1 //===- llvm/CodeGen/VirtRegMap.cpp - Virtual Register Map -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the VirtRegMap class. 10 // 11 // It also contains implementations of the Spiller interface, which, given a 12 // virtual register map and a machine function, eliminates all virtual 13 // references by replacing them with physical register references - adding spill 14 // code as necessary. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/CodeGen/VirtRegMap.h" 19 #include "llvm/ADT/SmallVector.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/CodeGen/LiveDebugVariables.h" 22 #include "llvm/CodeGen/LiveInterval.h" 23 #include "llvm/CodeGen/LiveIntervals.h" 24 #include "llvm/CodeGen/LiveRegMatrix.h" 25 #include "llvm/CodeGen/LiveStacks.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineFrameInfo.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineOperand.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/SlotIndexes.h" 34 #include "llvm/CodeGen/TargetFrameLowering.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/Config/llvm-config.h" 40 #include "llvm/MC/LaneBitmask.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Compiler.h" 43 #include "llvm/Support/Debug.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <cassert> 46 #include <iterator> 47 #include <utility> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "regalloc" 52 53 STATISTIC(NumSpillSlots, "Number of spill slots allocated"); 54 STATISTIC(NumIdCopies, "Number of identity moves eliminated after rewriting"); 55 56 //===----------------------------------------------------------------------===// 57 // VirtRegMap implementation 58 //===----------------------------------------------------------------------===// 59 60 char VirtRegMapWrapperLegacy::ID = 0; 61 62 INITIALIZE_PASS(VirtRegMapWrapperLegacy, "virtregmap", "Virtual Register Map", 63 false, true) 64 65 void VirtRegMap::init(MachineFunction &mf) { 66 MRI = &mf.getRegInfo(); 67 TII = mf.getSubtarget().getInstrInfo(); 68 TRI = mf.getSubtarget().getRegisterInfo(); 69 MF = &mf; 70 71 Virt2PhysMap.clear(); 72 Virt2StackSlotMap.clear(); 73 Virt2SplitMap.clear(); 74 Virt2ShapeMap.clear(); 75 76 grow(); 77 } 78 79 void VirtRegMap::grow() { 80 unsigned NumRegs = MF->getRegInfo().getNumVirtRegs(); 81 Virt2PhysMap.resize(NumRegs); 82 Virt2StackSlotMap.resize(NumRegs); 83 Virt2SplitMap.resize(NumRegs); 84 } 85 86 void VirtRegMap::assignVirt2Phys(Register virtReg, MCPhysReg physReg) { 87 assert(virtReg.isVirtual() && Register::isPhysicalRegister(physReg)); 88 assert(!Virt2PhysMap[virtReg] && 89 "attempt to assign physical register to already mapped " 90 "virtual register"); 91 assert(!getRegInfo().isReserved(physReg) && 92 "Attempt to map virtReg to a reserved physReg"); 93 Virt2PhysMap[virtReg] = physReg; 94 } 95 96 unsigned VirtRegMap::createSpillSlot(const TargetRegisterClass *RC) { 97 unsigned Size = TRI->getSpillSize(*RC); 98 Align Alignment = TRI->getSpillAlign(*RC); 99 // Set preferred alignment if we are still able to realign the stack 100 auto &ST = MF->getSubtarget(); 101 Align CurrentAlign = ST.getFrameLowering()->getStackAlign(); 102 if (Alignment > CurrentAlign && !ST.getRegisterInfo()->canRealignStack(*MF)) { 103 Alignment = CurrentAlign; 104 } 105 int SS = MF->getFrameInfo().CreateSpillStackObject(Size, Alignment); 106 ++NumSpillSlots; 107 return SS; 108 } 109 110 bool VirtRegMap::hasPreferredPhys(Register VirtReg) const { 111 Register Hint = MRI->getSimpleHint(VirtReg); 112 if (!Hint.isValid()) 113 return false; 114 if (Hint.isVirtual()) 115 Hint = getPhys(Hint); 116 return Register(getPhys(VirtReg)) == Hint; 117 } 118 119 bool VirtRegMap::hasKnownPreference(Register VirtReg) const { 120 std::pair<unsigned, Register> Hint = MRI->getRegAllocationHint(VirtReg); 121 if (Hint.second.isPhysical()) 122 return true; 123 if (Hint.second.isVirtual()) 124 return hasPhys(Hint.second); 125 return false; 126 } 127 128 int VirtRegMap::assignVirt2StackSlot(Register virtReg) { 129 assert(virtReg.isVirtual()); 130 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && 131 "attempt to assign stack slot to already spilled register"); 132 const TargetRegisterClass* RC = MF->getRegInfo().getRegClass(virtReg); 133 return Virt2StackSlotMap[virtReg] = createSpillSlot(RC); 134 } 135 136 void VirtRegMap::assignVirt2StackSlot(Register virtReg, int SS) { 137 assert(virtReg.isVirtual()); 138 assert(Virt2StackSlotMap[virtReg] == NO_STACK_SLOT && 139 "attempt to assign stack slot to already spilled register"); 140 assert((SS >= 0 || 141 (SS >= MF->getFrameInfo().getObjectIndexBegin())) && 142 "illegal fixed frame index"); 143 Virt2StackSlotMap[virtReg] = SS; 144 } 145 146 void VirtRegMap::print(raw_ostream &OS, const Module*) const { 147 OS << "********** REGISTER MAP **********\n"; 148 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 149 Register Reg = Register::index2VirtReg(i); 150 if (Virt2PhysMap[Reg]) { 151 OS << '[' << printReg(Reg, TRI) << " -> " 152 << printReg(Virt2PhysMap[Reg], TRI) << "] " 153 << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; 154 } 155 } 156 157 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) { 158 Register Reg = Register::index2VirtReg(i); 159 if (Virt2StackSlotMap[Reg] != VirtRegMap::NO_STACK_SLOT) { 160 OS << '[' << printReg(Reg, TRI) << " -> fi#" << Virt2StackSlotMap[Reg] 161 << "] " << TRI->getRegClassName(MRI->getRegClass(Reg)) << "\n"; 162 } 163 } 164 OS << '\n'; 165 } 166 167 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 168 LLVM_DUMP_METHOD void VirtRegMap::dump() const { 169 print(dbgs()); 170 } 171 #endif 172 173 AnalysisKey VirtRegMapAnalysis::Key; 174 175 PreservedAnalyses 176 VirtRegMapPrinterPass::run(MachineFunction &MF, 177 MachineFunctionAnalysisManager &MFAM) { 178 OS << MFAM.getResult<VirtRegMapAnalysis>(MF); 179 return PreservedAnalyses::all(); 180 } 181 182 VirtRegMap VirtRegMapAnalysis::run(MachineFunction &MF, 183 MachineFunctionAnalysisManager &MAM) { 184 VirtRegMap VRM; 185 VRM.init(MF); 186 return VRM; 187 } 188 189 //===----------------------------------------------------------------------===// 190 // VirtRegRewriter 191 //===----------------------------------------------------------------------===// 192 // 193 // The VirtRegRewriter is the last of the register allocator passes. 194 // It rewrites virtual registers to physical registers as specified in the 195 // VirtRegMap analysis. It also updates live-in information on basic blocks 196 // according to LiveIntervals. 