttribute(getArgNo(), Attribute::StructRet) ||
149          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca) ||
150          Attrs.hasParamAttribute(getArgNo(), Attribute::Preallocated) ||
151          Attrs.hasParamAttribute(getArgNo(), Attribute::ByRef);
152 }
153 
154 /// For a byval, sret, inalloca, or preallocated parameter, get the in-memory
155 /// parameter type.
156 static Type *getMemoryParamAllocType(AttributeSet ParamAttrs, Type *ArgTy) {
157   // FIXME: All the type carrying attributes are mutually exclusive, so there
158   // should be a single query to get the stored type that handles any of them.
159   if (Type *ByValTy = ParamAttrs.getByValType())
160     return ByValTy;
161   if (Type *ByRefTy = ParamAttrs.getByRefType())
162     return ByRefTy;
163   if (Type *PreAllocTy = ParamAttrs.getPreallocatedType())
164     return PreAllocTy;
165 
166   // FIXME: sret and inalloca always depends on pointee element type. It's also
167   // possible for byval to miss it.
168   if (ParamAttrs.hasAttribute(Attribute::InAlloca) ||
169       ParamAttrs.hasAttribute(Attribute::ByVal) ||
170       ParamAttrs.hasAttribute(Attribute::StructRet) ||
171       ParamAttrs.hasAttribute(Attribute::Preallocated))
172     return cast<PointerType>(ArgTy)->getElementType();
173 
174   return nullptr;
175 }
176 
177 uint64_t Argument::getPassPointeeByValueCopySize(const DataLayout &DL) const {
178   AttributeSet ParamAttrs =
179       getParent()->getAttributes().getParamAttributes(getArgNo());
180   if (Type *MemTy = getMemoryParamAllocType(ParamAttrs, getType()))
181     return DL.getTypeAllocSize(MemTy);
182   return 0;
183 }
184 
185 Type *Argument::getPointeeInMemoryValueType() const {
186   AttributeSet ParamAttrs =
187       getParent()->getAttributes().getParamAttributes(getArgNo());
188   return getMemoryParamAllocType(ParamAttrs, getType());
189 }
190 
191 unsigned Argument::getParamAlignment() const {
192   assert(getType()->isPointerTy() && "Only pointers have alignments");
193   return getParent()->getParamAlignment(getArgNo());
194 }
195 
196 MaybeAlign Argument::getParamAlign() const {
197   assert(getType()->isPointerTy() && "Only pointers have alignments");
198   return getParent()->getParamAlign(getArgNo());
199 }
200 
201 Type *Argument::getParamByValType() const {
202   assert(getType()->isPointerTy() && "Only pointers have byval types");
203   return getParent()->getParamByValType(getArgNo());
204 }
205 
206 Type *Argument::getParamStructRetType() const {
207   assert(getType()->isPointerTy() && "Only pointers have sret types");
208   return getParent()->getParamStructRetType(getArgNo());
209 }
210 
211 Type *Argument::getParamByRefType() const {
212   assert(getType()->isPointerTy() && "Only pointers have byref types");
213   return getParent()->getParamByRefType(getArgNo());
214 }
215 
216 uint64_t Argument::getDereferenceableBytes() const {
217   assert(getType()->isPointerTy() &&
218          "Only pointers have dereferenceable bytes");
219   return getParent()->getParamDereferenceableBytes(getArgNo());
220 }
221 
222 uint64_t Argument::getDereferenceableOrNullBytes() const {
223   assert(getType()->isPointerTy() &&
224          "Only pointers have dereferenceable bytes");
225   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
226 }
227 
228 bool Argument::hasNestAttr() const {
229   if (!getType()->isPointerTy()) return false;
230   return hasAttribute(Attribute::Nest);
231 }
232 
233 bool Argument::hasNoAliasAttr() const {
234   if (!getType()->isPointerTy()) return false;
235   return hasAttribute(Attribute::NoAlias);
236 }
237 
238 bool Argument::hasNoCaptureAttr() const {
239   if (!getType()->isPointerTy()) return false;
240   return hasAttribute(Attribute::NoCapture);
241 }
242 
243 bool Argument::hasNoFreeAttr() const {
244   if (!getType()->isPointerTy()) return false;
245   return hasAttribute(Attribute::NoFree);
246 }
247 
248 bool Argument::hasStructRetAttr() const {
249   if (!getType()->isPointerTy()) return false;
250   return hasAttribute(Attribute::StructRet);
251 }
252 
253 bool Argument::hasInRegAttr() const {
254   return hasAttribute(Attribute::InReg);
255 }
256 
257 bool Argument::hasReturnedAttr() const {
258   return hasAttribute(Attribute::Returned);
259 }
260 
261 bool Argument::hasZExtAttr() const {
262   return hasAttribute(Attribute::ZExt);
263 }
264 
265 bool Argument::hasSExtAttr() const {
266   return hasAttribute(Attribute::SExt);
267 }
268 
269 bool Argument::onlyReadsMemory() const {
270   AttributeList Attrs = getParent()->getAttributes();
271   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
272          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
273 }
274 
275 void Argument::addAttrs(AttrBuilder &B) {
276   AttributeList AL = getParent()->getAttributes();
277   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
278   getParent()->setAttributes(AL);
279 }
280 
281 void Argument::addAttr(Attribute::AttrKind Kind) {
282   getParent()->addParamAttr(getArgNo(), Kind);
283 }
284 
285 void Argument::addAttr(Attribute Attr) {
286   getParent()->addParamAttr(getArgNo(), Attr);
287 }
288 
289 void Argument::removeAttr(Attribute::AttrKind Kind) {
290   getParent()->removeParamAttr(getArgNo(), Kind);
291 }
292 
293 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
294   return getParent()->hasParamAttribute(getArgNo(), Kind);
295 }
296 
297 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
298   return getParent()->getParamAttribute(getArgNo(), Kind);
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // Helper Methods in Function
303 //===----------------------------------------------------------------------===//
304 
305 LLVMContext &Function::getContext() const {
306   return getType()->getContext();
307 }
308 
309 unsigned Function::getInstructionCount() const {
310   unsigned NumInstrs = 0;
311   for (const BasicBlock &BB : BasicBlocks)
312     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
313                                BB.instructionsWithoutDebug().end());
314   return NumInstrs;
315 }
316 
317 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
318                            const Twine &N, Module &M) {
319   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
320 }
321 
322 void Function::removeFromParent() {
323   getParent()->getFunctionList().remove(getIterator());
324 }
325 
326 void Function::eraseFromParent() {
327   getParent()->getFunctionList().erase(getIterator());
328 }
329 
330 //===----------------------------------------------------------------------===//
331 // Function Implementation
332 //===----------------------------------------------------------------------===//
333 
334 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
335   // If AS == -1 and we are passed a valid module pointer we place the function
336   // in the program address space. Otherwise we default to AS0.
337   if (AddrSpace == static_cast<unsigned>(-1))
338     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
339   return AddrSpace;
340 }
341 
342 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
343                    const Twine &name, Module *ParentModule)
344     : GlobalObject(Ty, Value::FunctionVal,
345                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
346                    computeAddrSpace(AddrSpace, ParentModule)),
347       NumArgs(Ty->getNumParams()) {
348   assert(FunctionType::isValidReturnType(getReturnType()) &&
349          "invalid return type");
350   setGlobalObjectSubClassData(0);
351 
352   // We only need a symbol table for a function if the context keeps value names
353   if (!getContext().shouldDiscardValueNames())
354     SymTab = std::make_unique<ValueSymbolTable>();
355 
356   // If the function has arguments, mark them as lazily built.
