1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements folding of constants for LLVM. This implements the 10 // (internal) ConstantFold.h interface, which is used by the 11 // ConstantExpr::get* methods to automatically fold constants when possible. 12 // 13 // The current constant folding implementation is implemented in two pieces: the 14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid 15 // a dependence in IR on Target. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/IR/ConstantFold.h" 20 #include "llvm/ADT/APSInt.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GlobalAlias.h" 26 #include "llvm/IR/GlobalVariable.h" 27 #include "llvm/IR/Instructions.h" 28 #include "llvm/IR/Module.h" 29 #include "llvm/IR/Operator.h" 30 #include "llvm/IR/PatternMatch.h" 31 #include "llvm/Support/ErrorHandling.h" 32 using namespace llvm; 33 using namespace llvm::PatternMatch; 34 35 //===----------------------------------------------------------------------===// 36 // ConstantFold*Instruction Implementations 37 //===----------------------------------------------------------------------===// 38 39 /// This function determines which opcode to use to fold two constant cast 40 /// expressions together. It uses CastInst::isEliminableCastPair to determine 41 /// the opcode. Consequently its just a wrapper around that function. 42 /// Determine if it is valid to fold a cast of a cast 43 static unsigned 44 foldConstantCastPair( 45 unsigned opc, ///< opcode of the second cast constant expression 46 ConstantExpr *Op, ///< the first cast constant expression 47 Type *DstTy ///< destination type of the first cast 48 ) { 49 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); 50 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); 51 assert(CastInst::isCast(opc) && "Invalid cast opcode"); 52 53 // The types and opcodes for the two Cast constant expressions 54 Type *SrcTy = Op->getOperand(0)->getType(); 55 Type *MidTy = Op->getType(); 56 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); 57 Instruction::CastOps secondOp = Instruction::CastOps(opc); 58 59 // Assume that pointers are never more than 64 bits wide, and only use this 60 // for the middle type. Otherwise we could end up folding away illegal 61 // bitcasts between address spaces with different sizes. 62 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); 63 64 // Let CastInst::isEliminableCastPair do the heavy lifting. 65 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, 66 nullptr, FakeIntPtrTy, nullptr); 67 } 68 69 static Constant *FoldBitCast(Constant *V, Type *DestTy) { 70 Type *SrcTy = V->getType(); 71 if (SrcTy == DestTy) 72 return V; // no-op cast 73 74 // Handle casts from one vector constant to another. We know that the src 75 // and dest type have the same size (otherwise its an illegal cast). 76 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { 77 if (V->isAllOnesValue()) 78 return Constant::getAllOnesValue(DestTy); 79 80 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 81 // This allows for other simplifications (although some of them 82 // can only be handled by Analysis/ConstantFolding.cpp). 83 if (!isa<VectorType>(SrcTy)) 84 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) 85 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); 86 return nullptr; 87 } 88 89 // Handle integral constant input. 90 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 91 // See note below regarding the PPC_FP128 restriction. 92 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) 93 return ConstantFP::get(DestTy->getContext(), 94 APFloat(DestTy->getFltSemantics(), 95 CI->getValue())); 96 97 // Otherwise, can't fold this (vector?) 98 return nullptr; 99 } 100 101 // Handle ConstantFP input: FP -> Integral. 102 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { 103 // PPC_FP128 is really the sum of two consecutive doubles, where the first 104 // double is always stored first in memory, regardless of the target 105 // endianness. The memory layout of i128, however, depends on the target 106 // endianness, and so we can't fold this without target endianness 107 // information. This should instead be handled by 108 // Analysis/ConstantFolding.cpp 109 if (FP->getType()->isPPC_FP128Ty()) 110 return nullptr; 111 112 // Make sure dest type is compatible with the folded integer constant. 113 if (!DestTy->isIntegerTy()) 114 return nullptr; 115 116 return ConstantInt::get(FP->getContext(), 117 FP->getValueAPF().bitcastToAPInt()); 118 } 119 120 return nullptr; 121 } 122 123 static Constant *foldMaybeUndesirableCast(unsigned opc, Constant *V, 124 Type *DestTy) { 125 return ConstantExpr::isDesirableCastOp(opc) 126 ? ConstantExpr::getCast(opc, V, DestTy) 127 : ConstantFoldCastInstruction(opc, V, DestTy); 128 } 129 130 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, 131 Type *DestTy) { 132 if (isa<PoisonValue>(V)) 133 return PoisonValue::get(DestTy); 134 135 if (isa<UndefValue>(V)) { 136 // zext(undef) = 0, because the top bits will be zero. 137 // sext(undef) = 0, because the top bits will all be the same. 138 // [us]itofp(undef) = 0, because the result value is bounded. 139 if (opc == Instruction::ZExt || opc == Instruction::SExt || 140 opc == Instruction::UIToFP || opc == Instruction::SIToFP) 141 return Constant::getNullValue(DestTy); 142 return UndefValue::get(DestTy); 143 } 144 145 if (V->isNullValue() && !DestTy->isX86_AMXTy() && 146 opc != Instruction::AddrSpaceCast) 147 return Constant::getNullValue(DestTy); 148 149 // If the cast operand is a constant expression, there's a few things we can 150 // do to try to simplify it. 151 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 152 if (CE->isCast()) { 153 // Try hard to fold cast of cast because they are often eliminable. 154 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) 155 return foldMaybeUndesirableCast(newOpc, CE->getOperand(0), DestTy); 156 } 157 } 158 159 // If the cast operand is a constant vector, perform the cast by 160 // operating on each element. In the cast of bitcasts, the element 161 // count may be mismatched; don't attempt to handle that here. 162 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && 163 DestTy->isVectorTy() && 164 cast<FixedVectorType>(DestTy)->getNumElements() == 165 cast<FixedVectorType>(V->getType())->getNumElements()) { 166 VectorType *DestVecTy = cast<VectorType>(DestTy); 167 Type *DstEltTy = DestVecTy->getElementType(); 168 // Fast path for splatted constants. 