1 //===-- ExecutionEngine.cpp - Common Implementation shared by EEs ---------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file was developed by the LLVM research group and is distributed under 6 // the University of Illinois Open Source License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the common interface used by the various execution engine 11 // subclasses. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "jit" 16 #include "llvm/Constants.h" 17 #include "llvm/DerivedTypes.h" 18 #include "llvm/Module.h" 19 #include "llvm/ModuleProvider.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/ExecutionEngine/ExecutionEngine.h" 22 #include "llvm/ExecutionEngine/GenericValue.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/MutexGuard.h" 25 #include "llvm/System/DynamicLibrary.h" 26 #include "llvm/Target/TargetData.h" 27 #include <math.h> 28 using namespace llvm; 29 30 STATISTIC(NumInitBytes, "Number of bytes of global vars initialized"); 31 STATISTIC(NumGlobals , "Number of global vars initialized"); 32 33 ExecutionEngine::EECtorFn ExecutionEngine::JITCtor = 0; 34 ExecutionEngine::EECtorFn ExecutionEngine::InterpCtor = 0; 35 36 ExecutionEngine::ExecutionEngine(ModuleProvider *P) { 37 LazyCompilationDisabled = false; 38 Modules.push_back(P); 39 assert(P && "ModuleProvider is null?"); 40 } 41 42 ExecutionEngine::ExecutionEngine(Module *M) { 43 LazyCompilationDisabled = false; 44 assert(M && "Module is null?"); 45 Modules.push_back(new ExistingModuleProvider(M)); 46 } 47 48 ExecutionEngine::~ExecutionEngine() { 49 clearAllGlobalMappings(); 50 for (unsigned i = 0, e = Modules.size(); i != e; ++i) 51 delete Modules[i]; 52 } 53 54 /// FindFunctionNamed - Search all of the active modules to find the one that 55 /// defines FnName. This is very slow operation and shouldn't be used for 56 /// general code. 57 Function *ExecutionEngine::FindFunctionNamed(const char *FnName) { 58 for (unsigned i = 0, e = Modules.size(); i != e; ++i) { 59 if (Function *F = Modules[i]->getModule()->getFunction(FnName)) 60 return F; 61 } 62 return 0; 63 } 64 65 66 /// addGlobalMapping - Tell the execution engine that the specified global is 67 /// at the specified location. This is used internally as functions are JIT'd 68 /// and as global variables are laid out in memory. It can and should also be 69 /// used by clients of the EE that want to have an LLVM global overlay 70 /// existing data in memory. 71 void ExecutionEngine::addGlobalMapping(const GlobalValue *GV, void *Addr) { 72 MutexGuard locked(lock); 73 74 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 75 assert((CurVal == 0 || Addr == 0) && "GlobalMapping already established!"); 76 CurVal = Addr; 77 78 // If we are using the reverse mapping, add it too 79 if (!state.getGlobalAddressReverseMap(locked).empty()) { 80 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 81 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 82 V = GV; 83 } 84 } 85 86 /// clearAllGlobalMappings - Clear all global mappings and start over again 87 /// use in dynamic compilation scenarios when you want to move globals 88 void ExecutionEngine::clearAllGlobalMappings() { 89 MutexGuard locked(lock); 90 91 state.getGlobalAddressMap(locked).clear(); 92 state.getGlobalAddressReverseMap(locked).clear(); 93 } 94 95 /// updateGlobalMapping - Replace an existing mapping for GV with a new 96 /// address. This updates both maps as required. If "Addr" is null, the 97 /// entry for the global is removed from the mappings. 98 void ExecutionEngine::updateGlobalMapping(const GlobalValue *GV, void *Addr) { 99 MutexGuard locked(lock); 100 101 // Deleting from the mapping? 