197 // 198 namespace { 199 200 class VirtRegRewriter : public MachineFunctionPass { 201 MachineFunction *MF = nullptr; 202 const TargetRegisterInfo *TRI = nullptr; 203 const TargetInstrInfo *TII = nullptr; 204 MachineRegisterInfo *MRI = nullptr; 205 SlotIndexes *Indexes = nullptr; 206 LiveIntervals *LIS = nullptr; 207 LiveRegMatrix *LRM = nullptr; 208 VirtRegMap *VRM = nullptr; 209 LiveDebugVariables *DebugVars = nullptr; 210 DenseSet<Register> RewriteRegs; 211 bool ClearVirtRegs; 212 213 void rewrite(); 214 void addMBBLiveIns(); 215 bool readsUndefSubreg(const MachineOperand &MO) const; 216 void addLiveInsForSubRanges(const LiveInterval &LI, MCRegister PhysReg) const; 217 void handleIdentityCopy(MachineInstr &MI); 218 void expandCopyBundle(MachineInstr &MI) const; 219 bool subRegLiveThrough(const MachineInstr &MI, MCRegister SuperPhysReg) const; 220 LaneBitmask liveOutUndefPhiLanesForUndefSubregDef( 221 const LiveInterval &LI, const MachineBasicBlock &MBB, unsigned SubReg, 222 MCPhysReg PhysReg, const MachineInstr &MI) const; 223 224 public: 225 static char ID; 226 VirtRegRewriter(bool ClearVirtRegs_ = true) : 227 MachineFunctionPass(ID), 228 ClearVirtRegs(ClearVirtRegs_) {} 229 230 void getAnalysisUsage(AnalysisUsage &AU) const override; 231 232 bool runOnMachineFunction(MachineFunction&) override; 233 234 MachineFunctionProperties getSetProperties() const override { 235 if (ClearVirtRegs) { 236 return MachineFunctionProperties().set( 237 MachineFunctionProperties::Property::NoVRegs); 238 } 239 240 return MachineFunctionProperties(); 241 } 242 }; 243 244 } // end anonymous namespace 245 246 char VirtRegRewriter::ID = 0; 247 248 char &llvm::VirtRegRewriterID = VirtRegRewriter::ID; 249 250 INITIALIZE_PASS_BEGIN(VirtRegRewriter, "virtregrewriter", 251 "Virtual Register Rewriter", false, false) 252 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) 253 INITIALIZE_PASS_DEPENDENCY(LiveIntervalsWrapperPass) 254 INITIALIZE_PASS_DEPENDENCY(LiveDebugVariablesWrapperLegacy) 255 INITIALIZE_PASS_DEPENDENCY(LiveRegMatrixWrapperLegacy) 256 INITIALIZE_PASS_DEPENDENCY(LiveStacksWrapperLegacy) 257 INITIALIZE_PASS_DEPENDENCY(VirtRegMapWrapperLegacy) 258 INITIALIZE_PASS_END(VirtRegRewriter, "virtregrewriter", 259 "Virtual Register Rewriter", false, false) 260 261 void VirtRegRewriter::getAnalysisUsage(AnalysisUsage &AU) const { 262 AU.setPreservesCFG(); 263 AU.addRequired<LiveIntervalsWrapperPass>(); 264 AU.addPreserved<LiveIntervalsWrapperPass>(); 265 AU.addRequired<SlotIndexesWrapperPass>(); 266 AU.addPreserved<SlotIndexesWrapperPass>(); 267 AU.addRequired<LiveDebugVariablesWrapperLegacy>(); 268 AU.addRequired<LiveStacksWrapperLegacy>(); 269 AU.addPreserved<LiveStacksWrapperLegacy>(); 270 AU.addRequired<VirtRegMapWrapperLegacy>(); 271 AU.addRequired<LiveRegMatrixWrapperLegacy>(); 272 273 if (!ClearVirtRegs) 274 AU.addPreserved<LiveDebugVariablesWrapperLegacy>(); 275 276 MachineFunctionPass::getAnalysisUsage(AU); 277 } 278 279 bool VirtRegRewriter::runOnMachineFunction(MachineFunction &fn) { 280 MF = &fn; 281 TRI = MF->getSubtarget().getRegisterInfo(); 282 TII = MF->getSubtarget().getInstrInfo(); 283 MRI = &MF->getRegInfo(); 284 Indexes = &getAnalysis<SlotIndexesWrapperPass>().getSI(); 285 LIS = &getAnalysis<LiveIntervalsWrapperPass>().getLIS(); 286 LRM = &getAnalysis<LiveRegMatrixWrapperLegacy>().getLRM(); 287 VRM = &getAnalysis<VirtRegMapWrapperLegacy>().getVRM(); 288 DebugVars = &getAnalysis<LiveDebugVariablesWrapperLegacy>().getLDV(); 289 LLVM_DEBUG(dbgs() << "********** REWRITE VIRTUAL REGISTERS **********\n" 290 << "********** Function: " << MF->getName() << '\n'); 291 LLVM_DEBUG(VRM->dump()); 292 293 // Add kill flags while we still have virtual registers. 