169 if (Constant *Splat = V->getSplatValue()) { 170 Constant *Res = foldMaybeUndesirableCast(opc, Splat, DstEltTy); 171 if (!Res) 172 return nullptr; 173 return ConstantVector::getSplat( 174 cast<VectorType>(DestTy)->getElementCount(), Res); 175 } 176 SmallVector<Constant *, 16> res; 177 Type *Ty = IntegerType::get(V->getContext(), 32); 178 for (unsigned i = 0, 179 e = cast<FixedVectorType>(V->getType())->getNumElements(); 180 i != e; ++i) { 181 Constant *C = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 182 Constant *Casted = foldMaybeUndesirableCast(opc, C, DstEltTy); 183 if (!Casted) 184 return nullptr; 185 res.push_back(Casted); 186 } 187 return ConstantVector::get(res); 188 } 189 190 // We actually have to do a cast now. Perform the cast according to the 191 // opcode specified. 192 switch (opc) { 193 default: 194 llvm_unreachable("Failed to cast constant expression"); 195 case Instruction::FPTrunc: 196 case Instruction::FPExt: 197 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 198 bool ignored; 199 APFloat Val = FPC->getValueAPF(); 200 Val.convert(DestTy->getFltSemantics(), APFloat::rmNearestTiesToEven, 201 &ignored); 202 return ConstantFP::get(V->getContext(), Val); 203 } 204 return nullptr; // Can't fold. 205 case Instruction::FPToUI: 206 case Instruction::FPToSI: 207 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 208 const APFloat &V = FPC->getValueAPF(); 209 bool ignored; 210 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 211 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); 212 if (APFloat::opInvalidOp == 213 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { 214 // Undefined behavior invoked - the destination type can't represent 215 // the input constant. 216 return PoisonValue::get(DestTy); 217 } 218 return ConstantInt::get(FPC->getContext(), IntVal); 219 } 220 return nullptr; // Can't fold. 221 case Instruction::UIToFP: 222 case Instruction::SIToFP: 223 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 224 const APInt &api = CI->getValue(); 225 APFloat apf(DestTy->getFltSemantics(), 226 APInt::getZero(DestTy->getPrimitiveSizeInBits())); 227 apf.convertFromAPInt(api, opc==Instruction::SIToFP, 228 APFloat::rmNearestTiesToEven); 229 return ConstantFP::get(V->getContext(), apf); 230 } 231 return nullptr; 232 case Instruction::ZExt: 233 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 234 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 235 return ConstantInt::get(V->getContext(), 236 CI->getValue().zext(BitWidth)); 237 } 238 return nullptr; 239 case Instruction::SExt: 240 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 241 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 242 return ConstantInt::get(V->getContext(), 243 CI->getValue().sext(BitWidth)); 244 } 245 return nullptr; 246 case Instruction::Trunc: { 247 if (V->getType()->isVectorTy()) 248 return nullptr; 249 250 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 251 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 252 return ConstantInt::get(V->getContext(), 253 CI->getValue().trunc(DestBitWidth)); 254 } 255 256 return nullptr; 257 } 258 case Instruction::BitCast: 259 return FoldBitCast(V, DestTy); 260 case Instruction::AddrSpaceCast: 261 case Instruction::IntToPtr: 262 case Instruction::PtrToInt: 263 return nullptr; 264 } 265 } 266 267 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, 268 Constant *V1, Constant *V2) { 269 // Check for i1 and vector true/false conditions. 270 if (Cond->isNullValue()) return V2; 271 if (Cond->isAllOnesValue()) return V1; 272 273 // If the condition is a vector constant, fold the result elementwise. 274 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { 275 auto *V1VTy = CondV->getType(); 276 SmallVector<Constant*, 16> Result; 277 Type *Ty = IntegerType::get(CondV->getContext(), 32); 278 for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) { 279 Constant *V; 280 Constant *V1Element = ConstantExpr::getExtractElement(V1, 281 ConstantInt::get(Ty, i)); 282 Constant *V2Element = ConstantExpr::getExtractElement(V2, 283 ConstantInt::get(Ty, i)); 284 auto *Cond = cast<Constant>(CondV->getOperand(i)); 285 if (isa<PoisonValue>(Cond)) { 286 V = PoisonValue::get(V1Element->getType()); 287 } else if (V1Element == V2Element) { 288 V = V1Element; 289 } else if (isa<UndefValue>(Cond)) { 290 V = isa<UndefValue>(V1Element) ? V1Element : V2Element; 291 } else { 292 if (!isa<ConstantInt>(Cond)) break; 293 V = Cond->isNullValue() ? V2Element : V1Element; 294 } 295 Result.push_back(V); 296 } 297 298 // If we were able to build the vector, return it. 299 if (Result.size() == V1VTy->getNumElements()) 300 return ConstantVector::get(Result); 301 } 302 303 if (isa<PoisonValue>(Cond)) 304 return PoisonValue::get(V1->getType()); 305 306 if (isa<UndefValue>(Cond)) { 307 if (isa<UndefValue>(V1)) return V1; 308 return V2; 309 } 310 311 if (V1 == V2) return V1; 312 313 if (isa<PoisonValue>(V1)) 314 return V2; 315 if (isa<PoisonValue>(V2)) 316 return V1; 317 318 // If the true or false value is undef, we can fold to the other value as 319 // long as the other value isn't poison. 320 auto NotPoison = [](Constant *C) { 321 if (isa<PoisonValue>(C)) 322 return false; 323 324 // TODO: We can analyze ConstExpr by opcode to determine if there is any 325 // possibility of poison. 326 if (isa<ConstantExpr>(C)) 327 return false; 328 329 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) || 330 isa<ConstantPointerNull>(C) || isa<Function>(C)) 331 return true; 332 333 if (C->getType()->isVectorTy()) 334 return !C->containsPoisonElement() && !C->containsConstantExpression(); 335 336 // TODO: Recursively analyze aggregates or other constants. 