102 if (Addr == 0) { 103 state.getGlobalAddressMap(locked).erase(GV); 104 if (!state.getGlobalAddressReverseMap(locked).empty()) 105 state.getGlobalAddressReverseMap(locked).erase(Addr); 106 return; 107 } 108 109 void *&CurVal = state.getGlobalAddressMap(locked)[GV]; 110 if (CurVal && !state.getGlobalAddressReverseMap(locked).empty()) 111 state.getGlobalAddressReverseMap(locked).erase(CurVal); 112 CurVal = Addr; 113 114 // If we are using the reverse mapping, add it too 115 if (!state.getGlobalAddressReverseMap(locked).empty()) { 116 const GlobalValue *&V = state.getGlobalAddressReverseMap(locked)[Addr]; 117 assert((V == 0 || GV == 0) && "GlobalMapping already established!"); 118 V = GV; 119 } 120 } 121 122 /// getPointerToGlobalIfAvailable - This returns the address of the specified 123 /// global value if it is has already been codegen'd, otherwise it returns null. 124 /// 125 void *ExecutionEngine::getPointerToGlobalIfAvailable(const GlobalValue *GV) { 126 MutexGuard locked(lock); 127 128 std::map<const GlobalValue*, void*>::iterator I = 129 state.getGlobalAddressMap(locked).find(GV); 130 return I != state.getGlobalAddressMap(locked).end() ? I->second : 0; 131 } 132 133 /// getGlobalValueAtAddress - Return the LLVM global value object that starts 134 /// at the specified address. 135 /// 136 const GlobalValue *ExecutionEngine::getGlobalValueAtAddress(void *Addr) { 137 MutexGuard locked(lock); 138 139 // If we haven't computed the reverse mapping yet, do so first. 140 if (state.getGlobalAddressReverseMap(locked).empty()) { 141 for (std::map<const GlobalValue*, void *>::iterator 142 I = state.getGlobalAddressMap(locked).begin(), 143 E = state.getGlobalAddressMap(locked).end(); I != E; ++I) 144 state.getGlobalAddressReverseMap(locked).insert(std::make_pair(I->second, 145 I->first)); 146 } 147 148 std::map<void *, const GlobalValue*>::iterator I = 149 state.getGlobalAddressReverseMap(locked).find(Addr); 150 return I != state.getGlobalAddressReverseMap(locked).end() ? I->second : 0; 151 } 152 153 // CreateArgv - Turn a vector of strings into a nice argv style array of 154 // pointers to null terminated strings. 155 // 156 static void *CreateArgv(ExecutionEngine *EE, 157 const std::vector<std::string> &InputArgv) { 158 unsigned PtrSize = EE->getTargetData()->getPointerSize(); 159 char *Result = new char[(InputArgv.size()+1)*PtrSize]; 160 161 DOUT << "ARGV = " << (void*)Result << "\n"; 162 const Type *SBytePtr = PointerType::get(Type::Int8Ty); 163 164 for (unsigned i = 0; i != InputArgv.size(); ++i) { 165 unsigned Size = InputArgv[i].size()+1; 166 char *Dest = new char[Size]; 167 DOUT << "ARGV[" << i << "] = " << (void*)Dest << "\n"; 168 169 std::copy(InputArgv[i].begin(), InputArgv[i].end(), Dest); 170 Dest[Size-1] = 0; 171 172 // Endian safe: Result[i] = (PointerTy)Dest; 173 EE->StoreValueToMemory(PTOGV(Dest), (GenericValue*)(Result+i*PtrSize), 174 SBytePtr); 175 } 176 177 // Null terminate it 178 EE->StoreValueToMemory(PTOGV(0), 179 (GenericValue*)(Result+InputArgv.size()*PtrSize), 180 SBytePtr); 181 return Result; 182 } 183 184 185 /// runStaticConstructorsDestructors - This method is used to execute all of 186 /// the static constructors or destructors for a program, depending on the 187 /// value of isDtors. 188 void ExecutionEngine::runStaticConstructorsDestructors(bool isDtors) { 189 const char *Name = isDtors ? "llvm.global_dtors" : "llvm.global_ctors"; 190 191 // Execute global ctors/dtors for each module in the program. 