1 //===- ConstantFold.cpp - LLVM constant folder ----------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements folding of constants for LLVM. This implements the 10 // (internal) ConstantFold.h interface, which is used by the 11 // ConstantExpr::get* methods to automatically fold constants when possible. 12 // 13 // The current constant folding implementation is implemented in two pieces: the 14 // pieces that don't need DataLayout, and the pieces that do. This is to avoid 15 // a dependence in IR on Target. 16 // 17 //===----------------------------------------------------------------------===// 18 19 #include "llvm/IR/ConstantFold.h" 20 #include "llvm/ADT/APSInt.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/IR/Constants.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/Function.h" 25 #include "llvm/IR/GetElementPtrTypeIterator.h" 26 #include "llvm/IR/GlobalAlias.h" 27 #include "llvm/IR/GlobalVariable.h" 28 #include "llvm/IR/Instructions.h" 29 #include "llvm/IR/Module.h" 30 #include "llvm/IR/Operator.h" 31 #include "llvm/IR/PatternMatch.h" 32 #include "llvm/Support/ErrorHandling.h" 33 using namespace llvm; 34 using namespace llvm::PatternMatch; 35 36 //===----------------------------------------------------------------------===// 37 // ConstantFold*Instruction Implementations 38 //===----------------------------------------------------------------------===// 39 40 /// This function determines which opcode to use to fold two constant cast 41 /// expressions together. It uses CastInst::isEliminableCastPair to determine 42 /// the opcode. Consequently its just a wrapper around that function. 43 /// Determine if it is valid to fold a cast of a cast 44 static unsigned 45 foldConstantCastPair( 46 unsigned opc, ///< opcode of the second cast constant expression 47 ConstantExpr *Op, ///< the first cast constant expression 48 Type *DstTy ///< destination type of the first cast 49 ) { 50 assert(Op && Op->isCast() && "Can't fold cast of cast without a cast!"); 51 assert(DstTy && DstTy->isFirstClassType() && "Invalid cast destination type"); 52 assert(CastInst::isCast(opc) && "Invalid cast opcode"); 53 54 // The types and opcodes for the two Cast constant expressions 55 Type *SrcTy = Op->getOperand(0)->getType(); 56 Type *MidTy = Op->getType(); 57 Instruction::CastOps firstOp = Instruction::CastOps(Op->getOpcode()); 58 Instruction::CastOps secondOp = Instruction::CastOps(opc); 59 60 // Assume that pointers are never more than 64 bits wide, and only use this 61 // for the middle type. Otherwise we could end up folding away illegal 62 // bitcasts between address spaces with different sizes. 63 IntegerType *FakeIntPtrTy = Type::getInt64Ty(DstTy->getContext()); 64 65 // Let CastInst::isEliminableCastPair do the heavy lifting. 66 return CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy, DstTy, 67 nullptr, FakeIntPtrTy, nullptr); 68 } 69 70 static Constant *FoldBitCast(Constant *V, Type *DestTy) { 71 Type *SrcTy = V->getType(); 72 if (SrcTy == DestTy) 73 return V; // no-op cast 74 75 // Handle casts from one vector constant to another. We know that the src 76 // and dest type have the same size (otherwise its an illegal cast). 77 if (VectorType *DestPTy = dyn_cast<VectorType>(DestTy)) { 78 if (V->isAllOnesValue()) 79 return Constant::getAllOnesValue(DestTy); 80 81 // Canonicalize scalar-to-vector bitcasts into vector-to-vector bitcasts 82 // This allows for other simplifications (although some of them 83 // can only be handled by Analysis/ConstantFolding.cpp). 84 if (isa<ConstantInt>(V) || isa<ConstantFP>(V)) 85 return ConstantExpr::getBitCast(ConstantVector::get(V), DestPTy); 86 return nullptr; 87 } 88 89 // Handle integral constant input. 90 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 91 // See note below regarding the PPC_FP128 restriction. 92 if (DestTy->isFloatingPointTy() && !DestTy->isPPC_FP128Ty()) 93 return ConstantFP::get(DestTy->getContext(), 94 APFloat(DestTy->getFltSemantics(), 95 CI->getValue())); 96 97 // Otherwise, can't fold this (vector?) 98 return nullptr; 99 } 100 101 // Handle ConstantFP input: FP -> Integral. 102 if (ConstantFP *FP = dyn_cast<ConstantFP>(V)) { 103 // PPC_FP128 is really the sum of two consecutive doubles, where the first 104 // double is always stored first in memory, regardless of the target 105 // endianness. The memory layout of i128, however, depends on the target 106 // endianness, and so we can't fold this without target endianness 107 // information. This should instead be handled by 108 // Analysis/ConstantFolding.cpp 109 if (FP->getType()->isPPC_FP128Ty()) 110 return nullptr; 111 112 // Make sure dest type is compatible with the folded integer constant. 113 if (!DestTy->isIntegerTy()) 114 return nullptr; 115 116 return ConstantInt::get(FP->getContext(), 117 FP->getValueAPF().bitcastToAPInt()); 118 } 119 120 return nullptr; 121 } 122 123 124 /// V is an integer constant which only has a subset of its bytes used. 125 /// The bytes used are indicated by ByteStart (which is the first byte used, 126 /// counting from the least significant byte) and ByteSize, which is the number 127 /// of bytes used. 128 /// 129 /// This function analyzes the specified constant to see if the specified byte 130 /// range can be returned as a simplified constant. If so, the constant is 131 /// returned, otherwise null is returned. 132 static Constant *ExtractConstantBytes(Constant *C, unsigned ByteStart, 133 unsigned ByteSize) { 134 assert(C->getType()->isIntegerTy() && 135 (cast<IntegerType>(C->getType())->getBitWidth() & 7) == 0 && 136 "Non-byte sized integer input"); 137 [[maybe_unused]] unsigned CSize = cast<IntegerType>(C->getType())->getBitWidth()/8; 138 assert(ByteSize && "Must be accessing some piece"); 139 assert(ByteStart+ByteSize <= CSize && "Extracting invalid piece from input"); 140 assert(ByteSize != CSize && "Should not extract everything"); 141 142 // Constant Integers are simple. 143 if (ConstantInt *CI = dyn_cast<ConstantInt>(C)) { 144 APInt V = CI->getValue(); 145 if (ByteStart) 146 V.lshrInPlace(ByteStart*8); 147 V = V.trunc(ByteSize*8); 148 return ConstantInt::get(CI->getContext(), V); 149 } 150 151 // In the input is a constant expr, we might be able to recursively simplify. 152 // If not, we definitely can't do anything. 153 ConstantExpr *CE = dyn_cast<ConstantExpr>(C); 154 if (!CE) return nullptr; 155 156 switch (CE->getOpcode()) { 157 default: return nullptr; 158 case Instruction::Shl: { 159 ConstantInt *Amt = dyn_cast<ConstantInt>(CE->getOperand(1)); 160 if (!Amt) 161 return nullptr; 162 APInt ShAmt = Amt->getValue(); 163 // Cannot analyze non-byte shifts. 164 if ((ShAmt & 7) != 0) 165 return nullptr; 166 ShAmt.lshrInPlace(3); 167 168 // If the extract is known to be all zeros, return zero. 169 if (ShAmt.uge(ByteStart + ByteSize)) 170 return Constant::getNullValue( 171 IntegerType::get(CE->getContext(), ByteSize * 8)); 172 // If the extract is known to be fully in the input, extract it. 173 if (ShAmt.ule(ByteStart)) 174 return ExtractConstantBytes(CE->getOperand(0), 175 ByteStart - ShAmt.getZExtValue(), ByteSize); 176 177 // TODO: Handle the 'partially zero' case. 178 return nullptr; 179 } 180 } 181 } 182 183 static Constant *foldMaybeUndesirableCast(unsigned opc, Constant *V, 184 Type *DestTy) { 185 return ConstantExpr::isDesirableCastOp(opc) 186 ? ConstantExpr::getCast(opc, V, DestTy) 187 : ConstantFoldCastInstruction(opc, V, DestTy); 188 } 189 190 Constant *llvm::ConstantFoldCastInstruction(unsigned opc, Constant *V, 191 Type *DestTy) { 192 if (isa<PoisonValue>(V)) 193 return PoisonValue::get(DestTy); 194 195 if (isa<UndefValue>(V)) { 196 // zext(undef) = 0, because the top bits will be zero. 197 // sext(undef) = 0, because the top bits will all be the same. 198 // [us]itofp(undef) = 0, because the result value is bounded. 