357   if (Ty->getNumParams())
358     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
359 
360   if (ParentModule)
361     ParentModule->getFunctionList().push_back(this);
362 
363   HasLLVMReservedName = getName().startswith("llvm.");
364   // Ensure intrinsics have the right parameter attributes.
365   // Note, the IntID field will have been set in Value::setName if this function
366   // name is a valid intrinsic ID.
367   if (IntID)
368     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
369 }
370 
371 Function::~Function() {
372   dropAllReferences();    // After this it is safe to delete instructions.
373 
374   // Delete all of the method arguments and unlink from symbol table...
375   if (Arguments)
376     clearArguments();
377 
378   // Remove the function from the on-the-side GC table.
379   clearGC();
380 }
381 
382 void Function::BuildLazyArguments() const {
383   // Create the arguments vector, all arguments start out unnamed.
384   auto *FT = getFunctionType();
385   if (NumArgs > 0) {
386     Arguments = std::allocator<Argument>().allocate(NumArgs);
387     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
388       Type *ArgTy = FT->getParamType(i);
389       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
390       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
391     }
392   }
393 
394   // Clear the lazy arguments bit.
395   unsigned SDC = getSubclassDataFromValue();
396   SDC &= ~(1 << 0);
397   const_cast<Function*>(this)->setValueSubclassData(SDC);
398   assert(!hasLazyArguments());
399 }
400 
401 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
402   return MutableArrayRef<Argument>(Args, Count);
403 }
404 
405 bool Function::isConstrainedFPIntrinsic() const {
406   switch (getIntrinsicID()) {
407 #define INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC)                         \
408   case Intrinsic::INTRINSIC:
409 #include "llvm/IR/ConstrainedOps.def"
410     return true;
411 #undef INSTRUCTION
412   default:
413     return false;
414   }
415 }
416 
417 void Function::clearArguments() {
418   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
419     A.setName("");
420     A.~Argument();
421   }
422   std::allocator<Argument>().deallocate(Arguments, NumArgs);
423   Arguments = nullptr;
424 }
425 
426 void Function::stealArgumentListFrom(Function &Src) {
427   assert(isDeclaration() && "Expected no references to current arguments");
428 
429   // Drop the current arguments, if any, and set the lazy argument bit.
430   if (!hasLazyArguments()) {
431     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
432                         [](const Argument &A) { return A.use_empty(); }) &&
433            "Expected arguments to be unused in declaration");
434     clearArguments();
435     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
436   }
437 
438   // Nothing to steal if Src has lazy arguments.
439   if (Src.hasLazyArguments())
440     return;
441 
442   // Steal arguments from Src, and fix the lazy argument bits.
443   assert(arg_size() == Src.arg_size());
444   Arguments = Src.Arguments;
445   Src.Arguments = nullptr;
446   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
447     // FIXME: This does the work of transferNodesFromList inefficiently.
448     SmallString<128> Name;
449     if (A.hasName())
450       Name = A.getName();
451     if (!Name.empty())
452       A.setName("");
453     A.setParent(this);
454     if (!Name.empty())
455       A.setName(Name);
456   }
457 
458   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
459   assert(!hasLazyArguments());
460   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
461 }
462 
463 // dropAllReferences() - This function causes all the subinstructions to "let
464 // go" of all references that they are maintaining.  This allows one to
465 // 'delete' a whole class at a time, even though there may be circular
466 // references... first all references are dropped, and all use counts go to
467 // zero.  Then everything is deleted for real.  Note that no operations are
468 // valid on an object that has "dropped all references", except operator
469 // delete.
470 //
471 void Function::dropAllReferences() {
472   setIsMaterializable(false);
473 
474   for (BasicBlock &BB : *this)
475     BB.dropAllReferences();
476 
477   // Delete all basic blocks. They are now unused, except possibly by
478   // blockaddresses, but BasicBlock's destructor takes care of those.
479   while (!BasicBlocks.empty())
480     BasicBlocks.begin()->eraseFromParent();
481 
482   // Drop uses of any optional data (real or placeholder).
483   if (getNumOperands()) {
484     User::dropAllReferences();
485     setNumHungOffUseOperands(0);
486     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
487   }
488 
489   // Metadata is stored in a side-table.
490   clearMetadata();
491 }
492 
493 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
494   AttributeList PAL = getAttributes();
495   PAL = PAL.addAttribute(getContext(), i, Kind);
496   setAttributes(PAL);
497 }
498 
499 void Function::addAttribute(unsigned i, Attribute Attr) {
500   AttributeList PAL = getAttributes();
501   PAL = PAL.addAttribute(getContext(), i, Attr);
502   setAttributes(PAL);
503 }
504 
505 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
506   AttributeList PAL = getAttributes();
507   PAL = PAL.addAttributes(getContext(), i, Attrs);
508   setAttributes(PAL);
509 }
510 
511 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
512   AttributeList PAL = getAttributes();
513   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
514   setAttributes(PAL);
515 }
516 
517 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
518   AttributeList PAL = getAttributes();
519   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
520   setAttributes(PAL);
521 }
522 
523 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
524   AttributeList PAL = getAttributes();
525   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
526   setAttributes(PAL);
527 }
528 
529 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
530   AttributeList PAL = getAttributes();
531   PAL = PAL.removeAttribute(getContext(), i, Kind);
532   setAttributes(PAL);
533 }
534 
535 void Function::removeAttribute(unsigned i, StringRef Kind) {
536   AttributeList PAL = getAttributes();
537   PAL = PAL.removeAttribute(getContext(), i, Kind);
538   setAttributes(PAL);
539 }
540 
541 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
542   AttributeList PAL = getAttributes();
543   PAL = PAL.removeAttributes(getContext(), i, Attrs);
544   setAttributes(PAL);
545 }
546 
547 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
548   AttributeList PAL = getAttributes();
549   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
550   setAttributes(PAL);
551 }
552 
553 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
554   AttributeList PAL = getAttributes();
555   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
556   setAttributes(PAL);
557 }
558 
559 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
560   AttributeList PAL = getAttributes();
561   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
562   setAttributes(PAL);
563 }
564 
565 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
566   AttributeList PAL = getAttributes();
567   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
568   setAttributes(PAL);
569 }
570 
571 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
572   AttributeList PAL = getAttributes();
573   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
574   setAttributes(PAL);
575 }
576 
577 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
578   AttributeList PAL = getAttributes();
579   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
580   setAttributes(PAL);
581 }
582 
583 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
584                                                  uint64_t Bytes) {
585   AttributeList PAL = getAttributes();
586   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
587   setAttributes(PAL);
588 }
589 
590 DenormalMode Function::getDenormalMode(const fltSemantics &FPType) const {
591   if (&FPType == &APFloat::IEEEsingle()) {
592     Attribute Attr = getFnAttribute("denormal-fp-math-f32");
593     StringRef Val = Attr.getValueAsString();
594     if (!Val.empty())
595       return parseDenormalFPAttribute(Val);
596 
597     // If the f32 variant of the attribute isn't specified, try to use the
598     // generic one.