192 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 193 GlobalVariable *GV = Modules[m]->getModule()->getNamedGlobal(Name); 194 195 // If this global has internal linkage, or if it has a use, then it must be 196 // an old-style (llvmgcc3) static ctor with __main linked in and in use. If 197 // this is the case, don't execute any of the global ctors, __main will do 198 // it. 199 if (!GV || GV->isDeclaration() || GV->hasInternalLinkage()) continue; 200 201 // Should be an array of '{ int, void ()* }' structs. The first value is 202 // the init priority, which we ignore. 203 ConstantArray *InitList = dyn_cast<ConstantArray>(GV->getInitializer()); 204 if (!InitList) continue; 205 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) 206 if (ConstantStruct *CS = 207 dyn_cast<ConstantStruct>(InitList->getOperand(i))) { 208 if (CS->getNumOperands() != 2) break; // Not array of 2-element structs. 209 210 Constant *FP = CS->getOperand(1); 211 if (FP->isNullValue()) 212 break; // Found a null terminator, exit. 213 214 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(FP)) 215 if (CE->isCast()) 216 FP = CE->getOperand(0); 217 if (Function *F = dyn_cast<Function>(FP)) { 218 // Execute the ctor/dtor function! 219 runFunction(F, std::vector<GenericValue>()); 220 } 221 } 222 } 223 } 224 225 /// runFunctionAsMain - This is a helper function which wraps runFunction to 226 /// handle the common task of starting up main with the specified argc, argv, 227 /// and envp parameters. 228 int ExecutionEngine::runFunctionAsMain(Function *Fn, 229 const std::vector<std::string> &argv, 230 const char * const * envp) { 231 std::vector<GenericValue> GVArgs; 232 GenericValue GVArgc; 233 GVArgc.IntVal = APInt(32, argv.size()); 234 235 // Check main() type 236 unsigned NumArgs = Fn->getFunctionType()->getNumParams(); 237 const FunctionType *FTy = Fn->getFunctionType(); 238 const Type* PPInt8Ty = PointerType::get(PointerType::get(Type::Int8Ty)); 239 switch (NumArgs) { 240 case 3: 241 if (FTy->getParamType(2) != PPInt8Ty) { 242 cerr << "Invalid type for third argument of main() supplied\n"; 243 abort(); 244 } 245 case 2: 246 if (FTy->getParamType(1) != PPInt8Ty) { 247 cerr << "Invalid type for second argument of main() supplied\n"; 248 abort(); 249 } 250 case 1: 251 if (FTy->getParamType(0) != Type::Int32Ty) { 252 cerr << "Invalid type for first argument of main() supplied\n"; 253 abort(); 254 } 255 case 0: 256 if (FTy->getReturnType() != Type::Int32Ty && 257 FTy->getReturnType() != Type::VoidTy) { 258 cerr << "Invalid return type of main() supplied\n"; 259 abort(); 260 } 261 break; 262 default: 263 cerr << "Invalid number of arguments of main() supplied\n"; 264 abort(); 265 } 266 267 if (NumArgs) { 268 GVArgs.push_back(GVArgc); // Arg #0 = argc. 269 if (NumArgs > 1) { 270 GVArgs.push_back(PTOGV(CreateArgv(this, argv))); // Arg #1 = argv. 271 assert(((char **)GVTOP(GVArgs[1]))[0] && 272 "argv[0] was null after CreateArgv"); 273 if (NumArgs > 2) { 274 std::vector<std::string> EnvVars; 275 for (unsigned i = 0; envp[i]; ++i) 276 EnvVars.push_back(envp[i]); 277 GVArgs.push_back(PTOGV(CreateArgv(this, EnvVars))); // Arg #2 = envp. 278 } 279 } 280 } 281 return runFunction(Fn, GVArgs).IntVal.getZExtValue(); 282 } 283 284 /// If possible, create a JIT, unless the caller specifically requests an 285 /// Interpreter or there's an error. If even an Interpreter cannot be created, 286 /// NULL is returned. 287 /// 288 ExecutionEngine *ExecutionEngine::create(ModuleProvider *MP, 289 bool ForceInterpreter, 290 std::string *ErrorStr) { 291 ExecutionEngine *EE = 0; 292 293 // Unless the interpreter was explicitly selected, try making a JIT. 294 if (!ForceInterpreter && JITCtor) 295 EE = JITCtor(MP, ErrorStr); 296 297 // If we can't make a JIT, make an interpreter instead. 