337 return false; 338 }; 339 if (isa<UndefValue>(V1) && NotPoison(V2)) return V2; 340 if (isa<UndefValue>(V2) && NotPoison(V1)) return V1; 341 342 return nullptr; 343 } 344 345 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, 346 Constant *Idx) { 347 auto *ValVTy = cast<VectorType>(Val->getType()); 348 349 // extractelt poison, C -> poison 350 // extractelt C, undef -> poison 351 if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx)) 352 return PoisonValue::get(ValVTy->getElementType()); 353 354 // extractelt undef, C -> undef 355 if (isa<UndefValue>(Val)) 356 return UndefValue::get(ValVTy->getElementType()); 357 358 auto *CIdx = dyn_cast<ConstantInt>(Idx); 359 if (!CIdx) 360 return nullptr; 361 362 if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) { 363 // ee({w,x,y,z}, wrong_value) -> poison 364 if (CIdx->uge(ValFVTy->getNumElements())) 365 return PoisonValue::get(ValFVTy->getElementType()); 366 } 367 368 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...) 369 if (auto *CE = dyn_cast<ConstantExpr>(Val)) { 370 if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 371 SmallVector<Constant *, 8> Ops; 372 Ops.reserve(CE->getNumOperands()); 373 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 374 Constant *Op = CE->getOperand(i); 375 if (Op->getType()->isVectorTy()) { 376 Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx); 377 if (!ScalarOp) 378 return nullptr; 379 Ops.push_back(ScalarOp); 380 } else 381 Ops.push_back(Op); 382 } 383 return CE->getWithOperands(Ops, ValVTy->getElementType(), false, 384 GEP->getSourceElementType()); 385 } else if (CE->getOpcode() == Instruction::InsertElement) { 386 if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) { 387 if (APSInt::isSameValue(APSInt(IEIdx->getValue()), 388 APSInt(CIdx->getValue()))) { 389 return CE->getOperand(1); 390 } else { 391 return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx); 392 } 393 } 394 } 395 } 396 397 if (Constant *C = Val->getAggregateElement(CIdx)) 398 return C; 399 400 // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x 401 if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) { 402 if (Constant *SplatVal = Val->getSplatValue()) 403 return SplatVal; 404 } 405 406 return nullptr; 407 } 408 409 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, 410 Constant *Elt, 411 Constant *Idx) { 412 if (isa<UndefValue>(Idx)) 413 return PoisonValue::get(Val->getType()); 414 415 // Inserting null into all zeros is still all zeros. 416 // TODO: This is true for undef and poison splats too. 417 if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue()) 418 return Val; 419 420 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); 421 if (!CIdx) return nullptr; 422 423 // Do not iterate on scalable vector. The num of elements is unknown at 424 // compile-time. 425 if (isa<ScalableVectorType>(Val->getType())) 426 return nullptr; 427 428 auto *ValTy = cast<FixedVectorType>(Val->getType()); 429 430 unsigned NumElts = ValTy->getNumElements(); 431 if (CIdx->uge(NumElts)) 432 return PoisonValue::get(Val->getType()); 433 434 SmallVector<Constant*, 16> Result; 435 Result.reserve(NumElts); 436 auto *Ty = Type::getInt32Ty(Val->getContext()); 437 uint64_t IdxVal = CIdx->getZExtValue(); 438 for (unsigned i = 0; i != NumElts; ++i) { 439 if (i == IdxVal) { 440 Result.push_back(Elt); 441 continue; 442 } 443 444 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); 445 Result.push_back(C); 446 } 447 448 return ConstantVector::get(Result); 449 } 450 451 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, 452 ArrayRef<int> Mask) { 453 auto *V1VTy = cast<VectorType>(V1->getType()); 454 unsigned MaskNumElts = Mask.size(); 455 auto MaskEltCount = 456 ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy)); 457 Type *EltTy = V1VTy->getElementType(); 458 459 // Poison shuffle mask -> poison value. 460 if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) { 461 return PoisonValue::get(VectorType::get(EltTy, MaskEltCount)); 462 } 463 464 // If the mask is all zeros this is a splat, no need to go through all 465 // elements. 466 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 467 Type *Ty = IntegerType::get(V1->getContext(), 32); 468 Constant *Elt = 469 ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0)); 470 471 if (Elt->isNullValue()) { 472 auto *VTy = VectorType::get(EltTy, MaskEltCount); 473 return ConstantAggregateZero::get(VTy); 474 } else if (!MaskEltCount.isScalable()) 475 return ConstantVector::getSplat(MaskEltCount, Elt); 476 } 477 478 // Do not iterate on scalable vector. The num of elements is unknown at 479 // compile-time. 480 if (isa<ScalableVectorType>(V1VTy)) 481 return nullptr; 482 483 unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue(); 484 485 // Loop over the shuffle mask, evaluating each element. 486 SmallVector<Constant*, 32> Result; 487 for (unsigned i = 0; i != MaskNumElts; ++i) { 488 int Elt = Mask[i]; 489 if (Elt == -1) { 490 Result.push_back(UndefValue::get(EltTy)); 491 continue; 492 } 493 Constant *InElt; 494 if (unsigned(Elt) >= SrcNumElts*2) 495 InElt = UndefValue::get(EltTy); 496 else if (unsigned(Elt) >= SrcNumElts) { 497 Type *Ty = IntegerType::get(V2->getContext(), 32); 498 InElt = 499 ConstantExpr::getExtractElement(V2, 500 ConstantInt::get(Ty, Elt - SrcNumElts)); 501 } else { 502 Type *Ty = IntegerType::get(V1->getContext(), 32); 503 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); 504 } 505 Result.push_back(InElt); 506 } 507 508 return ConstantVector::get(Result); 509 } 510 511 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, 512 ArrayRef<unsigned> Idxs) { 513 // Base case: no indices, so return the entire value. 514 if (Idxs.empty()) 515 return Agg; 516 517 if (Constant *C = Agg->getAggregateElement(Idxs[0])) 518 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); 519 520 return nullptr; 521 } 522 523 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, 524 Constant *Val, 525 ArrayRef<unsigned> Idxs) { 526 // Base case: no indices, so replace the entire value. 