xref: /llvm-project/llvm/lib/IR/ConstantFold.cpp (revision 14db06946839729befd6bd3ced8142547f5fd139)
1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements folding of constants for LLVM.  This implements the
10 // (internal) ConstantFold.h interface, which is used by the
11 // ConstantExpr::get* methods to automatically fold constants when possible.
12 //
13 // The current constant folding implementation is implemented in two pieces: the
14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid
15 // a dependence in IR on Target.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/IR/ConstantFold.h"
20 #include "llvm/ADT/APSInt.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/IR/Constants.h"
23 #include "llvm/IR/DerivedTypes.h"
24 #include "llvm/IR/Function.h"
25 #include "llvm/IR/GetElementPtrTypeIterator.h"
26 #include "llvm/IR/GlobalAlias.h"
27 #include "llvm/IR/GlobalVariable.h"
28 #include "llvm/IR/Instructions.h"
29 #include "llvm/IR/Module.h"
30 #include "llvm/IR/Operator.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/Support/ErrorHandling.h"
33 using namespace llvm;
34 using namespace llvm::PatternMatch;
35 
36 //===----------------------------------------------------------------------===//
37 //                ConstantFold*Instruction Implementations
38 //===----------------------------------------------------------------------===//
39 
40 /// This function determines which opcode to use to fold two constant cast
41 /// expressions together. It uses CastInst::isEliminableCastPair to determine
42 /// the opcode. Consequently its just a wrapper around that function.
43 /// Determine if it is valid to fold a cast of a cast
44 static unsigned
45 foldConstantCastPair(
46   unsigned opc,          ///< opcode of the second cast constant expression
47   ConstantExpr *Op,      ///< the first cast constant expression
48   Type *DstTy            ///< destination type of the first cast
49 ) {
50   assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!");
51   assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type");
52   assert(CastInst::isCast(opc) && "Invalid cast opcode");
53 
54   // The types and opcodes for the two Cast constant expressions
55   Type *SrcTy = Op->getOperand(0)->getType();
56   Type *MidTy = Op->getType();
57   Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode());
58   Instruction::CastOps secondOp = Instruction::CastOps(opc);
59 
60   // Assume that pointers are never more than 64 bits wide, and only use this
61   // for the middle type. Otherwise we could end up folding away illegal
62   // bitcasts between address spaces with different sizes.
63   IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext());
64 
65   // Let CastInst::isEliminableCastPair do the heavy lifting.
66   return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy,
67                                         nullptr, FakeIntPtrTy, nullptr);
68 }
69 
70 static Constant *FoldBitCast(Constant *V, Type *DestTy) {
71   Type *SrcTy = V->getType();
72   if (SrcTy == DestTy)
73     return V; // no-op cast
74 
75   // Handle casts from one vector constant to another.  We know that the src
76   // and dest type have the same size (otherwise its an illegal cast).
77   if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) {
78     if (V->isAllOnesValue())
79       return Constant::getAllOnesValue(DestTy);
80 
81     // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts
82     // This allows for other simplifications (although some of them
83     // can only be handled by Analysis/ConstantFolding.cpp).
84     if (!isa<VectorType>(SrcTy))
85       if (isa<ConstantInt>(V) || isa<ConstantFP>(V))
86         return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy);
87     return nullptr;
88   }
89 
90   // Handle integral constant input.
91   if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
92     // See note below regarding the PPC_FP128 restriction.
93     if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty())
94       return ConstantFP::get(DestTy->getContext(),
95                              APFloat(DestTy->getFltSemantics(),
96                                      CI->getValue()));
97 
98     // Otherwise, can't fold this (vector?)
99     return nullptr;
100   }
101 
102   // Handle ConstantFP input: FP -> Integral.
103   if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) {
104     // PPC_FP128 is really the sum of two consecutive doubles, where the first
105     // double is always stored first in memory, regardless of the target
106     // endianness. The memory layout of i128, however, depends on the target
107     // endianness, and so we can't fold this without target endianness
108     // information. This should instead be handled by
109     // Analysis/ConstantFolding.cpp
110     if (FP->getType()->isPPC_FP128Ty())
111       return nullptr;
112 
113     // Make sure dest type is compatible with the folded integer constant.
114     if (!DestTy->isIntegerTy())
115       return nullptr;
116 
117     return ConstantInt::get(FP->getContext(),
118                             FP->getValueAPF().bitcastToAPInt());
119   }
120 
121   return nullptr;
122 }
123 
124 static Constant *foldMaybeUndesirableCast(unsigned opc, Constant *V,
125                                           Type *DestTy) {
126   return ConstantExpr::isDesirableCastOp(opc)
127              ? ConstantExpr::getCast(opc, V, DestTy)
128              : ConstantFoldCastInstruction(opc, V, DestTy);
129 }
130 
131 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V,
132                                             Type *DestTy) {
133   if (isa<PoisonValue>(V))
134     return PoisonValue::get(DestTy);
135 
136   if (isa<UndefValue>(V)) {
137     // zext(undef) = 0, because the top bits will be zero.
138     // sext(undef) = 0, because the top bits will all be the same.
139     // [us]itofp(undef) = 0, because the result value is bounded.
140     if (opc == Instruction::ZExt || opc == Instruction::SExt ||
141         opc == Instruction::UIToFP || opc == Instruction::SIToFP)
142       return Constant::getNullValue(DestTy);
143     return UndefValue::get(DestTy);
144   }
145 
146   if (V->isNullValue() && !DestTy->isX86_AMXTy() &&
147       opc != Instruction::AddrSpaceCast)
148     return Constant::getNullValue(DestTy);
149 
150   // If the cast operand is a constant expression, there's a few things we can
151   // do to try to simplify it.
152   if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) {
153     if (CE->isCast()) {
154       // Try hard to fold cast of cast because they are often eliminable.
155       if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy))
156         return foldMaybeUndesirableCast(newOpc, CE->getOperand(0), DestTy);
157     }
158   }
159 
160   // If the cast operand is a constant vector, perform the cast by
161   // operating on each element. In the cast of bitcasts, the element
162   // count may be mismatched; don't attempt to handle that here.
163   if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) &&
164       DestTy->isVectorTy() &&
165       cast<FixedVectorType>(DestTy)->getNumElements() ==
166           cast<FixedVectorType>(V->getType())->getNumElements()) {
167     VectorType *DestVecTy = cast<VectorType>(DestTy);
168     Type *DstEltTy = DestVecTy->getElementType();
169     // Fast path for splatted constants.