298 if (EE == 0 && InterpCtor) 299 EE = InterpCtor(MP, ErrorStr); 300 301 if (EE) { 302 // Make sure we can resolve symbols in the program as well. The zero arg 303 // to the function tells DynamicLibrary to load the program, not a library. 304 try { 305 sys::DynamicLibrary::LoadLibraryPermanently(0); 306 } catch (...) { 307 } 308 } 309 310 return EE; 311 } 312 313 /// getPointerToGlobal - This returns the address of the specified global 314 /// value. This may involve code generation if it's a function. 315 /// 316 void *ExecutionEngine::getPointerToGlobal(const GlobalValue *GV) { 317 if (Function *F = const_cast<Function*>(dyn_cast<Function>(GV))) 318 return getPointerToFunction(F); 319 320 MutexGuard locked(lock); 321 void *p = state.getGlobalAddressMap(locked)[GV]; 322 if (p) 323 return p; 324 325 // Global variable might have been added since interpreter started. 326 if (GlobalVariable *GVar = 327 const_cast<GlobalVariable *>(dyn_cast<GlobalVariable>(GV))) 328 EmitGlobalVariable(GVar); 329 else 330 assert(0 && "Global hasn't had an address allocated yet!"); 331 return state.getGlobalAddressMap(locked)[GV]; 332 } 333 334 /// This function converts a Constant* into a GenericValue. The interesting 335 /// part is if C is a ConstantExpr. 336 /// @brief Get a GenericValue for a Constnat* 337 GenericValue ExecutionEngine::getConstantValue(const Constant *C) { 338 // If its undefined, return the garbage. 339 if (isa<UndefValue>(C)) 340 return GenericValue(); 341 342 // If the value is a ConstantExpr 343 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) { 344 Constant *Op0 = CE->getOperand(0); 345 switch (CE->getOpcode()) { 346 case Instruction::GetElementPtr: { 347 // Compute the index 348 GenericValue Result = getConstantValue(Op0); 349 SmallVector<Value*, 8> Indices(CE->op_begin()+1, CE->op_end()); 350 uint64_t Offset = 351 TD->getIndexedOffset(Op0->getType(), &Indices[0], Indices.size()); 352 353 char* tmp = (char*) Result.PointerVal; 354 Result = PTOGV(tmp + Offset); 355 return Result; 356 } 357 case Instruction::Trunc: { 358 GenericValue GV = getConstantValue(Op0); 359 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 360 GV.IntVal = GV.IntVal.trunc(BitWidth); 361 return GV; 362 } 363 case Instruction::ZExt: { 364 GenericValue GV = getConstantValue(Op0); 365 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 366 GV.IntVal = GV.IntVal.zext(BitWidth); 367 return GV; 368 } 369 case Instruction::SExt: { 370 GenericValue GV = getConstantValue(Op0); 371 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 372 GV.IntVal = GV.IntVal.sext(BitWidth); 373 return GV; 374 } 375 case Instruction::FPTrunc: { 376 GenericValue GV = getConstantValue(Op0); 377 GV.FloatVal = float(GV.DoubleVal); 378 return GV; 379 } 380 case Instruction::FPExt:{ 381 GenericValue GV = getConstantValue(Op0); 382 GV.DoubleVal = double(GV.FloatVal); 383 return GV; 384 } 385 case Instruction::UIToFP: { 386 GenericValue GV = getConstantValue(Op0); 387 if (CE->getType() == Type::FloatTy) 388 GV.FloatVal = float(GV.IntVal.roundToDouble()); 389 else 390 GV.DoubleVal = GV.IntVal.roundToDouble(); 391 return GV; 392 } 393 case Instruction::SIToFP: { 394 GenericValue GV = getConstantValue(Op0); 395 if (CE->getType() == Type::FloatTy) 396 GV.FloatVal = float(GV.IntVal.signedRoundToDouble()); 397 else 398 GV.DoubleVal = GV.IntVal.signedRoundToDouble(); 399 return GV; 400 } 401 case Instruction::FPToUI: // double->APInt conversion handles