xref: /llvm-project/llvm/lib/IR/Function.cpp (revision 01b84e175c500dd85c522920de992c0b2c5b1060)
1 //===- Function.cpp - Implement the Global object classes -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements the Function class for the IR library.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/IR/Function.h"
14 #include "SymbolTableListTraitsImpl.h"
15 #include "llvm/ADT/ArrayRef.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallString.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringExtras.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/IR/Argument.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constant.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/InstIterator.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/LLVMContext.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/SymbolTableListTraits.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Use.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/IR/Value.h"
44 #include "llvm/IR/ValueSymbolTable.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/Compiler.h"
47 #include "llvm/Support/ErrorHandling.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstddef>
51 #include <cstdint>
52 #include <cstring>
53 #include <string>
54 
55 using namespace llvm;
56 using ProfileCount = Function::ProfileCount;
57 
58 // Explicit instantiations of SymbolTableListTraits since some of the methods
59 // are not in the public header file...
60 template class llvm::SymbolTableListTraits<BasicBlock>;
61 
62 //===----------------------------------------------------------------------===//
63 // Argument Implementation
64 //===----------------------------------------------------------------------===//
65 
66 Argument::Argument(Type *Ty, const Twine &Name, Function *Par, unsigned ArgNo)
67     : Value(Ty, Value::ArgumentVal), Parent(Par), ArgNo(ArgNo) {
68   setName(Name);
69 }
70 
71 void Argument::setParent(Function *parent) {
72   Parent = parent;
73 }
74 
75 bool Argument::hasNonNullAttr() const {
76   if (!getType()->isPointerTy()) return false;
77   if (getParent()->hasParamAttribute(getArgNo(), Attribute::NonNull))
78     return true;
79   else if (getDereferenceableBytes() > 0 &&
80            !NullPointerIsDefined(getParent(),
81                                  getType()->getPointerAddressSpace()))
82     return true;
83   return false;
84 }
85 
86 bool Argument::hasByValAttr() const {
87   if (!getType()->isPointerTy()) return false;
88   return hasAttribute(Attribute::ByVal);
89 }
90 
91 bool Argument::hasSwiftSelfAttr() const {
92   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftSelf);
93 }
94 
95 bool Argument::hasSwiftErrorAttr() const {
96   return getParent()->hasParamAttribute(getArgNo(), Attribute::SwiftError);
97 }
98 
99 bool Argument::hasInAllocaAttr() const {
100   if (!getType()->isPointerTy()) return false;
101   return hasAttribute(Attribute::InAlloca);
102 }
103 
104 bool Argument::hasByValOrInAllocaAttr() const {
105   if (!getType()->isPointerTy()) return false;
106   AttributeList Attrs = getParent()->getAttributes();
107   return Attrs.hasParamAttribute(getArgNo(), Attribute::ByVal) ||
108          Attrs.hasParamAttribute(getArgNo(), Attribute::InAlloca);
109 }
110 
111 unsigned Argument::getParamAlignment() const {
112   assert(getType()->isPointerTy() && "Only pointers have alignments");
113   return getParent()->getParamAlignment(getArgNo());
114 }
115 
116 Type *Argument::getParamByValType() const {
117   assert(getType()->isPointerTy() && "Only pointers have byval types");
118   return getParent()->getParamByValType(getArgNo());
119 }
120 
121 uint64_t Argument::getDereferenceableBytes() const {
122   assert(getType()->isPointerTy() &&
123          "Only pointers have dereferenceable bytes");
124   return getParent()->getParamDereferenceableBytes(getArgNo());
125 }
126 
127 uint64_t Argument::getDereferenceableOrNullBytes() const {
128   assert(getType()->isPointerTy() &&
129          "Only pointers have dereferenceable bytes");
130   return getParent()->getParamDereferenceableOrNullBytes(getArgNo());
131 }
132 
133 bool Argument::hasNestAttr() const {
134   if (!getType()->isPointerTy()) return false;
135   return hasAttribute(Attribute::Nest);
136 }
137 
138 bool Argument::hasNoAliasAttr() const {
139   if (!getType()->isPointerTy()) return false;
140   return hasAttribute(Attribute::NoAlias);
141 }
142 
143 bool Argument::hasNoCaptureAttr() const {
144   if (!getType()->isPointerTy()) return false;
145   return hasAttribute(Attribute::NoCapture);
146 }
147 
148 bool Argument::hasStructRetAttr() const {
149   if (!getType()->isPointerTy()) return false;
150   return hasAttribute(Attribute::StructRet);
151 }
152 
153 bool Argument::hasInRegAttr() const {
154   return hasAttribute(Attribute::InReg);
155 }
156 
157 bool Argument::hasReturnedAttr() const {
158   return hasAttribute(Attribute::Returned);
159 }
160 
161 bool Argument::hasZExtAttr() const {
162   return hasAttribute(Attribute::ZExt);
163 }
164 
165 bool Argument::hasSExtAttr() const {
166   return hasAttribute(Attribute::SExt);
167 }
168 
169 bool Argument::onlyReadsMemory() const {
170   AttributeList Attrs = getParent()->getAttributes();
171   return Attrs.hasParamAttribute(getArgNo(), Attribute::ReadOnly) ||
172          Attrs.hasParamAttribute(getArgNo(), Attribute::ReadNone);
173 }
174 
175 void Argument::addAttrs(AttrBuilder &B) {
176   AttributeList AL = getParent()->getAttributes();
177   AL = AL.addParamAttributes(Parent->getContext(), getArgNo(), B);
178   getParent()->setAttributes(AL);
179 }
180 
181 void Argument::addAttr(Attribute::AttrKind Kind) {
182   getParent()->addParamAttr(getArgNo(), Kind);
183 }
184 
185 void Argument::addAttr(Attribute Attr) {
186   getParent()->addParamAttr(getArgNo(), Attr);
187 }
188 
189 void Argument::removeAttr(Attribute::AttrKind Kind) {
190   getParent()->removeParamAttr(getArgNo(), Kind);
191 }
192 
193 bool Argument::hasAttribute(Attribute::AttrKind Kind) const {
194   return getParent()->hasParamAttribute(getArgNo(), Kind);
195 }
196 
197 Attribute Argument::getAttribute(Attribute::AttrKind Kind) const {
198   return getParent()->getParamAttribute(getArgNo(), Kind);
199 }
200 
201 //===----------------------------------------------------------------------===//
202 // Helper Methods in Function
203 //===----------------------------------------------------------------------===//
204 
205 LLVMContext &Function::getContext() const {
206   return getType()->getContext();
207 }
208 
209 unsigned Function::getInstructionCount() const {
210   unsigned NumInstrs = 0;
211   for (const BasicBlock &BB : BasicBlocks)
212     NumInstrs += std::distance(BB.instructionsWithoutDebug().begin(),
213                                BB.instructionsWithoutDebug().end());
214   return NumInstrs;
215 }
216 
217 Function *Function::Create(FunctionType *Ty, LinkageTypes Linkage,
218                            const Twine &N, Module &M) {
219   return Create(Ty, Linkage, M.getDataLayout().getProgramAddressSpace(), N, &M);
220 }
221 
222 void Function::removeFromParent() {
223   getParent()->getFunctionList().remove(getIterator());
224 }
225 
226 void Function::eraseFromParent() {
227   getParent()->getFunctionList().erase(getIterator());
228 }
229 
230 //===----------------------------------------------------------------------===//
231 // Function Implementation
232 //===----------------------------------------------------------------------===//
233 
234 static unsigned computeAddrSpace(unsigned AddrSpace, Module *M) {
235   // If AS == -1 and we are passed a valid module pointer we place the function
236   // in the program address space. Otherwise we default to AS0.