170     if (Constant *Splat = V->getSplatValue()) {
171       Constant *Res = foldMaybeUndesirableCast(opc, Splat, DstEltTy);
172       if (!Res)
173         return nullptr;
174       return ConstantVector::getSplat(
175           cast<VectorType>(DestTy)->getElementCount(), Res);
176     }
177     SmallVector<Constant *, 16> res;
178     Type *Ty = IntegerType::get(V->getContext(), 32);
179     for (unsigned i = 0,
180                   e = cast<FixedVectorType>(V->getType())->getNumElements();
181          i != e; ++i) {
182       Constant *C = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i));
183       Constant *Casted = foldMaybeUndesirableCast(opc, C, DstEltTy);
184       if (!Casted)
185         return nullptr;
186       res.push_back(Casted);
187     }
188     return ConstantVector::get(res);
189   }
190 
191   // We actually have to do a cast now. Perform the cast according to the
192   // opcode specified.
193   switch (opc) {
194   default:
195     llvm_unreachable("Failed to cast constant expression");
196   case Instruction::FPTrunc:
197   case Instruction::FPExt:
198     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
199       bool ignored;
200       APFloat Val = FPC->getValueAPF();
201       Val.convert(DestTy->getFltSemantics(), APFloat::rmNearestTiesToEven,
202                   &ignored);
203       return ConstantFP::get(V->getContext(), Val);
204     }
205     return nullptr; // Can't fold.
206   case Instruction::FPToUI:
207   case Instruction::FPToSI:
208     if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) {
209       const APFloat &V = FPC->getValueAPF();
210       bool ignored;
211       uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
212       APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI);
213       if (APFloat::opInvalidOp ==
214           V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) {
215         // Undefined behavior invoked - the destination type can't represent
216         // the input constant.
217         return PoisonValue::get(DestTy);
218       }
219       return ConstantInt::get(FPC->getContext(), IntVal);
220     }
221     return nullptr; // Can't fold.
222   case Instruction::UIToFP:
223   case Instruction::SIToFP:
224     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
225       const APInt &api = CI->getValue();
226       APFloat apf(DestTy->getFltSemantics(),
227                   APInt::getZero(DestTy->getPrimitiveSizeInBits()));
228       apf.convertFromAPInt(api, opc==Instruction::SIToFP,
229                            APFloat::rmNearestTiesToEven);
230       return ConstantFP::get(V->getContext(), apf);
231     }
232     return nullptr;
233   case Instruction::ZExt:
234     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
235       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
236       return ConstantInt::get(V->getContext(),
237                               CI->getValue().zext(BitWidth));
238     }
239     return nullptr;
240   case Instruction::SExt:
241     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
242       uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth();
243       return ConstantInt::get(V->getContext(),
244                               CI->getValue().sext(BitWidth));
245     }
246     return nullptr;
247   case Instruction::Trunc: {
248     if (V->getType()->isVectorTy())
249       return nullptr;
250 
251     uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth();
252     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
253       return ConstantInt::get(V->getContext(),
254                               CI->getValue().trunc(DestBitWidth));
255     }
256 
257     return nullptr;
258   }
259   case Instruction::BitCast:
260     return FoldBitCast(V, DestTy);
261   case Instruction::AddrSpaceCast:
262   case Instruction::IntToPtr:
263   case Instruction::PtrToInt:
264     return nullptr;
265   }
266 }
267 
268 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond,
269                                               Constant *V1, Constant *V2) {
270   // Check for i1 and vector true/false conditions.
271   if (Cond->isNullValue()) return V2;
272   if (Cond->isAllOnesValue()) return V1;
273 
274   // If the condition is a vector constant, fold the result elementwise.
275   if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) {
276     auto *V1VTy = CondV->getType();
277     SmallVector<Constant*, 16> Result;
278     Type *Ty = IntegerType::get(CondV->getContext(), 32);
279     for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) {
280       Constant *V;
281       Constant *V1Element = ConstantExpr::getExtractElement(V1,
282                                                     ConstantInt::get(Ty, i));
283       Constant *V2Element = ConstantExpr::getExtractElement(V2,
284                                                     ConstantInt::get(Ty, i));
285       auto *Cond = cast<Constant>(CondV->getOperand(i));
286       if (isa<PoisonValue>(Cond)) {
287         V = PoisonValue::get(V1Element->getType());
288       } else if (V1Element == V2Element) {
289         V = V1Element;
290       } else if (isa<UndefValue>(Cond)) {
291         V = isa<UndefValue>(V1Element) ? V1Element : V2Element;
292       } else {
293         if (!isa<ConstantInt>(Cond)) break;
294         V = Cond->isNullValue() ? V2Element : V1Element;
295       }
296       Result.push_back(V);
297     }
298 
299     // If we were able to build the vector, return it.
300     if (Result.size() == V1VTy->getNumElements())
301       return ConstantVector::get(Result);
302   }
303 
304   if (isa<PoisonValue>(Cond))
305     return PoisonValue::get(V1->getType());
306 
307   if (isa<UndefValue>(Cond)) {
308     if (isa<UndefValue>(V1)) return V1;
309     return V2;
310   }
311 
312   if (V1 == V2) return V1;
313 
314   if (isa<PoisonValue>(V1))
315     return V2;
316   if (isa<PoisonValue>(V2))
317     return V1;
318 
319   // If the true or false value is undef, we can fold to the other value as
320   // long as the other value isn't poison.
321   auto NotPoison = [](Constant *C) {
322     if (isa<PoisonValue>(C))
323       return false;
324 
325     // TODO: We can analyze ConstExpr by opcode to determine if there is any
326     //       possibility of poison.
327     if (isa<ConstantExpr>(C))
328       return false;
329 
330     if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) ||
331         isa<ConstantPointerNull>(C) || isa<Function>(C))
332       return true;
333 
334     if (C->getType()->isVectorTy())
335       return !C->containsPoisonElement() && !C->containsConstantExpression();
336 
337     // TODO: Recursively analyze aggregates or other constants.
