xref: /llvm-project/llvm/lib/CodeGen/TypePromotion.cpp (revision 27aea17fe061f9778bb1e8ff5fdf9fc0fb03abe1)
1 //===----- TypePromotion.cpp ----------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This is an opcode based type promotion pass for small types that would
11 /// otherwise be promoted during legalisation. This works around the limitations
12 /// of selection dag for cyclic regions. The search begins from icmp
13 /// instructions operands where a tree, consisting of non-wrapping or safe
14 /// wrapping instructions, is built, checked and promoted if possible.
15 ///
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/CodeGen/TypePromotion.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/Analysis/LoopInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/InstrTypes.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/Type.h"
35 #include "llvm/IR/Value.h"
36 #include "llvm/InitializePasses.h"
37 #include "llvm/Pass.h"
38 #include "llvm/Support/Casting.h"
39 #include "llvm/Support/CommandLine.h"
40 #include "llvm/Target/TargetMachine.h"
41 
42 #define DEBUG_TYPE "type-promotion"
43 #define PASS_NAME "Type Promotion"
44 
45 using namespace llvm;
46 
47 static cl::opt<bool> DisablePromotion("disable-type-promotion", cl::Hidden,
48                                       cl::init(false),
49                                       cl::desc("Disable type promotion pass"));
50 
51 // The goal of this pass is to enable more efficient code generation for
52 // operations on narrow types (i.e. types with < 32-bits) and this is a
53 // motivating IR code example:
54 //
55 //   define hidden i32 @cmp(i8 zeroext) {
56 //     %2 = add i8 %0, -49
57 //     %3 = icmp ult i8 %2, 3
58 //     ..
59 //   }
60 //
61 // The issue here is that i8 is type-legalized to i32 because i8 is not a
62 // legal type. Thus, arithmetic is done in integer-precision, but then the
63 // byte value is masked out as follows:
64 //
65 //   t19: i32 = add t4, Constant:i32<-49>
66 //     t24: i32 = and t19, Constant:i32<255>
67 //
68 // Consequently, we generate code like this:
69 //
70 //   subs  r0, #49
71 //   uxtb  r1, r0
72 //   cmp r1, #3
73 //
74 // This shows that masking out the byte value results in generation of
75 // the UXTB instruction. This is not optimal as r0 already contains the byte
76 // value we need, and so instead we can just generate:
77 //
78 //   sub.w r1, r0, #49
79 //   cmp r1, #3
80 //
81 // We achieve this by type promoting the IR to i32 like so for this example:
82 //
83 //   define i32 @cmp(i8 zeroext %c) {
84 //     %0 = zext i8 %c to i32
85 //     %c.off = add i32 %0, -49
86 //     %1 = icmp ult i32 %c.off, 3
87 //     ..
88 //   }
89 //
90 // For this to be valid and legal, we need to prove that the i32 add is
91 // producing the same value as the i8 addition, and that e.g. no overflow
92 // happens.
93 //
94 // A brief sketch of the algorithm and some terminology.
95 // We pattern match interesting IR patterns:
96 // - which have "sources": instructions producing narrow values (i8, i16), and
97 // - they have "sinks": instructions consuming these narrow values.
98 //
99 // We collect all instruction connecting sources and sinks in a worklist, so
100 // that we can mutate these instruction and perform type promotion when it is
101 // legal to do so.
102 
103 namespace {
104 class IRPromoter {
105   LLVMContext &Ctx;
106   unsigned PromotedWidth = 0;
107   SetVector<Value *> &Visited;
108   SetVector<Value *> &Sources;
109   SetVector<Instruction *> &Sinks;
110   SmallPtrSetImpl<Instruction *> &SafeWrap;
111   SmallPtrSetImpl<Instruction *> &InstsToRemove;
112   IntegerType *ExtTy = nullptr;
113   SmallPtrSet<Value *, 8> NewInsts;
114   DenseMap<Value *, SmallVector<Type *, 4>> TruncTysMap;
115   SmallPtrSet<Value *, 8> Promoted;
116 
117   void ReplaceAllUsersOfWith(Value *From, Value *To);
118   void ExtendSources();
119   void ConvertTruncs();
120   void PromoteTree();
121   void TruncateSinks();
122   void Cleanup();
123 
124 public:
125   IRPromoter(LLVMContext &C, unsigned Width, SetVector<Value *> &visited,
126              SetVector<Value *> &sources, SetVector<Instruction *> &sinks,
127              SmallPtrSetImpl<Instruction *> &wrap,
128              SmallPtrSetImpl<Instruction *> &instsToRemove)
129       : Ctx(C), PromotedWidth(Width), Visited(visited), Sources(sources),
130         Sinks(sinks), SafeWrap(wrap), InstsToRemove(instsToRemove) {
131     ExtTy = IntegerType::get(Ctx, PromotedWidth);
132   }
133 
134   void Mutate();
135 };
136 
137 class TypePromotionImpl {
138   unsigned TypeSize = 0;
139   LLVMContext *Ctx = nullptr;
140   unsigned RegisterBitWidth = 0;
141   SmallPtrSet<Value *, 16> AllVisited;
142   SmallPtrSet<Instruction *, 8> SafeToPromote;
143   SmallPtrSet<Instruction *, 4> SafeWrap;
144   SmallPtrSet<Instruction *, 4> InstsToRemove;
145 
146   // Does V have the same size result type as TypeSize.