sign 402 case Instruction::FPToSI: { 403 GenericValue GV = getConstantValue(Op0); 404 uint32_t BitWidth = cast<IntegerType>(CE->getType())->getBitWidth(); 405 if (Op0->getType() == Type::FloatTy) 406 GV.IntVal = APIntOps::RoundFloatToAPInt(GV.FloatVal, BitWidth); 407 else 408 GV.IntVal = APIntOps::RoundDoubleToAPInt(GV.DoubleVal, BitWidth); 409 return GV; 410 } 411 case Instruction::PtrToInt: { 412 GenericValue GV = getConstantValue(Op0); 413 uint32_t PtrWidth = TD->getPointerSizeInBits(); 414 GV.IntVal = APInt(PtrWidth, uintptr_t(GV.PointerVal)); 415 return GV; 416 } 417 case Instruction::IntToPtr: { 418 GenericValue GV = getConstantValue(Op0); 419 uint32_t PtrWidth = TD->getPointerSizeInBits(); 420 if (PtrWidth != GV.IntVal.getBitWidth()) 421 GV.IntVal = GV.IntVal.zextOrTrunc(PtrWidth); 422 assert(GV.IntVal.getBitWidth() <= 64 && "Bad pointer width"); 423 GV.PointerVal = PointerTy(uintptr_t(GV.IntVal.getZExtValue())); 424 return GV; 425 } 426 case Instruction::BitCast: { 427 GenericValue GV = getConstantValue(Op0); 428 const Type* DestTy = CE->getType(); 429 switch (Op0->getType()->getTypeID()) { 430 default: assert(0 && "Invalid bitcast operand"); 431 case Type::IntegerTyID: 432 assert(DestTy->isFloatingPoint() && "invalid bitcast"); 433 if (DestTy == Type::FloatTy) 434 GV.FloatVal = GV.IntVal.bitsToFloat(); 435 else if (DestTy == Type::DoubleTy) 436 GV.DoubleVal = GV.IntVal.bitsToDouble(); 437 break; 438 case Type::FloatTyID: 439 assert(DestTy == Type::Int32Ty && "Invalid bitcast"); 440 GV.IntVal.floatToBits(GV.FloatVal); 441 break; 442 case Type::DoubleTyID: 443 assert(DestTy == Type::Int64Ty && "Invalid bitcast"); 444 GV.IntVal.doubleToBits(GV.DoubleVal); 445 break; 446 case Type::PointerTyID: 447 assert(isa<PointerType>(DestTy) && "Invalid bitcast"); 448 break; // getConstantValue(Op0) above already converted it 449 } 450 return GV; 451 } 452 case Instruction::Add: 453 case Instruction::Sub: 454 case Instruction::Mul: 455 case Instruction::UDiv: 456 case Instruction::SDiv: 457 case Instruction::URem: 458 case Instruction::SRem: 459 case Instruction::And: 460 case Instruction::Or: 461 case Instruction::Xor: { 462 GenericValue LHS = getConstantValue(Op0); 463 GenericValue RHS = getConstantValue(CE->getOperand(1)); 464 GenericValue GV; 465 switch (CE->getOperand(0)->getType()->getTypeID()) { 466 default: assert(0 && "Bad add type!"); abort(); 467 case Type::IntegerTyID: 468 switch (CE->getOpcode()) { 469 default: assert(0 && "Invalid integer opcode"); 470 case Instruction::Add: GV.IntVal = LHS.IntVal + RHS.IntVal; break; 471 case Instruction::Sub: GV.IntVal = LHS.IntVal - RHS.IntVal; break; 472 case Instruction::Mul: GV.IntVal = LHS.IntVal * RHS.IntVal; break; 473 case Instruction::UDiv:GV.IntVal = LHS.IntVal.udiv(RHS.IntVal); break; 474 case Instruction::SDiv:GV.IntVal = LHS.IntVal.sdiv(RHS.IntVal); break; 475 case Instruction::URem:GV.IntVal = LHS.IntVal.urem(RHS.IntVal); break; 476 case Instruction::SRem:GV.IntVal = LHS.IntVal.srem(RHS.IntVal); break; 477 case Instruction::And: GV.IntVal = LHS.IntVal & RHS.IntVal; break; 478 case Instruction::Or: GV.IntVal = LHS.IntVal | RHS.IntVal; break; 479 case Instruction::Xor: GV.IntVal = LHS.IntVal ^ RHS.IntVal; break; 480 } 481 break; 482 case Type::FloatTyID: 483 switch (CE->getOpcode()) { 484 default: assert(0 && "Invalid float opcode"); abort(); 485 case Instruction::Add: 486 GV.FloatVal = LHS.FloatVal + RHS.FloatVal; break; 487 case Instruction::Sub: 488 GV.FloatVal = LHS.FloatVal - RHS.FloatVal; break; 489 case Instruction::Mul: 490 GV.FloatVal = LHS.FloatVal * RHS.FloatVal; break; 