338     return false;
339   };
340   if (isa<UndefValue>(V1) && NotPoison(V2)) return V2;
341   if (isa<UndefValue>(V2) && NotPoison(V1)) return V1;
342 
343   return nullptr;
344 }
345 
346 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val,
347                                                       Constant *Idx) {
348   auto *ValVTy = cast<VectorType>(Val->getType());
349 
350   // extractelt poison, C -> poison
351   // extractelt C, undef -> poison
352   if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx))
353     return PoisonValue::get(ValVTy->getElementType());
354 
355   // extractelt undef, C -> undef
356   if (isa<UndefValue>(Val))
357     return UndefValue::get(ValVTy->getElementType());
358 
359   auto *CIdx = dyn_cast<ConstantInt>(Idx);
360   if (!CIdx)
361     return nullptr;
362 
363   if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) {
364     // ee({w,x,y,z}, wrong_value) -> poison
365     if (CIdx->uge(ValFVTy->getNumElements()))
366       return PoisonValue::get(ValFVTy->getElementType());
367   }
368 
369   // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...)
370   if (auto *CE = dyn_cast<ConstantExpr>(Val)) {
371     if (auto *GEP = dyn_cast<GEPOperator>(CE)) {
372       SmallVector<Constant *, 8> Ops;
373       Ops.reserve(CE->getNumOperands());
374       for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) {
375         Constant *Op = CE->getOperand(i);
376         if (Op->getType()->isVectorTy()) {
377           Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx);
378           if (!ScalarOp)
379             return nullptr;
380           Ops.push_back(ScalarOp);
381         } else
382           Ops.push_back(Op);
383       }
384       return CE->getWithOperands(Ops, ValVTy->getElementType(), false,
385                                  GEP->getSourceElementType());
386     } else if (CE->getOpcode() == Instruction::InsertElement) {
387       if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) {
388         if (APSInt::isSameValue(APSInt(IEIdx->getValue()),
389                                 APSInt(CIdx->getValue()))) {
390           return CE->getOperand(1);
391         } else {
392           return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx);
393         }
394       }
395     }
396   }
397 
398   if (Constant *C = Val->getAggregateElement(CIdx))
399     return C;
400 
401   // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x
402   if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) {
403     if (Constant *SplatVal = Val->getSplatValue())
404       return SplatVal;
405   }
406 
407   return nullptr;
408 }
409 
410 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val,
411                                                      Constant *Elt,
412                                                      Constant *Idx) {
413   if (isa<UndefValue>(Idx))
414     return PoisonValue::get(Val->getType());
415 
416   // Inserting null into all zeros is still all zeros.
417   // TODO: This is true for undef and poison splats too.
418   if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue())
419     return Val;
420 
421   ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx);
422   if (!CIdx) return nullptr;
423 
424   // Do not iterate on scalable vector. The num of elements is unknown at
425   // compile-time.
426   if (isa<ScalableVectorType>(Val->getType()))
427     return nullptr;
428 
429   auto *ValTy = cast<FixedVectorType>(Val->getType());
430 
431   unsigned NumElts = ValTy->getNumElements();
432   if (CIdx->uge(NumElts))
433     return PoisonValue::get(Val->getType());
434 
435   SmallVector<Constant*, 16> Result;
436   Result.reserve(NumElts);
437   auto *Ty = Type::getInt32Ty(Val->getContext());
438   uint64_t IdxVal = CIdx->getZExtValue();
439   for (unsigned i = 0; i != NumElts; ++i) {
440     if (i == IdxVal) {
441       Result.push_back(Elt);
442       continue;
443     }
444 
445     Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i));
446     Result.push_back(C);
447   }
448 
449   return ConstantVector::get(Result);
450 }
451 
452 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2,
453                                                      ArrayRef<int> Mask) {
454   auto *V1VTy = cast<VectorType>(V1->getType());
455   unsigned MaskNumElts = Mask.size();
456   auto MaskEltCount =
457       ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy));
458   Type *EltTy = V1VTy->getElementType();
459 
460   // Poison shuffle mask -> poison value.
461   if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) {
462     return PoisonValue::get(VectorType::get(EltTy, MaskEltCount));
463   }
464 
465   // If the mask is all zeros this is a splat, no need to go through all
466   // elements.
467   if (all_of(Mask, [](int Elt) { return Elt == 0; })) {
468     Type *Ty = IntegerType::get(V1->getContext(), 32);
469     Constant *Elt =
470         ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0));
471 
472     if (Elt->isNullValue()) {
473       auto *VTy = VectorType::get(EltTy, MaskEltCount);
474       return ConstantAggregateZero::get(VTy);
475     } else if (!MaskEltCount.isScalable())
476       return ConstantVector::getSplat(MaskEltCount, Elt);
477   }
478 
479   // Do not iterate on scalable vector. The num of elements is unknown at
480   // compile-time.
481   if (isa<ScalableVectorType>(V1VTy))
482     return nullptr;
483 
484   unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue();
485 
486   // Loop over the shuffle mask, evaluating each element.
487   SmallVector<Constant*, 32> Result;
488   for (unsigned i = 0; i != MaskNumElts; ++i) {
489     int Elt = Mask[i];
490     if (Elt == -1) {
491       Result.push_back(UndefValue::get(EltTy));
492       continue;
493     }
494     Constant *InElt;
495     if (unsigned(Elt) >= SrcNumElts*2)
496       InElt = UndefValue::get(EltTy);
497     else if (unsigned(Elt) >= SrcNumElts) {
498       Type *Ty = IntegerType::get(V2->getContext(), 32);
499       InElt =
500         ConstantExpr::getExtractElement(V2,
501                                         ConstantInt::get(Ty, Elt - SrcNumElts));
502     } else {
503       Type *Ty = IntegerType::get(V1->getContext(), 32);
504       InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt));
505     }
506     Result.push_back(InElt);
507   }
508 
509   return ConstantVector::get(Result);
510 }
511 
512 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg,
513                                                     ArrayRef<unsigned> Idxs) {
514   // Base case: no indices, so return the entire value.
515   if (Idxs.empty())
516     return Agg;
517 
518   if (Constant *C = Agg->getAggregateElement(Idxs[0]))
519     return ConstantFoldExtractValueInstruction(C, Idxs.slice(1));
520 
521   return nullptr;
522 }
523 
524 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg,
525                                                    Constant *Val,
526                                                    ArrayRef<unsigned> Idxs) {
527   // Base case: no indices, so replace the entire value.