147   bool EqualTypeSize(Value *V);
148   // Does V have the same size, or narrower, result type as TypeSize.
149   bool LessOrEqualTypeSize(Value *V);
150   // Does V have a result type that is wider than TypeSize.
151   bool GreaterThanTypeSize(Value *V);
152   // Does V have a result type that is narrower than TypeSize.
153   bool LessThanTypeSize(Value *V);
154   // Should V be a leaf in the promote tree?
155   bool isSource(Value *V);
156   // Should V be a root in the promotion tree?
157   bool isSink(Value *V);
158   // Should we change the result type of V? It will result in the users of V
159   // being visited.
160   bool shouldPromote(Value *V);
161   // Is I an add or a sub, which isn't marked as nuw, but where a wrapping
162   // result won't affect the computation?
163   bool isSafeWrap(Instruction *I);
164   // Can V have its integer type promoted, or can the type be ignored.
165   bool isSupportedType(Value *V);
166   // Is V an instruction with a supported opcode or another value that we can
167   // handle, such as constants and basic blocks.
168   bool isSupportedValue(Value *V);
169   // Is V an instruction thats result can trivially promoted, or has safe
170   // wrapping.
171   bool isLegalToPromote(Value *V);
172   bool TryToPromote(Value *V, unsigned PromotedWidth, const LoopInfo &LI);
173 
174 public:
175   bool run(Function &F, const TargetMachine *TM,
176            const TargetTransformInfo &TTI, const LoopInfo &LI);
177 };
178 
179 class TypePromotionLegacy : public FunctionPass {
180 public:
181   static char ID;
182 
183   TypePromotionLegacy() : FunctionPass(ID) {}
184 
185   void getAnalysisUsage(AnalysisUsage &AU) const override {
186     AU.addRequired<LoopInfoWrapperPass>();
187     AU.addRequired<TargetTransformInfoWrapperPass>();
188     AU.addRequired<TargetPassConfig>();
189     AU.setPreservesCFG();
190     AU.addPreserved<LoopInfoWrapperPass>();
191   }
192 
193   StringRef getPassName() const override { return PASS_NAME; }
194 
195   bool runOnFunction(Function &F) override;
196 };
197 
198 } // namespace
199 
200 static bool GenerateSignBits(Instruction *I) {
201   unsigned Opc = I->getOpcode();
202   return Opc == Instruction::AShr || Opc == Instruction::SDiv ||
203          Opc == Instruction::SRem || Opc == Instruction::SExt;
204 }
205 
206 bool TypePromotionImpl::EqualTypeSize(Value *V) {
207   return V->getType()->getScalarSizeInBits() == TypeSize;
208 }
209 
210 bool TypePromotionImpl::LessOrEqualTypeSize(Value *V) {
211   return V->getType()->getScalarSizeInBits() <= TypeSize;
212 }
213 
214 bool TypePromotionImpl::GreaterThanTypeSize(Value *V) {
215   return V->getType()->getScalarSizeInBits() > TypeSize;
216 }
217 
218 bool TypePromotionImpl::LessThanTypeSize(Value *V) {
219   return V->getType()->getScalarSizeInBits() < TypeSize;
220 }
221 
222 /// Return true if the given value is a source in the use-def chain, producing
223 /// a narrow 'TypeSize' value. These values will be zext to start the promotion
224 /// of the tree to i32. We guarantee that these won't populate the upper bits
225 /// of the register. ZExt on the loads will be free, and the same for call
226 /// return values because we only accept ones that guarantee a zeroext ret val.
227 /// Many arguments will have the zeroext attribute too, so those would be free
228 /// too.
229 bool TypePromotionImpl::isSource(Value *V) {
230   if (!isa<IntegerType>(V->getType()))
231     return false;
232 
233   // TODO Allow zext to be sources.
234   if (isa<Argument>(V))
235     return true;
236   else if (isa<LoadInst>(V))
237     return true;
238   else if (auto *Call = dyn_cast<CallInst>(V))
239     return Call->hasRetAttr(Attribute::AttrKind::ZExt);
240   else if (auto *Trunc = dyn_cast<TruncInst>(V))
241     return EqualTypeSize(Trunc);
242   return false;
243 }
244 
245 /// Return true if V will require any promoted values to be truncated for the
246 /// the IR to remain valid. We can't mutate the value type of these
247 /// instructions.
248 bool TypePromotionImpl::isSink(Value *V) {
249   // TODO The truncate also isn't actually necessary because we would already
250   // proved that the data value is kept within the range of the original data
251   // type. We currently remove any truncs inserted for handling zext sinks.
252 
253   // Sinks are:
254   // - points where the value in the register is being observed, such as an
255   //   icmp, switch or store.