599   }
600 
601   Attribute Attr = getFnAttribute("denormal-fp-math");
602   return parseDenormalFPAttribute(Attr.getValueAsString());
603 }
604 
605 const std::string &Function::getGC() const {
606   assert(hasGC() && "Function has no collector");
607   return getContext().getGC(*this);
608 }
609 
610 void Function::setGC(std::string Str) {
611   setValueSubclassDataBit(14, !Str.empty());
612   getContext().setGC(*this, std::move(Str));
613 }
614 
615 void Function::clearGC() {
616   if (!hasGC())
617     return;
618   getContext().deleteGC(*this);
619   setValueSubclassDataBit(14, false);
620 }
621 
622 bool Function::hasStackProtectorFnAttr() const {
623   return hasFnAttribute(Attribute::StackProtect) ||
624          hasFnAttribute(Attribute::StackProtectStrong) ||
625          hasFnAttribute(Attribute::StackProtectReq);
626 }
627 
628 /// Copy all additional attributes (those not needed to create a Function) from
629 /// the Function Src to this one.
630 void Function::copyAttributesFrom(const Function *Src) {
631   GlobalObject::copyAttributesFrom(Src);
632   setCallingConv(Src->getCallingConv());
633   setAttributes(Src->getAttributes());
634   if (Src->hasGC())
635     setGC(Src->getGC());
636   else
637     clearGC();
638   if (Src->hasPersonalityFn())
639     setPersonalityFn(Src->getPersonalityFn());
640   if (Src->hasPrefixData())
641     setPrefixData(Src->getPrefixData());
642   if (Src->hasPrologueData())
643     setPrologueData(Src->getPrologueData());
644 }
645 
646 /// Table of string intrinsic names indexed by enum value.
647 static const char * const IntrinsicNameTable[] = {
648   "not_intrinsic",
649 #define GET_INTRINSIC_NAME_TABLE
650 #include "llvm/IR/IntrinsicImpl.inc"
651 #undef GET_INTRINSIC_NAME_TABLE
652 };
653 
654 /// Table of per-target intrinsic name tables.
655 #define GET_INTRINSIC_TARGET_DATA
656 #include "llvm/IR/IntrinsicImpl.inc"
657 #undef GET_INTRINSIC_TARGET_DATA
658 
659 bool Function::isTargetIntrinsic(Intrinsic::ID IID) {
660   return IID > TargetInfos[0].Count;
661 }
662 
663 bool Function::isTargetIntrinsic() const {
664   return isTargetIntrinsic(IntID);
665 }
666 
667 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
668 /// target as \c Name, or the generic table if \c Name is not target specific.
669 ///
670 /// Returns the relevant slice of \c IntrinsicNameTable
671 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
672   assert(Name.startswith("llvm."));
673 
674   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
675   // Drop "llvm." and take the first dotted component. That will be the target
676   // if this is target specific.
677   StringRef Target = Name.drop_front(5).split('.').first;
678   auto It = partition_point(
679       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
680   // We've either found the target or just fall back to the generic set, which
681   // is always first.
682   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
683   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
684 }
685 
686 /// This does the actual lookup of an intrinsic ID which
687 /// matches the given function name.
688 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
689   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
690   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
691   if (Idx == -1)
692     return Intrinsic::not_intrinsic;
693 
694   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
695   // an index into a sub-table.
696   int Adjust = NameTable.data() - IntrinsicNameTable;
697   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
698 
699   // If the intrinsic is not overloaded, require an exact match. If it is
700   // overloaded, require either exact or prefix match.
701   const auto MatchSize = strlen(NameTable[Idx]);
702   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
703   bool IsExactMatch = Name.size() == MatchSize;
704   return IsExactMatch || Intrinsic::isOverloaded(ID) ? ID
705                                                      : Intrinsic::not_intrinsic;
706 }
707 
708 void Function::recalculateIntrinsicID() {
709   StringRef Name = getName();
710   if (!Name.startswith("llvm.")) {
711     HasLLVMReservedName = false;
712     IntID = Intrinsic::not_intrinsic;
713     return;
714   }
715   HasLLVMReservedName = true;
716   IntID = lookupIntrinsicID(Name);
717 }
718 
719 /// Returns a stable mangling for the type specified for use in the name
720 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
721 /// of named types is simply their name.  Manglings for unnamed types consist
722 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
723 /// combined with the mangling of their component types.  A vararg function
724 /// type will have a suffix of 'vararg'.  Since function types can contain
725 /// other function types, we close a function type mangling with suffix 'f'
726 /// which can't be confused with it's prefix.  This ensures we don't have
727 /// collisions between two unrelated function types. Otherwise, you might
728 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
729 /// The HasUnnamedType boolean is set if an unnamed type was encountered,
730 /// indicating that extra care must be taken to ensure a unique name.
731 static std::string getMangledTypeStr(Type *Ty, bool &HasUnnamedType) {
732   std::string Result;
733   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
734     Result += "p" + utostr(PTyp->getAddressSpace()) +
735               getMangledTypeStr(PTyp->getElementType(), HasUnnamedType);
736   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
737     Result += "a" + utostr(ATyp->getNumElements()) +
738               getMangledTypeStr(ATyp->getElementType(), HasUnnamedType);
739   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
740     if (!STyp->isLiteral()) {
741       Result += "s_";
742       if (STyp->hasName())
743         Result += STyp->getName();
744       else
745         HasUnnamedType = true;
746     } else {
747       Result += "sl_";
748       for (auto Elem : STyp->elements())
749         Result += getMangledTypeStr(Elem, HasUnnamedType);
750     }
751     // Ensure nested structs are distinguishable.
752     Result += "s";
753   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
754     Result += "f_" + getMangledTypeStr(FT->getReturnType(), HasUnnamedType);
755     for (size_t i = 0; i < FT->getNumParams(); i++)
756       Result += getMangledTypeStr(FT->getParamType(i), HasUnnamedType);
757     if (FT->isVarArg())
758       Result += "vararg";
759     // Ensure nested function types are distinguishable.
760     Result += "f";
761   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
762     ElementCount EC = VTy->getElementCount();
763     if (EC.isScalable())
764       Result += "nx";
765     Result += "v" + utostr(EC.getKnownMinValue()) +
766               getMangledTypeStr(VTy->getElementType(), HasUnnamedType);
767   } else if (Ty) {
768     switch (Ty->getTypeID()) {
769     default: llvm_unreachable("Unhandled type");
770     case Type::VoidTyID:      Result += "isVoid";   break;
771     case Type::MetadataTyID:  Result += "Metadata"; break;
772     case Type::HalfTyID:      Result += "f16";      break;
773     case Type::BFloatTyID:    Result += "bf16";     break;
774     case Type::FloatTyID:     Result += "f32";      break;
775     case Type::DoubleTyID:    Result += "f64";      break;
776     case Type::X86_FP80TyID:  Result += "f80";      break;
777     case Type::FP128TyID:     Result += "f128";     break;
778     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
779     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
780     case Type::X86_AMXTyID:   Result += "x86amx";   break;
781     case Type::IntegerTyID:
782       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
783       break;
784     }
785   }
786   return Result;
787 }
788 
789 StringRef Intrinsic::getName(ID id) {
790   assert(id < num_intrinsics && "Invalid intrinsic ID!");
791   assert(!Intrinsic::isOverloaded(id) &&
792          "This version of getName does not support overloading");
793   return IntrinsicNameTable[id];
794 }
795 
796 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys, Module *M,
797                                FunctionType *FT) {
798   assert(Id < num_intrinsics && "Invalid intrinsic ID!");
799   assert((Tys.empty() || Intrinsic::isOverloaded(Id)) &&
800          "This version of getName is for overloaded intrinsics only");
801   bool HasUnnamedType = false;
802   std::string Result(IntrinsicNameTable[Id]);
803   for (Type *Ty : Tys) {
804     Result += "." + getMangledTypeStr(Ty, HasUnnamedType);
805   }
806   assert((M || !HasUnnamedType) && "unnamed types need a module");
807   if (M && HasUnnamedType) {
808     if (!FT)
809       FT = getType(M->getContext(), Id, Tys);
810     else
811       assert((FT == getType(M->getContext(), Id, Tys)) &&
812              "Provided FunctionType must match arguments");
813     return M->getUniqueIntrinsicName(Result, Id, FT);
814   }
815   return Result;
816 }
817 
818 std::string Intrinsic::getName(ID Id, ArrayRef<Type *> Tys) {
819   return getName(Id, Tys, nullptr, nullptr);
820 }
821 
822 /// IIT_Info - These are enumerators that describe the entries returned by the
823 /// getIntrinsicInfoTableEntries function.