528   if (Idxs.empty())
529     return Val;
530 
531   unsigned NumElts;
532   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
533     NumElts = ST->getNumElements();
534   else
535     NumElts = cast<ArrayType>(Agg->getType())->getNumElements();
536 
537   SmallVector<Constant*, 32> Result;
538   for (unsigned i = 0; i != NumElts; ++i) {
539     Constant *C = Agg->getAggregateElement(i);
540     if (!C) return nullptr;
541 
542     if (Idxs[0] == i)
543       C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1));
544 
545     Result.push_back(C);
546   }
547 
548   if (StructType *ST = dyn_cast<StructType>(Agg->getType()))
549     return ConstantStruct::get(ST, Result);
550   return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result);
551 }
552 
553 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) {
554   assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected");
555 
556   // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
557   // vectors are always evaluated per element.
558   bool IsScalableVector = isa<ScalableVectorType>(C->getType());
559   bool HasScalarUndefOrScalableVectorUndef =
560       (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C);
561 
562   if (HasScalarUndefOrScalableVectorUndef) {
563     switch (static_cast<Instruction::UnaryOps>(Opcode)) {
564     case Instruction::FNeg:
565       return C; // -undef -> undef
566     case Instruction::UnaryOpsEnd:
567       llvm_unreachable("Invalid UnaryOp");
568     }
569   }
570 
571   // Constant should not be UndefValue, unless these are vector constants.
572   assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue");
573   // We only have FP UnaryOps right now.
574   assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp");
575 
576   if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
577     const APFloat &CV = CFP->getValueAPF();
578     switch (Opcode) {
579     default:
580       break;
581     case Instruction::FNeg:
582       return ConstantFP::get(C->getContext(), neg(CV));
583     }
584   } else if (auto *VTy = dyn_cast<VectorType>(C->getType())) {
585     // Fast path for splatted constants.
586     if (Constant *Splat = C->getSplatValue())
587       if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat))
588         return ConstantVector::getSplat(VTy->getElementCount(), Elt);
589 
590     if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
591       // Fold each element and create a vector constant from those constants.
592       Type *Ty = IntegerType::get(FVTy->getContext(), 32);
593       SmallVector<Constant *, 16> Result;
594       for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
595         Constant *ExtractIdx = ConstantInt::get(Ty, i);
596         Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx);
597         Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt);
598         if (!Res)
599           return nullptr;
600         Result.push_back(Res);
601       }
602 
603       return ConstantVector::get(Result);
604     }
605   }
606 
607   // We don't know how to fold this.
608   return nullptr;
609 }
610 
611 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1,
612                                               Constant *C2) {
613   assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected");
614 
615   // Simplify BinOps with their identity values first. They are no-ops and we
616   // can always return the other value, including undef or poison values.
617   if (Constant *Identity = ConstantExpr::getBinOpIdentity(
618           Opcode, C1->getType(), /*AllowRHSIdentity*/ false)) {
619     if (C1 == Identity)
620       return C2;
621     if (C2 == Identity)
622       return C1;
623   } else if (Constant *Identity = ConstantExpr::getBinOpIdentity(
624                  Opcode, C1->getType(), /*AllowRHSIdentity*/ true)) {
625     if (C2 == Identity)
626       return C1;
627   }
628 
629   // Binary operations propagate poison.
630   if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
631     return PoisonValue::get(C1->getType());
632 
633   // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length
634   // vectors are always evaluated per element.
635   bool IsScalableVector = isa<ScalableVectorType>(C1->getType());
636   bool HasScalarUndefOrScalableVectorUndef =
637       (!C1->getType()->isVectorTy() || IsScalableVector) &&
638       (isa<UndefValue>(C1) || isa<UndefValue>(C2));
639   if (HasScalarUndefOrScalableVectorUndef) {
640     switch (static_cast<Instruction::BinaryOps>(Opcode)) {
641     case Instruction::Xor:
642       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
643         // Handle undef ^ undef -> 0 special case. This is a common
644         // idiom (misuse).
645         return Constant::getNullValue(C1->getType());
646       [[fallthrough]];
647     case Instruction::Add:
648     case Instruction::Sub:
649       return UndefValue::get(C1->getType());
650     case Instruction::And:
651       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef
652         return C1;
653       return Constant::getNullValue(C1->getType());   // undef & X -> 0
654     case Instruction::Mul: {
655       // undef * undef -> undef
656       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
657         return C1;
658       const APInt *CV;
659       // X * undef -> undef   if X is odd
660       if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV)))
661         if ((*CV)[0])
662           return UndefValue::get(C1->getType());
663 
664       // X * undef -> 0       otherwise
665       return Constant::getNullValue(C1->getType());
666     }
667     case Instruction::SDiv:
668     case Instruction::UDiv:
669       // X / undef -> poison
670       // X / 0 -> poison
671       if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
672         return PoisonValue::get(C2->getType());
673       // undef / X -> 0       otherwise
674       return Constant::getNullValue(C1->getType());
675     case Instruction::URem:
676     case Instruction::SRem:
677       // X % undef -> poison
678       // X % 0 -> poison
679       if (match(C2, m_CombineOr(m_Undef(), m_Zero())))
680         return PoisonValue::get(C2->getType());
681       // undef % X -> 0       otherwise
682       return Constant::getNullValue(C1->getType());
683     case Instruction::Or:                          // X | undef -> -1
684       if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef
685         return C1;
686       return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0
687     case Instruction::LShr:
688       // X >>l undef -> poison
689       if (isa<UndefValue>(C2))
690         return PoisonValue::get(C2->getType());
691       // undef >>l X -> 0
692       return Constant::getNullValue(C1->getType());
693     case Instruction::AShr:
694       // X >>a undef -> poison
695       if (isa<UndefValue>(C2))
696         return PoisonValue::get(C2->getType());
697       // TODO: undef >>a X -> poison if the shift is exact
698       // undef >>a X -> 0
699       return Constant::getNullValue(C1->getType());
700     case Instruction::Shl:
701       // X << undef -> undef
702       if (isa<UndefValue>(C2))
703         return PoisonValue::get(C2->getType());
704       // undef << X -> 0
705       return Constant::getNullValue(C1->getType());
706     case Instruction::FSub:
707       // -0.0 - undef --> undef (consistent with "fneg undef")
708       if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2))
709         return C2;
710       [[fallthrough]];
711     case Instruction::FAdd:
712     case Instruction::FMul:
713     case Instruction::FDiv:
714     case Instruction::FRem:
715       // [any flop] undef, undef -> undef
716       if (isa<UndefValue>(C1) && isa<UndefValue>(C2))
717         return C1;
718       // [any flop] C, undef -> NaN
719       // [any flop] undef, C -> NaN
720       // We could potentially specialize NaN/Inf constants vs. 'normal'
721       // constants (possibly differently depending on opcode and operand). This
722       // would allow returning undef sometimes. But it is always safe to fold to
723       // NaN because we can choose the undef operand as NaN, and any FP opcode
724       // with a NaN operand will propagate NaN.