256   // - points where value types have to match, such as calls and returns.
257   // - zext are included to ease the transformation and are generally removed
258   //   later on.
259   if (auto *Store = dyn_cast<StoreInst>(V))
260     return LessOrEqualTypeSize(Store->getValueOperand());
261   if (auto *Return = dyn_cast<ReturnInst>(V))
262     return LessOrEqualTypeSize(Return->getReturnValue());
263   if (auto *ZExt = dyn_cast<ZExtInst>(V))
264     return GreaterThanTypeSize(ZExt);
265   if (auto *Switch = dyn_cast<SwitchInst>(V))
266     return LessThanTypeSize(Switch->getCondition());
267   if (auto *ICmp = dyn_cast<ICmpInst>(V))
268     return ICmp->isSigned() || LessThanTypeSize(ICmp->getOperand(0));
269 
270   return isa<CallInst>(V);
271 }
272 
273 /// Return whether this instruction can safely wrap.
274 bool TypePromotionImpl::isSafeWrap(Instruction *I) {
275   // We can support a potentially wrapping instruction (I) if:
276   // - It is only used by an unsigned icmp.
277   // - The icmp uses a constant.
278   // - The wrapping value (I) is decreasing, i.e would underflow - wrapping
279   //   around zero to become a larger number than before.
280   // - The wrapping instruction (I) also uses a constant.
281   //
282   // We can then use the two constants to calculate whether the result would
283   // wrap in respect to itself in the original bitwidth. If it doesn't wrap,
284   // just underflows the range, the icmp would give the same result whether the
285   // result has been truncated or not. We calculate this by:
286   // - Zero extending both constants, if needed, to RegisterBitWidth.
287   // - Take the absolute value of I's constant, adding this to the icmp const.
288   // - Check that this value is not out of range for small type. If it is, it
289   //   means that it has underflowed enough to wrap around the icmp constant.
290   //
291   // For example:
292   //
293   // %sub = sub i8 %a, 2
294   // %cmp = icmp ule i8 %sub, 254
295   //
296   // If %a = 0, %sub = -2 == FE == 254
297   // But if this is evalulated as a i32
298   // %sub = -2 == FF FF FF FE == 4294967294
299   // So the unsigned compares (i8 and i32) would not yield the same result.
300   //
301   // Another way to look at it is:
302   // %a - 2 <= 254
303   // %a + 2 <= 254 + 2
304   // %a <= 256
305   // And we can't represent 256 in the i8 format, so we don't support it.
306   //
307   // Whereas:
308   //
309   // %sub i8 %a, 1
310   // %cmp = icmp ule i8 %sub, 254
311   //
312   // If %a = 0, %sub = -1 == FF == 255
313   // As i32:
314   // %sub = -1 == FF FF FF FF == 4294967295
315   //
316   // In this case, the unsigned compare results would be the same and this
317   // would also be true for ult, uge and ugt:
318   // - (255 < 254) == (0xFFFFFFFF < 254) == false
319   // - (255 <= 254) == (0xFFFFFFFF <= 254) == false
320   // - (255 > 254) == (0xFFFFFFFF > 254) == true
321   // - (255 >= 254) == (0xFFFFFFFF >= 254) == true
322   //
323   // To demonstrate why we can't handle increasing values:
324   //
325   // %add = add i8 %a, 2
326   // %cmp = icmp ult i8 %add, 127
327   //
328   // If %a = 254, %add = 256 == (i8 1)
329   // As i32:
330   // %add = 256
331   //
332   // (1 < 127) != (256 < 127)
333 
334   unsigned Opc = I->getOpcode();
335   if (Opc != Instruction::Add && Opc != Instruction::Sub)
336     return false;
337 
338   if (!I->hasOneUse() || !isa<ICmpInst>(*I->user_begin()) ||
339       !isa<ConstantInt>(I->getOperand(1)))
340     return false;
341 
342   // Don't support an icmp that deals with sign bits.
343   auto *CI = cast<ICmpInst>(*I->user_begin());
344   if (CI->isSigned() || CI->isEquality())
345     return false;
346 
347   ConstantInt *ICmpConstant = nullptr;
348   if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(0)))
349     ICmpConstant = Const;
350   else if (auto *Const = dyn_cast<ConstantInt>(CI->getOperand(1)))
351     ICmpConstant = Const;
352   else
353     return false;
354 
355   const APInt &ICmpConst = ICmpConstant->getValue();
356   APInt OverflowConst = cast<ConstantInt>(I->getOperand(1))->getValue();
357   if (Opc == Instruction::Sub)
358     OverflowConst = -OverflowConst;
359   if (!OverflowConst.isNonPositive())
360     return false;
361 
362   // Using C1 = OverflowConst and C2 = ICmpConst, we can either prove that:
363   //   zext(x) + sext(C1) <u zext(C2)  if C1 < 0 and C1 >s C2
364   //   zext(x) + sext(C1) <u sext(C2)  if C1 < 0 and C1 <=s C2
365   if (OverflowConst.sgt(ICmpConst)) {
366     LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
367                       << "const of " << *I << "\n");
368     SafeWrap.insert(I);
369     return true;
370   } else {
371     LLVM_DEBUG(dbgs() << "IR Promotion: Allowing safe overflow for sext "
372                       << "const of " << *I << " and " << *CI << "\n");
373     SafeWrap.insert(I);
374     SafeWrap.insert(CI);
375     return true;
376   }
377   return false;
378 }
379 
380 bool TypePromotionImpl::shouldPromote(Value *V) {
381   if (!isa<IntegerType>(V->getType()) || isSink(V))
382     return false;
383 
384   if (isSource(V))
385     return true;
386 
387   auto *I = dyn_cast<Instruction>(V);
388   if (!I)
389     return false;
390 
391   if (isa<ICmpInst>(I))
392     return false;
393 
394   return true;
395 }
396 
397 /// Return whether we can safely mutate V's type to ExtTy without having to be
398 /// concerned with zero extending or truncation.