294 LIS->addKillFlags(VRM); 295 296 // Live-in lists on basic blocks are required for physregs. 297 addMBBLiveIns(); 298 299 // Rewrite virtual registers. 300 rewrite(); 301 302 if (ClearVirtRegs) { 303 // Write out new DBG_VALUE instructions. 304 305 // We only do this if ClearVirtRegs is specified since this should be the 306 // final run of the pass and we don't want to emit them multiple times. 307 DebugVars->emitDebugValues(VRM); 308 309 // All machine operands and other references to virtual registers have been 310 // replaced. Remove the virtual registers and release all the transient data. 311 VRM->clearAllVirt(); 312 MRI->clearVirtRegs(); 313 } 314 315 return true; 316 } 317 318 void VirtRegRewriter::addLiveInsForSubRanges(const LiveInterval &LI, 319 MCRegister PhysReg) const { 320 assert(!LI.empty()); 321 assert(LI.hasSubRanges()); 322 323 using SubRangeIteratorPair = 324 std::pair<const LiveInterval::SubRange *, LiveInterval::const_iterator>; 325 326 SmallVector<SubRangeIteratorPair, 4> SubRanges; 327 SlotIndex First; 328 SlotIndex Last; 329 for (const LiveInterval::SubRange &SR : LI.subranges()) { 330 SubRanges.push_back(std::make_pair(&SR, SR.begin())); 331 if (!First.isValid() || SR.segments.front().start < First) 332 First = SR.segments.front().start; 333 if (!Last.isValid() || SR.segments.back().end > Last) 334 Last = SR.segments.back().end; 335 } 336 337 // Check all mbb start positions between First and Last while 338 // simultaneously advancing an iterator for each subrange. 339 for (SlotIndexes::MBBIndexIterator MBBI = Indexes->getMBBLowerBound(First); 340 MBBI != Indexes->MBBIndexEnd() && MBBI->first <= Last; ++MBBI) { 341 SlotIndex MBBBegin = MBBI->first; 342 // Advance all subrange iterators so that their end position is just 343 // behind MBBBegin (or the iterator is at the end). 344 LaneBitmask LaneMask; 345 for (auto &RangeIterPair : SubRanges) { 346 const LiveInterval::SubRange *SR = RangeIterPair.first; 347 LiveInterval::const_iterator &SRI = RangeIterPair.second; 348 while (SRI != SR->end() && SRI->end <= MBBBegin) 349 ++SRI; 350 if (SRI == SR->end()) 351 continue; 352 if (SRI->start <= MBBBegin) 353 LaneMask |= SR->LaneMask; 354 } 355 if (LaneMask.none()) 356 continue; 357 MachineBasicBlock *MBB = MBBI->second; 358 MBB->addLiveIn(PhysReg, LaneMask); 359 } 360 } 361 362 // Compute MBB live-in lists from virtual register live ranges and their 363 // assignments. 364 void VirtRegRewriter::addMBBLiveIns() { 365 for (unsigned Idx = 0, IdxE = MRI->getNumVirtRegs(); Idx != IdxE; ++Idx) { 366 Register VirtReg = Register::index2VirtReg(Idx); 367 if (MRI->reg_nodbg_empty(VirtReg)) 368 continue; 369 LiveInterval &LI = LIS->getInterval(VirtReg); 370 if (LI.empty() || LIS->intervalIsInOneMBB(LI)) 371 continue; 372 // This is a virtual register that is live across basic blocks. Its 373 // assigned PhysReg must be marked as live-in to those blocks. 