527 if (Idxs.empty()) 528 return Val; 529 530 unsigned NumElts; 531 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 532 NumElts = ST->getNumElements(); 533 else 534 NumElts = cast<ArrayType>(Agg->getType())->getNumElements(); 535 536 SmallVector<Constant*, 32> Result; 537 for (unsigned i = 0; i != NumElts; ++i) { 538 Constant *C = Agg->getAggregateElement(i); 539 if (!C) return nullptr; 540 541 if (Idxs[0] == i) 542 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); 543 544 Result.push_back(C); 545 } 546 547 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 548 return ConstantStruct::get(ST, Result); 549 return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result); 550 } 551 552 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { 553 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); 554 555 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 556 // vectors are always evaluated per element. 557 bool IsScalableVector = isa<ScalableVectorType>(C->getType()); 558 bool HasScalarUndefOrScalableVectorUndef = 559 (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C); 560 561 if (HasScalarUndefOrScalableVectorUndef) { 562 switch (static_cast<Instruction::UnaryOps>(Opcode)) { 563 case Instruction::FNeg: 564 return C; // -undef -> undef 565 case Instruction::UnaryOpsEnd: 566 llvm_unreachable("Invalid UnaryOp"); 567 } 568 } 569 570 // Constant should not be UndefValue, unless these are vector constants. 571 assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue"); 572 // We only have FP UnaryOps right now. 573 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); 574 575 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 576 const APFloat &CV = CFP->getValueAPF(); 577 switch (Opcode) { 578 default: 579 break; 580 case Instruction::FNeg: 581 return ConstantFP::get(C->getContext(), neg(CV)); 582 } 583 } else if (auto *VTy = dyn_cast<VectorType>(C->getType())) { 584 // Fast path for splatted constants. 585 if (Constant *Splat = C->getSplatValue()) 586 if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat)) 587 return ConstantVector::getSplat(VTy->getElementCount(), Elt); 588 589 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 590 // Fold each element and create a vector constant from those constants. 591 Type *Ty = IntegerType::get(FVTy->getContext(), 32); 592 SmallVector<Constant *, 16> Result; 593 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) { 594 Constant *ExtractIdx = ConstantInt::get(Ty, i); 595 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); 596 Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt); 597 if (!Res) 598 return nullptr; 599 Result.push_back(Res); 600 } 601 602 return ConstantVector::get(Result); 603 } 604 } 605 606 // We don't know how to fold this. 607 return nullptr; 608 } 609 610 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, 611 Constant *C2) { 612 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); 613 614 // Simplify BinOps with their identity values first. They are no-ops and we 615 // can always return the other value, including undef or poison values. 616 if (Constant *Identity = ConstantExpr::getBinOpIdentity( 617 Opcode, C1->getType(), /*AllowRHSIdentity*/ false)) { 618 if (C1 == Identity) 619 return C2; 620 if (C2 == Identity) 621 return C1; 622 } else if (Constant *Identity = ConstantExpr::getBinOpIdentity( 623 Opcode, C1->getType(), /*AllowRHSIdentity*/ true)) { 624 if (C2 == Identity) 625 return C1; 626 } 627 628 // Binary operations propagate poison. 629 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 630 return PoisonValue::get(C1->getType()); 631 632 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 633 // vectors are always evaluated per element. 634 bool IsScalableVector = isa<ScalableVectorType>(C1->getType()); 635 bool HasScalarUndefOrScalableVectorUndef = 636 (!C1->getType()->isVectorTy() || IsScalableVector) && 637 (isa<UndefValue>(C1) || isa<UndefValue>(C2)); 638 if (HasScalarUndefOrScalableVectorUndef) { 639 switch (static_cast<Instruction::BinaryOps>(Opcode)) { 640 case Instruction::Xor: 641 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 642 // Handle undef ^ undef -> 0 special case. This is a common 643 // idiom (misuse). 644 return Constant::getNullValue(C1->getType()); 645 [[fallthrough]]; 646 case Instruction::Add: 647 case Instruction::Sub: 648 return UndefValue::get(C1->getType()); 649 case Instruction::And: 650 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef 651 return C1; 652 return Constant::getNullValue(C1->getType()); // undef & X -> 0 653 case Instruction::Mul: { 654 // undef * undef -> undef 655 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 656 return C1; 657 const APInt *CV; 658 // X * undef -> undef if X is odd 659 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) 660 if ((*CV)[0]) 661 return UndefValue::get(C1->getType()); 662 663 // X * undef -> 0 otherwise 664 return Constant::getNullValue(C1->getType()); 665 } 666 case Instruction::SDiv: 667 case Instruction::UDiv: 668 // X / undef -> poison 669 // X / 0 -> poison 670 if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) 671 return PoisonValue::get(C2->getType()); 672 // undef / X -> 0 otherwise 673 return Constant::getNullValue(C1->getType()); 674 case Instruction::URem: 675 case Instruction::SRem: 676 // X % undef -> poison 677 // X % 0 -> poison 678 if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) 679 return PoisonValue::get(C2->getType()); 680 // undef % X -> 0 otherwise 681 return Constant::getNullValue(C1->getType()); 682 case Instruction::Or: // X | undef -> -1 683 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef 684 return C1; 685 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 686 case Instruction::LShr: 687 // X >>l undef -> poison 688 if (isa<UndefValue>(C2)) 689 return PoisonValue::get(C2->getType()); 690 // undef >>l X -> 0 691 return Constant::getNullValue(C1->getType()); 692 case Instruction::AShr: 693 // X >>a undef -> poison 694 if (isa<UndefValue>(C2)) 695 return PoisonValue::get(C2->getType()); 696 // TODO: undef >>a X -> poison if the shift is exact 697 // undef >>a X -> 0 698 return Constant::getNullValue(C1->getType()); 699 case Instruction::Shl: 700 // X << undef -> undef 701 if (isa<UndefValue>(C2)) 702 return PoisonValue::get(C2->getType()); 703 // undef << X -> 0 704 return Constant::getNullValue(C1->getType()); 705 case Instruction::FSub: 706 // -0.0 - undef --> undef (consistent with "fneg undef") 707 if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2)) 708 return C2; 709 [[fallthrough]]; 710 case Instruction::FAdd: 711 case Instruction::FMul: 712 case Instruction::FDiv: 713 case Instruction::FRem: 714 // [any flop] undef, undef -> undef 715 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 716 return C1; 717 // [any flop] C, undef -> NaN 718 // [any flop] undef, C -> NaN 719 // We could potentially specialize NaN/Inf constants vs. 