199 if (opc == Instruction::ZExt || opc == Instruction::SExt || 200 opc == Instruction::UIToFP || opc == Instruction::SIToFP) 201 return Constant::getNullValue(DestTy); 202 return UndefValue::get(DestTy); 203 } 204 205 if (V->isNullValue() && !DestTy->isX86_MMXTy() && !DestTy->isX86_AMXTy() && 206 opc != Instruction::AddrSpaceCast) 207 return Constant::getNullValue(DestTy); 208 209 // If the cast operand is a constant expression, there's a few things we can 210 // do to try to simplify it. 211 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V)) { 212 if (CE->isCast()) { 213 // Try hard to fold cast of cast because they are often eliminable. 214 if (unsigned newOpc = foldConstantCastPair(opc, CE, DestTy)) 215 return foldMaybeUndesirableCast(newOpc, CE->getOperand(0), DestTy); 216 } 217 } 218 219 // If the cast operand is a constant vector, perform the cast by 220 // operating on each element. In the cast of bitcasts, the element 221 // count may be mismatched; don't attempt to handle that here. 222 if ((isa<ConstantVector>(V) || isa<ConstantDataVector>(V)) && 223 DestTy->isVectorTy() && 224 cast<FixedVectorType>(DestTy)->getNumElements() == 225 cast<FixedVectorType>(V->getType())->getNumElements()) { 226 VectorType *DestVecTy = cast<VectorType>(DestTy); 227 Type *DstEltTy = DestVecTy->getElementType(); 228 // Fast path for splatted constants. 229 if (Constant *Splat = V->getSplatValue()) { 230 Constant *Res = foldMaybeUndesirableCast(opc, Splat, DstEltTy); 231 if (!Res) 232 return nullptr; 233 return ConstantVector::getSplat( 234 cast<VectorType>(DestTy)->getElementCount(), Res); 235 } 236 SmallVector<Constant *, 16> res; 237 Type *Ty = IntegerType::get(V->getContext(), 32); 238 for (unsigned i = 0, 239 e = cast<FixedVectorType>(V->getType())->getNumElements(); 240 i != e; ++i) { 241 Constant *C = ConstantExpr::getExtractElement(V, ConstantInt::get(Ty, i)); 242 Constant *Casted = foldMaybeUndesirableCast(opc, C, DstEltTy); 243 if (!Casted) 244 return nullptr; 245 res.push_back(Casted); 246 } 247 return ConstantVector::get(res); 248 } 249 250 // We actually have to do a cast now. Perform the cast according to the 251 // opcode specified. 252 switch (opc) { 253 default: 254 llvm_unreachable("Failed to cast constant expression"); 255 case Instruction::FPTrunc: 256 case Instruction::FPExt: 257 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 258 bool ignored; 259 APFloat Val = FPC->getValueAPF(); 260 Val.convert(DestTy->getFltSemantics(), APFloat::rmNearestTiesToEven, 261 &ignored); 262 return ConstantFP::get(V->getContext(), Val); 263 } 264 return nullptr; // Can't fold. 265 case Instruction::FPToUI: 266 case Instruction::FPToSI: 267 if (ConstantFP *FPC = dyn_cast<ConstantFP>(V)) { 268 const APFloat &V = FPC->getValueAPF(); 269 bool ignored; 270 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 271 APSInt IntVal(DestBitWidth, opc == Instruction::FPToUI); 272 if (APFloat::opInvalidOp == 273 V.convertToInteger(IntVal, APFloat::rmTowardZero, &ignored)) { 274 // Undefined behavior invoked - the destination type can't represent 275 // the input constant. 276 return PoisonValue::get(DestTy); 277 } 278 return ConstantInt::get(FPC->getContext(), IntVal); 279 } 280 return nullptr; // Can't fold. 281 case Instruction::UIToFP: 282 case Instruction::SIToFP: 283 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 284 const APInt &api = CI->getValue(); 285 APFloat apf(DestTy->getFltSemantics(), 286 APInt::getZero(DestTy->getPrimitiveSizeInBits())); 287 apf.convertFromAPInt(api, opc==Instruction::SIToFP, 288 APFloat::rmNearestTiesToEven); 289 return ConstantFP::get(V->getContext(), apf); 290 } 291 return nullptr; 292 case Instruction::ZExt: 293 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 294 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 295 return ConstantInt::get(V->getContext(), 296 CI->getValue().zext(BitWidth)); 297 } 298 return nullptr; 299 case Instruction::SExt: 300 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 301 uint32_t BitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 302 return ConstantInt::get(V->getContext(), 303 CI->getValue().sext(BitWidth)); 304 } 305 return nullptr; 306 case Instruction::Trunc: { 307 if (V->getType()->isVectorTy()) 308 return nullptr; 309 310 uint32_t DestBitWidth = cast<IntegerType>(DestTy)->getBitWidth(); 311 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) { 312 return ConstantInt::get(V->getContext(), 313 CI->getValue().trunc(DestBitWidth)); 314 } 315 316 // The input must be a constantexpr. See if we can simplify this based on 317 // the bytes we are demanding. Only do this if the source and dest are an 318 // even multiple of a byte. 319 if ((DestBitWidth & 7) == 0 && 320 (cast<IntegerType>(V->getType())->getBitWidth() & 7) == 0) 321 if (Constant *Res = ExtractConstantBytes(V, 0, DestBitWidth / 8)) 322 return Res; 323 324 return nullptr; 325 } 326 case Instruction::BitCast: 327 return FoldBitCast(V, DestTy); 328 case Instruction::AddrSpaceCast: 329 case Instruction::IntToPtr: 330 case Instruction::PtrToInt: 331 return nullptr; 332 } 333 } 334 335 Constant *llvm::ConstantFoldSelectInstruction(Constant *Cond, 336 Constant *V1, Constant *V2) { 337 // Check for i1 and vector true/false conditions. 338 if (Cond->isNullValue()) return V2; 339 if (Cond->isAllOnesValue()) return V1; 340 341 // If the condition is a vector constant, fold the result elementwise. 342 if (ConstantVector *CondV = dyn_cast<ConstantVector>(Cond)) { 343 auto *V1VTy = CondV->getType(); 344 SmallVector<Constant*, 16> Result; 345 Type *Ty = IntegerType::get(CondV->getContext(), 32); 346 for (unsigned i = 0, e = V1VTy->getNumElements(); i != e; ++i) { 347 Constant *V; 348 Constant *V1Element = ConstantExpr::getExtractElement(V1, 349 ConstantInt::get(Ty, i)); 350 Constant *V2Element = ConstantExpr::getExtractElement(V2, 351 ConstantInt::get(Ty, i)); 352 auto *Cond = cast<Constant>(CondV->getOperand(i)); 353 if (isa<PoisonValue>(Cond)) { 354 V = PoisonValue::get(V1Element->getType()); 355 } else if (V1Element == V2Element) { 356 V = V1Element; 357 } else if (isa<UndefValue>(Cond)) { 358 V = isa<UndefValue>(V1Element) ? V1Element : V2Element; 359 } else { 360 if (!isa<ConstantInt>(Cond)) break; 361 V = Cond->isNullValue() ? V2Element : V1Element; 362 } 363 Result.push_back(V); 364 } 365 366 // If we were able to build the vector, return it. 367 if (Result.size() == V1VTy->getNumElements()) 368 return ConstantVector::get(Result); 369 } 370 371 if (isa<PoisonValue>(Cond)) 372 return PoisonValue::get(V1->getType()); 373 374 if (isa<UndefValue>(Cond)) { 375 if (isa<UndefValue>(V1)) return V1; 376 return V2; 377 } 378 379 if (V1 == V2) return V1; 380 381 if (isa<PoisonValue>(V1)) 382 return V2; 383 if (isa<PoisonValue>(V2)) 384 return V1; 385 386 // If the true or false value is undef, we can fold to the other value as 387 // long as the other value isn't poison. 388 auto NotPoison = [](Constant *C) { 389 if (isa<PoisonValue>(C)) 390 return false; 391 392 // TODO: We can analyze ConstExpr by opcode to determine if there is any 393 // possibility of poison. 394 if (isa<ConstantExpr>(C)) 395 return false; 396 397 if (isa<ConstantInt>(C) || isa<GlobalVariable>(C) || isa<ConstantFP>(C) || 398 isa<ConstantPointerNull>(C) || isa<Function>(C)) 399 return true; 400 401 if (C->getType()->isVectorTy()) 402 return !C->containsPoisonElement() && !C->containsConstantExpression(); 403 404 // TODO: Recursively analyze aggregates or other constants. 405 return false; 406 }; 407 if (isa<UndefValue>(V1) && NotPoison(V2)) return V2; 408 if (isa<UndefValue>(V2) && NotPoison(V1)) return V1; 409 410 return nullptr; 411 } 412 413 Constant *llvm::ConstantFoldExtractElementInstruction(Constant *Val, 414 Constant *Idx) { 415 auto *ValVTy = cast<VectorType>(Val->getType()); 416 417 // extractelt poison, C -> poison 418 // extractelt C, undef -> poison 419 if (isa<PoisonValue>(Val) || isa<UndefValue>(Idx)) 420 return PoisonValue::get(ValVTy->getElementType()); 421 422 // extractelt undef, C -> undef 423 if (isa<UndefValue>(Val)) 424 return UndefValue::get(ValVTy->getElementType()); 425 426 auto *CIdx = dyn_cast<ConstantInt>(Idx); 427 if (!CIdx) 428 return nullptr; 429 430 if (auto *ValFVTy = dyn_cast<FixedVectorType>(Val->getType())) { 431 // ee({w,x,y,z}, wrong_value) -> poison 432 if (CIdx->uge(ValFVTy->getNumElements())) 433 return PoisonValue::get(ValFVTy->getElementType()); 434 } 435 436 // ee (gep (ptr, idx0, ...), idx) -> gep (ee (ptr, idx), ee (idx0, idx), ...) 