399 static bool isPromotedResultSafe(Instruction *I) {
400   if (GenerateSignBits(I))
401     return false;
402 
403   if (!isa<OverflowingBinaryOperator>(I))
404     return true;
405 
406   return I->hasNoUnsignedWrap();
407 }
408 
409 void IRPromoter::ReplaceAllUsersOfWith(Value *From, Value *To) {
410   SmallVector<Instruction *, 4> Users;
411   Instruction *InstTo = dyn_cast<Instruction>(To);
412   bool ReplacedAll = true;
413 
414   LLVM_DEBUG(dbgs() << "IR Promotion: Replacing " << *From << " with " << *To
415                     << "\n");
416 
417   for (Use &U : From->uses()) {
418     auto *User = cast<Instruction>(U.getUser());
419     if (InstTo && User->isIdenticalTo(InstTo)) {
420       ReplacedAll = false;
421       continue;
422     }
423     Users.push_back(User);
424   }
425 
426   for (auto *U : Users)
427     U->replaceUsesOfWith(From, To);
428 
429   if (ReplacedAll)
430     if (auto *I = dyn_cast<Instruction>(From))
431       InstsToRemove.insert(I);
432 }
433 
434 void IRPromoter::ExtendSources() {
435   IRBuilder<> Builder{Ctx};
436 
437   auto InsertZExt = [&](Value *V, Instruction *InsertPt) {
438     assert(V->getType() != ExtTy && "zext already extends to i32");
439     LLVM_DEBUG(dbgs() << "IR Promotion: Inserting ZExt for " << *V << "\n");
440     Builder.SetInsertPoint(InsertPt);
441     if (auto *I = dyn_cast<Instruction>(V))
442       Builder.SetCurrentDebugLocation(I->getDebugLoc());
443 
444     Value *ZExt = Builder.CreateZExt(V, ExtTy);
445     if (auto *I = dyn_cast<Instruction>(ZExt)) {
446       if (isa<Argument>(V))
447         I->moveBefore(InsertPt);
448       else
449         I->moveAfter(InsertPt);
450       NewInsts.insert(I);
451     }
452 
453     ReplaceAllUsersOfWith(V, ZExt);
454   };
455 
456   // Now, insert extending instructions between the sources and their users.
457   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting sources:\n");
458   for (auto *V : Sources) {
459     LLVM_DEBUG(dbgs() << " - " << *V << "\n");
460     if (auto *I = dyn_cast<Instruction>(V))
461       InsertZExt(I, I);
462     else if (auto *Arg = dyn_cast<Argument>(V)) {
463       BasicBlock &BB = Arg->getParent()->front();
464       InsertZExt(Arg, &*BB.getFirstInsertionPt());
465     } else {
466       llvm_unreachable("unhandled source that needs extending");
467     }
468     Promoted.insert(V);
469   }
470 }
471 
472 void IRPromoter::PromoteTree() {
473   LLVM_DEBUG(dbgs() << "IR Promotion: Mutating the tree..\n");
474 
475   // Mutate the types of the instructions within the tree. Here we handle
476   // constant operands.
477   for (auto *V : Visited) {
478     if (Sources.count(V))
479       continue;
480 
481     auto *I = cast<Instruction>(V);
482     if (Sinks.count(I))
483       continue;
484 
485     for (unsigned i = 0, e = I->getNumOperands(); i < e; ++i) {
486       Value *Op = I->getOperand(i);
487       if ((Op->getType() == ExtTy) || !isa<IntegerType>(Op->getType()))
488         continue;
489 
490       if (auto *Const = dyn_cast<ConstantInt>(Op)) {
491         // For subtract, we don't need to sext the constant. We only put it in
492         // SafeWrap because SafeWrap.size() is used elsewhere.
493         // For cmp, we need to sign extend a constant appearing in either
494         // operand. For add, we should only sign extend the RHS.