237   if (AddrSpace == static_cast<unsigned>(-1))
238     return M ? M->getDataLayout().getProgramAddressSpace() : 0;
239   return AddrSpace;
240 }
241 
242 Function::Function(FunctionType *Ty, LinkageTypes Linkage, unsigned AddrSpace,
243                    const Twine &name, Module *ParentModule)
244     : GlobalObject(Ty, Value::FunctionVal,
245                    OperandTraits<Function>::op_begin(this), 0, Linkage, name,
246                    computeAddrSpace(AddrSpace, ParentModule)),
247       NumArgs(Ty->getNumParams()) {
248   assert(FunctionType::isValidReturnType(getReturnType()) &&
249          "invalid return type");
250   setGlobalObjectSubClassData(0);
251 
252   // We only need a symbol table for a function if the context keeps value names
253   if (!getContext().shouldDiscardValueNames())
254     SymTab = std::make_unique<ValueSymbolTable>();
255 
256   // If the function has arguments, mark them as lazily built.
257   if (Ty->getNumParams())
258     setValueSubclassData(1);   // Set the "has lazy arguments" bit.
259 
260   if (ParentModule)
261     ParentModule->getFunctionList().push_back(this);
262 
263   HasLLVMReservedName = getName().startswith("llvm.");
264   // Ensure intrinsics have the right parameter attributes.
265   // Note, the IntID field will have been set in Value::setName if this function
266   // name is a valid intrinsic ID.
267   if (IntID)
268     setAttributes(Intrinsic::getAttributes(getContext(), IntID));
269 }
270 
271 Function::~Function() {
272   dropAllReferences();    // After this it is safe to delete instructions.
273 
274   // Delete all of the method arguments and unlink from symbol table...
275   if (Arguments)
276     clearArguments();
277 
278   // Remove the function from the on-the-side GC table.
279   clearGC();
280 }
281 
282 void Function::BuildLazyArguments() const {
283   // Create the arguments vector, all arguments start out unnamed.
284   auto *FT = getFunctionType();
285   if (NumArgs > 0) {
286     Arguments = std::allocator<Argument>().allocate(NumArgs);
287     for (unsigned i = 0, e = NumArgs; i != e; ++i) {
288       Type *ArgTy = FT->getParamType(i);
289       assert(!ArgTy->isVoidTy() && "Cannot have void typed arguments!");
290       new (Arguments + i) Argument(ArgTy, "", const_cast<Function *>(this), i);
291     }
292   }
293 
294   // Clear the lazy arguments bit.
295   unsigned SDC = getSubclassDataFromValue();
296   SDC &= ~(1 << 0);
297   const_cast<Function*>(this)->setValueSubclassData(SDC);
298   assert(!hasLazyArguments());
299 }
300 
301 static MutableArrayRef<Argument> makeArgArray(Argument *Args, size_t Count) {
302   return MutableArrayRef<Argument>(Args, Count);
303 }
304 
305 void Function::clearArguments() {
306   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
307     A.setName("");
308     A.~Argument();
309   }
310   std::allocator<Argument>().deallocate(Arguments, NumArgs);
311   Arguments = nullptr;
312 }
313 
314 void Function::stealArgumentListFrom(Function &Src) {
315   assert(isDeclaration() && "Expected no references to current arguments");
316 
317   // Drop the current arguments, if any, and set the lazy argument bit.
318   if (!hasLazyArguments()) {
319     assert(llvm::all_of(makeArgArray(Arguments, NumArgs),
320                         [](const Argument &A) { return A.use_empty(); }) &&
321            "Expected arguments to be unused in declaration");
322     clearArguments();
323     setValueSubclassData(getSubclassDataFromValue() | (1 << 0));
324   }
325 
326   // Nothing to steal if Src has lazy arguments.
327   if (Src.hasLazyArguments())
328     return;
329 
330   // Steal arguments from Src, and fix the lazy argument bits.
331   assert(arg_size() == Src.arg_size());
332   Arguments = Src.Arguments;
333   Src.Arguments = nullptr;
334   for (Argument &A : makeArgArray(Arguments, NumArgs)) {
335     // FIXME: This does the work of transferNodesFromList inefficiently.
336     SmallString<128> Name;
337     if (A.hasName())
338       Name = A.getName();
339     if (!Name.empty())
340       A.setName("");
341     A.setParent(this);
342     if (!Name.empty())
343       A.setName(Name);
344   }
345 
346   setValueSubclassData(getSubclassDataFromValue() & ~(1 << 0));
347   assert(!hasLazyArguments());
348   Src.setValueSubclassData(Src.getSubclassDataFromValue() | (1 << 0));
349 }
350 
351 // dropAllReferences() - This function causes all the subinstructions to "let
352 // go" of all references that they are maintaining.  This allows one to
353 // 'delete' a whole class at a time, even though there may be circular
354 // references... first all references are dropped, and all use counts go to
355 // zero.  Then everything is deleted for real.  Note that no operations are
356 // valid on an object that has "dropped all references", except operator
357 // delete.
358 //
359 void Function::dropAllReferences() {
360   setIsMaterializable(false);
361 
362   for (BasicBlock &BB : *this)
363     BB.dropAllReferences();
364 
365   // Delete all basic blocks. They are now unused, except possibly by
366   // blockaddresses, but BasicBlock's destructor takes care of those.
367   while (!BasicBlocks.empty())
368     BasicBlocks.begin()->eraseFromParent();
369 
370   // Drop uses of any optional data (real or placeholder).
371   if (getNumOperands()) {
372     User::dropAllReferences();
373     setNumHungOffUseOperands(0);
374     setValueSubclassData(getSubclassDataFromValue() & ~0xe);
375   }
376 
377   // Metadata is stored in a side-table.
378   clearMetadata();
379 }
380 
381 void Function::addAttribute(unsigned i, Attribute::AttrKind Kind) {
382   AttributeList PAL = getAttributes();
383   PAL = PAL.addAttribute(getContext(), i, Kind);
384   setAttributes(PAL);
385 }
386 
387 void Function::addAttribute(unsigned i, Attribute Attr) {
388   AttributeList PAL = getAttributes();
389   PAL = PAL.addAttribute(getContext(), i, Attr);
390   setAttributes(PAL);
391 }
392 
393 void Function::addAttributes(unsigned i, const AttrBuilder &Attrs) {
394   AttributeList PAL = getAttributes();
395   PAL = PAL.addAttributes(getContext(), i, Attrs);
396   setAttributes(PAL);
397 }
398 
399 void Function::addParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
400   AttributeList PAL = getAttributes();
401   PAL = PAL.addParamAttribute(getContext(), ArgNo, Kind);
402   setAttributes(PAL);
403 }
404 
405 void Function::addParamAttr(unsigned ArgNo, Attribute Attr) {
406   AttributeList PAL = getAttributes();
407   PAL = PAL.addParamAttribute(getContext(), ArgNo, Attr);
408   setAttributes(PAL);
409 }
410 
411 void Function::addParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
412   AttributeList PAL = getAttributes();
413   PAL = PAL.addParamAttributes(getContext(), ArgNo, Attrs);
414   setAttributes(PAL);
415 }
416 
417 void Function::removeAttribute(unsigned i, Attribute::AttrKind Kind) {
418   AttributeList PAL = getAttributes();
419   PAL = PAL.removeAttribute(getContext(), i, Kind);
420   setAttributes(PAL);
421 }
422 
423 void Function::removeAttribute(unsigned i, StringRef Kind) {
424   AttributeList PAL = getAttributes();
425   PAL = PAL.removeAttribute(getContext(), i, Kind);
426   setAttributes(PAL);
427 }
428 
429 void Function::removeAttributes(unsigned i, const AttrBuilder &Attrs) {
430   AttributeList PAL = getAttributes();
431   PAL = PAL.removeAttributes(getContext(), i, Attrs);
432   setAttributes(PAL);
433 }
434 
435 void Function::removeParamAttr(unsigned ArgNo, Attribute::AttrKind Kind) {
436   AttributeList PAL = getAttributes();
437   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
438   setAttributes(PAL);
439 }
440 
441 void Function::removeParamAttr(unsigned ArgNo, StringRef Kind) {
442   AttributeList PAL = getAttributes();
443   PAL = PAL.removeParamAttribute(getContext(), ArgNo, Kind);
444   setAttributes(PAL);
445 }
446 
447 void Function::removeParamAttrs(unsigned ArgNo, const AttrBuilder &Attrs) {
448   AttributeList PAL = getAttributes();
449   PAL = PAL.removeParamAttributes(getContext(), ArgNo, Attrs);
450   setAttributes(PAL);
451 }
452 
453 void Function::addDereferenceableAttr(unsigned i, uint64_t Bytes) {
454   AttributeList PAL = getAttributes();
455   PAL = PAL.addDereferenceableAttr(getContext(), i, Bytes);
456   setAttributes(PAL);
457 }
458 
459 void Function::addDereferenceableParamAttr(unsigned ArgNo, uint64_t Bytes) {
460   AttributeList PAL = getAttributes();
461   PAL = PAL.addDereferenceableParamAttr(getContext(), ArgNo, Bytes);
462   setAttributes(PAL);
463 }
464 
465 void Function::addDereferenceableOrNullAttr(unsigned i, uint64_t Bytes) {
466   AttributeList PAL = getAttributes();
467   PAL = PAL.addDereferenceableOrNullAttr(getContext(), i, Bytes);
468   setAttributes(PAL);
469 }
470 
471 void Function::addDereferenceableOrNullParamAttr(unsigned ArgNo,
472                                                  uint64_t Bytes) {
473   AttributeList PAL = getAttributes();
474   PAL = PAL.addDereferenceableOrNullParamAttr(getContext(), ArgNo, Bytes);
475   setAttributes(PAL);
476 }
477 
478 const std::string &Function::getGC() const {
479   assert(hasGC() && "Function has no collector");
480   return getContext().getGC(*this);
481 }
482 
483 void Function::setGC(std::string Str) {
484   setValueSubclassDataBit(14, !Str.empty());
485   getContext().setGC(*this, std::move(Str));
486 }
487 
488 void Function::clearGC() {
489   if (!hasGC())
490     return;
491   getContext().deleteGC(*this);
492   setValueSubclassDataBit(14, false);
493 }
494 
495 /// Copy all additional attributes (those not needed to create a Function) from
496 /// the Function Src to this one.