'normal' 720 // constants (possibly differently depending on opcode and operand). This 721 // would allow returning undef sometimes. But it is always safe to fold to 722 // NaN because we can choose the undef operand as NaN, and any FP opcode 723 // with a NaN operand will propagate NaN. 724 return ConstantFP::getNaN(C1->getType()); 725 case Instruction::BinaryOpsEnd: 726 llvm_unreachable("Invalid BinaryOp"); 727 } 728 } 729 730 // Neither constant should be UndefValue, unless these are vector constants. 731 assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue"); 732 733 // Handle simplifications when the RHS is a constant int. 734 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 735 if (C2 == ConstantExpr::getBinOpAbsorber(Opcode, C2->getType(), 736 /*AllowLHSConstant*/ false)) 737 return C2; 738 739 switch (Opcode) { 740 case Instruction::UDiv: 741 case Instruction::SDiv: 742 if (CI2->isZero()) 743 return PoisonValue::get(CI2->getType()); // X / 0 == poison 744 break; 745 case Instruction::URem: 746 case Instruction::SRem: 747 if (CI2->isOne()) 748 return Constant::getNullValue(CI2->getType()); // X % 1 == 0 749 if (CI2->isZero()) 750 return PoisonValue::get(CI2->getType()); // X % 0 == poison 751 break; 752 case Instruction::And: 753 assert(!CI2->isZero() && "And zero handled above"); 754 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 755 // If and'ing the address of a global with a constant, fold it. 756 if (CE1->getOpcode() == Instruction::PtrToInt && 757 isa<GlobalValue>(CE1->getOperand(0))) { 758 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); 759 760 Align GVAlign; // defaults to 1 761 762 if (Module *TheModule = GV->getParent()) { 763 const DataLayout &DL = TheModule->getDataLayout(); 764 GVAlign = GV->getPointerAlignment(DL); 765 766 // If the function alignment is not specified then assume that it 767 // is 4. 768 // This is dangerous; on x86, the alignment of the pointer 769 // corresponds to the alignment of the function, but might be less 770 // than 4 if it isn't explicitly specified. 771 // However, a fix for this behaviour was reverted because it 772 // increased code size (see https://reviews.llvm.org/D55115) 773 // FIXME: This code should be deleted once existing targets have 774 // appropriate defaults 775 if (isa<Function>(GV) && !DL.getFunctionPtrAlign()) 776 GVAlign = Align(4); 777 } else if (isa<GlobalVariable>(GV)) { 778 GVAlign = cast<GlobalVariable>(GV)->getAlign().valueOrOne(); 779 } 780 781 if (GVAlign > 1) { 782 unsigned DstWidth = CI2->getBitWidth(); 783 unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign)); 784 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); 785 786 // If checking bits we know are clear, return zero. 787 if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) 788 return Constant::getNullValue(CI2->getType()); 789 } 790 } 791 } 792 break; 793 } 794 } else if (isa<ConstantInt>(C1)) { 795 // If C1 is a ConstantInt and C2 is not, swap the operands. 796 if (Instruction::isCommutative(Opcode)) 797 return ConstantExpr::isDesirableBinOp(Opcode) 798 ? ConstantExpr::get(Opcode, C2, C1) 799 : ConstantFoldBinaryInstruction(Opcode, C2, C1); 800 } 801 802 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { 803 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 804 const APInt &C1V = CI1->getValue(); 805 const APInt &C2V = CI2->getValue(); 806 switch (Opcode) { 807 default: 808 break; 809 case Instruction::Add: 810 return ConstantInt::get(CI1->getContext(), C1V + C2V); 811 case Instruction::Sub: 812 return ConstantInt::get(CI1->getContext(), C1V - C2V); 813 case Instruction::Mul: 814 return ConstantInt::get(CI1->getContext(), C1V * C2V); 815 case Instruction::UDiv: 816 assert(!CI2->isZero() && "Div by zero handled above"); 817 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); 818 case Instruction::SDiv: 819 assert(!CI2->isZero() && "Div by zero handled above"); 820 if (C2V.isAllOnes() && C1V.isMinSignedValue()) 821 return PoisonValue::get(CI1->getType()); // MIN_INT / -1 -> poison 822 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); 823 case Instruction::URem: 824 assert(!CI2->isZero() && "Div by zero handled above"); 825 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); 826 case Instruction::SRem: 827 assert(!CI2->isZero() && "Div by zero handled above"); 828 if (C2V.isAllOnes() && C1V.isMinSignedValue()) 829 return PoisonValue::get(CI1->getType()); // MIN_INT % -1 -> poison 830 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); 831 case Instruction::And: 832 return ConstantInt::get(CI1->getContext(), C1V & C2V); 833 case Instruction::Or: 834 return ConstantInt::get(CI1->getContext(), C1V | C2V); 835 case Instruction::Xor: 836 return ConstantInt::get(CI1->getContext(), C1V ^ C2V); 837 case Instruction::Shl: 838 if (C2V.ult(C1V.getBitWidth())) 839 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); 840 return PoisonValue::get(C1->getType()); // too big shift is poison 841 case Instruction::LShr: 842 if (C2V.ult(C1V.getBitWidth())) 843 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); 844 return PoisonValue::get(C1->getType()); // too big shift is poison 845 case Instruction::AShr: 846 if (C2V.ult(C1V.getBitWidth())) 847 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); 848 return PoisonValue::get(C1->getType()); // too big shift is poison 849 } 850 } 851 852 if (C1 == ConstantExpr::getBinOpAbsorber(Opcode, C1->getType(), 853 /*AllowLHSConstant*/ true)) 854 return C1; 855 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { 856 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { 857 const APFloat &C1V = CFP1->getValueAPF(); 858 const APFloat &C2V = CFP2->getValueAPF(); 859 APFloat C3V = C1V; // copy for modification 860 switch (Opcode) { 861 default: 862 break; 863 case Instruction::FAdd: 864 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); 865 return ConstantFP::get(C1->getContext(), C3V); 866 case Instruction::FSub: 867 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); 868 return ConstantFP::get(C1->getContext(), C3V); 869 case Instruction::FMul: 870 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); 871 return ConstantFP::get(C1->getContext(), C3V); 872 case Instruction::FDiv: 873 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); 874 return ConstantFP::get(C1->getContext(), C3V); 875 case Instruction::FRem: 876 (void)C3V.mod(C2V); 877 return ConstantFP::get(C1->getContext(), C3V); 878 } 879 } 880 } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) { 881 // Fast path for splatted constants. 882 if (Constant *C2Splat = C2->getSplatValue()) { 883 if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue()) 884 return PoisonValue::get(VTy); 885 if (Constant *C1Splat = C1->getSplatValue()) { 886 Constant *Res = 887 ConstantExpr::isDesirableBinOp(Opcode) 888 ? ConstantExpr::get(Opcode, C1Splat, C2Splat) 889 : ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat); 890 if (!Res) 891 return nullptr; 892 return ConstantVector::getSplat(VTy->getElementCount(), Res); 893 } 894 } 895 896 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 897 // Fold each element and create a vector constant from those constants. 898 SmallVector<Constant*, 16> Result; 899 Type *Ty = IntegerType::get(FVTy->getContext(), 32); 900 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) { 901 Constant *ExtractIdx = ConstantInt::get(Ty, i); 902 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); 903 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); 904 Constant *Res = ConstantExpr::isDesirableBinOp(Opcode) 905 ? ConstantExpr::get(Opcode, LHS, RHS) 906 : ConstantFoldBinaryInstruction(Opcode, LHS, RHS); 907 if (!Res) 908 return nullptr; 909 Result.push_back(Res); 910 } 911 912 return ConstantVector::get(Result); 913 } 914 } 915 916 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 917 // There are many possible foldings we could do here. We should probably 918 // at least fold add of a pointer with an integer into the appropriate 919 // getelementptr. This will improve alias analysis a bit. 920 921 // Given ((a + b) + c), if (b + c) folds to something interesting, return 922 // (a + (b + c)). 923 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { 924 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); 925 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) 926 return ConstantExpr::get(Opcode, CE1->getOperand(0), T); 927 } 928 } else if (isa<ConstantExpr>(C2)) { 929 // If C2 is a constant expr and C1 isn't, flop them around and fold the 930 // other way if possible. 931 if (Instruction::isCommutative(Opcode)) 932 return ConstantFoldBinaryInstruction(Opcode, C2, C1); 933 } 934 935 // i1 can be simplified in many cases. 936 if (C1->getType()->isIntegerTy(1)) { 937 switch (Opcode) { 938 case Instruction::Add: 939 case Instruction::Sub: 940 return ConstantExpr::getXor(C1, C2); 941 case Instruction::Shl: 942 case Instruction::LShr: 943 case Instruction::AShr: 944 // We can assume that C2 == 0. If it were one the result would be 945 // undefined because the shift value is as large as the bitwidth. 946 return C1; 947 case Instruction::SDiv: 948 case Instruction::UDiv: 949 // We can assume that C2 == 1. If it were zero the result would be 950 // undefined through division by zero. 951 return C1; 952 case Instruction::URem: 953 case Instruction::SRem: 954 // We can assume that C2 == 1. If it were zero the result would be 955 // undefined through division by zero. 956 return ConstantInt::getFalse(C1->getContext()); 957 default: 958 break; 959 } 960 } 961 962 // We don't know how to fold this. 963 return nullptr; 964 } 965 966 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, 967 const GlobalValue *GV2) { 968 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { 969 if (GV->isInterposable() || GV->hasGlobalUnnamedAddr()) 970 return true; 971 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { 972 Type *Ty = GVar->getValueType(); 973 // A global with opaque type might end up being zero sized. 974 if (!Ty->isSized()) 975 return true; 976 // A global with an empty type might lie at the address of any other 977 // global. 978 if (Ty->isEmptyTy()) 979 return true; 980 } 981 return false; 982 }; 983 // Don't try to decide equality of aliases. 984 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) 985 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) 986 return ICmpInst::ICMP_NE; 987 return ICmpInst::BAD_ICMP_PREDICATE; 988 } 989 990 /// This function determines if there is anything we can decide about the two 991 /// constants provided. This doesn't need to handle simple things like integer 992 /// comparisons, but should instead handle ConstantExprs and GlobalValues. 993 /// If we can determine that the two constants have a particular relation to 994 /// each other, we should return the corresponding ICmp predicate, otherwise 995 /// return ICmpInst::BAD_ICMP_PREDICATE. 996 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2) { 997 assert(V1->getType() == V2->getType() && 998 "Cannot compare different types of values!"); 999 if (V1 == V2) return ICmpInst::ICMP_EQ; 1000 1001 // The following folds only apply to pointers. 1002 if (!V1->getType()->isPointerTy()) 1003 return ICmpInst::BAD_ICMP_PREDICATE; 1004 1005 // To simplify this code we canonicalize the relation so that the first 1006 // operand is always the most "complex" of the two. We consider simple 1007 // constants (like ConstantPointerNull) to be the simplest, followed by 1008 // BlockAddress, GlobalValues, and ConstantExpr's (the most complex). 