495         Constant *NewConst = (SafeWrap.contains(I) &&
496                               (I->getOpcode() == Instruction::ICmp || i == 1) &&
497                               I->getOpcode() != Instruction::Sub)
498                                  ? ConstantExpr::getSExt(Const, ExtTy)
499                                  : ConstantExpr::getZExt(Const, ExtTy);
500         I->setOperand(i, NewConst);
501       } else if (isa<UndefValue>(Op))
502         I->setOperand(i, ConstantInt::get(ExtTy, 0));
503     }
504 
505     // Mutate the result type, unless this is an icmp or switch.
506     if (!isa<ICmpInst>(I) && !isa<SwitchInst>(I)) {
507       I->mutateType(ExtTy);
508       Promoted.insert(I);
509     }
510   }
511 }
512 
513 void IRPromoter::TruncateSinks() {
514   LLVM_DEBUG(dbgs() << "IR Promotion: Fixing up the sinks:\n");
515 
516   IRBuilder<> Builder{Ctx};
517 
518   auto InsertTrunc = [&](Value *V, Type *TruncTy) -> Instruction * {
519     if (!isa<Instruction>(V) || !isa<IntegerType>(V->getType()))
520       return nullptr;
521 
522     if ((!Promoted.count(V) && !NewInsts.count(V)) || Sources.count(V))
523       return nullptr;
524 
525     LLVM_DEBUG(dbgs() << "IR Promotion: Creating " << *TruncTy << " Trunc for "
526                       << *V << "\n");
527     Builder.SetInsertPoint(cast<Instruction>(V));
528     auto *Trunc = dyn_cast<Instruction>(Builder.CreateTrunc(V, TruncTy));
529     if (Trunc)
530       NewInsts.insert(Trunc);
531     return Trunc;
532   };
533 
534   // Fix up any stores or returns that use the results of the promoted
535   // chain.
536   for (auto *I : Sinks) {
537     LLVM_DEBUG(dbgs() << "IR Promotion: For Sink: " << *I << "\n");
538 
539     // Handle calls separately as we need to iterate over arg operands.
540     if (auto *Call = dyn_cast<CallInst>(I)) {
541       for (unsigned i = 0; i < Call->arg_size(); ++i) {
542         Value *Arg = Call->getArgOperand(i);
543         Type *Ty = TruncTysMap[Call][i];
544         if (Instruction *Trunc = InsertTrunc(Arg, Ty)) {
545           Trunc->moveBefore(Call);
546           Call->setArgOperand(i, Trunc);
547         }
548       }
549       continue;
550     }
551 
552     // Special case switches because we need to truncate the condition.
553     if (auto *Switch = dyn_cast<SwitchInst>(I)) {
554       Type *Ty = TruncTysMap[Switch][0];
555       if (Instruction *Trunc = InsertTrunc(Switch->getCondition(), Ty)) {
556         Trunc->moveBefore(Switch);
557         Switch->setCondition(Trunc);
558       }
559       continue;
560     }
561 
562     // Don't insert a trunc for a zext which can still legally promote.
563     // Nor insert a trunc when the input value to that trunc has the same width
564     // as the zext we are inserting it for.  When this happens the input operand
565     // for the zext will be promoted to the same width as the zext's return type
566     // rendering that zext unnecessary.  This zext gets removed before the end
567     // of the pass.
568     if (auto ZExt = dyn_cast<ZExtInst>(I))
569       if (ZExt->getType()->getScalarSizeInBits() >= PromotedWidth)
570         continue;
571 
572     // Now handle the others.
573     for (unsigned i = 0; i < I->getNumOperands(); ++i) {
574       Type *Ty = TruncTysMap[I][i];
575       if (Instruction *Trunc = InsertTrunc(I->getOperand(i), Ty)) {
576         Trunc->moveBefore(I);
577         I->setOperand(i, Trunc);
578       }
579     }
580   }
581 }
582 
583 void IRPromoter::Cleanup() {
584   LLVM_DEBUG(dbgs() << "IR Promotion: Cleanup..\n");
585   // Some zexts will now have become redundant, along with their trunc
586   // operands, so remove them.
587   for (auto *V : Visited) {
588     if (!isa<ZExtInst>(V))
589       continue;
590 
591     auto ZExt = cast<ZExtInst>(V);
592     if (ZExt->getDestTy() != ExtTy)
593       continue;
594 
595     Value *Src = ZExt->getOperand(0);
596     if (ZExt->getSrcTy() == ZExt->getDestTy()) {
597       LLVM_DEBUG(dbgs() << "IR Promotion: Removing unnecessary cast: " << *ZExt
598                         << "\n");
599       ReplaceAllUsersOfWith(ZExt, Src);
600       continue;
601     }
602 
603     // We've inserted a trunc for a zext sink, but we already know that the
604     // input is in range, negating the need for the trunc.