725       return ConstantFP::getNaN(C1->getType());
726     case Instruction::BinaryOpsEnd:
727       llvm_unreachable("Invalid BinaryOp");
728     }
729   }
730 
731   // Neither constant should be UndefValue, unless these are vector constants.
732   assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue");
733 
734   // Handle simplifications when the RHS is a constant int.
735   if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
736     if (C2 == ConstantExpr::getBinOpAbsorber(Opcode, C2->getType(),
737                                              /*AllowLHSConstant*/ false))
738       return C2;
739 
740     switch (Opcode) {
741     case Instruction::UDiv:
742     case Instruction::SDiv:
743       if (CI2->isZero())
744         return PoisonValue::get(CI2->getType());              // X / 0 == poison
745       break;
746     case Instruction::URem:
747     case Instruction::SRem:
748       if (CI2->isOne())
749         return Constant::getNullValue(CI2->getType());        // X % 1 == 0
750       if (CI2->isZero())
751         return PoisonValue::get(CI2->getType());              // X % 0 == poison
752       break;
753     case Instruction::And:
754       assert(!CI2->isZero() && "And zero handled above");
755       if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
756         // If and'ing the address of a global with a constant, fold it.
757         if (CE1->getOpcode() == Instruction::PtrToInt &&
758             isa<GlobalValue>(CE1->getOperand(0))) {
759           GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0));
760 
761           Align GVAlign; // defaults to 1
762 
763           if (Module *TheModule = GV->getParent()) {
764             const DataLayout &DL = TheModule->getDataLayout();
765             GVAlign = GV->getPointerAlignment(DL);
766 
767             // If the function alignment is not specified then assume that it
768             // is 4.
769             // This is dangerous; on x86, the alignment of the pointer
770             // corresponds to the alignment of the function, but might be less
771             // than 4 if it isn't explicitly specified.
772             // However, a fix for this behaviour was reverted because it
773             // increased code size (see https://reviews.llvm.org/D55115)
774             // FIXME: This code should be deleted once existing targets have
775             // appropriate defaults
776             if (isa<Function>(GV) && !DL.getFunctionPtrAlign())
777               GVAlign = Align(4);
778           } else if (isa<GlobalVariable>(GV)) {
779             GVAlign = cast<GlobalVariable>(GV)->getAlign().valueOrOne();
780           }
781 
782           if (GVAlign > 1) {
783             unsigned DstWidth = CI2->getBitWidth();
784             unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign));
785             APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth));
786 
787             // If checking bits we know are clear, return zero.
788             if ((CI2->getValue() & BitsNotSet) == CI2->getValue())
789               return Constant::getNullValue(CI2->getType());
790           }
791         }
792       }
793       break;
794     }
795   } else if (isa<ConstantInt>(C1)) {
796     // If C1 is a ConstantInt and C2 is not, swap the operands.
797     if (Instruction::isCommutative(Opcode))
798       return ConstantExpr::isDesirableBinOp(Opcode)
799                  ? ConstantExpr::get(Opcode, C2, C1)
800                  : ConstantFoldBinaryInstruction(Opcode, C2, C1);
801   }
802 
803   if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) {
804     if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) {
805       const APInt &C1V = CI1->getValue();
806       const APInt &C2V = CI2->getValue();
807       switch (Opcode) {
808       default:
809         break;
810       case Instruction::Add:
811         return ConstantInt::get(CI1->getContext(), C1V + C2V);
812       case Instruction::Sub:
813         return ConstantInt::get(CI1->getContext(), C1V - C2V);
814       case Instruction::Mul:
815         return ConstantInt::get(CI1->getContext(), C1V * C2V);
816       case Instruction::UDiv:
817         assert(!CI2->isZero() && "Div by zero handled above");
818         return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V));
819       case Instruction::SDiv:
820         assert(!CI2->isZero() && "Div by zero handled above");
821         if (C2V.isAllOnes() && C1V.isMinSignedValue())
822           return PoisonValue::get(CI1->getType());   // MIN_INT / -1 -> poison
823         return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V));
824       case Instruction::URem:
825         assert(!CI2->isZero() && "Div by zero handled above");
826         return ConstantInt::get(CI1->getContext(), C1V.urem(C2V));
827       case Instruction::SRem:
828         assert(!CI2->isZero() && "Div by zero handled above");
829         if (C2V.isAllOnes() && C1V.isMinSignedValue())
830           return PoisonValue::get(CI1->getType());   // MIN_INT % -1 -> poison
831         return ConstantInt::get(CI1->getContext(), C1V.srem(C2V));
832       case Instruction::And:
833         return ConstantInt::get(CI1->getContext(), C1V & C2V);
834       case Instruction::Or:
835         return ConstantInt::get(CI1->getContext(), C1V | C2V);
836       case Instruction::Xor:
837         return ConstantInt::get(CI1->getContext(), C1V ^ C2V);
838       case Instruction::Shl:
839         if (C2V.ult(C1V.getBitWidth()))
840           return ConstantInt::get(CI1->getContext(), C1V.shl(C2V));
841         return PoisonValue::get(C1->getType()); // too big shift is poison
842       case Instruction::LShr:
843         if (C2V.ult(C1V.getBitWidth()))
844           return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V));
845         return PoisonValue::get(C1->getType()); // too big shift is poison
846       case Instruction::AShr:
847         if (C2V.ult(C1V.getBitWidth()))
848           return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V));
849         return PoisonValue::get(C1->getType()); // too big shift is poison
850       }
851     }
852 
853     if (C1 == ConstantExpr::getBinOpAbsorber(Opcode, C1->getType(),
854                                              /*AllowLHSConstant*/ true))
855       return C1;
856   } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) {
857     if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) {
858       const APFloat &C1V = CFP1->getValueAPF();
859       const APFloat &C2V = CFP2->getValueAPF();
860       APFloat C3V = C1V;  // copy for modification
861       switch (Opcode) {
862       default:
863         break;
864       case Instruction::FAdd:
865         (void)C3V.add(C2V, APFloat::rmNearestTiesToEven);
866         return ConstantFP::get(C1->getContext(), C3V);
867       case Instruction::FSub:
868         (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven);
869         return ConstantFP::get(C1->getContext(), C3V);
870       case Instruction::FMul:
871         (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven);
872         return ConstantFP::get(C1->getContext(), C3V);
873       case Instruction::FDiv:
874         (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven);
875         return ConstantFP::get(C1->getContext(), C3V);
876       case Instruction::FRem:
877         (void)C3V.mod(C2V);
878         return ConstantFP::get(C1->getContext(), C3V);
879       }
880     }
881   } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) {
882     // Fast path for splatted constants.