824 ///
825 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
826 enum IIT_Info {
827   // Common values should be encoded with 0-15.
828   IIT_Done = 0,
829   IIT_I1   = 1,
830   IIT_I8   = 2,
831   IIT_I16  = 3,
832   IIT_I32  = 4,
833   IIT_I64  = 5,
834   IIT_F16  = 6,
835   IIT_F32  = 7,
836   IIT_F64  = 8,
837   IIT_V2   = 9,
838   IIT_V4   = 10,
839   IIT_V8   = 11,
840   IIT_V16  = 12,
841   IIT_V32  = 13,
842   IIT_PTR  = 14,
843   IIT_ARG  = 15,
844 
845   // Values from 16+ are only encodable with the inefficient encoding.
846   IIT_V64  = 16,
847   IIT_MMX  = 17,
848   IIT_TOKEN = 18,
849   IIT_METADATA = 19,
850   IIT_EMPTYSTRUCT = 20,
851   IIT_STRUCT2 = 21,
852   IIT_STRUCT3 = 22,
853   IIT_STRUCT4 = 23,
854   IIT_STRUCT5 = 24,
855   IIT_EXTEND_ARG = 25,
856   IIT_TRUNC_ARG = 26,
857   IIT_ANYPTR = 27,
858   IIT_V1   = 28,
859   IIT_VARARG = 29,
860   IIT_HALF_VEC_ARG = 30,
861   IIT_SAME_VEC_WIDTH_ARG = 31,
862   IIT_PTR_TO_ARG = 32,
863   IIT_PTR_TO_ELT = 33,
864   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
865   IIT_I128 = 35,
866   IIT_V512 = 36,
867   IIT_V1024 = 37,
868   IIT_STRUCT6 = 38,
869   IIT_STRUCT7 = 39,
870   IIT_STRUCT8 = 40,
871   IIT_F128 = 41,
872   IIT_VEC_ELEMENT = 42,
873   IIT_SCALABLE_VEC = 43,
874   IIT_SUBDIVIDE2_ARG = 44,
875   IIT_SUBDIVIDE4_ARG = 45,
876   IIT_VEC_OF_BITCASTS_TO_INT = 46,
877   IIT_V128 = 47,
878   IIT_BF16 = 48,
879   IIT_STRUCT9 = 49,
880   IIT_V256 = 50,
881   IIT_AMX  = 51
882 };
883 
884 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
885                       IIT_Info LastInfo,
886                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
887   using namespace Intrinsic;
888 
889   bool IsScalableVector = (LastInfo == IIT_SCALABLE_VEC);
890 
891   IIT_Info Info = IIT_Info(Infos[NextElt++]);
892   unsigned StructElts = 2;
893 
894   switch (Info) {
895   case IIT_Done:
896     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
897     return;
898   case IIT_VARARG:
899     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
900     return;
901   case IIT_MMX:
902     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
903     return;
904   case IIT_AMX:
905     OutputTable.push_back(IITDescriptor::get(IITDescriptor::AMX, 0));
906     return;
907   case IIT_TOKEN:
908     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
909     return;
910   case IIT_METADATA:
911     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
912     return;
913   case IIT_F16:
914     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
915     return;
916   case IIT_BF16:
917     OutputTable.push_back(IITDescriptor::get(IITDescriptor::BFloat, 0));
918     return;
919   case IIT_F32:
920     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
921     return;
922   case IIT_F64:
923     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
924     return;
925   case IIT_F128:
926     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
927     return;
928   case IIT_I1:
929     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
930     return;
931   case IIT_I8:
932     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
933     return;
934   case IIT_I16:
935     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
936     return;
937   case IIT_I32:
938     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
939     return;
940   case IIT_I64:
941     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
942     return;
943   case IIT_I128:
944     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
945     return;
946   case IIT_V1:
947     OutputTable.push_back(IITDescriptor::getVector(1, IsScalableVector));
948     DecodeIITType(NextElt, Infos, Info, OutputTable);
949     return;
950   case IIT_V2:
951     OutputTable.push_back(IITDescriptor::getVector(2, IsScalableVector));
952     DecodeIITType(NextElt, Infos, Info, OutputTable);
953     return;
954   case IIT_V4:
955     OutputTable.push_back(IITDescriptor::getVector(4, IsScalableVector));
956     DecodeIITType(NextElt, Infos, Info, OutputTable);
957     return;
958   case IIT_V8:
959     OutputTable.push_back(IITDescriptor::getVector(8, IsScalableVector));
960     DecodeIITType(NextElt, Infos, Info, OutputTable);
961     return;
962   case IIT_V16:
963     OutputTable.push_back(IITDescriptor::getVector(16, IsScalableVector));
964     DecodeIITType(NextElt, Infos, Info, OutputTable);
965     return;
966   case IIT_V32:
967     OutputTable.push_back(IITDescriptor::getVector(32, IsScalableVector));
968     DecodeIITType(NextElt, Infos, Info, OutputTable);
969     return;
970   case IIT_V64:
971     OutputTable.push_back(IITDescriptor::getVector(64, IsScalableVector));
972     DecodeIITType(NextElt, Infos, Info, OutputTable);
973     return;
974   case IIT_V128:
975     OutputTable.push_back(IITDescriptor::getVector(128, IsScalableVector));
976     DecodeIITType(NextElt, Infos, Info, OutputTable);
977     return;
978   case IIT_V256:
979     OutputTable.push_back(IITDescriptor::getVector(256, IsScalableVector));
980     DecodeIITType(NextElt, Infos, Info, OutputTable);
981     return;
982   case IIT_V512:
983     OutputTable.push_back(IITDescriptor::getVector(512, IsScalableVector));
984     DecodeIITType(NextElt, Infos, Info, OutputTable);
985     return;
986   case IIT_V1024:
987     OutputTable.push_back(IITDescriptor::getVector(1024, IsScalableVector));
988     DecodeIITType(NextElt, Infos, Info, OutputTable);
989     return;
990   case IIT_PTR:
991     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
992     DecodeIITType(NextElt, Infos, Info, OutputTable);
993     return;
994   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
995     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
996                                              Infos[NextElt++]));
997     DecodeIITType(NextElt, Infos, Info, OutputTable);
998     return;
999   }
1000   case IIT_ARG: {
1001     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1002     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
1003     return;
1004   }
1005   case IIT_EXTEND_ARG: {
1006     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1007     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
1008                                              ArgInfo));
1009     return;
1010   }
1011   case IIT_TRUNC_ARG: {
1012     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1013     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
1014                                              ArgInfo));
1015     return;
1016   }
1017   case IIT_HALF_VEC_ARG: {
1018     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1019     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
1020                                              ArgInfo));
1021     return;
1022   }
1023   case IIT_SAME_VEC_WIDTH_ARG: {
1024     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1025     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
1026                                              ArgInfo));
1027     return;
1028   }
1029   case IIT_PTR_TO_ARG: {
1030     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1031     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
1032                                              ArgInfo));
1033     return;
1034   }
1035   case IIT_PTR_TO_ELT: {
1036     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1037     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
1038     return;
1039   }
1040   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
1041     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1042     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1043     OutputTable.push_back(
1044         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
1045     return;
1046   }
1047   case IIT_EMPTYSTRUCT:
1048     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
1049     return;
1050   case IIT_STRUCT9: ++StructElts; LLVM_FALLTHROUGH;
1051   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
1052   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
1053   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
1054   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
1055   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
1056   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
1057   case IIT_STRUCT2: {
1058     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
1059 
1060     for (unsigned i = 0; i != StructElts; ++i)
1061       DecodeIITType(NextElt, Infos, Info, OutputTable);
1062     return;
1063   }
1064   case IIT_SUBDIVIDE2_ARG: {
1065     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1066     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
1067                                              ArgInfo));
1068     return;
1069   }
1070   case IIT_SUBDIVIDE4_ARG: {
1071     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1072     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
1073                                              ArgInfo));
1074     return;
1075   }
1076   case IIT_VEC_ELEMENT: {
1077     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1078     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
1079                                              ArgInfo));
1080     return;
1081   }
1082   case IIT_SCALABLE_VEC: {
1083     DecodeIITType(NextElt, Infos, Info, OutputTable);
1084     return;
1085   }
1086   case IIT_VEC_OF_BITCASTS_TO_INT: {
1087     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
1088     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfBitcastsToInt,
1089                                              ArgInfo));
1090     return;
1091   }
1092   }
1093   llvm_unreachable("unhandled");
1094 }
1095 
1096 #define GET_INTRINSIC_GENERATOR_GLOBAL
1097 #include "llvm/IR/IntrinsicImpl.inc"
1098 #undef GET_INTRINSIC_GENERATOR_GLOBAL
1099 
1100 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
1101                                              SmallVectorImpl<IITDescriptor> &T){
1102   // Check to see if the intrinsic's type was expressible by the table.
1103   unsigned TableVal = IIT_Table[id-1];
1104 
1105   // Decode the TableVal into an array of IITValues.
1106   SmallVector<unsigned char, 8> IITValues;
1107   ArrayRef<unsigned char> IITEntries;
1108   unsigned NextElt = 0;
1109   if ((TableVal >> 31) != 0) {
1110     // This is an offset into the IIT_LongEncodingTable.
1111     IITEntries = IIT_LongEncodingTable;
1112 
1113     // Strip sentinel bit.
1114     NextElt = (TableVal << 1) >> 1;
1115   } else {
1116     // Decode the TableVal into an array of IITValues.  If the entry was encoded
1117     // into a single word in the table itself, decode it now.
1118     do {
1119       IITValues.push_back(TableVal & 0xF);
1120       TableVal >>= 4;
1121     } while (TableVal);
1122 
1123     IITEntries = IITValues;
1124     NextElt = 0;
1125   }
1126 
1127   // Okay, decode the table into the output vector of IITDescriptors.
1128   DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1129   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
1130     DecodeIITType(NextElt, IITEntries, IIT_Done, T);
1131 }
1132 
1133 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
1134                              ArrayRef<Type*> Tys, LLVMContext &Context) {
1135   using namespace Intrinsic;
1136 
1137   IITDescriptor D = Infos.front();
1138   Infos = Infos.slice(1);
1139 
1140   switch (D.Kind) {
1141   case IITDescriptor::Void: return Type::getVoidTy(Context);
1142   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
1143   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
1144   case IITDescriptor::AMX: return Type::getX86_AMXTy(Context);
1145   case IITDescriptor::Token: return Type::getTokenTy(Context);
1146   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
1147   case IITDescriptor::Half: return Type::getHalfTy(Context);
1148   case IITDescriptor::BFloat: return Type::getBFloatTy(Context);
1149   case IITDescriptor::Float: return Type::getFloatTy(Context);
1150   case IITDescriptor::Double: return Type::getDoubleTy(Context);
1151   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
1152 
1153   case IITDescriptor::Integer:
1154     return IntegerType::get(Context, D.Integer_Width);
1155   case IITDescriptor::Vector:
1156     return VectorType::get(DecodeFixedType(Infos, Tys, Context),
1157                            D.Vector_Width);
1158   case IITDescriptor::Pointer:
1159     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
1160                             D.Pointer_AddressSpace);
1161   case IITDescriptor::Struct: {
1162     SmallVector<Type *, 8> Elts;
1163     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1164       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
1165     return StructType::get(Context, Elts);
1166   }
1167   case IITDescriptor::Argument:
1168     return Tys[D.getArgumentNumber()];
1169   case IITDescriptor::ExtendArgument: {
1170     Type *Ty = Tys[D.getArgumentNumber()];
1171     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1172       return VectorType::getExtendedElementVectorType(VTy);
1173 
1174     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
1175   }
1176   case IITDescriptor::TruncArgument: {
1177     Type *Ty = Tys[D.getArgumentNumber()];
1178     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1179       return VectorType::getTruncatedElementVectorType(VTy);
1180 
1181     IntegerType *ITy = cast<IntegerType>(Ty);
1182     assert(ITy->getBitWidth() % 2 == 0);
1183     return IntegerType::get(Context, ITy->getBitWidth() / 2);
1184   }
1185   case IITDescriptor::Subdivide2Argument:
1186   case IITDescriptor::Subdivide4Argument: {
1187     Type *Ty = Tys[D.getArgumentNumber()];
1188     VectorType *VTy = dyn_cast<VectorType>(Ty);
1189     assert(VTy && "Expected an argument of Vector Type");
1190     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1191     return VectorType::getSubdividedVectorType(VTy, SubDivs);
1192   }
1193   case IITDescriptor::HalfVecArgument:
1194     return VectorType::getHalfElementsVectorType(cast<VectorType>(
1195                                                   Tys[D.getArgumentNumber()]));
1196   case IITDescriptor::SameVecWidthArgument: {
1197     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1198     Type *Ty = Tys[D.getArgumentNumber()];
1199     if (auto *VTy = dyn_cast<VectorType>(Ty))
1200       return VectorType::get(EltTy, VTy->getElementCount());
1201     return EltTy;
1202   }
1203   case IITDescriptor::PtrToArgument: {
1204     Type *Ty = Tys[D.getArgumentNumber()];
1205     return PointerType::getUnqual(Ty);
1206   }
1207   case IITDescriptor::PtrToElt: {
1208     Type *Ty = Tys[D.getArgumentNumber()];
1209     VectorType *VTy = dyn_cast<VectorType>(Ty);
1210     if (!VTy)
1211       llvm_unreachable("Expected an argument of Vector Type");
1212     Type *EltTy = VTy->getElementType();
1213     return PointerType::getUnqual(EltTy);
1214   }
1215   case IITDescriptor::VecElementArgument: {
1216     Type *Ty = Tys[D.getArgumentNumber()];
1217     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1218       return VTy->getElementType();
1219     llvm_unreachable("Expected an argument of Vector Type");
1220   }
1221   case IITDescriptor::VecOfBitcastsToInt: {
1222     Type *Ty = Tys[D.getArgumentNumber()];
1223     VectorType *VTy = dyn_cast<VectorType>(Ty);
1224     assert(VTy && "Expected an argument of Vector Type");
1225     return VectorType::getInteger(VTy);
1226   }
1227   case IITDescriptor::VecOfAnyPtrsToElt:
1228     // Return the overloaded type (which determines the pointers address space)