605     if (NewInsts.count(Src) && isa<TruncInst>(Src)) {
606       auto *Trunc = cast<TruncInst>(Src);
607       assert(Trunc->getOperand(0)->getType() == ExtTy &&
608              "expected inserted trunc to be operating on i32");
609       ReplaceAllUsersOfWith(ZExt, Trunc->getOperand(0));
610     }
611   }
612 
613   for (auto *I : InstsToRemove) {
614     LLVM_DEBUG(dbgs() << "IR Promotion: Removing " << *I << "\n");
615     I->dropAllReferences();
616   }
617 }
618 
619 void IRPromoter::ConvertTruncs() {
620   LLVM_DEBUG(dbgs() << "IR Promotion: Converting truncs..\n");
621   IRBuilder<> Builder{Ctx};
622 
623   for (auto *V : Visited) {
624     if (!isa<TruncInst>(V) || Sources.count(V))
625       continue;
626 
627     auto *Trunc = cast<TruncInst>(V);
628     Builder.SetInsertPoint(Trunc);
629     IntegerType *SrcTy = cast<IntegerType>(Trunc->getOperand(0)->getType());
630     IntegerType *DestTy = cast<IntegerType>(TruncTysMap[Trunc][0]);
631 
632     unsigned NumBits = DestTy->getScalarSizeInBits();
633     ConstantInt *Mask =
634         ConstantInt::get(SrcTy, APInt::getMaxValue(NumBits).getZExtValue());
635     Value *Masked = Builder.CreateAnd(Trunc->getOperand(0), Mask);
636     if (SrcTy != ExtTy)
637       Masked = Builder.CreateTrunc(Masked, ExtTy);
638 
639     if (auto *I = dyn_cast<Instruction>(Masked))
640       NewInsts.insert(I);
641 
642     ReplaceAllUsersOfWith(Trunc, Masked);
643   }
644 }
645 
646 void IRPromoter::Mutate() {
647   LLVM_DEBUG(dbgs() << "IR Promotion: Promoting use-def chains to "
648                     << PromotedWidth << "-bits\n");
649 
650   // Cache original types of the values that will likely need truncating
651   for (auto *I : Sinks) {
652     if (auto *Call = dyn_cast<CallInst>(I)) {
653       for (Value *Arg : Call->args())
654         TruncTysMap[Call].push_back(Arg->getType());
655     } else if (auto *Switch = dyn_cast<SwitchInst>(I))
656       TruncTysMap[I].push_back(Switch->getCondition()->getType());
657     else {
658       for (unsigned i = 0; i < I->getNumOperands(); ++i)
659         TruncTysMap[I].push_back(I->getOperand(i)->getType());
660     }
661   }
662   for (auto *V : Visited) {
663     if (!isa<TruncInst>(V) || Sources.count(V))
664       continue;
665     auto *Trunc = cast<TruncInst>(V);
666     TruncTysMap[Trunc].push_back(Trunc->getDestTy());
667   }
668 
669   // Insert zext instructions between sources and their users.
670   ExtendSources();
671 
672   // Promote visited instructions, mutating their types in place.
673   PromoteTree();
674 
675   // Convert any truncs, that aren't sources, into AND masks.
676   ConvertTruncs();
677 
678   // Insert trunc instructions for use by calls, stores etc...
679   TruncateSinks();
680 
681   // Finally, remove unecessary zexts and truncs, delete old instructions and
682   // clear the data structures.
683   Cleanup();
684 
685   LLVM_DEBUG(dbgs() << "IR Promotion: Mutation complete\n");
686 }
687 
688 /// We disallow booleans to make life easier when dealing with icmps but allow
689 /// any other integer that fits in a scalar register. Void types are accepted
690 /// so we can handle switches.
691 bool TypePromotionImpl::isSupportedType(Value *V) {
692   Type *Ty = V->getType();
693 
694   // Allow voids and pointers, these won't be promoted.
695   if (Ty->isVoidTy() || Ty->isPointerTy())
696     return true;
697 
698   if (!isa<IntegerType>(Ty) || cast<IntegerType>(Ty)->getBitWidth() == 1 ||
699       cast<IntegerType>(Ty)->getBitWidth() > RegisterBitWidth)
700     return false;
701 
702   return LessOrEqualTypeSize(V);
703 }
704 
705 /// We accept most instructions, as well as Arguments and ConstantInsts. We
706 /// Disallow casts other than zext and truncs and only allow calls if their
707 /// return value is zeroext. We don't allow opcodes that can introduce sign
708 /// bits.
709 bool TypePromotionImpl::isSupportedValue(Value *V) {
710   if (auto *I = dyn_cast<Instruction>(V)) {
711     switch (I->getOpcode()) {
712     default:
713       return isa<BinaryOperator>(I) && isSupportedType(I) &&
714              !GenerateSignBits(I);
715     case Instruction::GetElementPtr:
716     case Instruction::Store:
717     case Instruction::Br:
718     case Instruction::Switch:
719       return true;
720     case Instruction::PHI:
721     case Instruction::Select:
722     case Instruction::Ret:
723     case Instruction::Load:
724     case Instruction::Trunc:
725     case Instruction::BitCast:
726       return isSupportedType(I);
727     case Instruction::ZExt:
728       return isSupportedType(I->getOperand(0));
729     case Instruction::ICmp:
730       // Now that we allow small types than TypeSize, only allow icmp of
731       // TypeSize because they will require a trunc to be legalised.