437 if (auto *CE = dyn_cast<ConstantExpr>(Val)) { 438 if (auto *GEP = dyn_cast<GEPOperator>(CE)) { 439 SmallVector<Constant *, 8> Ops; 440 Ops.reserve(CE->getNumOperands()); 441 for (unsigned i = 0, e = CE->getNumOperands(); i != e; ++i) { 442 Constant *Op = CE->getOperand(i); 443 if (Op->getType()->isVectorTy()) { 444 Constant *ScalarOp = ConstantExpr::getExtractElement(Op, Idx); 445 if (!ScalarOp) 446 return nullptr; 447 Ops.push_back(ScalarOp); 448 } else 449 Ops.push_back(Op); 450 } 451 return CE->getWithOperands(Ops, ValVTy->getElementType(), false, 452 GEP->getSourceElementType()); 453 } else if (CE->getOpcode() == Instruction::InsertElement) { 454 if (const auto *IEIdx = dyn_cast<ConstantInt>(CE->getOperand(2))) { 455 if (APSInt::isSameValue(APSInt(IEIdx->getValue()), 456 APSInt(CIdx->getValue()))) { 457 return CE->getOperand(1); 458 } else { 459 return ConstantExpr::getExtractElement(CE->getOperand(0), CIdx); 460 } 461 } 462 } 463 } 464 465 if (Constant *C = Val->getAggregateElement(CIdx)) 466 return C; 467 468 // Lane < Splat minimum vector width => extractelt Splat(x), Lane -> x 469 if (CIdx->getValue().ult(ValVTy->getElementCount().getKnownMinValue())) { 470 if (Constant *SplatVal = Val->getSplatValue()) 471 return SplatVal; 472 } 473 474 return nullptr; 475 } 476 477 Constant *llvm::ConstantFoldInsertElementInstruction(Constant *Val, 478 Constant *Elt, 479 Constant *Idx) { 480 if (isa<UndefValue>(Idx)) 481 return PoisonValue::get(Val->getType()); 482 483 // Inserting null into all zeros is still all zeros. 484 // TODO: This is true for undef and poison splats too. 485 if (isa<ConstantAggregateZero>(Val) && Elt->isNullValue()) 486 return Val; 487 488 ConstantInt *CIdx = dyn_cast<ConstantInt>(Idx); 489 if (!CIdx) return nullptr; 490 491 // Do not iterate on scalable vector. The num of elements is unknown at 492 // compile-time. 493 if (isa<ScalableVectorType>(Val->getType())) 494 return nullptr; 495 496 auto *ValTy = cast<FixedVectorType>(Val->getType()); 497 498 unsigned NumElts = ValTy->getNumElements(); 499 if (CIdx->uge(NumElts)) 500 return PoisonValue::get(Val->getType()); 501 502 SmallVector<Constant*, 16> Result; 503 Result.reserve(NumElts); 504 auto *Ty = Type::getInt32Ty(Val->getContext()); 505 uint64_t IdxVal = CIdx->getZExtValue(); 506 for (unsigned i = 0; i != NumElts; ++i) { 507 if (i == IdxVal) { 508 Result.push_back(Elt); 509 continue; 510 } 511 512 Constant *C = ConstantExpr::getExtractElement(Val, ConstantInt::get(Ty, i)); 513 Result.push_back(C); 514 } 515 516 return ConstantVector::get(Result); 517 } 518 519 Constant *llvm::ConstantFoldShuffleVectorInstruction(Constant *V1, Constant *V2, 520 ArrayRef<int> Mask) { 521 auto *V1VTy = cast<VectorType>(V1->getType()); 522 unsigned MaskNumElts = Mask.size(); 523 auto MaskEltCount = 524 ElementCount::get(MaskNumElts, isa<ScalableVectorType>(V1VTy)); 525 Type *EltTy = V1VTy->getElementType(); 526 527 // Poison shuffle mask -> poison value. 528 if (all_of(Mask, [](int Elt) { return Elt == PoisonMaskElem; })) { 529 return PoisonValue::get(VectorType::get(EltTy, MaskEltCount)); 530 } 531 532 // If the mask is all zeros this is a splat, no need to go through all 533 // elements. 534 if (all_of(Mask, [](int Elt) { return Elt == 0; })) { 535 Type *Ty = IntegerType::get(V1->getContext(), 32); 536 Constant *Elt = 537 ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, 0)); 538 539 if (Elt->isNullValue()) { 540 auto *VTy = VectorType::get(EltTy, MaskEltCount); 541 return ConstantAggregateZero::get(VTy); 542 } else if (!MaskEltCount.isScalable()) 543 return ConstantVector::getSplat(MaskEltCount, Elt); 544 } 545 // Do not iterate on scalable vector. The num of elements is unknown at 546 // compile-time. 547 if (isa<ScalableVectorType>(V1VTy)) 548 return nullptr; 549 550 unsigned SrcNumElts = V1VTy->getElementCount().getKnownMinValue(); 551 552 // Loop over the shuffle mask, evaluating each element. 553 SmallVector<Constant*, 32> Result; 554 for (unsigned i = 0; i != MaskNumElts; ++i) { 555 int Elt = Mask[i]; 556 if (Elt == -1) { 557 Result.push_back(UndefValue::get(EltTy)); 558 continue; 559 } 560 Constant *InElt; 561 if (unsigned(Elt) >= SrcNumElts*2) 562 InElt = UndefValue::get(EltTy); 563 else if (unsigned(Elt) >= SrcNumElts) { 564 Type *Ty = IntegerType::get(V2->getContext(), 32); 565 InElt = 566 ConstantExpr::getExtractElement(V2, 567 ConstantInt::get(Ty, Elt - SrcNumElts)); 568 } else { 569 Type *Ty = IntegerType::get(V1->getContext(), 32); 570 InElt = ConstantExpr::getExtractElement(V1, ConstantInt::get(Ty, Elt)); 571 } 572 Result.push_back(InElt); 573 } 574 575 return ConstantVector::get(Result); 576 } 577 578 Constant *llvm::ConstantFoldExtractValueInstruction(Constant *Agg, 579 ArrayRef<unsigned> Idxs) { 580 // Base case: no indices, so return the entire value. 581 if (Idxs.empty()) 582 return Agg; 583 584 if (Constant *C = Agg->getAggregateElement(Idxs[0])) 585 return ConstantFoldExtractValueInstruction(C, Idxs.slice(1)); 586 587 return nullptr; 588 } 589 590 Constant *llvm::ConstantFoldInsertValueInstruction(Constant *Agg, 591 Constant *Val, 592 ArrayRef<unsigned> Idxs) { 593 // Base case: no indices, so replace the entire value. 594 if (Idxs.empty()) 595 return Val; 596 597 unsigned NumElts; 598 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 599 NumElts = ST->getNumElements(); 600 else 601 NumElts = cast<ArrayType>(Agg->getType())->getNumElements(); 602 603 SmallVector<Constant*, 32> Result; 604 for (unsigned i = 0; i != NumElts; ++i) { 605 Constant *C = Agg->getAggregateElement(i); 606 if (!C) return nullptr; 607 608 if (Idxs[0] == i) 609 C = ConstantFoldInsertValueInstruction(C, Val, Idxs.slice(1)); 610 611 Result.push_back(C); 612 } 613 614 if (StructType *ST = dyn_cast<StructType>(Agg->getType())) 615 return ConstantStruct::get(ST, Result); 616 return ConstantArray::get(cast<ArrayType>(Agg->getType()), Result); 617 } 618 619 Constant *llvm::ConstantFoldUnaryInstruction(unsigned Opcode, Constant *C) { 620 assert(Instruction::isUnaryOp(Opcode) && "Non-unary instruction detected"); 621 622 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 623 // vectors are always evaluated per element. 624 bool IsScalableVector = isa<ScalableVectorType>(C->getType()); 625 bool HasScalarUndefOrScalableVectorUndef = 626 (!C->getType()->isVectorTy() || IsScalableVector) && isa<UndefValue>(C); 627 628 if (HasScalarUndefOrScalableVectorUndef) { 629 switch (static_cast<Instruction::UnaryOps>(Opcode)) { 630 case Instruction::FNeg: 631 return C; // -undef -> undef 632 case Instruction::UnaryOpsEnd: 633 llvm_unreachable("Invalid UnaryOp"); 634 } 635 } 636 637 // Constant should not be UndefValue, unless these are vector constants. 638 assert(!HasScalarUndefOrScalableVectorUndef && "Unexpected UndefValue"); 639 // We only have FP UnaryOps right now. 640 assert(!isa<ConstantInt>(C) && "Unexpected Integer UnaryOp"); 641 642 if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) { 643 const APFloat &CV = CFP->getValueAPF(); 644 switch (Opcode) { 645 default: 646 break; 647 case Instruction::FNeg: 648 return ConstantFP::get(C->getContext(), neg(CV)); 649 } 650 } else if (auto *VTy = dyn_cast<FixedVectorType>(C->getType())) { 651 652 Type *Ty = IntegerType::get(VTy->getContext(), 32); 653 // Fast path for splatted constants. 654 if (Constant *Splat = C->getSplatValue()) 655 if (Constant *Elt = ConstantFoldUnaryInstruction(Opcode, Splat)) 656 return ConstantVector::getSplat(VTy->getElementCount(), Elt); 657 658 // Fold each element and create a vector constant from those constants. 