497 void Function::copyAttributesFrom(const Function *Src) {
498   GlobalObject::copyAttributesFrom(Src);
499   setCallingConv(Src->getCallingConv());
500   setAttributes(Src->getAttributes());
501   if (Src->hasGC())
502     setGC(Src->getGC());
503   else
504     clearGC();
505   if (Src->hasPersonalityFn())
506     setPersonalityFn(Src->getPersonalityFn());
507   if (Src->hasPrefixData())
508     setPrefixData(Src->getPrefixData());
509   if (Src->hasPrologueData())
510     setPrologueData(Src->getPrologueData());
511 }
512 
513 /// Table of string intrinsic names indexed by enum value.
514 static const char * const IntrinsicNameTable[] = {
515   "not_intrinsic",
516 #define GET_INTRINSIC_NAME_TABLE
517 #include "llvm/IR/IntrinsicImpl.inc"
518 #undef GET_INTRINSIC_NAME_TABLE
519 };
520 
521 /// Table of per-target intrinsic name tables.
522 #define GET_INTRINSIC_TARGET_DATA
523 #include "llvm/IR/IntrinsicImpl.inc"
524 #undef GET_INTRINSIC_TARGET_DATA
525 
526 /// Find the segment of \c IntrinsicNameTable for intrinsics with the same
527 /// target as \c Name, or the generic table if \c Name is not target specific.
528 ///
529 /// Returns the relevant slice of \c IntrinsicNameTable
530 static ArrayRef<const char *> findTargetSubtable(StringRef Name) {
531   assert(Name.startswith("llvm."));
532 
533   ArrayRef<IntrinsicTargetInfo> Targets(TargetInfos);
534   // Drop "llvm." and take the first dotted component. That will be the target
535   // if this is target specific.
536   StringRef Target = Name.drop_front(5).split('.').first;
537   auto It = partition_point(
538       Targets, [=](const IntrinsicTargetInfo &TI) { return TI.Name < Target; });
539   // We've either found the target or just fall back to the generic set, which
540   // is always first.
541   const auto &TI = It != Targets.end() && It->Name == Target ? *It : Targets[0];
542   return makeArrayRef(&IntrinsicNameTable[1] + TI.Offset, TI.Count);
543 }
544 
545 /// This does the actual lookup of an intrinsic ID which
546 /// matches the given function name.
547 Intrinsic::ID Function::lookupIntrinsicID(StringRef Name) {
548   ArrayRef<const char *> NameTable = findTargetSubtable(Name);
549   int Idx = Intrinsic::lookupLLVMIntrinsicByName(NameTable, Name);
550   if (Idx == -1)
551     return Intrinsic::not_intrinsic;
552 
553   // Intrinsic IDs correspond to the location in IntrinsicNameTable, but we have
554   // an index into a sub-table.
555   int Adjust = NameTable.data() - IntrinsicNameTable;
556   Intrinsic::ID ID = static_cast<Intrinsic::ID>(Idx + Adjust);
557 
558   // If the intrinsic is not overloaded, require an exact match. If it is
559   // overloaded, require either exact or prefix match.
560   const auto MatchSize = strlen(NameTable[Idx]);
561   assert(Name.size() >= MatchSize && "Expected either exact or prefix match");
562   bool IsExactMatch = Name.size() == MatchSize;
563   return IsExactMatch || isOverloaded(ID) ? ID : Intrinsic::not_intrinsic;
564 }
565 
566 void Function::recalculateIntrinsicID() {
567   StringRef Name = getName();
568   if (!Name.startswith("llvm.")) {
569     HasLLVMReservedName = false;
570     IntID = Intrinsic::not_intrinsic;
571     return;
572   }
573   HasLLVMReservedName = true;
574   IntID = lookupIntrinsicID(Name);
575 }
576 
577 /// Returns a stable mangling for the type specified for use in the name
578 /// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
579 /// of named types is simply their name.  Manglings for unnamed types consist
580 /// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
581 /// combined with the mangling of their component types.  A vararg function
582 /// type will have a suffix of 'vararg'.  Since function types can contain
583 /// other function types, we close a function type mangling with suffix 'f'
584 /// which can't be confused with it's prefix.  This ensures we don't have
585 /// collisions between two unrelated function types. Otherwise, you might
586 /// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
587 ///
588 static std::string getMangledTypeStr(Type* Ty) {
589   std::string Result;
590   if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
591     Result += "p" + utostr(PTyp->getAddressSpace()) +
592       getMangledTypeStr(PTyp->getElementType());
593   } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
594     Result += "a" + utostr(ATyp->getNumElements()) +
595       getMangledTypeStr(ATyp->getElementType());
596   } else if (StructType *STyp = dyn_cast<StructType>(Ty)) {
597     if (!STyp->isLiteral()) {
598       Result += "s_";
599       Result += STyp->getName();
600     } else {
601       Result += "sl_";
602       for (auto Elem : STyp->elements())
603         Result += getMangledTypeStr(Elem);
604     }
605     // Ensure nested structs are distinguishable.
606     Result += "s";
607   } else if (FunctionType *FT = dyn_cast<FunctionType>(Ty)) {
608     Result += "f_" + getMangledTypeStr(FT->getReturnType());
609     for (size_t i = 0; i < FT->getNumParams(); i++)
610       Result += getMangledTypeStr(FT->getParamType(i));
611     if (FT->isVarArg())
612       Result += "vararg";
613     // Ensure nested function types are distinguishable.