732       // TODO: Allow icmp of smaller types, and calculate at the end
733       // whether the transform would be beneficial.
734       if (isa<PointerType>(I->getOperand(0)->getType()))
735         return true;
736       return EqualTypeSize(I->getOperand(0));
737     case Instruction::Call: {
738       // Special cases for calls as we need to check for zeroext
739       // TODO We should accept calls even if they don't have zeroext, as they
740       // can still be sinks.
741       auto *Call = cast<CallInst>(I);
742       return isSupportedType(Call) &&
743              Call->hasRetAttr(Attribute::AttrKind::ZExt);
744     }
745     }
746   } else if (isa<Constant>(V) && !isa<ConstantExpr>(V)) {
747     return isSupportedType(V);
748   } else if (isa<Argument>(V))
749     return isSupportedType(V);
750 
751   return isa<BasicBlock>(V);
752 }
753 
754 /// Check that the type of V would be promoted and that the original type is
755 /// smaller than the targeted promoted type. Check that we're not trying to
756 /// promote something larger than our base 'TypeSize' type.
757 bool TypePromotionImpl::isLegalToPromote(Value *V) {
758   auto *I = dyn_cast<Instruction>(V);
759   if (!I)
760     return true;
761 
762   if (SafeToPromote.count(I))
763     return true;
764 
765   if (isPromotedResultSafe(I) || isSafeWrap(I)) {
766     SafeToPromote.insert(I);
767     return true;
768   }
769   return false;
770 }
771 
772 bool TypePromotionImpl::TryToPromote(Value *V, unsigned PromotedWidth,
773                                  const LoopInfo &LI) {
774   Type *OrigTy = V->getType();
775   TypeSize = OrigTy->getPrimitiveSizeInBits().getFixedValue();
776   SafeToPromote.clear();
777   SafeWrap.clear();
778 
779   if (!isSupportedValue(V) || !shouldPromote(V) || !isLegalToPromote(V))
780     return false;
781 
782   LLVM_DEBUG(dbgs() << "IR Promotion: TryToPromote: " << *V << ", from "
783                     << TypeSize << " bits to " << PromotedWidth << "\n");
784 
785   SetVector<Value *> WorkList;
786   SetVector<Value *> Sources;
787   SetVector<Instruction *> Sinks;
788   SetVector<Value *> CurrentVisited;
789   WorkList.insert(V);
790 
791   // Return true if V was added to the worklist as a supported instruction,
792   // if it was already visited, or if we don't need to explore it (e.g.
793   // pointer values and GEPs), and false otherwise.
794   auto AddLegalInst = [&](Value *V) {
795     if (CurrentVisited.count(V))
796       return true;
797 
798     // Ignore GEPs because they don't need promoting and the constant indices
799     // will prevent the transformation.
800     if (isa<GetElementPtrInst>(V))
801       return true;
802 
803     if (!isSupportedValue(V) || (shouldPromote(V) && !isLegalToPromote(V))) {
804       LLVM_DEBUG(dbgs() << "IR Promotion: Can't handle: " << *V << "\n");
805       return false;
806     }
807 
808     WorkList.insert(V);
809     return true;
810   };
811 
812   // Iterate through, and add to, a tree of operands and users in the use-def.
813   while (!WorkList.empty()) {
814     Value *V = WorkList.pop_back_val();
815     if (CurrentVisited.count(V))
816       continue;
817 
818     // Ignore non-instructions, other than arguments.
819     if (!isa<Instruction>(V) && !isSource(V))
820       continue;
821 
822     // If we've already visited this value from somewhere, bail now because
823     // the tree has already been explored.
824     // TODO: This could limit the transform, ie if we try to promote something
825     // from an i8 and fail first, before trying an i16.
826     if (AllVisited.count(V))
827       return false;
828 
829     CurrentVisited.insert(V);
830     AllVisited.insert(V);
831 
832     // Calls can be both sources and sinks.
833     if (isSink(V))
834       Sinks.insert(cast<Instruction>(V));
835 
836     if (isSource(V))
837       Sources.insert(V);
838 
839     if (!isSink(V) && !isSource(V)) {
840       if (auto *I = dyn_cast<Instruction>(V)) {
841         // Visit operands of any instruction visited.
842         for (auto &U : I->operands()) {
843           if (!AddLegalInst(U))
844             return false;
845         }
846       }
847     }
848 
849     // Don't visit users of a node which isn't going to be mutated unless its a
850     // source.