374 MCRegister PhysReg = VRM->getPhys(VirtReg); 375 if (!PhysReg) { 376 // There may be no physical register assigned if only some register 377 // classes were already allocated. 378 assert(!ClearVirtRegs && "Unmapped virtual register"); 379 continue; 380 } 381 382 if (LI.hasSubRanges()) { 383 addLiveInsForSubRanges(LI, PhysReg); 384 } else { 385 // Go over MBB begin positions and see if we have segments covering them. 386 // The following works because segments and the MBBIndex list are both 387 // sorted by slot indexes. 388 SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(); 389 for (const auto &Seg : LI) { 390 I = Indexes->getMBBLowerBound(I, Seg.start); 391 for (; I != Indexes->MBBIndexEnd() && I->first < Seg.end; ++I) { 392 MachineBasicBlock *MBB = I->second; 393 MBB->addLiveIn(PhysReg); 394 } 395 } 396 } 397 } 398 399 // Sort and unique MBB LiveIns as we've not checked if SubReg/PhysReg were in 400 // each MBB's LiveIns set before calling addLiveIn on them. 401 for (MachineBasicBlock &MBB : *MF) 402 MBB.sortUniqueLiveIns(); 403 } 404 405 /// Returns true if the given machine operand \p MO only reads undefined lanes. 406 /// The function only works for use operands with a subregister set. 407 bool VirtRegRewriter::readsUndefSubreg(const MachineOperand &MO) const { 408 // Shortcut if the operand is already marked undef. 409 if (MO.isUndef()) 410 return true; 411 412 Register Reg = MO.getReg(); 413 const LiveInterval &LI = LIS->getInterval(Reg); 414 const MachineInstr &MI = *MO.getParent(); 415 SlotIndex BaseIndex = LIS->getInstructionIndex(MI); 416 // This code is only meant to handle reading undefined subregisters which 417 // we couldn't properly detect before. 418 assert(LI.liveAt(BaseIndex) && 419 "Reads of completely dead register should be marked undef already"); 420 unsigned SubRegIdx = MO.getSubReg(); 421 assert(SubRegIdx != 0 && LI.hasSubRanges()); 422 LaneBitmask UseMask = TRI->getSubRegIndexLaneMask(SubRegIdx); 423 // See if any of the relevant subregister liveranges is defined at this point. 424 for (const LiveInterval::SubRange &SR : LI.subranges()) { 425 if ((SR.LaneMask & UseMask).any() && SR.liveAt(BaseIndex)) 426 return false; 427 } 428 return true; 429 } 430 431 void VirtRegRewriter::handleIdentityCopy(MachineInstr &MI) { 432 if (!MI.isIdentityCopy()) 433 return; 434 LLVM_DEBUG(dbgs() << "Identity copy: " << MI); 435 ++NumIdCopies; 436 437 Register DstReg = MI.getOperand(0).getReg(); 438 439 // We may have deferred allocation of the virtual register, and the rewrite 440 // regs code doesn't handle the liveness update. 441 if (DstReg.isVirtual()) 442 return; 443 444 RewriteRegs.insert(DstReg); 445 446 // Copies like: 447 // %r0 = COPY undef %r0 448 // %al = COPY %al, implicit-def %eax 449 // give us additional liveness information: The target (super-)register 450 // must not be valid before this point. Replace the COPY with a KILL 451 // instruction to maintain this information. 452 if (MI.getOperand(1).isUndef() || MI.getNumOperands() > 2) { 453 MI.setDesc(TII->get(TargetOpcode::KILL)); 454 LLVM_DEBUG(dbgs() << " replace by: " << MI); 455 return; 456 } 457 458 if (Indexes) 459 Indexes->removeSingleMachineInstrFromMaps(MI); 460 MI.eraseFromBundle(); 461 LLVM_DEBUG(dbgs() << " deleted.