491 case Instruction::FDiv: 492 GV.FloatVal = LHS.FloatVal / RHS.FloatVal; break; 493 case Instruction::FRem: 494 GV.FloatVal = ::fmodf(LHS.FloatVal,RHS.FloatVal); break; 495 } 496 break; 497 case Type::DoubleTyID: 498 switch (CE->getOpcode()) { 499 default: assert(0 && "Invalid double opcode"); abort(); 500 case Instruction::Add: 501 GV.DoubleVal = LHS.DoubleVal + RHS.DoubleVal; break; 502 case Instruction::Sub: 503 GV.DoubleVal = LHS.DoubleVal - RHS.DoubleVal; break; 504 case Instruction::Mul: 505 GV.DoubleVal = LHS.DoubleVal * RHS.DoubleVal; break; 506 case Instruction::FDiv: 507 GV.DoubleVal = LHS.DoubleVal / RHS.DoubleVal; break; 508 case Instruction::FRem: 509 GV.DoubleVal = ::fmod(LHS.DoubleVal,RHS.DoubleVal); break; 510 } 511 break; 512 } 513 return GV; 514 } 515 default: 516 break; 517 } 518 cerr << "ConstantExpr not handled: " << *CE << "\n"; 519 abort(); 520 } 521 522 GenericValue Result; 523 switch (C->getType()->getTypeID()) { 524 case Type::FloatTyID: 525 Result.FloatVal = (float)cast<ConstantFP>(C)->getValue(); 526 break; 527 case Type::DoubleTyID: 528 Result.DoubleVal = (double)cast<ConstantFP>(C)->getValue(); 529 break; 530 case Type::IntegerTyID: 531 Result.IntVal = cast<ConstantInt>(C)->getValue(); 532 break; 533 case Type::PointerTyID: 534 if (isa<ConstantPointerNull>(C)) 535 Result.PointerVal = 0; 536 else if (const Function *F = dyn_cast<Function>(C)) 537 Result = PTOGV(getPointerToFunctionOrStub(const_cast<Function*>(F))); 538 else if (const GlobalVariable* GV = dyn_cast<GlobalVariable>(C)) 539 Result = PTOGV(getOrEmitGlobalVariable(const_cast<GlobalVariable*>(GV))); 540 else 541 assert(0 && "Unknown constant pointer type!"); 542 break; 543 default: 544 cerr << "ERROR: Constant unimplemented for type: " << *C->getType() << "\n"; 545 abort(); 546 } 547 return Result; 548 } 549 550 /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr. Ptr 551 /// is the address of the memory at which to store Val, cast to GenericValue *. 552 /// It is not a pointer to a GenericValue containing the address at which to 553 /// store Val. 554 /// 555 void ExecutionEngine::StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr, 556 const Type *Ty) { 557 switch (Ty->getTypeID()) { 558 case Type::IntegerTyID: { 559 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 560 GenericValue TmpVal = Val; 561 if (BitWidth <= 8) 562 *((uint8_t*)Ptr) = uint8_t(Val.IntVal.getZExtValue()); 563 else if (BitWidth <= 16) { 564 *((uint16_t*)Ptr) = uint16_t(Val.IntVal.getZExtValue()); 565 } else if (BitWidth <= 32) { 566 *((uint32_t*)Ptr) = uint32_t(Val.IntVal.getZExtValue()); 567 } else if (BitWidth <= 64) { 568 *((uint64_t*)Ptr) = uint64_t(Val.IntVal.getZExtValue()); 569 } else { 570 uint64_t *Dest = (uint64_t*)Ptr; 571 const uint64_t *Src = Val.IntVal.getRawData(); 572 for (uint32_t i = 0; i < Val.IntVal.getNumWords(); ++i) 573 Dest[i] = Src[i]; 574 } 575 break; 576 } 577 case Type::FloatTyID: 578 *((float*)Ptr) = Val.FloatVal; 579 break; 580 case Type::DoubleTyID: 581 *((double*)Ptr) = Val.DoubleVal; 582 break; 583 case Type::PointerTyID: 584 *((PointerTy*)Ptr) = Val.PointerVal; 585 break; 586 default: 587 cerr << "Cannot store value of type " << *Ty << "!