614     Result += "f";
615   } else if (VectorType* VTy = dyn_cast<VectorType>(Ty)) {
616     if (VTy->isScalable())
617       Result += "nx";
618     Result += "v" + utostr(VTy->getVectorNumElements()) +
619       getMangledTypeStr(VTy->getVectorElementType());
620   } else if (Ty) {
621     switch (Ty->getTypeID()) {
622     default: llvm_unreachable("Unhandled type");
623     case Type::VoidTyID:      Result += "isVoid";   break;
624     case Type::MetadataTyID:  Result += "Metadata"; break;
625     case Type::HalfTyID:      Result += "f16";      break;
626     case Type::FloatTyID:     Result += "f32";      break;
627     case Type::DoubleTyID:    Result += "f64";      break;
628     case Type::X86_FP80TyID:  Result += "f80";      break;
629     case Type::FP128TyID:     Result += "f128";     break;
630     case Type::PPC_FP128TyID: Result += "ppcf128";  break;
631     case Type::X86_MMXTyID:   Result += "x86mmx";   break;
632     case Type::IntegerTyID:
633       Result += "i" + utostr(cast<IntegerType>(Ty)->getBitWidth());
634       break;
635     }
636   }
637   return Result;
638 }
639 
640 StringRef Intrinsic::getName(ID id) {
641   assert(id < num_intrinsics && "Invalid intrinsic ID!");
642   assert(!isOverloaded(id) &&
643          "This version of getName does not support overloading");
644   return IntrinsicNameTable[id];
645 }
646 
647 std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
648   assert(id < num_intrinsics && "Invalid intrinsic ID!");
649   std::string Result(IntrinsicNameTable[id]);
650   for (Type *Ty : Tys) {
651     Result += "." + getMangledTypeStr(Ty);
652   }
653   return Result;
654 }
655 
656 /// IIT_Info - These are enumerators that describe the entries returned by the
657 /// getIntrinsicInfoTableEntries function.
658 ///
659 /// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
660 enum IIT_Info {
661   // Common values should be encoded with 0-15.
662   IIT_Done = 0,
663   IIT_I1   = 1,
664   IIT_I8   = 2,
665   IIT_I16  = 3,
666   IIT_I32  = 4,
667   IIT_I64  = 5,
668   IIT_F16  = 6,
669   IIT_F32  = 7,
670   IIT_F64  = 8,
671   IIT_V2   = 9,
672   IIT_V4   = 10,
673   IIT_V8   = 11,
674   IIT_V16  = 12,
675   IIT_V32  = 13,
676   IIT_PTR  = 14,
677   IIT_ARG  = 15,
678 
679   // Values from 16+ are only encodable with the inefficient encoding.
680   IIT_V64  = 16,
681   IIT_MMX  = 17,
682   IIT_TOKEN = 18,
683   IIT_METADATA = 19,
684   IIT_EMPTYSTRUCT = 20,
685   IIT_STRUCT2 = 21,
686   IIT_STRUCT3 = 22,
687   IIT_STRUCT4 = 23,
688   IIT_STRUCT5 = 24,
689   IIT_EXTEND_ARG = 25,
690   IIT_TRUNC_ARG = 26,
691   IIT_ANYPTR = 27,
692   IIT_V1   = 28,
693   IIT_VARARG = 29,
694   IIT_HALF_VEC_ARG = 30,
695   IIT_SAME_VEC_WIDTH_ARG = 31,
696   IIT_PTR_TO_ARG = 32,
697   IIT_PTR_TO_ELT = 33,
698   IIT_VEC_OF_ANYPTRS_TO_ELT = 34,
699   IIT_I128 = 35,
700   IIT_V512 = 36,
701   IIT_V1024 = 37,
702   IIT_STRUCT6 = 38,
703   IIT_STRUCT7 = 39,
704   IIT_STRUCT8 = 40,
705   IIT_F128 = 41,
706   IIT_VEC_ELEMENT = 42,
707   IIT_SCALABLE_VEC = 43,
708   IIT_SUBDIVIDE2_ARG = 44,
709   IIT_SUBDIVIDE4_ARG = 45
710 };
711 
712 static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
713                       SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
714   using namespace Intrinsic;
715 
716   IIT_Info Info = IIT_Info(Infos[NextElt++]);
717   unsigned StructElts = 2;
718 
719   switch (Info) {
720   case IIT_Done:
721     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
722     return;
723   case IIT_VARARG:
724     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
725     return;
726   case IIT_MMX:
727     OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
728     return;
729   case IIT_TOKEN:
730     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Token, 0));
731     return;
732   case IIT_METADATA:
733     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
734     return;
735   case IIT_F16:
736     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
737     return;
738   case IIT_F32:
739     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
740     return;
741   case IIT_F64:
742     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
743     return;
744   case IIT_F128:
745     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Quad, 0));
746     return;
747   case IIT_I1:
748     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
749     return;
750   case IIT_I8:
751     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
752     return;
753   case IIT_I16:
754     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
755     return;
756   case IIT_I32:
757     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
758     return;
759   case IIT_I64:
760     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
761     return;
762   case IIT_I128:
763     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 128));
764     return;
765   case IIT_V1:
766     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
767     DecodeIITType(NextElt, Infos, OutputTable);
768     return;
769   case IIT_V2:
770     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
771     DecodeIITType(NextElt, Infos, OutputTable);
772     return;
773   case IIT_V4:
774     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
775     DecodeIITType(NextElt, Infos, OutputTable);
776     return;
777   case IIT_V8:
778     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
779     DecodeIITType(NextElt, Infos, OutputTable);
780     return;
781   case IIT_V16:
782     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
783     DecodeIITType(NextElt, Infos, OutputTable);
784     return;
785   case IIT_V32:
786     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
787     DecodeIITType(NextElt, Infos, OutputTable);
788     return;
789   case IIT_V64:
790     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
791     DecodeIITType(NextElt, Infos, OutputTable);
792     return;
793   case IIT_V512:
794     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 512));
795     DecodeIITType(NextElt, Infos, OutputTable);
796     return;
797   case IIT_V1024:
798     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1024));
799     DecodeIITType(NextElt, Infos, OutputTable);
800     return;
801   case IIT_PTR:
802     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
803     DecodeIITType(NextElt, Infos, OutputTable);
804     return;
805   case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
806     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
807                                              Infos[NextElt++]));
808     DecodeIITType(NextElt, Infos, OutputTable);
809     return;
810   }
811   case IIT_ARG: {
812     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
813     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
814     return;
815   }
816   case IIT_EXTEND_ARG: {
817     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
818     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
819                                              ArgInfo));
820     return;
821   }
822   case IIT_TRUNC_ARG: {
823     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
824     OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
825                                              ArgInfo));
826     return;
827   }
828   case IIT_HALF_VEC_ARG: {
829     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
830     OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
831                                              ArgInfo));
832     return;
833   }
834   case IIT_SAME_VEC_WIDTH_ARG: {
835     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
836     OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
837                                              ArgInfo));
838     return;
839   }
840   case IIT_PTR_TO_ARG: {
841     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
842     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
843                                              ArgInfo));
844     return;
845   }
846   case IIT_PTR_TO_ELT: {
847     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
848     OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToElt, ArgInfo));
849     return;
850   }
851   case IIT_VEC_OF_ANYPTRS_TO_ELT: {
852     unsigned short ArgNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
853     unsigned short RefNo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
854     OutputTable.push_back(
855         IITDescriptor::get(IITDescriptor::VecOfAnyPtrsToElt, ArgNo, RefNo));
856     return;
857   }
858   case IIT_EMPTYSTRUCT:
859     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
860     return;
861   case IIT_STRUCT8: ++StructElts; LLVM_FALLTHROUGH;
862   case IIT_STRUCT7: ++StructElts; LLVM_FALLTHROUGH;
863   case IIT_STRUCT6: ++StructElts; LLVM_FALLTHROUGH;
864   case IIT_STRUCT5: ++StructElts; LLVM_FALLTHROUGH;
865   case IIT_STRUCT4: ++StructElts; LLVM_FALLTHROUGH;
866   case IIT_STRUCT3: ++StructElts; LLVM_FALLTHROUGH;
867   case IIT_STRUCT2: {
868     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));
869 
870     for (unsigned i = 0; i != StructElts; ++i)
871       DecodeIITType(NextElt, Infos, OutputTable);
872     return;
873   }
874   case IIT_SUBDIVIDE2_ARG: {
875     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
876     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide2Argument,
877                                              ArgInfo));
878     return;
879   }
880   case IIT_SUBDIVIDE4_ARG: {
881     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
882     OutputTable.push_back(IITDescriptor::get(IITDescriptor::Subdivide4Argument,
883                                              ArgInfo));
884     return;
885   }
886   case IIT_VEC_ELEMENT: {
887     unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
888     OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecElementArgument,
889                                              ArgInfo));
890     return;
891   }
892   case IIT_SCALABLE_VEC: {
893     OutputTable.push_back(IITDescriptor::get(IITDescriptor::ScalableVecArgument,
894                                              0));
895     DecodeIITType(NextElt, Infos, OutputTable);
896     return;
897   }
898   }
899   llvm_unreachable("unhandled");
900 }
901 
902 #define GET_INTRINSIC_GENERATOR_GLOBAL
903 #include "llvm/IR/IntrinsicImpl.inc"
904 #undef GET_INTRINSIC_GENERATOR_GLOBAL
905 
906 void Intrinsic::getIntrinsicInfoTableEntries(ID id,
907                                              SmallVectorImpl<IITDescriptor> &T){
908   // Check to see if the intrinsic's type was expressible by the table.