659 SmallVector<Constant *, 16> Result; 660 for (unsigned i = 0, e = VTy->getNumElements(); i != e; ++i) { 661 Constant *ExtractIdx = ConstantInt::get(Ty, i); 662 Constant *Elt = ConstantExpr::getExtractElement(C, ExtractIdx); 663 Constant *Res = ConstantFoldUnaryInstruction(Opcode, Elt); 664 if (!Res) 665 return nullptr; 666 Result.push_back(Res); 667 } 668 669 return ConstantVector::get(Result); 670 } 671 672 // We don't know how to fold this. 673 return nullptr; 674 } 675 676 Constant *llvm::ConstantFoldBinaryInstruction(unsigned Opcode, Constant *C1, 677 Constant *C2) { 678 assert(Instruction::isBinaryOp(Opcode) && "Non-binary instruction detected"); 679 680 // Simplify BinOps with their identity values first. They are no-ops and we 681 // can always return the other value, including undef or poison values. 682 if (Constant *Identity = ConstantExpr::getBinOpIdentity( 683 Opcode, C1->getType(), /*AllowRHSIdentity*/ false)) { 684 if (C1 == Identity) 685 return C2; 686 if (C2 == Identity) 687 return C1; 688 } else if (Constant *Identity = ConstantExpr::getBinOpIdentity( 689 Opcode, C1->getType(), /*AllowRHSIdentity*/ true)) { 690 if (C2 == Identity) 691 return C1; 692 } 693 694 // Binary operations propagate poison. 695 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 696 return PoisonValue::get(C1->getType()); 697 698 // Handle scalar UndefValue and scalable vector UndefValue. Fixed-length 699 // vectors are always evaluated per element. 700 bool IsScalableVector = isa<ScalableVectorType>(C1->getType()); 701 bool HasScalarUndefOrScalableVectorUndef = 702 (!C1->getType()->isVectorTy() || IsScalableVector) && 703 (isa<UndefValue>(C1) || isa<UndefValue>(C2)); 704 if (HasScalarUndefOrScalableVectorUndef) { 705 switch (static_cast<Instruction::BinaryOps>(Opcode)) { 706 case Instruction::Xor: 707 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 708 // Handle undef ^ undef -> 0 special case. This is a common 709 // idiom (misuse). 710 return Constant::getNullValue(C1->getType()); 711 [[fallthrough]]; 712 case Instruction::Add: 713 case Instruction::Sub: 714 return UndefValue::get(C1->getType()); 715 case Instruction::And: 716 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef & undef -> undef 717 return C1; 718 return Constant::getNullValue(C1->getType()); // undef & X -> 0 719 case Instruction::Mul: { 720 // undef * undef -> undef 721 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 722 return C1; 723 const APInt *CV; 724 // X * undef -> undef if X is odd 725 if (match(C1, m_APInt(CV)) || match(C2, m_APInt(CV))) 726 if ((*CV)[0]) 727 return UndefValue::get(C1->getType()); 728 729 // X * undef -> 0 otherwise 730 return Constant::getNullValue(C1->getType()); 731 } 732 case Instruction::SDiv: 733 case Instruction::UDiv: 734 // X / undef -> poison 735 // X / 0 -> poison 736 if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) 737 return PoisonValue::get(C2->getType()); 738 // undef / X -> 0 otherwise 739 return Constant::getNullValue(C1->getType()); 740 case Instruction::URem: 741 case Instruction::SRem: 742 // X % undef -> poison 743 // X % 0 -> poison 744 if (match(C2, m_CombineOr(m_Undef(), m_Zero()))) 745 return PoisonValue::get(C2->getType()); 746 // undef % X -> 0 otherwise 747 return Constant::getNullValue(C1->getType()); 748 case Instruction::Or: // X | undef -> -1 749 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) // undef | undef -> undef 750 return C1; 751 return Constant::getAllOnesValue(C1->getType()); // undef | X -> ~0 752 case Instruction::LShr: 753 // X >>l undef -> poison 754 if (isa<UndefValue>(C2)) 755 return PoisonValue::get(C2->getType()); 756 // undef >>l X -> 0 757 return Constant::getNullValue(C1->getType()); 758 case Instruction::AShr: 759 // X >>a undef -> poison 760 if (isa<UndefValue>(C2)) 761 return PoisonValue::get(C2->getType()); 762 // TODO: undef >>a X -> poison if the shift is exact 763 // undef >>a X -> 0 764 return Constant::getNullValue(C1->getType()); 765 case Instruction::Shl: 766 // X << undef -> undef 767 if (isa<UndefValue>(C2)) 768 return PoisonValue::get(C2->getType()); 769 // undef << X -> 0 770 return Constant::getNullValue(C1->getType()); 771 case Instruction::FSub: 772 // -0.0 - undef --> undef (consistent with "fneg undef") 773 if (match(C1, m_NegZeroFP()) && isa<UndefValue>(C2)) 774 return C2; 775 [[fallthrough]]; 776 case Instruction::FAdd: 777 case Instruction::FMul: 778 case Instruction::FDiv: 779 case Instruction::FRem: 780 // [any flop] undef, undef -> undef 781 if (isa<UndefValue>(C1) && isa<UndefValue>(C2)) 782 return C1; 783 // [any flop] C, undef -> NaN 784 // [any flop] undef, C -> NaN 785 // We could potentially specialize NaN/Inf constants vs. 'normal' 786 // constants (possibly differently depending on opcode and operand). This 787 // would allow returning undef sometimes. But it is always safe to fold to 788 // NaN because we can choose the undef operand as NaN, and any FP opcode 789 // with a NaN operand will propagate NaN. 790 return ConstantFP::getNaN(C1->getType()); 791 case Instruction::BinaryOpsEnd: 792 llvm_unreachable("Invalid BinaryOp"); 793 } 794 } 795 796 // Neither constant should be UndefValue, unless these are vector constants. 797 assert((!HasScalarUndefOrScalableVectorUndef) && "Unexpected UndefValue"); 798 799 // Handle simplifications when the RHS is a constant int. 800 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 801 switch (Opcode) { 802 case Instruction::Mul: 803 if (CI2->isZero()) 804 return C2; // X * 0 == 0 805 break; 806 case Instruction::UDiv: 807 case Instruction::SDiv: 808 if (CI2->isZero()) 809 return PoisonValue::get(CI2->getType()); // X / 0 == poison 810 break; 811 case Instruction::URem: 812 case Instruction::SRem: 813 if (CI2->isOne()) 814 return Constant::getNullValue(CI2->getType()); // X % 1 == 0 815 if (CI2->isZero()) 816 return PoisonValue::get(CI2->getType()); // X % 0 == poison 817 break; 818 case Instruction::And: 819 if (CI2->isZero()) 820 return C2; // X & 0 == 0 821 822 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 823 // If and'ing the address of a global with a constant, fold it. 824 if (CE1->getOpcode() == Instruction::PtrToInt && 825 isa<GlobalValue>(CE1->getOperand(0))) { 826 GlobalValue *GV = cast<GlobalValue>(CE1->getOperand(0)); 827 828 Align GVAlign; // defaults to 1 829 830 if (Module *TheModule = GV->getParent()) { 831 const DataLayout &DL = TheModule->getDataLayout(); 832 GVAlign = GV->getPointerAlignment(DL); 833 834 // If the function alignment is not specified then assume that it 835 // is 4. 836 // This is dangerous; on x86, the alignment of the pointer 837 // corresponds to the alignment of the function, but might be less 838 // than 4 if it isn't explicitly specified. 839 // However, a fix for this behaviour was reverted because it 840 // increased code size (see https://reviews.llvm.org/D55115) 841 // FIXME: This code should be deleted once existing targets have 842 // appropriate defaults 843 if (isa<Function>(GV) && !DL.getFunctionPtrAlign()) 844 GVAlign = Align(4); 845 } else if (isa<GlobalVariable>(GV)) { 846 GVAlign = cast<GlobalVariable>(GV)->getAlign().valueOrOne(); 847 } 848 849 if (GVAlign > 1) { 850 unsigned DstWidth = CI2->getBitWidth(); 851 unsigned SrcWidth = std::min(DstWidth, Log2(GVAlign)); 852 APInt BitsNotSet(APInt::getLowBitsSet(DstWidth, SrcWidth)); 853 854 // If checking bits we know are clear, return zero. 855 if ((CI2->getValue() & BitsNotSet) == CI2->getValue()) 856 return Constant::getNullValue(CI2->getType()); 857 } 858 } 859 } 860 break; 861 case Instruction::Or: 862 if (CI2->isMinusOne()) 863 return C2; // X | -1 == -1 864 break; 865 case Instruction::Xor: 866 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 867 switch (CE1->getOpcode()) { 868 default: 869 break; 870 case Instruction::ICmp: 871 case Instruction::FCmp: 872 // cmp pred ^ true -> cmp !pred 873 assert(CI2->isOne()); 874 CmpInst::Predicate pred = (CmpInst::Predicate)CE1->getPredicate(); 875 pred = CmpInst::getInversePredicate(pred); 876 return ConstantExpr::getCompare(pred, CE1->getOperand(0), 877 CE1->getOperand(1)); 878 } 879 } 880 break; 881 } 882 } else if (isa<ConstantInt>(C1)) { 883 // If C1 is a ConstantInt and C2 is not, swap the operands. 