\n"); 462 } 463 464 /// The liverange splitting logic sometimes produces bundles of copies when 465 /// subregisters are involved. Expand these into a sequence of copy instructions 466 /// after processing the last in the bundle. Does not update LiveIntervals 467 /// which we shouldn't need for this instruction anymore. 468 void VirtRegRewriter::expandCopyBundle(MachineInstr &MI) const { 469 if (!MI.isCopy() && !MI.isKill()) 470 return; 471 472 if (MI.isBundledWithPred() && !MI.isBundledWithSucc()) { 473 SmallVector<MachineInstr *, 2> MIs({&MI}); 474 475 // Only do this when the complete bundle is made out of COPYs and KILLs. 476 MachineBasicBlock &MBB = *MI.getParent(); 477 for (MachineBasicBlock::reverse_instr_iterator I = 478 std::next(MI.getReverseIterator()), E = MBB.instr_rend(); 479 I != E && I->isBundledWithSucc(); ++I) { 480 if (!I->isCopy() && !I->isKill()) 481 return; 482 MIs.push_back(&*I); 483 } 484 MachineInstr *FirstMI = MIs.back(); 485 486 auto anyRegsAlias = [](const MachineInstr *Dst, 487 ArrayRef<MachineInstr *> Srcs, 488 const TargetRegisterInfo *TRI) { 489 for (const MachineInstr *Src : Srcs) 490 if (Src != Dst) 491 if (TRI->regsOverlap(Dst->getOperand(0).getReg(), 492 Src->getOperand(1).getReg())) 493 return true; 494 return false; 495 }; 496 497 // If any of the destination registers in the bundle of copies alias any of 498 // the source registers, try to schedule the instructions to avoid any 499 // clobbering. 500 for (int E = MIs.size(), PrevE = E; E > 1; PrevE = E) { 501 for (int I = E; I--; ) 502 if (!anyRegsAlias(MIs[I], ArrayRef(MIs).take_front(E), TRI)) { 503 if (I + 1 != E) 504 std::swap(MIs[I], MIs[E - 1]); 505 --E; 506 } 507 if (PrevE == E) { 508 MF->getFunction().getContext().emitError( 509 "register rewriting failed: cycle in copy bundle"); 510 break; 511 } 512 } 513 514 MachineInstr *BundleStart = FirstMI; 515 for (MachineInstr *BundledMI : llvm::reverse(MIs)) { 516 // If instruction is in the middle of the bundle, move it before the 517 // bundle starts, otherwise, just unbundle it. When we get to the last 518 // instruction, the bundle will have been completely undone. 519 if (BundledMI != BundleStart) { 520 BundledMI->removeFromBundle(); 521 MBB.insert(BundleStart, BundledMI); 522 } else if (BundledMI->isBundledWithSucc()) { 523 BundledMI->unbundleFromSucc(); 524 BundleStart = &*std::next(BundledMI->getIterator()); 525 } 526 527 if (Indexes && BundledMI != FirstMI) 528 Indexes->insertMachineInstrInMaps(*BundledMI); 529 } 530 } 531 } 532 533 /// Check whether (part of) \p SuperPhysReg is live through \p MI. 534 /// \pre \p MI defines a subregister of a virtual register that 535 /// has been assigned to \p SuperPhysReg. 536 bool VirtRegRewriter::subRegLiveThrough(const MachineInstr &MI, 537 MCRegister SuperPhysReg) const { 538 SlotIndex MIIndex = LIS->getInstructionIndex(MI); 539 SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); 540 SlotIndex AfterMIDefs = MIIndex.getBoundaryIndex(); 541 for (MCRegUnit Unit : TRI->regunits(SuperPhysReg)) { 542 const LiveRange &UnitRange = LIS->getRegUnit(Unit); 543 // If the regunit is live both before and after MI, 544 // we assume it is live through. 545 // Generally speaking, this is not true, because something like 546 // "RU = op RU" would match that description. 