883     if (Constant *C2Splat = C2->getSplatValue()) {
884       if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue())
885         return PoisonValue::get(VTy);
886       if (Constant *C1Splat = C1->getSplatValue()) {
887         Constant *Res =
888             ConstantExpr::isDesirableBinOp(Opcode)
889                 ? ConstantExpr::get(Opcode, C1Splat, C2Splat)
890                 : ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat);
891         if (!Res)
892           return nullptr;
893         return ConstantVector::getSplat(VTy->getElementCount(), Res);
894       }
895     }
896 
897     if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) {
898       // Fold each element and create a vector constant from those constants.
899       SmallVector<Constant*, 16> Result;
900       Type *Ty = IntegerType::get(FVTy->getContext(), 32);
901       for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) {
902         Constant *ExtractIdx = ConstantInt::get(Ty, i);
903         Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx);
904         Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx);
905 
906         // If any element of a divisor vector is zero, the whole op is poison.
907         if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue())
908           return PoisonValue::get(VTy);
909 
910         Constant *Res = ConstantExpr::isDesirableBinOp(Opcode)
911                             ? ConstantExpr::get(Opcode, LHS, RHS)
912                             : ConstantFoldBinaryInstruction(Opcode, LHS, RHS);
913         if (!Res)
914           return nullptr;
915         Result.push_back(Res);
916       }
917 
918       return ConstantVector::get(Result);
919     }
920   }
921 
922   if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) {
923     // There are many possible foldings we could do here.  We should probably
924     // at least fold add of a pointer with an integer into the appropriate
925     // getelementptr.  This will improve alias analysis a bit.
926 
927     // Given ((a + b) + c), if (b + c) folds to something interesting, return
928     // (a + (b + c)).
929     if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) {
930       Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2);
931       if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode)
932         return ConstantExpr::get(Opcode, CE1->getOperand(0), T);
933     }
934   } else if (isa<ConstantExpr>(C2)) {
935     // If C2 is a constant expr and C1 isn't, flop them around and fold the
936     // other way if possible.
937     if (Instruction::isCommutative(Opcode))
938       return ConstantFoldBinaryInstruction(Opcode, C2, C1);
939   }
940 
941   // i1 can be simplified in many cases.
942   if (C1->getType()->isIntegerTy(1)) {
943     switch (Opcode) {
944     case Instruction::Add:
945     case Instruction::Sub:
946       return ConstantExpr::getXor(C1, C2);
947     case Instruction::Shl:
948     case Instruction::LShr:
949     case Instruction::AShr:
950       // We can assume that C2 == 0.  If it were one the result would be
951       // undefined because the shift value is as large as the bitwidth.
952       return C1;
953     case Instruction::SDiv:
954     case Instruction::UDiv:
955       // We can assume that C2 == 1.  If it were zero the result would be
956       // undefined through division by zero.
957       return C1;
958     case Instruction::URem:
959     case Instruction::SRem:
960       // We can assume that C2 == 1.  If it were zero the result would be
961       // undefined through division by zero.
962       return ConstantInt::getFalse(C1->getContext());
963     default:
964       break;
965     }
966   }
967 
968   // We don't know how to fold this.
969   return nullptr;
970 }
971 
972 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1,
973                                                       const GlobalValue *GV2) {
974   auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) {
975     if (GV->isInterposable() || GV->hasGlobalUnnamedAddr())
976       return true;
977     if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) {
978       Type *Ty = GVar->getValueType();
979       // A global with opaque type might end up being zero sized.
980       if (!Ty->isSized())
981         return true;
982       // A global with an empty type might lie at the address of any other
983       // global.
984       if (Ty->isEmptyTy())
985         return true;
986     }
987     return false;
988   };
989   // Don't try to decide equality of aliases.
990   if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2))
991     if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2))
992       return ICmpInst::ICMP_NE;
993   return ICmpInst::BAD_ICMP_PREDICATE;
994 }
995 
996 /// This function determines if there is anything we can decide about the two
997 /// constants provided. This doesn't need to handle simple things like integer
998 /// comparisons, but should instead handle ConstantExprs and GlobalValues.
999 /// If we can determine that the two constants have a particular relation to
1000 /// each other, we should return the corresponding ICmp predicate, otherwise
1001 /// return ICmpInst::BAD_ICMP_PREDICATE.
1002 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2) {
1003   assert(V1->getType() == V2->getType() &&
1004          "Cannot compare different types of values!");
1005   if (V1 == V2) return ICmpInst::ICMP_EQ;
1006 
1007   // The following folds only apply to pointers.
1008   if (!V1->getType()->isPointerTy())
1009     return ICmpInst::BAD_ICMP_PREDICATE;
1010 
1011   // To simplify this code we canonicalize the relation so that the first
1012   // operand is always the most "complex" of the two.  We consider simple
1013   // constants (like ConstantPointerNull) to be the simplest, followed by
1014   // BlockAddress, GlobalValues, and ConstantExpr's (the most complex).