884 if (Instruction::isCommutative(Opcode)) 885 return ConstantExpr::isDesirableBinOp(Opcode) 886 ? ConstantExpr::get(Opcode, C2, C1) 887 : ConstantFoldBinaryInstruction(Opcode, C2, C1); 888 } 889 890 if (ConstantInt *CI1 = dyn_cast<ConstantInt>(C1)) { 891 if (ConstantInt *CI2 = dyn_cast<ConstantInt>(C2)) { 892 const APInt &C1V = CI1->getValue(); 893 const APInt &C2V = CI2->getValue(); 894 switch (Opcode) { 895 default: 896 break; 897 case Instruction::Add: 898 return ConstantInt::get(CI1->getContext(), C1V + C2V); 899 case Instruction::Sub: 900 return ConstantInt::get(CI1->getContext(), C1V - C2V); 901 case Instruction::Mul: 902 return ConstantInt::get(CI1->getContext(), C1V * C2V); 903 case Instruction::UDiv: 904 assert(!CI2->isZero() && "Div by zero handled above"); 905 return ConstantInt::get(CI1->getContext(), C1V.udiv(C2V)); 906 case Instruction::SDiv: 907 assert(!CI2->isZero() && "Div by zero handled above"); 908 if (C2V.isAllOnes() && C1V.isMinSignedValue()) 909 return PoisonValue::get(CI1->getType()); // MIN_INT / -1 -> poison 910 return ConstantInt::get(CI1->getContext(), C1V.sdiv(C2V)); 911 case Instruction::URem: 912 assert(!CI2->isZero() && "Div by zero handled above"); 913 return ConstantInt::get(CI1->getContext(), C1V.urem(C2V)); 914 case Instruction::SRem: 915 assert(!CI2->isZero() && "Div by zero handled above"); 916 if (C2V.isAllOnes() && C1V.isMinSignedValue()) 917 return PoisonValue::get(CI1->getType()); // MIN_INT % -1 -> poison 918 return ConstantInt::get(CI1->getContext(), C1V.srem(C2V)); 919 case Instruction::And: 920 return ConstantInt::get(CI1->getContext(), C1V & C2V); 921 case Instruction::Or: 922 return ConstantInt::get(CI1->getContext(), C1V | C2V); 923 case Instruction::Xor: 924 return ConstantInt::get(CI1->getContext(), C1V ^ C2V); 925 case Instruction::Shl: 926 if (C2V.ult(C1V.getBitWidth())) 927 return ConstantInt::get(CI1->getContext(), C1V.shl(C2V)); 928 return PoisonValue::get(C1->getType()); // too big shift is poison 929 case Instruction::LShr: 930 if (C2V.ult(C1V.getBitWidth())) 931 return ConstantInt::get(CI1->getContext(), C1V.lshr(C2V)); 932 return PoisonValue::get(C1->getType()); // too big shift is poison 933 case Instruction::AShr: 934 if (C2V.ult(C1V.getBitWidth())) 935 return ConstantInt::get(CI1->getContext(), C1V.ashr(C2V)); 936 return PoisonValue::get(C1->getType()); // too big shift is poison 937 } 938 } 939 940 switch (Opcode) { 941 case Instruction::SDiv: 942 case Instruction::UDiv: 943 case Instruction::URem: 944 case Instruction::SRem: 945 case Instruction::LShr: 946 case Instruction::AShr: 947 case Instruction::Shl: 948 if (CI1->isZero()) return C1; 949 break; 950 default: 951 break; 952 } 953 } else if (ConstantFP *CFP1 = dyn_cast<ConstantFP>(C1)) { 954 if (ConstantFP *CFP2 = dyn_cast<ConstantFP>(C2)) { 955 const APFloat &C1V = CFP1->getValueAPF(); 956 const APFloat &C2V = CFP2->getValueAPF(); 957 APFloat C3V = C1V; // copy for modification 958 switch (Opcode) { 959 default: 960 break; 961 case Instruction::FAdd: 962 (void)C3V.add(C2V, APFloat::rmNearestTiesToEven); 963 return ConstantFP::get(C1->getContext(), C3V); 964 case Instruction::FSub: 965 (void)C3V.subtract(C2V, APFloat::rmNearestTiesToEven); 966 return ConstantFP::get(C1->getContext(), C3V); 967 case Instruction::FMul: 968 (void)C3V.multiply(C2V, APFloat::rmNearestTiesToEven); 969 return ConstantFP::get(C1->getContext(), C3V); 970 case Instruction::FDiv: 971 (void)C3V.divide(C2V, APFloat::rmNearestTiesToEven); 972 return ConstantFP::get(C1->getContext(), C3V); 973 case Instruction::FRem: 974 (void)C3V.mod(C2V); 975 return ConstantFP::get(C1->getContext(), C3V); 976 } 977 } 978 } else if (auto *VTy = dyn_cast<VectorType>(C1->getType())) { 979 // Fast path for splatted constants. 980 if (Constant *C2Splat = C2->getSplatValue()) { 981 if (Instruction::isIntDivRem(Opcode) && C2Splat->isNullValue()) 982 return PoisonValue::get(VTy); 983 if (Constant *C1Splat = C1->getSplatValue()) { 984 Constant *Res = 985 ConstantExpr::isDesirableBinOp(Opcode) 986 ? ConstantExpr::get(Opcode, C1Splat, C2Splat) 987 : ConstantFoldBinaryInstruction(Opcode, C1Splat, C2Splat); 988 if (!Res) 989 return nullptr; 990 return ConstantVector::getSplat(VTy->getElementCount(), Res); 991 } 992 } 993 994 if (auto *FVTy = dyn_cast<FixedVectorType>(VTy)) { 995 // Fold each element and create a vector constant from those constants. 996 SmallVector<Constant*, 16> Result; 997 Type *Ty = IntegerType::get(FVTy->getContext(), 32); 998 for (unsigned i = 0, e = FVTy->getNumElements(); i != e; ++i) { 999 Constant *ExtractIdx = ConstantInt::get(Ty, i); 1000 Constant *LHS = ConstantExpr::getExtractElement(C1, ExtractIdx); 1001 Constant *RHS = ConstantExpr::getExtractElement(C2, ExtractIdx); 1002 1003 // If any element of a divisor vector is zero, the whole op is poison. 1004 if (Instruction::isIntDivRem(Opcode) && RHS->isNullValue()) 1005 return PoisonValue::get(VTy); 1006 1007 Constant *Res = ConstantExpr::isDesirableBinOp(Opcode) 1008 ? ConstantExpr::get(Opcode, LHS, RHS) 1009 : ConstantFoldBinaryInstruction(Opcode, LHS, RHS); 1010 if (!Res) 1011 return nullptr; 1012 Result.push_back(Res); 1013 } 1014 1015 return ConstantVector::get(Result); 1016 } 1017 } 1018 1019 if (ConstantExpr *CE1 = dyn_cast<ConstantExpr>(C1)) { 1020 // There are many possible foldings we could do here. We should probably 1021 // at least fold add of a pointer with an integer into the appropriate 1022 // getelementptr. This will improve alias analysis a bit. 1023 1024 // Given ((a + b) + c), if (b + c) folds to something interesting, return 1025 // (a + (b + c)). 1026 if (Instruction::isAssociative(Opcode) && CE1->getOpcode() == Opcode) { 1027 Constant *T = ConstantExpr::get(Opcode, CE1->getOperand(1), C2); 1028 if (!isa<ConstantExpr>(T) || cast<ConstantExpr>(T)->getOpcode() != Opcode) 1029 return ConstantExpr::get(Opcode, CE1->getOperand(0), T); 1030 } 1031 } else if (isa<ConstantExpr>(C2)) { 1032 // If C2 is a constant expr and C1 isn't, flop them around and fold the 1033 // other way if possible. 1034 if (Instruction::isCommutative(Opcode)) 1035 return ConstantFoldBinaryInstruction(Opcode, C2, C1); 1036 } 1037 1038 // i1 can be simplified in many cases. 1039 if (C1->getType()->isIntegerTy(1)) { 1040 switch (Opcode) { 1041 case Instruction::Add: 1042 case Instruction::Sub: 1043 return ConstantExpr::getXor(C1, C2); 1044 case Instruction::Shl: 1045 case Instruction::LShr: 1046 case Instruction::AShr: 1047 // We can assume that C2 == 0. If it were one the result would be 1048 // undefined because the shift value is as large as the bitwidth. 1049 return C1; 1050 case Instruction::SDiv: 1051 case Instruction::UDiv: 1052 // We can assume that C2 == 1. If it were zero the result would be 1053 // undefined through division by zero. 1054 return C1; 1055 case Instruction::URem: 1056 case Instruction::SRem: 1057 // We can assume that C2 == 1. If it were zero the result would be 1058 // undefined through division by zero. 1059 return ConstantInt::getFalse(C1->getContext()); 1060 default: 1061 break; 1062 } 1063 } 1064 1065 // We don't know how to fold this. 1066 return nullptr; 1067 } 1068 1069 static ICmpInst::Predicate areGlobalsPotentiallyEqual(const GlobalValue *GV1, 1070 const GlobalValue *GV2) { 1071 auto isGlobalUnsafeForEquality = [](const GlobalValue *GV) { 1072 if (GV->isInterposable() || GV->hasGlobalUnnamedAddr()) 1073 return true; 1074 if (const auto *GVar = dyn_cast<GlobalVariable>(GV)) { 1075 Type *Ty = GVar->getValueType(); 1076 // A global with opaque type might end up being zero sized. 1077 if (!Ty->isSized()) 1078 return true; 1079 // A global with an empty type might lie at the address of any other 1080 // global. 1081 if (Ty->isEmptyTy()) 1082 return true; 1083 } 1084 return false; 1085 }; 1086 // Don't try to decide equality of aliases. 1087 if (!isa<GlobalAlias>(GV1) && !isa<GlobalAlias>(GV2)) 1088 if (!isGlobalUnsafeForEquality(GV1) && !isGlobalUnsafeForEquality(GV2)) 1089 return ICmpInst::ICMP_NE; 1090 return ICmpInst::BAD_ICMP_PREDICATE; 1091 } 1092 1093 /// This function determines if there is anything we can decide about the two 1094 /// constants provided. This doesn't need to handle simple things like integer 1095 /// comparisons, but should instead handle ConstantExprs and GlobalValues. 