1009 auto GetComplexity = [](Constant *V) { 1010 if (isa<ConstantExpr>(V)) 1011 return 3; 1012 if (isa<GlobalValue>(V)) 1013 return 2; 1014 if (isa<BlockAddress>(V)) 1015 return 1; 1016 return 0; 1017 }; 1018 if (GetComplexity(V1) < GetComplexity(V2)) { 1019 ICmpInst::Predicate SwappedRelation = evaluateICmpRelation(V2, V1); 1020 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1021 return ICmpInst::getSwappedPredicate(SwappedRelation); 1022 return ICmpInst::BAD_ICMP_PREDICATE; 1023 } 1024 1025 if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { 1026 // Now we know that the RHS is a BlockAddress or simple constant. 1027 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { 1028 // Block address in another function can't equal this one, but block 1029 // addresses in the current function might be the same if blocks are 1030 // empty. 1031 if (BA2->getFunction() != BA->getFunction()) 1032 return ICmpInst::ICMP_NE; 1033 } else if (isa<ConstantPointerNull>(V2)) { 1034 return ICmpInst::ICMP_NE; 1035 } 1036 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { 1037 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1038 // constant. 1039 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1040 return areGlobalsPotentiallyEqual(GV, GV2); 1041 } else if (isa<BlockAddress>(V2)) { 1042 return ICmpInst::ICMP_NE; // Globals never equal labels. 1043 } else if (isa<ConstantPointerNull>(V2)) { 1044 // GlobalVals can never be null unless they have external weak linkage. 1045 // We don't try to evaluate aliases here. 1046 // NOTE: We should not be doing this constant folding if null pointer 1047 // is considered valid for the function. But currently there is no way to 1048 // query it from the Constant type. 1049 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && 1050 !NullPointerIsDefined(nullptr /* F */, 1051 GV->getType()->getAddressSpace())) 1052 return ICmpInst::ICMP_UGT; 1053 } 1054 } else if (auto *CE1 = dyn_cast<ConstantExpr>(V1)) { 1055 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1056 // constantexpr, a global, block address, or a simple constant. 1057 Constant *CE1Op0 = CE1->getOperand(0); 1058 1059 switch (CE1->getOpcode()) { 1060 case Instruction::GetElementPtr: { 1061 GEPOperator *CE1GEP = cast<GEPOperator>(CE1); 1062 // Ok, since this is a getelementptr, we know that the constant has a 1063 // pointer type. Check the various cases. 1064 if (isa<ConstantPointerNull>(V2)) { 1065 // If we are comparing a GEP to a null pointer, check to see if the base 1066 // of the GEP equals the null pointer. 1067 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1068 // If its not weak linkage, the GVal must have a non-zero address 1069 // so the result is greater-than 1070 if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds()) 1071 return ICmpInst::ICMP_UGT; 1072 } 1073 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1074 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1075 if (GV != GV2) { 1076 if (CE1GEP->hasAllZeroIndices()) 1077 return areGlobalsPotentiallyEqual(GV, GV2); 1078 return ICmpInst::BAD_ICMP_PREDICATE; 1079 } 1080 } 1081 } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) { 1082 // By far the most common case to handle is when the base pointers are 1083 // obviously to the same global. 1084 const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand()); 1085 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { 1086 // Don't know relative ordering, but check for inequality. 1087 if (CE1Op0 != CE2Op0) { 1088 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) 1089 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), 1090 cast<GlobalValue>(CE2Op0)); 1091 return ICmpInst::BAD_ICMP_PREDICATE; 1092 } 1093 } 1094 } 1095 break; 1096 } 1097 default: 1098 break; 1099 } 1100 } 1101 1102 return ICmpInst::BAD_ICMP_PREDICATE; 1103 } 1104 1105 Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, 1106 Constant *C1, Constant *C2) { 1107 Type *ResultTy; 1108 if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) 1109 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), 1110 VT->getElementCount()); 1111 else 1112 ResultTy = Type::getInt1Ty(C1->getContext()); 1113 1114 // Fold FCMP_FALSE/FCMP_TRUE unconditionally. 1115 if (Predicate == FCmpInst::FCMP_FALSE) 1116 return Constant::getNullValue(ResultTy); 1117 1118 if (Predicate == FCmpInst::FCMP_TRUE) 1119 return Constant::getAllOnesValue(ResultTy); 1120 1121 // Handle some degenerate cases first 1122 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 1123 return PoisonValue::get(ResultTy); 1124 1125 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 1126 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); 1127 // For EQ and NE, we can always pick a value for the undef to make the 1128 // predicate pass or fail, so we can return undef. 1129 // Also, if both operands are undef, we can return undef for int comparison. 1130 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) 1131 return UndefValue::get(ResultTy); 1132 1133 // Otherwise, for integer compare, pick the same value as the non-undef 1134 // operand, and fold it to true or false. 1135 if (isIntegerPredicate) 1136 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); 1137 1138 // Choosing NaN for the undef will always make unordered comparison succeed 1139 // and ordered comparison fails. 1140 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); 1141 } 1142 1143 if (C2->isNullValue()) { 1144 // The caller is expected to commute the operands if the constant expression 1145 // is C2. 1146 // C1 >= 0 --> true 1147 if (Predicate == ICmpInst::ICMP_UGE) 1148 return Constant::getAllOnesValue(ResultTy); 1149 // C1 < 0 --> false 1150 if (Predicate == ICmpInst::ICMP_ULT) 1151 return Constant::getNullValue(ResultTy); 1152 } 1153 1154 // If the comparison is a comparison between two i1's, simplify it. 1155 if (C1->getType()->isIntegerTy(1)) { 1156 switch (Predicate) { 1157 case ICmpInst::ICMP_EQ: 1158 if (isa<ConstantInt>(C2)) 1159 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); 1160 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); 1161 case ICmpInst::ICMP_NE: 1162 return ConstantExpr::getXor(C1, C2); 1163 default: 1164 break; 1165 } 1166 } 1167 1168 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { 1169 const APInt &V1 = cast<ConstantInt>(C1)->getValue(); 1170 const APInt &V2 = cast<ConstantInt>(C2)->getValue(); 1171 return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate)); 1172 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { 1173 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); 1174 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); 1175 return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate)); 1176 } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) { 1177 1178 // Fast path for splatted constants. 