547 // However, we know that we are trying to assess whether 548 // a def of a virtual reg, vreg, is live at the same time of RU. 549 // If we are in the "RU = op RU" situation, that means that vreg 550 // is defined at the same time as RU (i.e., "vreg, RU = op RU"). 551 // Thus, vreg and RU interferes and vreg cannot be assigned to 552 // SuperPhysReg. Therefore, this situation cannot happen. 553 if (UnitRange.liveAt(AfterMIDefs) && UnitRange.liveAt(BeforeMIUses)) 554 return true; 555 } 556 return false; 557 } 558 559 /// Compute a lanemask for undef lanes which need to be preserved out of the 560 /// defining block for a register assignment for a subregister def. \p PhysReg 561 /// is assigned to \p LI, which is the main range. 562 LaneBitmask VirtRegRewriter::liveOutUndefPhiLanesForUndefSubregDef( 563 const LiveInterval &LI, const MachineBasicBlock &MBB, unsigned SubReg, 564 MCPhysReg PhysReg, const MachineInstr &MI) const { 565 LaneBitmask UndefMask = ~TRI->getSubRegIndexLaneMask(SubReg); 566 LaneBitmask LiveOutUndefLanes; 567 568 for (const LiveInterval::SubRange &SR : LI.subranges()) { 569 // Figure out which lanes are undef live into a successor. 570 LaneBitmask NeedImpDefLanes = UndefMask & SR.LaneMask; 571 if (NeedImpDefLanes.any() && !LIS->isLiveOutOfMBB(SR, &MBB)) { 572 for (const MachineBasicBlock *Succ : MBB.successors()) { 573 if (LIS->isLiveInToMBB(SR, Succ)) 574 LiveOutUndefLanes |= NeedImpDefLanes; 575 } 576 } 577 } 578 579 SlotIndex MIIndex = LIS->getInstructionIndex(MI); 580 SlotIndex BeforeMIUses = MIIndex.getBaseIndex(); 581 LaneBitmask InterferingLanes = 582 LRM->checkInterferenceLanes(BeforeMIUses, MIIndex.getRegSlot(), PhysReg); 583 LiveOutUndefLanes &= ~InterferingLanes; 584 585 LLVM_DEBUG(if (LiveOutUndefLanes.any()) { 586 dbgs() << "Need live out undef defs for " << printReg(PhysReg) 587 << LiveOutUndefLanes << " from " << printMBBReference(MBB) << '\n'; 588 }); 589 590 return LiveOutUndefLanes; 591 } 592 593 void VirtRegRewriter::rewrite() { 594 bool NoSubRegLiveness = !MRI->subRegLivenessEnabled(); 595 SmallVector<Register, 8> SuperDeads; 596 SmallVector<Register, 8> SuperDefs; 597 SmallVector<Register, 8> SuperKills; 598 599 for (MachineFunction::iterator MBBI = MF->begin(), MBBE = MF->end(); 600 MBBI != MBBE; ++MBBI) { 601 LLVM_DEBUG(MBBI->print(dbgs(), Indexes)); 602 for (MachineInstr &MI : llvm::make_early_inc_range(MBBI->instrs())) { 603 for (MachineOperand &MO : MI.operands()) { 604 // Make sure MRI knows about registers clobbered by regmasks. 605 if (MO.isRegMask()) 606 MRI->addPhysRegsUsedFromRegMask(MO.getRegMask()); 607 608 if (!MO.isReg() || !MO.getReg().isVirtual()) 609 continue; 610 Register VirtReg = MO.getReg(); 611 MCRegister PhysReg = VRM->getPhys(VirtReg); 612 if (!PhysReg) 613 continue; 614 615 assert(Register(PhysReg).isPhysical()); 616 617 RewriteRegs.insert(PhysReg); 618 assert(!MRI->isReserved(PhysReg) && "Reserved register assignment"); 619 620 // Preserve semantics of sub-register operands. 621 unsigned SubReg = MO.getSubReg(); 622 if (SubReg != 0) { 623 if (NoSubRegLiveness || !MRI->shouldTrackSubRegLiveness(VirtReg)) { 624 // A virtual register kill refers to the whole register, so we may 625 // have to add implicit killed operands for the super-register. A 626 // partial redef always kills and redefines the super-register. 