\n"; 588 } 589 } 590 591 /// FIXME: document 592 /// 593 void ExecutionEngine::LoadValueFromMemory(GenericValue &Result, 594 GenericValue *Ptr, 595 const Type *Ty) { 596 switch (Ty->getTypeID()) { 597 case Type::IntegerTyID: { 598 unsigned BitWidth = cast<IntegerType>(Ty)->getBitWidth(); 599 if (BitWidth <= 8) 600 Result.IntVal = APInt(BitWidth, *((uint8_t*)Ptr)); 601 else if (BitWidth <= 16) { 602 Result.IntVal = APInt(BitWidth, *((uint16_t*)Ptr)); 603 } else if (BitWidth <= 32) { 604 Result.IntVal = APInt(BitWidth, *((uint32_t*)Ptr)); 605 } else if (BitWidth <= 64) { 606 Result.IntVal = APInt(BitWidth, *((uint64_t*)Ptr)); 607 } else 608 Result.IntVal = APInt(BitWidth, (BitWidth+63)/64, (uint64_t*)Ptr); 609 break; 610 } 611 case Type::FloatTyID: 612 Result.FloatVal = *((float*)Ptr); 613 break; 614 case Type::DoubleTyID: 615 Result.DoubleVal = *((double*)Ptr); 616 break; 617 case Type::PointerTyID: 618 Result.PointerVal = *((PointerTy*)Ptr); 619 break; 620 default: 621 cerr << "Cannot load value of type " << *Ty << "!\n"; 622 abort(); 623 } 624 } 625 626 // InitializeMemory - Recursive function to apply a Constant value into the 627 // specified memory location... 628 // 629 void ExecutionEngine::InitializeMemory(const Constant *Init, void *Addr) { 630 if (isa<UndefValue>(Init)) { 631 return; 632 } else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) { 633 unsigned ElementSize = 634 getTargetData()->getTypeSize(CP->getType()->getElementType()); 635 for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i) 636 InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize); 637 return; 638 } else if (Init->getType()->isFirstClassType()) { 639 GenericValue Val = getConstantValue(Init); 640 StoreValueToMemory(Val, (GenericValue*)Addr, Init->getType()); 641 return; 642 } else if (isa<ConstantAggregateZero>(Init)) { 643 memset(Addr, 0, (size_t)getTargetData()->getTypeSize(Init->getType())); 644 return; 645 } 646 647 switch (Init->getType()->getTypeID()) { 648 case Type::ArrayTyID: { 649 const ConstantArray *CPA = cast<ConstantArray>(Init); 650 unsigned ElementSize = 651 getTargetData()->getTypeSize(CPA->getType()->getElementType()); 652 for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i) 653 InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize); 654 return; 655 } 656 657 case Type::StructTyID: { 658 const ConstantStruct *CPS = cast<ConstantStruct>(Init); 659 const StructLayout *SL = 660 getTargetData()->getStructLayout(cast<StructType>(CPS->getType())); 661 for (unsigned i = 0, e = CPS->getNumOperands(); i != e; ++i) 662 InitializeMemory(CPS->getOperand(i), (char*)Addr+SL->getElementOffset(i)); 663 return; 664 } 665 666 default: 667 cerr << "Bad Type: " << *Init->getType() << "\n"; 668 assert(0 && "Unknown constant type to initialize memory with!"); 669 } 670 } 671 672 /// EmitGlobals - Emit all of the global variables to memory, storing their 673 /// addresses into GlobalAddress. This must make sure to copy the contents of 674 /// their initializers into the memory. 675 /// 676 void ExecutionEngine::emitGlobals() { 677 const TargetData *TD = getTargetData(); 678 679 // Loop over all of the global variables in the program, allocating the memory 680 // to hold them. If there is more than one module, do a prepass over globals 681 // to figure out how the different modules should link together. 682 // 683 std::map<std::pair<std::string, const Type*>, 684 const GlobalValue*> LinkedGlobalsMap; 685 686 if (Modules.size() != 1) { 687 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 688 Module &M = *Modules[m]->getModule(); 689 for (Module::const_global_iterator I = M.global_begin(), 690 E = M.global_end(); I != E; ++I) { 691 const GlobalValue *GV = I; 692 if (GV->hasInternalLinkage() || GV->isDeclaration() || 693 GV->hasAppendingLinkage() || !GV->hasName()) 694 continue;// Ignore external globals and globals with internal linkage. 