1096 /// If we can determine that the two constants have a particular relation to 1097 /// each other, we should return the corresponding ICmp predicate, otherwise 1098 /// return ICmpInst::BAD_ICMP_PREDICATE. 1099 static ICmpInst::Predicate evaluateICmpRelation(Constant *V1, Constant *V2) { 1100 assert(V1->getType() == V2->getType() && 1101 "Cannot compare different types of values!"); 1102 if (V1 == V2) return ICmpInst::ICMP_EQ; 1103 1104 // The following folds only apply to pointers. 1105 if (!V1->getType()->isPointerTy()) 1106 return ICmpInst::BAD_ICMP_PREDICATE; 1107 1108 // To simplify this code we canonicalize the relation so that the first 1109 // operand is always the most "complex" of the two. We consider simple 1110 // constants (like ConstantPointerNull) to be the simplest, followed by 1111 // BlockAddress, GlobalValues, and ConstantExpr's (the most complex). 1112 auto GetComplexity = [](Constant *V) { 1113 if (isa<ConstantExpr>(V)) 1114 return 3; 1115 if (isa<GlobalValue>(V)) 1116 return 2; 1117 if (isa<BlockAddress>(V)) 1118 return 1; 1119 return 0; 1120 }; 1121 if (GetComplexity(V1) < GetComplexity(V2)) { 1122 ICmpInst::Predicate SwappedRelation = evaluateICmpRelation(V2, V1); 1123 if (SwappedRelation != ICmpInst::BAD_ICMP_PREDICATE) 1124 return ICmpInst::getSwappedPredicate(SwappedRelation); 1125 return ICmpInst::BAD_ICMP_PREDICATE; 1126 } 1127 1128 if (const BlockAddress *BA = dyn_cast<BlockAddress>(V1)) { 1129 // Now we know that the RHS is a BlockAddress or simple constant. 1130 if (const BlockAddress *BA2 = dyn_cast<BlockAddress>(V2)) { 1131 // Block address in another function can't equal this one, but block 1132 // addresses in the current function might be the same if blocks are 1133 // empty. 1134 if (BA2->getFunction() != BA->getFunction()) 1135 return ICmpInst::ICMP_NE; 1136 } else if (isa<ConstantPointerNull>(V2)) { 1137 return ICmpInst::ICMP_NE; 1138 } 1139 } else if (const GlobalValue *GV = dyn_cast<GlobalValue>(V1)) { 1140 // Now we know that the RHS is a GlobalValue, BlockAddress or simple 1141 // constant. 1142 if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1143 return areGlobalsPotentiallyEqual(GV, GV2); 1144 } else if (isa<BlockAddress>(V2)) { 1145 return ICmpInst::ICMP_NE; // Globals never equal labels. 1146 } else if (isa<ConstantPointerNull>(V2)) { 1147 // GlobalVals can never be null unless they have external weak linkage. 1148 // We don't try to evaluate aliases here. 1149 // NOTE: We should not be doing this constant folding if null pointer 1150 // is considered valid for the function. But currently there is no way to 1151 // query it from the Constant type. 1152 if (!GV->hasExternalWeakLinkage() && !isa<GlobalAlias>(GV) && 1153 !NullPointerIsDefined(nullptr /* F */, 1154 GV->getType()->getAddressSpace())) 1155 return ICmpInst::ICMP_UGT; 1156 } 1157 } else if (auto *CE1 = dyn_cast<ConstantExpr>(V1)) { 1158 // Ok, the LHS is known to be a constantexpr. The RHS can be any of a 1159 // constantexpr, a global, block address, or a simple constant. 1160 Constant *CE1Op0 = CE1->getOperand(0); 1161 1162 switch (CE1->getOpcode()) { 1163 case Instruction::GetElementPtr: { 1164 GEPOperator *CE1GEP = cast<GEPOperator>(CE1); 1165 // Ok, since this is a getelementptr, we know that the constant has a 1166 // pointer type. Check the various cases. 1167 if (isa<ConstantPointerNull>(V2)) { 1168 // If we are comparing a GEP to a null pointer, check to see if the base 1169 // of the GEP equals the null pointer. 1170 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1171 // If its not weak linkage, the GVal must have a non-zero address 1172 // so the result is greater-than 1173 if (!GV->hasExternalWeakLinkage() && CE1GEP->isInBounds()) 1174 return ICmpInst::ICMP_UGT; 1175 } 1176 } else if (const GlobalValue *GV2 = dyn_cast<GlobalValue>(V2)) { 1177 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CE1Op0)) { 1178 if (GV != GV2) { 1179 if (CE1GEP->hasAllZeroIndices()) 1180 return areGlobalsPotentiallyEqual(GV, GV2); 1181 return ICmpInst::BAD_ICMP_PREDICATE; 1182 } 1183 } 1184 } else if (const auto *CE2GEP = dyn_cast<GEPOperator>(V2)) { 1185 // By far the most common case to handle is when the base pointers are 1186 // obviously to the same global. 1187 const Constant *CE2Op0 = cast<Constant>(CE2GEP->getPointerOperand()); 1188 if (isa<GlobalValue>(CE1Op0) && isa<GlobalValue>(CE2Op0)) { 1189 // Don't know relative ordering, but check for inequality. 1190 if (CE1Op0 != CE2Op0) { 1191 if (CE1GEP->hasAllZeroIndices() && CE2GEP->hasAllZeroIndices()) 1192 return areGlobalsPotentiallyEqual(cast<GlobalValue>(CE1Op0), 1193 cast<GlobalValue>(CE2Op0)); 1194 return ICmpInst::BAD_ICMP_PREDICATE; 1195 } 1196 } 1197 } 1198 break; 1199 } 1200 default: 1201 break; 1202 } 1203 } 1204 1205 return ICmpInst::BAD_ICMP_PREDICATE; 1206 } 1207 1208 Constant *llvm::ConstantFoldCompareInstruction(CmpInst::Predicate Predicate, 1209 Constant *C1, Constant *C2) { 1210 Type *ResultTy; 1211 if (VectorType *VT = dyn_cast<VectorType>(C1->getType())) 1212 ResultTy = VectorType::get(Type::getInt1Ty(C1->getContext()), 1213 VT->getElementCount()); 1214 else 1215 ResultTy = Type::getInt1Ty(C1->getContext()); 1216 1217 // Fold FCMP_FALSE/FCMP_TRUE unconditionally. 1218 if (Predicate == FCmpInst::FCMP_FALSE) 1219 return Constant::getNullValue(ResultTy); 1220 1221 if (Predicate == FCmpInst::FCMP_TRUE) 1222 return Constant::getAllOnesValue(ResultTy); 1223 1224 // Handle some degenerate cases first 1225 if (isa<PoisonValue>(C1) || isa<PoisonValue>(C2)) 1226 return PoisonValue::get(ResultTy); 1227 1228 if (isa<UndefValue>(C1) || isa<UndefValue>(C2)) { 1229 bool isIntegerPredicate = ICmpInst::isIntPredicate(Predicate); 1230 // For EQ and NE, we can always pick a value for the undef to make the 1231 // predicate pass or fail, so we can return undef. 1232 // Also, if both operands are undef, we can return undef for int comparison. 1233 if (ICmpInst::isEquality(Predicate) || (isIntegerPredicate && C1 == C2)) 1234 return UndefValue::get(ResultTy); 1235 1236 // Otherwise, for integer compare, pick the same value as the non-undef 1237 // operand, and fold it to true or false. 1238 if (isIntegerPredicate) 1239 return ConstantInt::get(ResultTy, CmpInst::isTrueWhenEqual(Predicate)); 1240 1241 // Choosing NaN for the undef will always make unordered comparison succeed 1242 // and ordered comparison fails. 1243 return ConstantInt::get(ResultTy, CmpInst::isUnordered(Predicate)); 1244 } 1245 1246 if (C2->isNullValue()) { 1247 // The caller is expected to commute the operands if the constant expression 1248 // is C2. 1249 // C1 >= 0 --> true 1250 if (Predicate == ICmpInst::ICMP_UGE) 1251 return Constant::getAllOnesValue(ResultTy); 1252 // C1 < 0 --> false 1253 if (Predicate == ICmpInst::ICMP_ULT) 1254 return Constant::getNullValue(ResultTy); 1255 } 1256 1257 // If the comparison is a comparison between two i1's, simplify it. 1258 if (C1->getType()->isIntegerTy(1)) { 1259 switch (Predicate) { 1260 case ICmpInst::ICMP_EQ: 1261 if (isa<ConstantInt>(C2)) 1262 return ConstantExpr::getXor(C1, ConstantExpr::getNot(C2)); 1263 return ConstantExpr::getXor(ConstantExpr::getNot(C1), C2); 1264 case ICmpInst::ICMP_NE: 1265 return ConstantExpr::getXor(C1, C2); 1266 default: 1267 break; 1268 } 1269 } 1270 1271 if (isa<ConstantInt>(C1) && isa<ConstantInt>(C2)) { 1272 const APInt &V1 = cast<ConstantInt>(C1)->getValue(); 1273 const APInt &V2 = cast<ConstantInt>(C2)->getValue(); 1274 return ConstantInt::get(ResultTy, ICmpInst::compare(V1, V2, Predicate)); 1275 } else if (isa<ConstantFP>(C1) && isa<ConstantFP>(C2)) { 1276 const APFloat &C1V = cast<ConstantFP>(C1)->getValueAPF(); 1277 const APFloat &C2V = cast<ConstantFP>(C2)->getValueAPF(); 1278 return ConstantInt::get(ResultTy, FCmpInst::compare(C1V, C2V, Predicate)); 1279 } else if (auto *C1VTy = dyn_cast<VectorType>(C1->getType())) { 1280 1281 // Fast path for splatted constants. 