627 if ((MO.readsReg() && (MO.isDef() || MO.isKill())) || 628 (MO.isDef() && subRegLiveThrough(MI, PhysReg))) 629 SuperKills.push_back(PhysReg); 630 631 if (MO.isDef()) { 632 // Also add implicit defs for the super-register. 633 if (MO.isDead()) 634 SuperDeads.push_back(PhysReg); 635 else 636 SuperDefs.push_back(PhysReg); 637 } 638 } else { 639 if (MO.isUse()) { 640 if (readsUndefSubreg(MO)) 641 // We need to add an <undef> flag if the subregister is 642 // completely undefined (and we are not adding super-register 643 // defs). 644 MO.setIsUndef(true); 645 } else if (!MO.isDead()) { 646 assert(MO.isDef()); 647 if (MO.isUndef()) { 648 const LiveInterval &LI = LIS->getInterval(VirtReg); 649 650 LaneBitmask LiveOutUndefLanes = 651 liveOutUndefPhiLanesForUndefSubregDef(LI, *MBBI, SubReg, 652 PhysReg, MI); 653 if (LiveOutUndefLanes.any()) { 654 SmallVector<unsigned, 16> CoveringIndexes; 655 656 // TODO: Just use one super register def if none of the lanes 657 // are needed? 658 if (!TRI->getCoveringSubRegIndexes( 659 *MRI, MRI->getRegClass(VirtReg), LiveOutUndefLanes, 660 CoveringIndexes)) 661 llvm_unreachable( 662 "cannot represent required subregister defs"); 663 664 // Try to represent the minimum needed live out def as a 665 // sequence of subregister defs. 666 // 667 // FIXME: It would be better if we could directly represent 668 // liveness with a lanemask instead of spamming operands. 669 for (unsigned SubIdx : CoveringIndexes) 670 SuperDefs.push_back(TRI->getSubReg(PhysReg, SubIdx)); 671 } 672 } 673 } 674 } 675 676 // The def undef and def internal flags only make sense for 677 // sub-register defs, and we are substituting a full physreg. An 678 // implicit killed operand from the SuperKills list will represent the 679 // partial read of the super-register. 680 if (MO.isDef()) { 681 MO.setIsUndef(false); 682 MO.setIsInternalRead(false); 683 } 684 685 // PhysReg operands cannot have subregister indexes. 686 PhysReg = TRI->getSubReg(PhysReg, SubReg); 687 assert(PhysReg.isValid() && "Invalid SubReg for physical register"); 688 MO.setSubReg(0); 689 } 690 // Rewrite. Note we could have used MachineOperand::substPhysReg(), but 691 // we need the inlining here. 692 MO.setReg(PhysReg); 693 MO.setIsRenamable(true); 694 } 695 696 // Add any missing super-register kills after rewriting the whole 697 // instruction. 698 while (!SuperKills.empty()) 699 MI.addRegisterKilled(SuperKills.pop_back_val(), TRI, true); 700 701 while (!SuperDeads.empty()) 702 MI.addRegisterDead(SuperDeads.pop_back_val(), TRI, true); 703 704 while (!SuperDefs.empty()) 705 MI.addRegisterDefined(SuperDefs.pop_back_val(), TRI); 706 707 LLVM_DEBUG(dbgs() << "> " << MI); 708 709 expandCopyBundle(MI); 710 711 // We can remove identity copies right now. 712 handleIdentityCopy(MI); 713 } 714 } 715 716 if (LIS) { 717 // Don't bother maintaining accurate LiveIntervals for registers which were 718 // already allocated. 719 for (Register PhysReg : RewriteRegs) { 720 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 721 LIS->removeRegUnit(Unit); 722 } 723 } 724 } 725 726 RewriteRegs.clear(); 727 } 728 729 FunctionPass *llvm::createVirtRegRewriter(bool ClearVirtRegs) { 730 return new VirtRegRewriter(ClearVirtRegs); 731 } 732