1229     return Tys[D.getOverloadArgNumber()];
1230   }
1231   llvm_unreachable("unhandled");
1232 }
1233 
1234 FunctionType *Intrinsic::getType(LLVMContext &Context,
1235                                  ID id, ArrayRef<Type*> Tys) {
1236   SmallVector<IITDescriptor, 8> Table;
1237   getIntrinsicInfoTableEntries(id, Table);
1238 
1239   ArrayRef<IITDescriptor> TableRef = Table;
1240   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1241 
1242   SmallVector<Type*, 8> ArgTys;
1243   while (!TableRef.empty())
1244     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1245 
1246   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1247   // If we see void type as the type of the last argument, it is vararg intrinsic
1248   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1249     ArgTys.pop_back();
1250     return FunctionType::get(ResultTy, ArgTys, true);
1251   }
1252   return FunctionType::get(ResultTy, ArgTys, false);
1253 }
1254 
1255 bool Intrinsic::isOverloaded(ID id) {
1256 #define GET_INTRINSIC_OVERLOAD_TABLE
1257 #include "llvm/IR/IntrinsicImpl.inc"
1258 #undef GET_INTRINSIC_OVERLOAD_TABLE
1259 }
1260 
1261 bool Intrinsic::isLeaf(ID id) {
1262   switch (id) {
1263   default:
1264     return true;
1265 
1266   case Intrinsic::experimental_gc_statepoint:
1267   case Intrinsic::experimental_patchpoint_void:
1268   case Intrinsic::experimental_patchpoint_i64:
1269     return false;
1270   }
1271 }
1272 
1273 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1274 #define GET_INTRINSIC_ATTRIBUTES
1275 #include "llvm/IR/IntrinsicImpl.inc"
1276 #undef GET_INTRINSIC_ATTRIBUTES
1277 
1278 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1279   // There can never be multiple globals with the same name of different types,
1280   // because intrinsics must be a specific type.
1281   auto *FT = getType(M->getContext(), id, Tys);
1282   return cast<Function>(
1283       M->getOrInsertFunction(Tys.empty() ? getName(id)
1284                                          : getName(id, Tys, M, FT),
1285                              getType(M->getContext(), id, Tys))
1286           .getCallee());
1287 }
1288 
1289 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1290 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1291 #include "llvm/IR/IntrinsicImpl.inc"
1292 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1293 
1294 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1295 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1296 #include "llvm/IR/IntrinsicImpl.inc"
1297 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1298 
1299 using DeferredIntrinsicMatchPair =
1300     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1301 
1302 static bool matchIntrinsicType(
1303     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1304     SmallVectorImpl<Type *> &ArgTys,
1305     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1306     bool IsDeferredCheck) {
1307   using namespace Intrinsic;
1308 
1309   // If we ran out of descriptors, there are too many arguments.
1310   if (Infos.empty()) return true;
1311 
1312   // Do this before slicing off the 'front' part
1313   auto InfosRef = Infos;
1314   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1315     DeferredChecks.emplace_back(T, InfosRef);
1316     return false;
1317   };
1318 
1319   IITDescriptor D = Infos.front();
1320   Infos = Infos.slice(1);
1321 
1322   switch (D.Kind) {
1323     case IITDescriptor::Void: return !Ty->isVoidTy();
1324     case IITDescriptor::VarArg: return true;
1325     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1326     case IITDescriptor::AMX:  return !Ty->isX86_AMXTy();
1327     case IITDescriptor::Token: return !Ty->isTokenTy();
1328     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1329     case IITDescriptor::Half: return !Ty->isHalfTy();
1330     case IITDescriptor::BFloat: return !Ty->isBFloatTy();
1331     case IITDescriptor::Float: return !Ty->isFloatTy();
1332     case IITDescriptor::Double: return !Ty->isDoubleTy();
1333     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1334     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1335     case IITDescriptor::Vector: {
1336       VectorType *VT = dyn_cast<VectorType>(Ty);
1337       return !VT || VT->getElementCount() != D.Vector_Width ||
1338              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1339                                 DeferredChecks, IsDeferredCheck);
1340     }
1341     case IITDescriptor::Pointer: {
1342       PointerType *PT = dyn_cast<PointerType>(Ty);
1343       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1344              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1345                                 DeferredChecks, IsDeferredCheck);
1346     }
1347 
1348     case IITDescriptor::Struct: {
1349       StructType *ST = dyn_cast<StructType>(Ty);
1350       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1351         return true;
1352 
1353       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1354         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1355                                DeferredChecks, IsDeferredCheck))
1356           return true;
1357       return false;
1358     }
1359 
1360     case IITDescriptor::Argument:
1361       // If this is the second occurrence of an argument,
1362       // verify that the later instance matches the previous instance.
1363       if (D.getArgumentNumber() < ArgTys.size())
1364         return Ty != ArgTys[D.getArgumentNumber()];
1365 
1366       if (D.getArgumentNumber() > ArgTys.size() ||
1367           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1368         return IsDeferredCheck || DeferCheck(Ty);
1369 
1370       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1371              "Table consistency error");
1372       ArgTys.push_back(Ty);
1373 
1374       switch (D.getArgumentKind()) {
1375         case IITDescriptor::AK_Any:        return false; // Success
1376         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1377         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1378         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1379         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1380         default:                           break;
1381       }
1382       llvm_unreachable("all argument kinds not covered");
1383 
1384     case IITDescriptor::ExtendArgument: {
1385       // If this is a forward reference, defer the check for later.
1386       if (D.getArgumentNumber() >= ArgTys.size())
1387         return IsDeferredCheck || DeferCheck(Ty);
1388 
1389       Type *NewTy = ArgTys[D.getArgumentNumber()];
1390       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1391         NewTy = VectorType::getExtendedElementVectorType(VTy);
1392       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1393         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1394       else
1395         return true;
1396 
1397       return Ty != NewTy;
1398     }
1399     case IITDescriptor::TruncArgument: {
1400       // If this is a forward reference, defer the check for later.
1401       if (D.getArgumentNumber() >= ArgTys.size())
1402         return IsDeferredCheck || DeferCheck(Ty);
1403 
1404       Type *NewTy = ArgTys[D.getArgumentNumber()];
1405       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1406         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1407       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1408         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1409       else
1410         return true;
1411 
1412       return Ty != NewTy;
1413     }
1414     case IITDescriptor::HalfVecArgument:
1415       // If this is a forward reference, defer the check for later.