909   unsigned TableVal = IIT_Table[id-1];
910 
911   // Decode the TableVal into an array of IITValues.
912   SmallVector<unsigned char, 8> IITValues;
913   ArrayRef<unsigned char> IITEntries;
914   unsigned NextElt = 0;
915   if ((TableVal >> 31) != 0) {
916     // This is an offset into the IIT_LongEncodingTable.
917     IITEntries = IIT_LongEncodingTable;
918 
919     // Strip sentinel bit.
920     NextElt = (TableVal << 1) >> 1;
921   } else {
922     // Decode the TableVal into an array of IITValues.  If the entry was encoded
923     // into a single word in the table itself, decode it now.
924     do {
925       IITValues.push_back(TableVal & 0xF);
926       TableVal >>= 4;
927     } while (TableVal);
928 
929     IITEntries = IITValues;
930     NextElt = 0;
931   }
932 
933   // Okay, decode the table into the output vector of IITDescriptors.
934   DecodeIITType(NextElt, IITEntries, T);
935   while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
936     DecodeIITType(NextElt, IITEntries, T);
937 }
938 
939 static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
940                              ArrayRef<Type*> Tys, LLVMContext &Context) {
941   using namespace Intrinsic;
942 
943   IITDescriptor D = Infos.front();
944   Infos = Infos.slice(1);
945 
946   switch (D.Kind) {
947   case IITDescriptor::Void: return Type::getVoidTy(Context);
948   case IITDescriptor::VarArg: return Type::getVoidTy(Context);
949   case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
950   case IITDescriptor::Token: return Type::getTokenTy(Context);
951   case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
952   case IITDescriptor::Half: return Type::getHalfTy(Context);
953   case IITDescriptor::Float: return Type::getFloatTy(Context);
954   case IITDescriptor::Double: return Type::getDoubleTy(Context);
955   case IITDescriptor::Quad: return Type::getFP128Ty(Context);
956 
957   case IITDescriptor::Integer:
958     return IntegerType::get(Context, D.Integer_Width);
959   case IITDescriptor::Vector:
960     return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
961   case IITDescriptor::Pointer:
962     return PointerType::get(DecodeFixedType(Infos, Tys, Context),
963                             D.Pointer_AddressSpace);
964   case IITDescriptor::Struct: {
965     SmallVector<Type *, 8> Elts;
966     for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
967       Elts.push_back(DecodeFixedType(Infos, Tys, Context));
968     return StructType::get(Context, Elts);
969   }
970   case IITDescriptor::Argument:
971     return Tys[D.getArgumentNumber()];
972   case IITDescriptor::ExtendArgument: {
973     Type *Ty = Tys[D.getArgumentNumber()];
974     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
975       return VectorType::getExtendedElementVectorType(VTy);
976 
977     return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
978   }
979   case IITDescriptor::TruncArgument: {
980     Type *Ty = Tys[D.getArgumentNumber()];
981     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
982       return VectorType::getTruncatedElementVectorType(VTy);
983 
984     IntegerType *ITy = cast<IntegerType>(Ty);
985     assert(ITy->getBitWidth() % 2 == 0);
986     return IntegerType::get(Context, ITy->getBitWidth() / 2);
987   }
988   case IITDescriptor::Subdivide2Argument:
989   case IITDescriptor::Subdivide4Argument: {
990     Type *Ty = Tys[D.getArgumentNumber()];
991     VectorType *VTy = dyn_cast<VectorType>(Ty);
992     assert(VTy && "Expected an argument of Vector Type");
993     int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
994     return VectorType::getSubdividedVectorType(VTy, SubDivs);
995   }
996   case IITDescriptor::HalfVecArgument:
997     return VectorType::getHalfElementsVectorType(cast<VectorType>(
998                                                   Tys[D.getArgumentNumber()]));
999   case IITDescriptor::SameVecWidthArgument: {
1000     Type *EltTy = DecodeFixedType(Infos, Tys, Context);
1001     Type *Ty = Tys[D.getArgumentNumber()];
1002     if (auto *VTy = dyn_cast<VectorType>(Ty))
1003       return VectorType::get(EltTy, VTy->getElementCount());
1004     return EltTy;
1005   }
1006   case IITDescriptor::PtrToArgument: {
1007     Type *Ty = Tys[D.getArgumentNumber()];
1008     return PointerType::getUnqual(Ty);
1009   }
1010   case IITDescriptor::PtrToElt: {
1011     Type *Ty = Tys[D.getArgumentNumber()];
1012     VectorType *VTy = dyn_cast<VectorType>(Ty);
1013     if (!VTy)
1014       llvm_unreachable("Expected an argument of Vector Type");
1015     Type *EltTy = VTy->getVectorElementType();
1016     return PointerType::getUnqual(EltTy);
1017   }
1018   case IITDescriptor::VecElementArgument: {
1019     Type *Ty = Tys[D.getArgumentNumber()];
1020     if (VectorType *VTy = dyn_cast<VectorType>(Ty))
1021       return VTy->getElementType();
1022     llvm_unreachable("Expected an argument of Vector Type");
1023   }
1024   case IITDescriptor::VecOfAnyPtrsToElt:
1025     // Return the overloaded type (which determines the pointers address space)
1026     return Tys[D.getOverloadArgNumber()];
1027   case IITDescriptor::ScalableVecArgument: {
1028     Type *Ty = DecodeFixedType(Infos, Tys, Context);
1029     return VectorType::get(Ty->getVectorElementType(),
1030                            { Ty->getVectorNumElements(), true });
1031   }
1032   }
1033   llvm_unreachable("unhandled");
1034 }
1035 
1036 FunctionType *Intrinsic::getType(LLVMContext &Context,
1037                                  ID id, ArrayRef<Type*> Tys) {
1038   SmallVector<IITDescriptor, 8> Table;
1039   getIntrinsicInfoTableEntries(id, Table);
1040 
1041   ArrayRef<IITDescriptor> TableRef = Table;
1042   Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);
1043 
1044   SmallVector<Type*, 8> ArgTys;
1045   while (!TableRef.empty())
1046     ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));
1047 
1048   // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
1049   // If we see void type as the type of the last argument, it is vararg intrinsic
1050   if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
1051     ArgTys.pop_back();
1052     return FunctionType::get(ResultTy, ArgTys, true);
1053   }
1054   return FunctionType::get(ResultTy, ArgTys, false);
1055 }
1056 
1057 bool Intrinsic::isOverloaded(ID id) {
1058 #define GET_INTRINSIC_OVERLOAD_TABLE
1059 #include "llvm/IR/IntrinsicImpl.inc"
1060 #undef GET_INTRINSIC_OVERLOAD_TABLE
1061 }
1062 
1063 bool Intrinsic::isLeaf(ID id) {
1064   switch (id) {
1065   default:
1066     return true;
1067 
1068   case Intrinsic::experimental_gc_statepoint:
1069   case Intrinsic::experimental_patchpoint_void:
1070   case Intrinsic::experimental_patchpoint_i64:
1071     return false;
1072   }
1073 }
1074 
1075 /// This defines the "Intrinsic::getAttributes(ID id)" method.