1282 if (Constant *C1Splat = C1->getSplatValue()) 1283 if (Constant *C2Splat = C2->getSplatValue()) 1284 return ConstantVector::getSplat( 1285 C1VTy->getElementCount(), 1286 ConstantExpr::getCompare(Predicate, C1Splat, C2Splat)); 1287 1288 // Do not iterate on scalable vector. The number of elements is unknown at 1289 // compile-time. 1290 if (isa<ScalableVectorType>(C1VTy)) 1291 return nullptr; 1292 1293 // If we can constant fold the comparison of each element, constant fold 1294 // the whole vector comparison. 1295 SmallVector<Constant*, 4> ResElts; 1296 Type *Ty = IntegerType::get(C1->getContext(), 32); 1297 // Compare the elements, producing an i1 result or constant expr. 1298 for (unsigned I = 0, E = C1VTy->getElementCount().getKnownMinValue(); 1299 I != E; ++I) { 1300 Constant *C1E = 1301 ConstantExpr::getExtractElement(C1, ConstantInt::get(Ty, I)); 1302 Constant *C2E = 1303 ConstantExpr::getExtractElement(C2, ConstantInt::get(Ty, I)); 1304 1305 ResElts.push_back(ConstantExpr::getCompare(Predicate, C1E, C2E)); 1306 } 1307 1308 return ConstantVector::get(ResElts); 1309 } 1310 1311 if (C1->getType()->isFPOrFPVectorTy()) { 1312 if (C1 == C2) { 1313 // We know that C1 == C2 || isUnordered(C1, C2). 1314 if (Predicate == FCmpInst::FCMP_ONE) 1315 return ConstantInt::getFalse(ResultTy); 1316 else if (Predicate == FCmpInst::FCMP_UEQ) 1317 return ConstantInt::getTrue(ResultTy); 1318 } 1319 } else { 1320 // Evaluate the relation between the two constants, per the predicate. 1321 int Result = -1; // -1 = unknown, 0 = known false, 1 = known true. 1322 switch (evaluateICmpRelation(C1, C2)) { 1323 default: llvm_unreachable("Unknown relational!"); 1324 case ICmpInst::BAD_ICMP_PREDICATE: 1325 break; // Couldn't determine anything about these constants. 1326 case ICmpInst::ICMP_EQ: // We know the constants are equal! 1327 // If we know the constants are equal, we can decide the result of this 1328 // computation precisely. 1329 Result = ICmpInst::isTrueWhenEqual(Predicate); 1330 break; 1331 case ICmpInst::ICMP_ULT: 1332 switch (Predicate) { 1333 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_ULE: 1334 Result = 1; break; 1335 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_UGE: 1336 Result = 0; break; 1337 default: 1338 break; 1339 } 1340 break; 1341 case ICmpInst::ICMP_SLT: 1342 switch (Predicate) { 1343 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SLE: 1344 Result = 1; break; 1345 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SGE: 1346 Result = 0; break; 1347 default: 1348 break; 1349 } 1350 break; 1351 case ICmpInst::ICMP_UGT: 1352 switch (Predicate) { 1353 case ICmpInst::ICMP_UGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_UGE: 1354 Result = 1; break; 1355 case ICmpInst::ICMP_ULT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_ULE: 1356 Result = 0; break; 1357 default: 1358 break; 1359 } 1360 break; 1361 case ICmpInst::ICMP_SGT: 1362 switch (Predicate) { 1363 case ICmpInst::ICMP_SGT: case ICmpInst::ICMP_NE: case ICmpInst::ICMP_SGE: 1364 Result = 1; break; 1365 case ICmpInst::ICMP_SLT: case ICmpInst::ICMP_EQ: case ICmpInst::ICMP_SLE: 1366 Result = 0; break; 1367 default: 1368 break; 1369 } 1370 break; 1371 case ICmpInst::ICMP_ULE: 1372 if (Predicate == ICmpInst::ICMP_UGT) 1373 Result = 0; 1374 if (Predicate == ICmpInst::ICMP_ULT || Predicate == ICmpInst::ICMP_ULE) 1375 Result = 1; 1376 break; 1377 case ICmpInst::ICMP_SLE: 1378 if (Predicate == ICmpInst::ICMP_SGT) 1379 Result = 0; 1380 if (Predicate == ICmpInst::ICMP_SLT || Predicate == ICmpInst::ICMP_SLE) 1381 Result = 1; 1382 break; 1383 case ICmpInst::ICMP_UGE: 1384 if (Predicate == ICmpInst::ICMP_ULT) 1385 Result = 0; 1386 if (Predicate == ICmpInst::ICMP_UGT || Predicate == ICmpInst::ICMP_UGE) 1387 Result = 1; 1388 break; 1389 case ICmpInst::ICMP_SGE: 1390 if (Predicate == ICmpInst::ICMP_SLT) 1391 Result = 0; 1392 if (Predicate == ICmpInst::ICMP_SGT || Predicate == ICmpInst::ICMP_SGE) 1393 Result = 1; 1394 break; 1395 case ICmpInst::ICMP_NE: 1396 if (Predicate == ICmpInst::ICMP_EQ) 1397 Result = 0; 1398 if (Predicate == ICmpInst::ICMP_NE) 1399 Result = 1; 1400 break; 1401 } 1402 1403 // If we evaluated the result, return it now. 1404 if (Result != -1) 1405 return ConstantInt::get(ResultTy, Result); 1406 1407 if ((!isa<ConstantExpr>(C1) && isa<ConstantExpr>(C2)) || 1408 (C1->isNullValue() && !C2->isNullValue())) { 1409 // If C2 is a constant expr and C1 isn't, flip them around and fold the 1410 // other way if possible. 1411 // Also, if C1 is null and C2 isn't, flip them around. 1412 Predicate = ICmpInst::getSwappedPredicate(Predicate); 1413 return ConstantExpr::getICmp(Predicate, C2, C1); 1414 } 1415 } 1416 return nullptr; 1417 } 1418 1419 /// Test whether the given sequence of *normalized* indices is "inbounds". 1420 template<typename IndexTy> 1421 static bool isInBoundsIndices(ArrayRef<IndexTy> Idxs) { 1422 // No indices means nothing that could be out of bounds. 1423 if (Idxs.empty()) return true; 1424 1425 // If the first index is zero, it's in bounds. 1426 if (cast<Constant>(Idxs[0])->isNullValue()) return true; 1427 1428 // If the first index is one and all the rest are zero, it's in bounds, 1429 // by the one-past-the-end rule. 1430 if (auto *CI = dyn_cast<ConstantInt>(Idxs[0])) { 1431 if (!CI->isOne()) 1432 return false; 1433 } else { 1434 auto *CV = cast<ConstantDataVector>(Idxs[0]); 1435 CI = dyn_cast_or_null<ConstantInt>(CV->getSplatValue()); 1436 if (!CI || !CI->isOne()) 1437 return false; 1438 } 1439 1440 for (unsigned i = 1, e = Idxs.size(); i != e; ++i) 1441 if (!cast<Constant>(Idxs[i])->isNullValue()) 1442 return false; 1443 return true; 1444 } 1445 1446 /// Test whether a given ConstantInt is in-range for a SequentialType. 1447 static bool isIndexInRangeOfArrayType(uint64_t NumElements, 1448 const ConstantInt *CI) { 1449 // We cannot bounds check the index if it doesn't fit in an int64_t. 1450 if (CI->getValue().getSignificantBits() > 64) 1451 return false; 1452 1453 // A negative index or an index past the end of our sequential type is 1454 // considered out-of-range. 1455 int64_t IndexVal = CI->getSExtValue(); 1456 if (IndexVal < 0 || (IndexVal != 0 && (uint64_t)IndexVal >= NumElements)) 1457 return false; 1458 1459 // Otherwise, it is in-range. 1460 return true; 1461 } 1462 1463 // Combine Indices - If the source pointer to this getelementptr instruction 1464 // is a getelementptr instruction, combine the indices of the two 1465 // getelementptr instructions into a single instruction. 1466 static Constant *foldGEPOfGEP(GEPOperator *GEP, Type *PointeeTy, bool InBounds, 1467 ArrayRef<Value *> Idxs) { 1468 if (PointeeTy != GEP->getResultElementType()) 1469 return nullptr; 1470 1471 // Leave inrange handling to DL-aware constant folding. 1472 if (GEP->getInRange()) 1473 return nullptr; 1474 1475 Constant *Idx0 = cast<Constant>(Idxs[0]); 1476 if (Idx0->isNullValue()) { 1477 // Handle the simple case of a zero index. 1478 SmallVector<Value*, 16> NewIndices; 1479 NewIndices.reserve(Idxs.size() + GEP->getNumIndices()); 1480 NewIndices.append(GEP->idx_begin(), GEP->idx_end()); 1481 NewIndices.append(Idxs.begin() + 1, Idxs.end()); 1482 return ConstantExpr::getGetElementPtr( 1483 GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()), 1484 NewIndices, InBounds && GEP->isInBounds()); 1485 } 1486 1487 gep_type_iterator LastI = gep_type_end(GEP); 1488 for (gep_type_iterator I = gep_type_begin(GEP), E = gep_type_end(GEP); 1489 I != E; ++I) 1490 LastI = I; 1491 1492 // We can't combine GEPs if the last index is a struct type. 1493 if (!LastI.isSequential()) 1494 return nullptr; 1495 // We could perform the transform with non-constant index, but prefer leaving 1496 // it as GEP of GEP rather than GEP of add for now. 1497 ConstantInt *CI = dyn_cast<ConstantInt>(Idx0); 1498 if (!CI) 1499 return nullptr; 1500 1501 // TODO: This code may be extended to handle vectors as well. 1502 auto *LastIdx = cast<Constant>(GEP->getOperand(GEP->getNumOperands()-1)); 1503 Type *LastIdxTy = LastIdx->getType(); 1504 if (LastIdxTy->isVectorTy()) 1505 return nullptr; 1506 1507 SmallVector<Value*, 16> NewIndices; 1508 NewIndices.reserve(Idxs.size() + GEP->getNumIndices()); 1509 NewIndices.append(GEP->idx_begin(), GEP->idx_end() - 1); 1510 1511 // Add the last index of the source with the first index of the new GEP. 1512 // Make sure to handle the case when they are actually different types. 