1416       if (D.getArgumentNumber() >= ArgTys.size())
1417         return IsDeferredCheck || DeferCheck(Ty);
1418       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1419              VectorType::getHalfElementsVectorType(
1420                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1421     case IITDescriptor::SameVecWidthArgument: {
1422       if (D.getArgumentNumber() >= ArgTys.size()) {
1423         // Defer check and subsequent check for the vector element type.
1424         Infos = Infos.slice(1);
1425         return IsDeferredCheck || DeferCheck(Ty);
1426       }
1427       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1428       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1429       // Both must be vectors of the same number of elements or neither.
1430       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1431         return true;
1432       Type *EltTy = Ty;
1433       if (ThisArgType) {
1434         if (ReferenceType->getElementCount() !=
1435             ThisArgType->getElementCount())
1436           return true;
1437         EltTy = ThisArgType->getElementType();
1438       }
1439       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1440                                 IsDeferredCheck);
1441     }
1442     case IITDescriptor::PtrToArgument: {
1443       if (D.getArgumentNumber() >= ArgTys.size())
1444         return IsDeferredCheck || DeferCheck(Ty);
1445       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1446       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1447       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1448     }
1449     case IITDescriptor::PtrToElt: {
1450       if (D.getArgumentNumber() >= ArgTys.size())
1451         return IsDeferredCheck || DeferCheck(Ty);
1452       VectorType * ReferenceType =
1453         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1454       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1455 
1456       return (!ThisArgType || !ReferenceType ||
1457               ThisArgType->getElementType() != ReferenceType->getElementType());
1458     }
1459     case IITDescriptor::VecOfAnyPtrsToElt: {
1460       unsigned RefArgNumber = D.getRefArgNumber();
1461       if (RefArgNumber >= ArgTys.size()) {
1462         if (IsDeferredCheck)
1463           return true;
1464         // If forward referencing, already add the pointer-vector type and
1465         // defer the checks for later.
1466         ArgTys.push_back(Ty);
1467         return DeferCheck(Ty);
1468       }
1469 
1470       if (!IsDeferredCheck){
1471         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1472                "Table consistency error");
1473         ArgTys.push_back(Ty);
1474       }
1475 
1476       // Verify the overloaded type "matches" the Ref type.
1477       // i.e. Ty is a vector with the same width as Ref.
1478       // Composed of pointers to the same element type as Ref.
1479       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1480       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1481       if (!ThisArgVecTy || !ReferenceType ||
1482           (ReferenceType->getElementCount() != ThisArgVecTy->getElementCount()))
1483         return true;
1484       PointerType *ThisArgEltTy =
1485           dyn_cast<PointerType>(ThisArgVecTy->getElementType());
1486       if (!ThisArgEltTy)
1487         return true;
1488       return ThisArgEltTy->getElementType() != ReferenceType->getElementType();
1489     }
1490     case IITDescriptor::VecElementArgument: {
1491       if (D.getArgumentNumber() >= ArgTys.size())
1492         return IsDeferredCheck ? true : DeferCheck(Ty);
1493       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1494       return !ReferenceType || Ty != ReferenceType->getElementType();
1495     }
1496     case IITDescriptor::Subdivide2Argument:
1497     case IITDescriptor::Subdivide4Argument: {
1498       // If this is a forward reference, defer the check for later.
1499       if (D.getArgumentNumber() >= ArgTys.size())
1500         return IsDeferredCheck || DeferCheck(Ty);
1501 
1502       Type *NewTy = ArgTys[D.getArgumentNumber()];
1503       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1504         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1505         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1506         return Ty != NewTy;
1507       }
1508       return true;
1509     }
1510     case IITDescriptor::VecOfBitcastsToInt: {
1511       if (D.getArgumentNumber() >= ArgTys.size())
1512         return IsDeferredCheck || DeferCheck(Ty);
1513       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1514       auto *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1515       if (!ThisArgVecTy || !ReferenceType)
1516         return true;
1517       return ThisArgVecTy != VectorType::getInteger(ReferenceType);
1518     }
1519   }
1520   llvm_unreachable("unhandled");
1521 }
1522 
1523 Intrinsic::MatchIntrinsicTypesResult
1524 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1525                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1526                                    SmallVectorImpl<Type *> &ArgTys) {
1527   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1528   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1529                          false))
1530     return MatchIntrinsicTypes_NoMatchRet;
1531 
1532   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1533 
1534   for (auto Ty : FTy->params())
1535     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1536       return MatchIntrinsicTypes_NoMatchArg;
1537 
1538   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1539     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1540     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1541                            true))
1542       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1543                                          : MatchIntrinsicTypes_NoMatchArg;
1544   }
1545 
1546   return MatchIntrinsicTypes_Match;
1547 }
1548 
1549 bool
1550 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1551                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1552   // If there are no descriptors left, then it can't be a vararg.
1553   if (Infos.empty())
1554     return isVarArg;
1555 
1556   // There should be only one descriptor remaining at this point.
1557   if (Infos.size() != 1)
1558     return true;
1559 
1560   // Check and verify the descriptor.
1561   IITDescriptor D = Infos.front();
1562   Infos = Infos.slice(1);
1563   if (D.Kind == IITDescriptor::VarArg)
1564     return !isVarArg;
1565 
1566   return true;
1567 }
1568 
1569 bool Intrinsic::getIntrinsicSignature(Function *F,
1570                                       SmallVectorImpl<Type *> &ArgTys) {
1571   Intrinsic::ID ID = F->getIntrinsicID();
1572   if (!ID)
1573     return false;
1574 
1575   SmallVector<Intrinsic::IITDescriptor, 8> Table;
1576   getIntrinsicInfoTableEntries(ID, Table);
1577   ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1578 
1579   if (Intrinsic::matchIntrinsicSignature(F->getFunctionType(), TableRef,
1580                                          ArgTys) !=
1581       Intrinsic::MatchIntrinsicTypesResult::MatchIntrinsicTypes_Match) {
1582     return false;
1583   }
1584   if (Intrinsic::matchIntrinsicVarArg(F->getFunctionType()->isVarArg(),
1585                                       TableRef))
1586     return false;
1587   return true;
1588 }
1589 
1590 Optional<Function *> Intrinsic::remangleIntrinsicFunction(Function *F) {
1591   SmallVector<Type *, 4> ArgTys;
1592   if (!getIntrinsicSignature(F, ArgTys))
1593     return None;
1594 
1595   Intrinsic::ID ID = F->getIntrinsicID();
1596   StringRef Name = F->getName();
1597   if (Name ==
1598       Intrinsic::getName(ID, ArgTys, F->getParent(), F->getFunctionType()))
1599     return None;
1600 
1601   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1602   NewDecl->setCallingConv(F->getCallingConv());
1603   assert(NewDecl->getFunctionType() == F->getFunctionType() &&
1604          "Shouldn't change the signature");
1605   return NewDecl;
1606 }
1607 
1608 /// hasAddressTaken - returns true if there are any uses of this function
1609 /// other than direct calls or invokes to it. Optionally ignores callback
1610 /// uses, assume like pointer annotation calls, and references in llvm.used
1611 /// and llvm.compiler.used variables.