1076 #define GET_INTRINSIC_ATTRIBUTES
1077 #include "llvm/IR/IntrinsicImpl.inc"
1078 #undef GET_INTRINSIC_ATTRIBUTES
1079 
1080 Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
1081   // There can never be multiple globals with the same name of different types,
1082   // because intrinsics must be a specific type.
1083   return cast<Function>(
1084       M->getOrInsertFunction(getName(id, Tys),
1085                              getType(M->getContext(), id, Tys))
1086           .getCallee());
1087 }
1088 
1089 // This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
1090 #define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1091 #include "llvm/IR/IntrinsicImpl.inc"
1092 #undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
1093 
1094 // This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
1095 #define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1096 #include "llvm/IR/IntrinsicImpl.inc"
1097 #undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
1098 
1099 using DeferredIntrinsicMatchPair =
1100     std::pair<Type *, ArrayRef<Intrinsic::IITDescriptor>>;
1101 
1102 static bool matchIntrinsicType(
1103     Type *Ty, ArrayRef<Intrinsic::IITDescriptor> &Infos,
1104     SmallVectorImpl<Type *> &ArgTys,
1105     SmallVectorImpl<DeferredIntrinsicMatchPair> &DeferredChecks,
1106     bool IsDeferredCheck) {
1107   using namespace Intrinsic;
1108 
1109   // If we ran out of descriptors, there are too many arguments.
1110   if (Infos.empty()) return true;
1111 
1112   // Do this before slicing off the 'front' part
1113   auto InfosRef = Infos;
1114   auto DeferCheck = [&DeferredChecks, &InfosRef](Type *T) {
1115     DeferredChecks.emplace_back(T, InfosRef);
1116     return false;
1117   };
1118 
1119   IITDescriptor D = Infos.front();
1120   Infos = Infos.slice(1);
1121 
1122   switch (D.Kind) {
1123     case IITDescriptor::Void: return !Ty->isVoidTy();
1124     case IITDescriptor::VarArg: return true;
1125     case IITDescriptor::MMX:  return !Ty->isX86_MMXTy();
1126     case IITDescriptor::Token: return !Ty->isTokenTy();
1127     case IITDescriptor::Metadata: return !Ty->isMetadataTy();
1128     case IITDescriptor::Half: return !Ty->isHalfTy();
1129     case IITDescriptor::Float: return !Ty->isFloatTy();
1130     case IITDescriptor::Double: return !Ty->isDoubleTy();
1131     case IITDescriptor::Quad: return !Ty->isFP128Ty();
1132     case IITDescriptor::Integer: return !Ty->isIntegerTy(D.Integer_Width);
1133     case IITDescriptor::Vector: {
1134       VectorType *VT = dyn_cast<VectorType>(Ty);
1135       return !VT || VT->getNumElements() != D.Vector_Width ||
1136              matchIntrinsicType(VT->getElementType(), Infos, ArgTys,
1137                                 DeferredChecks, IsDeferredCheck);
1138     }
1139     case IITDescriptor::Pointer: {
1140       PointerType *PT = dyn_cast<PointerType>(Ty);
1141       return !PT || PT->getAddressSpace() != D.Pointer_AddressSpace ||
1142              matchIntrinsicType(PT->getElementType(), Infos, ArgTys,
1143                                 DeferredChecks, IsDeferredCheck);
1144     }
1145 
1146     case IITDescriptor::Struct: {
1147       StructType *ST = dyn_cast<StructType>(Ty);
1148       if (!ST || ST->getNumElements() != D.Struct_NumElements)
1149         return true;
1150 
1151       for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
1152         if (matchIntrinsicType(ST->getElementType(i), Infos, ArgTys,
1153                                DeferredChecks, IsDeferredCheck))
1154           return true;
1155       return false;
1156     }
1157 
1158     case IITDescriptor::Argument:
1159       // If this is the second occurrence of an argument,
1160       // verify that the later instance matches the previous instance.
1161       if (D.getArgumentNumber() < ArgTys.size())
1162         return Ty != ArgTys[D.getArgumentNumber()];
1163 
1164       if (D.getArgumentNumber() > ArgTys.size() ||
1165           D.getArgumentKind() == IITDescriptor::AK_MatchType)
1166         return IsDeferredCheck || DeferCheck(Ty);
1167 
1168       assert(D.getArgumentNumber() == ArgTys.size() && !IsDeferredCheck &&
1169              "Table consistency error");
1170       ArgTys.push_back(Ty);
1171 
1172       switch (D.getArgumentKind()) {
1173         case IITDescriptor::AK_Any:        return false; // Success
1174         case IITDescriptor::AK_AnyInteger: return !Ty->isIntOrIntVectorTy();
1175         case IITDescriptor::AK_AnyFloat:   return !Ty->isFPOrFPVectorTy();
1176         case IITDescriptor::AK_AnyVector:  return !isa<VectorType>(Ty);
1177         case IITDescriptor::AK_AnyPointer: return !isa<PointerType>(Ty);
1178         default:                           break;
1179       }
1180       llvm_unreachable("all argument kinds not covered");
1181 
1182     case IITDescriptor::ExtendArgument: {
1183       // If this is a forward reference, defer the check for later.
1184       if (D.getArgumentNumber() >= ArgTys.size())
1185         return IsDeferredCheck || DeferCheck(Ty);
1186 
1187       Type *NewTy = ArgTys[D.getArgumentNumber()];
1188       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1189         NewTy = VectorType::getExtendedElementVectorType(VTy);
1190       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1191         NewTy = IntegerType::get(ITy->getContext(), 2 * ITy->getBitWidth());
1192       else
1193         return true;
1194 
1195       return Ty != NewTy;
1196     }
1197     case IITDescriptor::TruncArgument: {
1198       // If this is a forward reference, defer the check for later.
1199       if (D.getArgumentNumber() >= ArgTys.size())
1200         return IsDeferredCheck || DeferCheck(Ty);
1201 
1202       Type *NewTy = ArgTys[D.getArgumentNumber()];
1203       if (VectorType *VTy = dyn_cast<VectorType>(NewTy))
1204         NewTy = VectorType::getTruncatedElementVectorType(VTy);
1205       else if (IntegerType *ITy = dyn_cast<IntegerType>(NewTy))
1206         NewTy = IntegerType::get(ITy->getContext(), ITy->getBitWidth() / 2);
1207       else
1208         return true;
1209 
1210       return Ty != NewTy;
1211     }
1212     case IITDescriptor::HalfVecArgument:
1213       // If this is a forward reference, defer the check for later.
1214       if (D.getArgumentNumber() >= ArgTys.size())
1215         return IsDeferredCheck || DeferCheck(Ty);
1216       return !isa<VectorType>(ArgTys[D.getArgumentNumber()]) ||
1217              VectorType::getHalfElementsVectorType(
1218                      cast<VectorType>(ArgTys[D.getArgumentNumber()])) != Ty;
1219     case IITDescriptor::SameVecWidthArgument: {
1220       if (D.getArgumentNumber() >= ArgTys.size()) {
1221         // Defer check and subsequent check for the vector element type.