1015   auto GetComplexity = [](Constant *V) {
1016     if (isa<ConstantExpr>(V))
1017       return 3;
1018     if (isa<GlobalValue>(V))
1019       return 2;
1020     if (isa<BlockAddress>(V))
1021       return 1;
1022     return 0;
1023   };
1024   if (GetComplexity(V1) < GetComplexity(V2)) {
1025     ICmpInst::Predicate SwappedRelation = evaluateICmpRelation(V2, V1);
1026     if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE)
1027       return ICmpInst::getSwappedPredicate(SwappedRelation);
1028     return ICmpInst::BAD_ICMP_PREDICATE;
1029   }
1030 
1031   if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) {
1032     // Now we know that the RHS is a BlockAddress or simple constant.
1033     if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) {
1034       // Block address in another function can't equal this one, but block
1035       // addresses in the current function might be the same if blocks are
1036       // empty.
1037       if (BA2->getFunction() != BA->getFunction())
1038         return ICmpInst::ICMP_NE;
1039     } else if (isa<ConstantPointerNull>(V2)) {
1040       return ICmpInst::ICMP_NE;
1041     }
1042   } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) {
1043     // Now we know that the RHS is a GlobalValue, BlockAddress or simple
1044     // constant.
1045     if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1046       return areGlobalsPotentiallyEqual(GV, GV2);
1047     } else if (isa<BlockAddress>(V2)) {
1048       return ICmpInst::ICMP_NE; // Globals never equal labels.
1049     } else if (isa<ConstantPointerNull>(V2)) {
1050       // GlobalVals can never be null unless they have external weak linkage.
1051       // We don't try to evaluate aliases here.
1052       // NOTE: We should not be doing this constant folding if null pointer
1053       // is considered valid for the function. But currently there is no way to
1054       // query it from the Constant type.
1055       if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) &&
1056           !NullPointerIsDefined(nullptr /* F */,
1057                                 GV->getType()->getAddressSpace()))
1058         return ICmpInst::ICMP_UGT;
1059     }
1060   } else if (auto *CE1 = dyn_cast<ConstantExpr>(V1)) {
1061     // Ok, the LHS is known to be a constantexpr.  The RHS can be any of a
1062     // constantexpr, a global, block address, or a simple constant.
1063     Constant *CE1Op0 = CE1->getOperand(0);
1064 
1065     switch (CE1->getOpcode()) {
1066     case Instruction::GetElementPtr: {
1067       GEPOperator *CE1GEP = cast<GEPOperator>(CE1);
1068       // Ok, since this is a getelementptr, we know that the constant has a
1069       // pointer type.  Check the various cases.
1070       if (isa<ConstantPointerNull>(V2)) {
1071         // If we are comparing a GEP to a null pointer, check to see if the base
1072         // of the GEP equals the null pointer.
1073         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1074           // If its not weak linkage, the GVal must have a non-zero address
1075           // so the result is greater-than
1076           if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds())
1077             return ICmpInst::ICMP_UGT;
1078         }
1079       } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) {
1080         if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) {
1081           if (GV != GV2) {
1082             if (CE1GEP->hasAllZeroIndices())
1083               return areGlobalsPotentiallyEqual(GV, GV2);
1084             return ICmpInst::BAD_ICMP_PREDICATE;
1085           }
1086         }
1087       } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) {
1088         // By far the most common case to handle is when the base pointers are
1089         // obviously to the same global.
1090         const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand());
1091         if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) {
1092           // Don't know relative ordering, but check for inequality.
1093           if (CE1Op0 != CE2Op0) {
1094             if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices())
1095               return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0),
1096                                                 cast<GlobalValue>(CE2Op0));
1097             return ICmpInst::BAD_ICMP_PREDICATE;
1098           }
1099         }
1100       }
1101       break;
1102     }
1103     default:
1104       break;
1105     }
1106   }
1107 
1108   return ICmpInst::BAD_ICMP_PREDICATE;
1109 }
1110 
1111 Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate,
1112                                                Constant *C1, Constant *C2) {
1113   Type *ResultTy;
1114   if (VectorType *VT = dyn_cast<VectorType>(C1->getType()))
1115     ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()),
1116                                VT->getElementCount());
1117   else
1118     ResultTy = Type::getInt1Ty(C1->getContext());
1119 
1120   // Fold FCMP_FALSE/FCMP_TRUE unconditionally.
1121   if (Predicate == FCmpInst::FCMP_FALSE)
1122     return Constant::getNullValue(ResultTy);
1123 
1124   if (Predicate == FCmpInst::FCMP_TRUE)
1125     return Constant::getAllOnesValue(ResultTy);
1126 
1127   // Handle some degenerate cases first
1128   if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2))
1129     return PoisonValue::get(ResultTy);
1130 
1131   if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) {
1132     bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate);
1133     // For EQ and NE, we can always pick a value for the undef to make the
1134     // predicate pass or fail, so we can return undef.
1135     // Also, if both operands are undef, we can return undef for int comparison.
1136     if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2))
1137       return UndefValue::get(ResultTy);
1138 
1139     // Otherwise, for integer compare, pick the same value as the non-undef
1140     // operand, and fold it to true or false.
1141     if (isIntegerPredicate)
1142       return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate));
1143 
1144     // Choosing NaN for the undef will always make unordered comparison succeed
1145     // and ordered comparison fails.
1146     return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate));
1147   }
1148 
1149   if (C2->isNullValue()) {
1150     // The caller is expected to commute the operands if the constant expression
1151     // is C2.
1152     // C1 >= 0 --> true
1153     if (Predicate == ICmpInst::ICMP_UGE)
1154       return Constant::getAllOnesValue(ResultTy);
1155     // C1 < 0 --> false
1156     if (Predicate == ICmpInst::ICMP_ULT)
1157       return Constant::getNullValue(ResultTy);
1158   }
1159 
1160   // If the comparison is a comparison between two i1's, simplify it.
1161   if (C1->getType()->isIntegerTy(1)) {
1162     switch (Predicate) {
1163     case ICmpInst::ICMP_EQ:
1164       if (isa<ConstantInt>(C2))
1165         return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2));
1166       return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2);
1167     case ICmpInst::ICMP_NE:
1168       return ConstantExpr::getXor(C1, C2);
1169     default:
1170       break;
1171     }
1172   }
1173 
1174   if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) {
1175     const APInt &V1 = cast<ConstantInt>(C1)->getValue();
1176     const APInt &V2 = cast<ConstantInt>(C2)->getValue();
1177     return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate));
1178   } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) {
1179     const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF();
1180     const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF();
1181     return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate));
1182   } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) {
1183 
1184     // Fast path for splatted constants.