695 696 const GlobalValue *&GVEntry = 697 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 698 699 // If this is the first time we've seen this global, it is the canonical 700 // version. 701 if (!GVEntry) { 702 GVEntry = GV; 703 continue; 704 } 705 706 // If the existing global is strong, never replace it. 707 if (GVEntry->hasExternalLinkage() || 708 GVEntry->hasDLLImportLinkage() || 709 GVEntry->hasDLLExportLinkage()) 710 continue; 711 712 // Otherwise, we know it's linkonce/weak, replace it if this is a strong 713 // symbol. 714 if (GV->hasExternalLinkage() || GVEntry->hasExternalWeakLinkage()) 715 GVEntry = GV; 716 } 717 } 718 } 719 720 std::vector<const GlobalValue*> NonCanonicalGlobals; 721 for (unsigned m = 0, e = Modules.size(); m != e; ++m) { 722 Module &M = *Modules[m]->getModule(); 723 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 724 I != E; ++I) { 725 // In the multi-module case, see what this global maps to. 726 if (!LinkedGlobalsMap.empty()) { 727 if (const GlobalValue *GVEntry = 728 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) { 729 // If something else is the canonical global, ignore this one. 730 if (GVEntry != &*I) { 731 NonCanonicalGlobals.push_back(I); 732 continue; 733 } 734 } 735 } 736 737 if (!I->isDeclaration()) { 738 // Get the type of the global. 739 const Type *Ty = I->getType()->getElementType(); 740 741 // Allocate some memory for it! 742 unsigned Size = TD->getTypeSize(Ty); 743 addGlobalMapping(I, new char[Size]); 744 } else { 745 // External variable reference. Try to use the dynamic loader to 746 // get a pointer to it. 747 if (void *SymAddr = 748 sys::DynamicLibrary::SearchForAddressOfSymbol(I->getName().c_str())) 749 addGlobalMapping(I, SymAddr); 750 else { 751 cerr << "Could not resolve external global address: " 752 << I->getName() << "\n"; 753 abort(); 754 } 755 } 756 } 757 758 // If there are multiple modules, map the non-canonical globals to their 759 // canonical location. 760 if (!NonCanonicalGlobals.empty()) { 761 for (unsigned i = 0, e = NonCanonicalGlobals.size(); i != e; ++i) { 762 const GlobalValue *GV = NonCanonicalGlobals[i]; 763 const GlobalValue *CGV = 764 LinkedGlobalsMap[std::make_pair(GV->getName(), GV->getType())]; 765 void *Ptr = getPointerToGlobalIfAvailable(CGV); 766 assert(Ptr && "Canonical global wasn't codegen'd!"); 767 addGlobalMapping(GV, getPointerToGlobalIfAvailable(CGV)); 768 } 769 } 770 771 // Now that all of the globals are set up in memory, loop through them all 772 // and initialize their contents. 773 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end(); 774 I != E; ++I) { 775 if (!I->isDeclaration()) { 776 if (!LinkedGlobalsMap.empty()) { 777 if (const GlobalValue *GVEntry = 778 LinkedGlobalsMap[std::make_pair(I->getName(), I->getType())]) 779 if (GVEntry != &*I) // Not the canonical variable. 780 continue; 781 } 782 EmitGlobalVariable(I); 783 } 784 } 785 } 786 } 787 788 // EmitGlobalVariable - This method emits the specified global variable to the 789 // address specified in GlobalAddresses, or allocates new memory if it's not 790 // already in the map. 791 void ExecutionEngine::EmitGlobalVariable(const GlobalVariable *GV) { 792 void *GA = getPointerToGlobalIfAvailable(GV); 793 DOUT << "Global '" << GV->getName() << "' -> " << GA << "\n"; 794 795 const Type *ElTy = GV->getType()->getElementType(); 796 size_t GVSize = (size_t)getTargetData()->getTypeSize(ElTy); 797 if (GA == 0) { 798 // If it's not already specified, allocate memory for the global. 799 GA = new char[GVSize]; 800 addGlobalMapping(GV, GA); 801 } 802 803 InitializeMemory(GV->getInitializer(), GA); 804 NumInitBytes += (unsigned)GVSize; 805 ++NumGlobals; 806 } 807