1222         Infos = Infos.slice(1);
1223         return IsDeferredCheck || DeferCheck(Ty);
1224       }
1225       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1226       auto *ThisArgType = dyn_cast<VectorType>(Ty);
1227       // Both must be vectors of the same number of elements or neither.
1228       if ((ReferenceType != nullptr) != (ThisArgType != nullptr))
1229         return true;
1230       Type *EltTy = Ty;
1231       if (ThisArgType) {
1232         if (ReferenceType->getElementCount() !=
1233             ThisArgType->getElementCount())
1234           return true;
1235         EltTy = ThisArgType->getVectorElementType();
1236       }
1237       return matchIntrinsicType(EltTy, Infos, ArgTys, DeferredChecks,
1238                                 IsDeferredCheck);
1239     }
1240     case IITDescriptor::PtrToArgument: {
1241       if (D.getArgumentNumber() >= ArgTys.size())
1242         return IsDeferredCheck || DeferCheck(Ty);
1243       Type * ReferenceType = ArgTys[D.getArgumentNumber()];
1244       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1245       return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
1246     }
1247     case IITDescriptor::PtrToElt: {
1248       if (D.getArgumentNumber() >= ArgTys.size())
1249         return IsDeferredCheck || DeferCheck(Ty);
1250       VectorType * ReferenceType =
1251         dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
1252       PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
1253 
1254       return (!ThisArgType || !ReferenceType ||
1255               ThisArgType->getElementType() != ReferenceType->getElementType());
1256     }
1257     case IITDescriptor::VecOfAnyPtrsToElt: {
1258       unsigned RefArgNumber = D.getRefArgNumber();
1259       if (RefArgNumber >= ArgTys.size()) {
1260         if (IsDeferredCheck)
1261           return true;
1262         // If forward referencing, already add the pointer-vector type and
1263         // defer the checks for later.
1264         ArgTys.push_back(Ty);
1265         return DeferCheck(Ty);
1266       }
1267 
1268       if (!IsDeferredCheck){
1269         assert(D.getOverloadArgNumber() == ArgTys.size() &&
1270                "Table consistency error");
1271         ArgTys.push_back(Ty);
1272       }
1273 
1274       // Verify the overloaded type "matches" the Ref type.
1275       // i.e. Ty is a vector with the same width as Ref.
1276       // Composed of pointers to the same element type as Ref.
1277       VectorType *ReferenceType = dyn_cast<VectorType>(ArgTys[RefArgNumber]);
1278       VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
1279       if (!ThisArgVecTy || !ReferenceType ||
1280           (ReferenceType->getVectorNumElements() !=
1281            ThisArgVecTy->getVectorNumElements()))
1282         return true;
1283       PointerType *ThisArgEltTy =
1284               dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
1285       if (!ThisArgEltTy)
1286         return true;
1287       return ThisArgEltTy->getElementType() !=
1288              ReferenceType->getVectorElementType();
1289     }
1290     case IITDescriptor::VecElementArgument: {
1291       if (D.getArgumentNumber() >= ArgTys.size())
1292         return IsDeferredCheck ? true : DeferCheck(Ty);
1293       auto *ReferenceType = dyn_cast<VectorType>(ArgTys[D.getArgumentNumber()]);
1294       return !ReferenceType || Ty != ReferenceType->getElementType();
1295     }
1296     case IITDescriptor::Subdivide2Argument:
1297     case IITDescriptor::Subdivide4Argument: {
1298       // If this is a forward reference, defer the check for later.
1299       if (D.getArgumentNumber() >= ArgTys.size())
1300         return IsDeferredCheck || DeferCheck(Ty);
1301 
1302       Type *NewTy = ArgTys[D.getArgumentNumber()];
1303       if (auto *VTy = dyn_cast<VectorType>(NewTy)) {
1304         int SubDivs = D.Kind == IITDescriptor::Subdivide2Argument ? 1 : 2;
1305         NewTy = VectorType::getSubdividedVectorType(VTy, SubDivs);
1306         return Ty != NewTy;
1307       }
1308       return true;
1309     }
1310     case IITDescriptor::ScalableVecArgument: {
1311       VectorType *VTy = dyn_cast<VectorType>(Ty);
1312       if (!VTy || !VTy->isScalable())
1313         return true;
1314       return matchIntrinsicType(VTy, Infos, ArgTys, DeferredChecks,
1315                                 IsDeferredCheck);
1316     }
1317   }
1318   llvm_unreachable("unhandled");
1319 }
1320 
1321 Intrinsic::MatchIntrinsicTypesResult
1322 Intrinsic::matchIntrinsicSignature(FunctionType *FTy,
1323                                    ArrayRef<Intrinsic::IITDescriptor> &Infos,
1324                                    SmallVectorImpl<Type *> &ArgTys) {
1325   SmallVector<DeferredIntrinsicMatchPair, 2> DeferredChecks;
1326   if (matchIntrinsicType(FTy->getReturnType(), Infos, ArgTys, DeferredChecks,
1327                          false))
1328     return MatchIntrinsicTypes_NoMatchRet;
1329 
1330   unsigned NumDeferredReturnChecks = DeferredChecks.size();
1331 
1332   for (auto Ty : FTy->params())
1333     if (matchIntrinsicType(Ty, Infos, ArgTys, DeferredChecks, false))
1334       return MatchIntrinsicTypes_NoMatchArg;
1335 
1336   for (unsigned I = 0, E = DeferredChecks.size(); I != E; ++I) {
1337     DeferredIntrinsicMatchPair &Check = DeferredChecks[I];
1338     if (matchIntrinsicType(Check.first, Check.second, ArgTys, DeferredChecks,
1339                            true))
1340       return I < NumDeferredReturnChecks ? MatchIntrinsicTypes_NoMatchRet
1341                                          : MatchIntrinsicTypes_NoMatchArg;
1342   }
1343 
1344   return MatchIntrinsicTypes_Match;
1345 }
1346 
1347 bool
1348 Intrinsic::matchIntrinsicVarArg(bool isVarArg,
1349                                 ArrayRef<Intrinsic::IITDescriptor> &Infos) {
1350   // If there are no descriptors left, then it can't be a vararg.
1351   if (Infos.empty())
1352     return isVarArg;
1353 
1354   // There should be only one descriptor remaining at this point.
1355   if (Infos.size() != 1)
1356     return true;
1357 
1358   // Check and verify the descriptor.
1359   IITDescriptor D = Infos.front();
1360   Infos = Infos.slice(1);
1361   if (D.Kind == IITDescriptor::VarArg)
1362     return !isVarArg;
1363 
1364   return true;
1365 }
1366 
1367 Optional<Function*> Intrinsic::remangleIntrinsicFunction(Function *F) {
1368   Intrinsic::ID ID = F->getIntrinsicID();
1369   if (!ID)
1370     return None;
1371 
1372   FunctionType *FTy = F->getFunctionType();
1373   // Accumulate an array of overloaded types for the given intrinsic
1374   SmallVector<Type *, 4> ArgTys;
1375   {
1376     SmallVector<Intrinsic::IITDescriptor, 8> Table;
1377     getIntrinsicInfoTableEntries(ID, Table);
1378     ArrayRef<Intrinsic::IITDescriptor> TableRef = Table;
1379 
1380     if (Intrinsic::matchIntrinsicSignature(FTy, TableRef, ArgTys))
1381       return None;
1382     if (Intrinsic::matchIntrinsicVarArg(FTy->isVarArg(), TableRef))
1383       return None;
1384   }
1385 
1386   StringRef Name = F->getName();
1387   if (Name == Intrinsic::getName(ID, ArgTys))
1388     return None;
1389 
1390   auto NewDecl = Intrinsic::getDeclaration(F->getParent(), ID, ArgTys);
1391   NewDecl->setCallingConv(F->getCallingConv());
1392   assert(NewDecl->getFunctionType() == FTy && "Shouldn't change the signature");
1393   return NewDecl;
1394 }
1395 
1396 /// hasAddressTaken - returns true if there are any uses of this function
1397 /// other than direct calls or invokes to it.