1179 if (Constant *C1Splat = C1->getSplatValue()) 1180 if (Constant *C2Splat = C2->getSplatValue()) 1181 if (Constant *Elt = 1182 ConstantFoldCompareInstruction(Predicate, C1Splat, C2Splat)) 1183 return ConstantVector::getSplat(C1VTy->getElementCount(), Elt); 1184 1185 // Do not iterate on scalable vector. The number of elements is unknown at 1186 // compile-time. 1187 if (isa<ScalableVectorType>(C1VTy)) 1188 return nullptr; 1189 1190 // If we can constant fold the comparison of each element, constant fold 1191 // the whole vector comparison. 1192 SmallVector<Constant*, 4> ResElts; 1193 Type *Ty = IntegerType::get(C1->getContext(), 32); 1194 // Compare the elements, producing an i1 result or constant expr. 1195 for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue(); 1196 I != E; ++I) { 1197 Constant *C1E = 1198 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I)); 1199 Constant *C2E = 1200 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I)); 1201 Constant *Elt = ConstantFoldCompareInstruction(Predicate, C1E, C2E); 1202 if (!Elt) 1203 return nullptr; 1204 1205 ResElts.push_back(Elt); 1206 } 1207 1208 return ConstantVector::get(ResElts); 1209 } 1210 1211 if (C1->getType()->isFPOrFPVectorTy()) { 1212 if (C1 == C2) { 1213 // We know that C1 == C2 || isUnordered(C1, C2). 1214 if (Predicate == FCmpInst::FCMP_ONE) 1215 return ConstantInt::getFalse(ResultTy); 1216 else if (Predicate == FCmpInst::FCMP_UEQ) 1217 return ConstantInt::getTrue(ResultTy); 1218 } 1219 } else { 1220 // Evaluate the relation between the two constants, per the predicate. 1221 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 1222 switch (evaluateICmpRelation(C1, C2)) { 1223 default: llvm_unreachable("Unknown relational!"); 1224 case ICmpInst::BAD_ICMP_PREDICATE: 1225 break; // Couldn't determine anything about these constants. 1226 case ICmpInst::ICMP_EQ: // We know the constants are equal! 1227 // If we know the constants are equal, we can decide the result of this 1228 // computation precisely. 1229 Result = ICmpInst::isTrueWhenEqual(Predicate); 1230 break; 1231 case ICmpInst::ICMP_ULT: 1232 switch (Predicate) { 1233 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: 1234 Result = 1; break; 1235 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: 1236 Result = 0; break; 1237 default: 1238 break; 1239 } 1240 break; 1241 case ICmpInst::ICMP_SLT: 1242 switch (Predicate) { 1243 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: 1244 Result = 1; break; 1245 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: 1246 Result = 0; break; 1247 default: 1248 break; 1249 } 1250 break; 1251 case ICmpInst::ICMP_UGT: 1252 switch (Predicate) { 1253 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: 1254 Result = 1; break; 1255 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: 1256 Result = 0; break; 1257 default: 1258 break; 1259 } 1260 break; 1261 case ICmpInst::ICMP_SGT: 1262 switch (Predicate) { 1263 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: 1264 Result = 1; break; 1265 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: 1266 Result = 0; break; 1267 default: 1268 break; 1269 } 1270 break; 1271 case ICmpInst::ICMP_ULE: 1272 if (Predicate == ICmpInst::ICMP_UGT) 1273 Result = 0; 1274 if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE) 1275 Result = 1; 1276 break; 1277 case ICmpInst::ICMP_SLE: 1278 if (Predicate == ICmpInst::ICMP_SGT) 1279 Result = 0; 1280 if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE) 1281 Result = 1; 1282 break; 1283 case ICmpInst::ICMP_UGE: 1284 if (Predicate == ICmpInst::ICMP_ULT) 1285 Result = 0; 1286 if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE) 1287 Result = 1; 1288 break; 1289 case ICmpInst::ICMP_SGE: 1290 if (Predicate == ICmpInst::ICMP_SLT) 1291 Result = 0; 1292 if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE) 1293 Result = 1; 1294 break; 1295 case ICmpInst::ICMP_NE: 1296 if (Predicate == ICmpInst::ICMP_EQ) 1297 Result = 0; 1298 if (Predicate == ICmpInst::ICMP_NE) 1299 Result = 1; 1300 break; 1301 } 1302 1303 // If we evaluated the result, return it now. 1304 if (Result != -1) 1305 return ConstantInt::get(ResultTy, Result); 1306 1307 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || 1308 (C1->isNullValue() && !C2->isNullValue())) { 1309 // If C2 is a constant expr and C1 isn't, flip them around and fold the 1310 // other way if possible. 1311 // Also, if C1 is null and C2 isn't, flip them around. 1312 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1313 return ConstantFoldCompareInstruction(Predicate, C2, C1); 1314 } 1315 } 1316 return nullptr; 1317 } 1318 1319 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, 1320 std::optional<ConstantRange> InRange, 1321 ArrayRef<Value *> Idxs) { 1322 if (Idxs.empty()) return C; 1323 1324 Type *GEPTy = GetElementPtrInst::getGEPReturnType( 1325 C, ArrayRef((Value *const *)Idxs.data(), Idxs.size())); 1326 1327 if (isa<PoisonValue>(C)) 1328 return PoisonValue::get(GEPTy); 1329 1330 if (isa<UndefValue>(C)) 1331 return UndefValue::get(GEPTy); 1332 1333 auto IsNoOp = [&]() { 1334 // Avoid losing inrange information. 1335 if (InRange) 1336 return false; 1337 1338 return all_of(Idxs, [](Value *Idx) { 1339 Constant *IdxC = cast<Constant>(Idx); 1340 return IdxC->isNullValue() || isa<UndefValue>(IdxC); 1341 }); 1342 }; 1343 if (IsNoOp()) 1344 return GEPTy->isVectorTy() && !C->getType()->isVectorTy() 1345 ? ConstantVector::getSplat( 1346 cast<VectorType>(GEPTy)->getElementCount(), C) 1347 : C; 1348 1349 return nullptr; 1350 } 1351