1513 if (LastIdxTy != Idx0->getType()) { 1514 unsigned CommonExtendedWidth = 1515 std::max(LastIdxTy->getIntegerBitWidth(), 1516 Idx0->getType()->getIntegerBitWidth()); 1517 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 1518 1519 Type *CommonTy = 1520 Type::getIntNTy(LastIdxTy->getContext(), CommonExtendedWidth); 1521 if (Idx0->getType() != CommonTy) 1522 Idx0 = ConstantFoldCastInstruction(Instruction::SExt, Idx0, CommonTy); 1523 if (LastIdx->getType() != CommonTy) 1524 LastIdx = 1525 ConstantFoldCastInstruction(Instruction::SExt, LastIdx, CommonTy); 1526 if (!Idx0 || !LastIdx) 1527 return nullptr; 1528 } 1529 1530 NewIndices.push_back(ConstantExpr::get(Instruction::Add, Idx0, LastIdx)); 1531 NewIndices.append(Idxs.begin() + 1, Idxs.end()); 1532 1533 return ConstantExpr::getGetElementPtr( 1534 GEP->getSourceElementType(), cast<Constant>(GEP->getPointerOperand()), 1535 NewIndices, InBounds && GEP->isInBounds()); 1536 } 1537 1538 Constant *llvm::ConstantFoldGetElementPtr(Type *PointeeTy, Constant *C, 1539 bool InBounds, 1540 std::optional<ConstantRange> InRange, 1541 ArrayRef<Value *> Idxs) { 1542 if (Idxs.empty()) return C; 1543 1544 Type *GEPTy = GetElementPtrInst::getGEPReturnType( 1545 C, ArrayRef((Value *const *)Idxs.data(), Idxs.size())); 1546 1547 if (isa<PoisonValue>(C)) 1548 return PoisonValue::get(GEPTy); 1549 1550 if (isa<UndefValue>(C)) 1551 // If inbounds, we can choose an out-of-bounds pointer as a base pointer. 1552 return InBounds ? PoisonValue::get(GEPTy) : UndefValue::get(GEPTy); 1553 1554 auto IsNoOp = [&]() { 1555 // Avoid losing inrange information. 1556 if (InRange) 1557 return false; 1558 1559 return all_of(Idxs, [](Value *Idx) { 1560 Constant *IdxC = cast<Constant>(Idx); 1561 return IdxC->isNullValue() || isa<UndefValue>(IdxC); 1562 }); 1563 }; 1564 if (IsNoOp()) 1565 return GEPTy->isVectorTy() && !C->getType()->isVectorTy() 1566 ? ConstantVector::getSplat( 1567 cast<VectorType>(GEPTy)->getElementCount(), C) 1568 : C; 1569 1570 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) 1571 if (auto *GEP = dyn_cast<GEPOperator>(CE)) 1572 if (Constant *C = foldGEPOfGEP(GEP, PointeeTy, InBounds, Idxs)) 1573 return C; 1574 1575 // Check to see if any array indices are not within the corresponding 1576 // notional array or vector bounds. If so, try to determine if they can be 1577 // factored out into preceding dimensions. 1578 SmallVector<Constant *, 8> NewIdxs; 1579 Type *Ty = PointeeTy; 1580 Type *Prev = C->getType(); 1581 auto GEPIter = gep_type_begin(PointeeTy, Idxs); 1582 bool Unknown = 1583 !isa<ConstantInt>(Idxs[0]) && !isa<ConstantDataVector>(Idxs[0]); 1584 for (unsigned i = 1, e = Idxs.size(); i != e; 1585 Prev = Ty, Ty = (++GEPIter).getIndexedType(), ++i) { 1586 if (!isa<ConstantInt>(Idxs[i]) && !isa<ConstantDataVector>(Idxs[i])) { 1587 // We don't know if it's in range or not. 1588 Unknown = true; 1589 continue; 1590 } 1591 if (!isa<ConstantInt>(Idxs[i - 1]) && !isa<ConstantDataVector>(Idxs[i - 1])) 1592 // Skip if the type of the previous index is not supported. 1593 continue; 1594 if (isa<StructType>(Ty)) { 1595 // The verify makes sure that GEPs into a struct are in range. 1596 continue; 1597 } 1598 if (isa<VectorType>(Ty)) { 1599 // There can be awkward padding in after a non-power of two vector. 1600 Unknown = true; 1601 continue; 1602 } 1603 auto *STy = cast<ArrayType>(Ty); 1604 if (ConstantInt *CI = dyn_cast<ConstantInt>(Idxs[i])) { 1605 if (isIndexInRangeOfArrayType(STy->getNumElements(), CI)) 1606 // It's in range, skip to the next index. 1607 continue; 1608 if (CI->isNegative()) { 1609 // It's out of range and negative, don't try to factor it. 1610 Unknown = true; 1611 continue; 1612 } 1613 } else { 1614 auto *CV = cast<ConstantDataVector>(Idxs[i]); 1615 bool IsInRange = true; 1616 for (unsigned I = 0, E = CV->getNumElements(); I != E; ++I) { 1617 auto *CI = cast<ConstantInt>(CV->getElementAsConstant(I)); 1618 IsInRange &= isIndexInRangeOfArrayType(STy->getNumElements(), CI); 1619 if (CI->isNegative()) { 1620 Unknown = true; 1621 break; 1622 } 1623 } 1624 if (IsInRange || Unknown) 1625 // It's in range, skip to the next index. 1626 // It's out of range and negative, don't try to factor it. 1627 continue; 1628 } 1629 if (isa<StructType>(Prev)) { 1630 // It's out of range, but the prior dimension is a struct 1631 // so we can't do anything about it. 1632 Unknown = true; 1633 continue; 1634 } 1635 1636 // Determine the number of elements in our sequential type. 1637 uint64_t NumElements = STy->getArrayNumElements(); 1638 if (!NumElements) { 1639 Unknown = true; 1640 continue; 1641 } 1642 1643 // It's out of range, but we can factor it into the prior 1644 // dimension. 1645 NewIdxs.resize(Idxs.size()); 1646 1647 // Expand the current index or the previous index to a vector from a scalar 1648 // if necessary. 1649 Constant *CurrIdx = cast<Constant>(Idxs[i]); 1650 auto *PrevIdx = 1651 NewIdxs[i - 1] ? NewIdxs[i - 1] : cast<Constant>(Idxs[i - 1]); 1652 bool IsCurrIdxVector = CurrIdx->getType()->isVectorTy(); 1653 bool IsPrevIdxVector = PrevIdx->getType()->isVectorTy(); 1654 bool UseVector = IsCurrIdxVector || IsPrevIdxVector; 1655 1656 if (!IsCurrIdxVector && IsPrevIdxVector) 1657 CurrIdx = ConstantDataVector::getSplat( 1658 cast<FixedVectorType>(PrevIdx->getType())->getNumElements(), CurrIdx); 1659 1660 if (!IsPrevIdxVector && IsCurrIdxVector) 1661 PrevIdx = ConstantDataVector::getSplat( 1662 cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), PrevIdx); 1663 1664 Constant *Factor = 1665 ConstantInt::get(CurrIdx->getType()->getScalarType(), NumElements); 1666 if (UseVector) 1667 Factor = ConstantDataVector::getSplat( 1668 IsPrevIdxVector 1669 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements() 1670 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements(), 1671 Factor); 1672 1673 NewIdxs[i] = 1674 ConstantFoldBinaryInstruction(Instruction::SRem, CurrIdx, Factor); 1675 1676 Constant *Div = 1677 ConstantFoldBinaryInstruction(Instruction::SDiv, CurrIdx, Factor); 1678 1679 // We're working on either ConstantInt or vectors of ConstantInt, 1680 // so these should always fold. 1681 assert(NewIdxs[i] != nullptr && Div != nullptr && "Should have folded"); 1682 1683 unsigned CommonExtendedWidth = 1684 std::max(PrevIdx->getType()->getScalarSizeInBits(), 1685 Div->getType()->getScalarSizeInBits()); 1686 CommonExtendedWidth = std::max(CommonExtendedWidth, 64U); 1687 1688 // Before adding, extend both operands to i64 to avoid 1689 // overflow trouble. 1690 Type *ExtendedTy = Type::getIntNTy(Div->getContext(), CommonExtendedWidth); 1691 if (UseVector) 1692 ExtendedTy = FixedVectorType::get( 1693 ExtendedTy, 1694 IsPrevIdxVector 1695 ? cast<FixedVectorType>(PrevIdx->getType())->getNumElements() 1696 : cast<FixedVectorType>(CurrIdx->getType())->getNumElements()); 1697 1698 if (!PrevIdx->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 1699 PrevIdx = 1700 ConstantFoldCastInstruction(Instruction::SExt, PrevIdx, ExtendedTy); 1701 1702 if (!Div->getType()->isIntOrIntVectorTy(CommonExtendedWidth)) 1703 Div = ConstantFoldCastInstruction(Instruction::SExt, Div, ExtendedTy); 1704 1705 assert(PrevIdx && Div && "Should have folded"); 1706 NewIdxs[i - 1] = ConstantExpr::getAdd(PrevIdx, Div); 1707 } 1708 1709 // If we did any factoring, start over with the adjusted indices. 1710 if (!NewIdxs.empty()) { 1711 for (unsigned i = 0, e = Idxs.size(); i != e; ++i) 1712 if (!NewIdxs[i]) NewIdxs[i] = cast<Constant>(Idxs[i]); 1713 return ConstantExpr::getGetElementPtr(PointeeTy, C, NewIdxs, InBounds, 1714 InRange); 1715 } 1716 1717 // If all indices are known integers and normalized, we can do a simple 1718 // check for the "inbounds" property. 1719 if (!Unknown && !InBounds) 1720 if (auto *GV = dyn_cast<GlobalVariable>(C)) 1721 if (!GV->hasExternalWeakLinkage() && GV->getValueType() == PointeeTy && 1722 isInBoundsIndices(Idxs)) 1723 return ConstantExpr::getGetElementPtr(PointeeTy, C, Idxs, 1724 /*InBounds=*/true, InRange); 1725 1726 return nullptr; 1727 } 1728