1398 bool Function::hasAddressTaken(const User* *PutOffender) const {
1399   for (const Use &U : uses()) {
1400     const User *FU = U.getUser();
1401     if (isa<BlockAddress>(FU))
1402       continue;
1403     const auto *Call = dyn_cast<CallBase>(FU);
1404     if (!Call) {
1405       if (PutOffender)
1406         *PutOffender = FU;
1407       return true;
1408     }
1409     if (!Call->isCallee(&U)) {
1410       if (PutOffender)
1411         *PutOffender = FU;
1412       return true;
1413     }
1414   }
1415   return false;
1416 }
1417 
1418 bool Function::isDefTriviallyDead() const {
1419   // Check the linkage
1420   if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
1421       !hasAvailableExternallyLinkage())
1422     return false;
1423 
1424   // Check if the function is used by anything other than a blockaddress.
1425   for (const User *U : users())
1426     if (!isa<BlockAddress>(U))
1427       return false;
1428 
1429   return true;
1430 }
1431 
1432 /// callsFunctionThatReturnsTwice - Return true if the function has a call to
1433 /// setjmp or other function that gcc recognizes as "returning twice".
1434 bool Function::callsFunctionThatReturnsTwice() const {
1435   for (const Instruction &I : instructions(this))
1436     if (const auto *Call = dyn_cast<CallBase>(&I))
1437       if (Call->hasFnAttr(Attribute::ReturnsTwice))
1438         return true;
1439 
1440   return false;
1441 }
1442 
1443 Constant *Function::getPersonalityFn() const {
1444   assert(hasPersonalityFn() && getNumOperands());
1445   return cast<Constant>(Op<0>());
1446 }
1447 
1448 void Function::setPersonalityFn(Constant *Fn) {
1449   setHungoffOperand<0>(Fn);
1450   setValueSubclassDataBit(3, Fn != nullptr);
1451 }
1452 
1453 Constant *Function::getPrefixData() const {
1454   assert(hasPrefixData() && getNumOperands());
1455   return cast<Constant>(Op<1>());
1456 }
1457 
1458 void Function::setPrefixData(Constant *PrefixData) {
1459   setHungoffOperand<1>(PrefixData);
1460   setValueSubclassDataBit(1, PrefixData != nullptr);
1461 }
1462 
1463 Constant *Function::getPrologueData() const {
1464   assert(hasPrologueData() && getNumOperands());
1465   return cast<Constant>(Op<2>());
1466 }
1467 
1468 void Function::setPrologueData(Constant *PrologueData) {
1469   setHungoffOperand<2>(PrologueData);
1470   setValueSubclassDataBit(2, PrologueData != nullptr);
1471 }
1472 
1473 void Function::allocHungoffUselist() {
1474   // If we've already allocated a uselist, stop here.
1475   if (getNumOperands())
1476     return;
1477 
1478   allocHungoffUses(3, /*IsPhi=*/ false);
1479   setNumHungOffUseOperands(3);
1480 
1481   // Initialize the uselist with placeholder operands to allow traversal.
1482   auto *CPN = ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0));
1483   Op<0>().set(CPN);
1484   Op<1>().set(CPN);
1485   Op<2>().set(CPN);
1486 }
1487 
1488 template <int Idx>
1489 void Function::setHungoffOperand(Constant *C) {
1490   if (C) {
1491     allocHungoffUselist();
1492     Op<Idx>().set(C);
1493   } else if (getNumOperands()) {
1494     Op<Idx>().set(
1495         ConstantPointerNull::get(Type::getInt1PtrTy(getContext(), 0)));
1496   }
1497 }
1498 
1499 void Function::setValueSubclassDataBit(unsigned Bit, bool On) {
1500   assert(Bit < 16 && "SubclassData contains only 16 bits");
1501   if (On)
1502     setValueSubclassData(getSubclassDataFromValue() | (1 << Bit));
1503   else
1504     setValueSubclassData(getSubclassDataFromValue() & ~(1 << Bit));
1505 }
1506 
1507 void Function::setEntryCount(ProfileCount Count,
1508                              const DenseSet<GlobalValue::GUID> *S) {
1509   assert(Count.hasValue());
1510 #if !defined(NDEBUG)
1511   auto PrevCount = getEntryCount();
1512   assert(!PrevCount.hasValue() || PrevCount.getType() == Count.getType());
1513 #endif
1514   MDBuilder MDB(getContext());
1515   setMetadata(
1516       LLVMContext::MD_prof,
1517       MDB.createFunctionEntryCount(Count.getCount(), Count.isSynthetic(), S));
1518 }
1519 
1520 void Function::setEntryCount(uint64_t Count, Function::ProfileCountType Type,
1521                              const DenseSet<GlobalValue::GUID> *Imports) {
1522   setEntryCount(ProfileCount(Count, Type), Imports);
1523 }
1524 
1525 ProfileCount Function::getEntryCount(bool AllowSynthetic) const {
1526   MDNode *MD = getMetadata(LLVMContext::MD_prof);
1527   if (MD && MD->getOperand(0))
1528     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0))) {
1529       if (MDS->getString().equals("function_entry_count")) {
1530         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1531         uint64_t Count = CI->getValue().getZExtValue();
1532         // A value of -1 is used for SamplePGO when there were no samples.
1533         // Treat this the same as unknown.
1534         if (Count == (uint64_t)-1)
1535           return ProfileCount::getInvalid();
1536         return ProfileCount(Count, PCT_Real);
1537       } else if (AllowSynthetic &&
1538                  MDS->getString().equals("synthetic_function_entry_count")) {
1539         ConstantInt *CI = mdconst::extract<ConstantInt>(MD->getOperand(1));
1540         uint64_t Count = CI->getValue().getZExtValue();
1541         return ProfileCount(Count, PCT_Synthetic);
1542       }
1543     }
1544   return ProfileCount::getInvalid();
1545 }
1546 
1547 DenseSet<GlobalValue::GUID> Function::getImportGUIDs() const {
1548   DenseSet<GlobalValue::GUID> R;
1549   if (MDNode *MD = getMetadata(LLVMContext::MD_prof))
1550     if (MDString *MDS = dyn_cast<MDString>(MD->getOperand(0)))
1551       if (MDS->getString().equals("function_entry_count"))
1552         for (unsigned i = 2; i < MD->getNumOperands(); i++)
1553           R.insert(mdconst::extract<ConstantInt>(MD->getOperand(i))
1554                        ->getValue()
1555                        .getZExtValue());
1556   return R;
1557 }
1558 
1559 void Function::setSectionPrefix(StringRef Prefix) {
1560   MDBuilder MDB(getContext());
1561   setMetadata(LLVMContext::MD_section_prefix,
1562               MDB.createFunctionSectionPrefix(Prefix));
1563 }
1564 
1565 Optional<StringRef> Function::getSectionPrefix() const {
1566   if (MDNode *MD = getMetadata(LLVMContext::MD_section_prefix)) {
1567     assert(cast<MDString>(MD->getOperand(0))
1568                ->getString()
1569                .equals("function_section_prefix") &&
1570            "Metadata not match");
1571     return cast<MDString>(MD->getOperand(1))->getString();
1572   }
1573   return None;
1574 }
1575 
1576 bool Function::nullPointerIsDefined() const {
1577   return getFnAttribute("null-pointer-is-valid")
1578           .getValueAsString()
1579           .equals("true");
1580 }
1581 
1582 bool llvm::NullPointerIsDefined(const Function *F, unsigned AS) {
1583   if (F && F->nullPointerIsDefined())
1584     return true;
1585 
1586   if (AS != 0)
1587     return true;
1588 
1589   return false;
1590 }
1591