1185     if (Constant *C1Splat = C1->getSplatValue())
1186       if (Constant *C2Splat = C2->getSplatValue())
1187         if (Constant *Elt =
1188                 ConstantFoldCompareInstruction(Predicate, C1Splat, C2Splat))
1189           return ConstantVector::getSplat(C1VTy->getElementCount(), Elt);
1190 
1191     // Do not iterate on scalable vector. The number of elements is unknown at
1192     // compile-time.
1193     if (isa<ScalableVectorType>(C1VTy))
1194       return nullptr;
1195 
1196     // If we can constant fold the comparison of each element, constant fold
1197     // the whole vector comparison.
1198     SmallVector<Constant*, 4> ResElts;
1199     Type *Ty = IntegerType::get(C1->getContext(), 32);
1200     // Compare the elements, producing an i1 result or constant expr.
1201     for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue();
1202          I != E; ++I) {
1203       Constant *C1E =
1204           ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I));
1205       Constant *C2E =
1206           ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I));
1207       Constant *Elt = ConstantFoldCompareInstruction(Predicate, C1E, C2E);
1208       if (!Elt)
1209         return nullptr;
1210 
1211       ResElts.push_back(Elt);
1212     }
1213 
1214     return ConstantVector::get(ResElts);
1215   }
1216 
1217   if (C1->getType()->isFPOrFPVectorTy()) {
1218     if (C1 == C2) {
1219       // We know that C1 == C2 || isUnordered(C1, C2).
1220       if (Predicate == FCmpInst::FCMP_ONE)
1221         return ConstantInt::getFalse(ResultTy);
1222       else if (Predicate == FCmpInst::FCMP_UEQ)
1223         return ConstantInt::getTrue(ResultTy);
1224     }
1225   } else {
1226     // Evaluate the relation between the two constants, per the predicate.
1227     int Result = -1;  // -1 = unknown, 0 = known false, 1 = known true.
1228     switch (evaluateICmpRelation(C1, C2)) {
1229     default: llvm_unreachable("Unknown relational!");
1230     case ICmpInst::BAD_ICMP_PREDICATE:
1231       break;  // Couldn't determine anything about these constants.
1232     case ICmpInst::ICMP_EQ:   // We know the constants are equal!
1233       // If we know the constants are equal, we can decide the result of this
1234       // computation precisely.
1235       Result = ICmpInst::isTrueWhenEqual(Predicate);
1236       break;
1237     case ICmpInst::ICMP_ULT:
1238       switch (Predicate) {
1239       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE:
1240         Result = 1; break;
1241       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE:
1242         Result = 0; break;
1243       default:
1244         break;
1245       }
1246       break;
1247     case ICmpInst::ICMP_SLT:
1248       switch (Predicate) {
1249       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE:
1250         Result = 1; break;
1251       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE:
1252         Result = 0; break;
1253       default:
1254         break;
1255       }
1256       break;
1257     case ICmpInst::ICMP_UGT:
1258       switch (Predicate) {
1259       case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE:
1260         Result = 1; break;
1261       case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE:
1262         Result = 0; break;
1263       default:
1264         break;
1265       }
1266       break;
1267     case ICmpInst::ICMP_SGT:
1268       switch (Predicate) {
1269       case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE:
1270         Result = 1; break;
1271       case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE:
1272         Result = 0; break;
1273       default:
1274         break;
1275       }
1276       break;
1277     case ICmpInst::ICMP_ULE:
1278       if (Predicate == ICmpInst::ICMP_UGT)
1279         Result = 0;
1280       if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE)
1281         Result = 1;
1282       break;
1283     case ICmpInst::ICMP_SLE:
1284       if (Predicate == ICmpInst::ICMP_SGT)
1285         Result = 0;
1286       if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE)
1287         Result = 1;
1288       break;
1289     case ICmpInst::ICMP_UGE:
1290       if (Predicate == ICmpInst::ICMP_ULT)
1291         Result = 0;
1292       if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE)
1293         Result = 1;
1294       break;
1295     case ICmpInst::ICMP_SGE:
1296       if (Predicate == ICmpInst::ICMP_SLT)
1297         Result = 0;
1298       if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE)
1299         Result = 1;
1300       break;
1301     case ICmpInst::ICMP_NE:
1302       if (Predicate == ICmpInst::ICMP_EQ)
1303         Result = 0;
1304       if (Predicate == ICmpInst::ICMP_NE)
1305         Result = 1;
1306       break;
1307     }
1308 
1309     // If we evaluated the result, return it now.
1310     if (Result != -1)
1311       return ConstantInt::get(ResultTy, Result);
1312 
1313     if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) ||
1314         (C1->isNullValue() && !C2->isNullValue())) {
1315       // If C2 is a constant expr and C1 isn't, flip them around and fold the
1316       // other way if possible.
1317       // Also, if C1 is null and C2 isn't, flip them around.
1318       Predicate = ICmpInst::getSwappedPredicate(Predicate);
1319       return ConstantFoldCompareInstruction(Predicate, C2, C1);
1320     }
1321   }
1322   return nullptr;
1323 }
1324 
1325 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C,
1326                                           std::optional<ConstantRange> InRange,
1327                                           ArrayRef<Value *> Idxs) {
1328   if (Idxs.empty()) return C;
1329 
1330   Type *GEPTy = GetElementPtrInst::getGEPReturnType(
1331       C, ArrayRef((Value *const *)Idxs.data(), Idxs.size()));
1332 
1333   if (isa<PoisonValue>(C))
1334     return PoisonValue::get(GEPTy);
1335 
1336   if (isa<UndefValue>(C))
1337     return UndefValue::get(GEPTy);
1338 
1339   auto IsNoOp = [&]() {
1340     // Avoid losing inrange information.
1341     if (InRange)
1342       return false;
1343 
1344     return all_of(Idxs, [](Value *Idx) {
1345       Constant *IdxC = cast<Constant>(Idx);
1346       return IdxC->isNullValue() || isa<UndefValue>(IdxC);
1347     });
1348   };
1349   if (IsNoOp())
1350     return GEPTy->isVectorTy() && !C->getType()->isVectorTy()
1351                ? ConstantVector::getSplat(
1352                      cast<VectorType>(GEPTy)->getElementCount(), C)
1353                : C;
1354 
1355   return nullptr;
1356 }
1357