1612 bool Function::hasAddressTaken(const User **PutOffender,
1613                                bool IgnoreCallbackUses,
1614                                bool IgnoreAssumeLikeCalls,
1615                                bool IgnoreLLVMUsed) const {
1616   for (const Use &U : uses()) {
1617     const User *FU = U.getUser();
1618     if (isa<BlockAddress>(FU))
1619       continue;
1620 
1621     if (IgnoreCallbackUses) {
1622       AbstractCallSite ACS(&U);
1623       if (ACS && ACS.isCallbackCall())
1624         continue;
1625     }
1626 
1627     const auto *Call = dyn_cast<CallBase>(FU);
1628     if (!Call) {
1629       if (IgnoreAssumeLikeCalls) {
1630         if (const auto *FI = dyn_cast<Instruction>(FU)) {
1631           if (FI->isCast() && !FI->user_empty() &&
1632               llvm::all_of(FU->users(), [](const User *U) {
1633                 if (const auto *I = dyn_cast<IntrinsicInst>(U))
1634                   return I->isAssumeLikeIntrinsic();
1635                 return false;
1636               }))
1637             continue;
1638         }
1639       }
1640       if (IgnoreLLVMUsed && !FU->user_empty()) {
1641         const User *FUU = FU;
1642         if (isa<BitCastOperator>(FU) && FU->hasOneUse() &&
1643             !FU->user_begin()->user_empty())
1644           FUU = *FU->user_begin();
1645         if (llvm::all_of(FUU->users(), [](const User *U) {
1646               if (const auto *GV = dyn_cast<GlobalVariable>(U))
1647                 return GV->hasName() &&
1648                        (GV->getName().equals("llvm.compiler.used") ||
1649                         GV->getName().equals("llvm.used"));
1650               return false;
1651             }))
1652           continue;
1653       }
1654       if (PutOffender)
1655         *PutOffender = FU;
1656       return true;
1657     }
1658     if (!Call->isCallee(&U)) {
1659       if (PutOffender)
1660         *PutOffender = FU;
1661       return true;
1662     }
1663   }
1664   return false;
1665 }
1666 
1667 bool Function::isDefTriviallyDead() const {
1668   // Check the linkage
1669   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1670       !hasAvailableExternallyLinkage())
1671     return false;
1672 
1673   // Check if the function is used by anything other than a blockaddress.
1674   for (const User *U : users())
1675     if (!isa<BlockAddress>(U))
1676       return false;
1677 
1678   return true;
1679 }
1680 
1681 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1682 /// setjmp or other function that gcc recognizes as "returning twice".
1683 bool Function::callsFunctionThatReturnsTwice() const {
1684   for (const Instruction &I : instructions(this))
1685     if (const auto *Call = dyn_cast<CallBase>(&I))
1686       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1687         return true;
1688 
1689   return false;
1690 }
1691 
1692 Constant *Function::getPersonalityFn() const {
1693   assert(hasPersonalityFn() && getNumOperands());
1694   return cast<Constant>(Op<0>());
1695 }
1696 
1697 void Function::setPersonalityFn(Constant *Fn) {
1698   setHungoffOperand<0>(Fn);
1699   setValueSubclassDataBit(3, Fn != nullptr);
1700 }
1701 
1702 Constant *Function::getPrefixData() const {
1703   assert(hasPrefixData() && getNumOperands());
1704   return cast<Constant>(Op<1>());
1705 }
1706 
1707 void Function::setPrefixData(Constant *PrefixData) {
1708   setHungoffOperand<1>(PrefixData);
1709   setValueSubclassDataBit(1, PrefixData != nullptr);
1710 }
1711 
1712 Constant *Function::getPrologueData() const {
1713   assert(hasPrologueData() && getNumOperands());
1714   return cast<Constant>(Op<2>());
1715 }
1716 
1717 void Function::setPrologueData(Constant *PrologueData) {
1718   setHungoffOperand<2>(PrologueData);
1719   setValueSubclassDataBit(2, PrologueData != nullptr);
1720 }
1721 
1722 void Function::allocHungoffUselist() {
1723   // If we've already allocated a uselist, stop here.
1724   if (getNumOperands())
1725     return;
1726 
1727   allocHungoffUses(3, /*IsPhi=*/ false);
1728   setNumHungOffUseOperands(3);
1729 
1730   // Initialize the uselist with placeholder operands to allow traversal.
1731   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1732   Op<0>().set(CPN);
1733   Op<1>().set(CPN);
1734   Op<2>().set(CPN);
1735 }
1736 
1737 template <int Idx>
1738 void Function::setHungoffOperand(Constant *C) {
1739   if (C) {
1740     allocHungoffUselist();
1741     Op<Idx>().set(C);
1742   } else if (getNumOperands()) {
1743     Op<Idx>().set(
1744         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1745   }
1746 }
1747 
1748 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1749   assert(Bit < 16 && "SubclassData contains only 16 bits");
1750   if (On)
1751     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1752   else
1753     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1754 }
1755 
1756 void Function::setEntryCount(ProfileCount Count,
1757                              const DenseSet<GlobalValue::GUID> *S) {
1758   assert(Count.hasValue());
1759 #if !defined(NDEBUG)
1760   auto PrevCount = getEntryCount();
1761   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1762 #endif
1763 
1764   auto ImportGUIDs = getImportGUIDs();
1765   if (S == nullptr && ImportGUIDs.size())
1766     S = &ImportGUIDs;
1767 
1768   MDBuilder MDB(getContext());
1769   setMetadata(
1770       LLVMContext::MD_prof,
1771       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1772 }
1773 
1774 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1775                              const DenseSet<GlobalValue::GUID> *Imports) {
1776   setEntryCount(ProfileCount(Count, Type), Imports);
1777 }
1778 
1779 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1780   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1781   if (MD && MD->getOperand(0))
1782     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1783       if (MDS->getString().equals("function_entry_count")) {
1784         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1785         uint64_t Count = CI->getValue().getZExtValue();
1786         // A value of -1 is used for SamplePGO when there were no samples.
1787         // Treat this the same as unknown.
1788         if (Count == (uint64_t)-1)
1789           return ProfileCount::getInvalid();
1790         return ProfileCount(Count, PCT_Real);
1791       } else if (AllowSynthetic &&
1792                  MDS->getString().equals("synthetic_function_entry_count")) {
1793         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1794         uint64_t Count = CI->getValue().getZExtValue();
1795         return ProfileCount(Count, PCT_Synthetic);
1796       }
1797     }
1798   return ProfileCount::getInvalid();
1799 }
1800 
1801 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1802   DenseSet<GlobalValue::GUID> R;
1803   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1804     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1805       if (MDS->getString().equals("function_entry_count"))
1806         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1807           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1808                        ->getValue()
1809                        .getZExtValue());
1810   return R;
1811 }
1812 
1813 void Function::setSectionPrefix(StringRef Prefix) {
1814   MDBuilder MDB(getContext());
1815   setMetadata(LLVMContext::MD_section_prefix,
1816               MDB.createFunctionSectionPrefix(Prefix));
1817 }
1818 
1819 Optional<StringRef> Function::getSectionPrefix() const {
1820   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1821     assert(cast<MDString>(MD->getOperand(0))
1822                ->getString()
1823                .equals("function_section_prefix") &&
1824            "Metadata not match");
1825     return cast<MDString>(MD->getOperand(1))->getString();
1826   }
1827   return None;
1828 }
1829 
1830 bool Function::nullPointerIsDefined() const {
1831   return hasFnAttribute(Attribute::NullPointerIsValid);
1832 }
1833 
1834 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1835   if (F && F->nullPointerIsDefined())
1836     return true;
1837 
1838   if (AS != 0)
1839     return true;
1840 
1841   return false;
1842 }
1843