851     if (isSource(V) || shouldPromote(V)) {
852       for (Use &U : V->uses()) {
853         if (!AddLegalInst(U.getUser()))
854           return false;
855       }
856     }
857   }
858 
859   LLVM_DEBUG({
860     dbgs() << "IR Promotion: Visited nodes:\n";
861     for (auto *I : CurrentVisited)
862       I->dump();
863   });
864 
865   unsigned ToPromote = 0;
866   unsigned NonFreeArgs = 0;
867   unsigned NonLoopSources = 0, LoopSinks = 0;
868   SmallPtrSet<BasicBlock *, 4> Blocks;
869   for (auto *CV : CurrentVisited) {
870     if (auto *I = dyn_cast<Instruction>(CV))
871       Blocks.insert(I->getParent());
872 
873     if (Sources.count(CV)) {
874       if (auto *Arg = dyn_cast<Argument>(CV))
875         if (!Arg->hasZExtAttr() && !Arg->hasSExtAttr())
876           ++NonFreeArgs;
877       if (!isa<Instruction>(CV) ||
878           !LI.getLoopFor(cast<Instruction>(CV)->getParent()))
879         ++NonLoopSources;
880       continue;
881     }
882 
883     if (isa<PHINode>(CV))
884       continue;
885     if (LI.getLoopFor(cast<Instruction>(CV)->getParent()))
886       ++LoopSinks;
887     if (Sinks.count(cast<Instruction>(CV)))
888       continue;
889     ++ToPromote;
890   }
891 
892   // DAG optimizations should be able to handle these cases better, especially
893   // for function arguments.
894   if (!isa<PHINode>(V) && !(LoopSinks && NonLoopSources) &&
895       (ToPromote < 2 || (Blocks.size() == 1 && NonFreeArgs > SafeWrap.size())))
896     return false;
897 
898   IRPromoter Promoter(*Ctx, PromotedWidth, CurrentVisited, Sources, Sinks,
899                       SafeWrap, InstsToRemove);
900   Promoter.Mutate();
901   return true;
902 }
903 
904 bool TypePromotionImpl::run(Function &F, const TargetMachine *TM,
905                             const TargetTransformInfo &TTI,
906                             const LoopInfo &LI) {
907   if (DisablePromotion)
908     return false;
909 
910   LLVM_DEBUG(dbgs() << "IR Promotion: Running on " << F.getName() << "\n");
911 
912   AllVisited.clear();
913   SafeToPromote.clear();
914   SafeWrap.clear();
915   bool MadeChange = false;
916   const DataLayout &DL = F.getParent()->getDataLayout();
917   const TargetSubtargetInfo *SubtargetInfo = TM->getSubtargetImpl(F);
918   const TargetLowering *TLI = SubtargetInfo->getTargetLowering();
919   RegisterBitWidth =
920       TTI.getRegisterBitWidth(TargetTransformInfo::RGK_Scalar).getFixedValue();
921   Ctx = &F.getParent()->getContext();
922 
923   // Return the preferred integer width of the instruction, or zero if we
924   // shouldn't try.
925   auto GetPromoteWidth = [&](Instruction *I) -> uint32_t {
926     if (!isa<IntegerType>(I->getType()))
927       return 0;
928 
929     EVT SrcVT = TLI->getValueType(DL, I->getType());
930     if (SrcVT.isSimple() && TLI->isTypeLegal(SrcVT.getSimpleVT()))
931       return 0;
932 
933     if (TLI->getTypeAction(*Ctx, SrcVT) != TargetLowering::TypePromoteInteger)
934       return 0;
935 
936     EVT PromotedVT = TLI->getTypeToTransformTo(*Ctx, SrcVT);
937     if (RegisterBitWidth < PromotedVT.getFixedSizeInBits()) {
938       LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target register "
939                         << "for promoted type\n");
940       return 0;
941     }
942 
943     // TODO: Should we prefer to use RegisterBitWidth instead?
944     return PromotedVT.getFixedSizeInBits();
945   };
946 
947   auto BBIsInLoop = [&](BasicBlock *BB) -> bool {
948     for (auto *L : LI)
949       if (L->contains(BB))
950         return true;
951     return false;
952   };
953 
954   for (BasicBlock &BB : F) {
955     for (Instruction &I : BB) {
956       if (AllVisited.count(&I))
957         continue;
958 
959       if (isa<ZExtInst>(&I) && isa<PHINode>(I.getOperand(0)) &&
960           isa<IntegerType>(I.getType()) && BBIsInLoop(&BB)) {
961         LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: "
962                           << *I.getOperand(0) << "\n");
963         EVT ZExtVT = TLI->getValueType(DL, I.getType());
964         Instruction *Phi = static_cast<Instruction *>(I.getOperand(0));
965         auto PromoteWidth = ZExtVT.getFixedSizeInBits();
966         if (RegisterBitWidth < PromoteWidth) {
967           LLVM_DEBUG(dbgs() << "IR Promotion: Couldn't find target "
968                             << "register for ZExt type\n");
969           continue;
970         }
971         MadeChange |= TryToPromote(Phi, PromoteWidth, LI);
972       } else if (auto *ICmp = dyn_cast<ICmpInst>(&I)) {
973         // Search up from icmps to try to promote their operands.
974         // Skip signed or pointer compares
975         if (ICmp->isSigned())
976           continue;
977 
978         LLVM_DEBUG(dbgs() << "IR Promotion: Searching from: " << *ICmp << "\n");
979 
980         for (auto &Op : ICmp->operands()) {
981           if (auto *OpI = dyn_cast<Instruction>(Op)) {
982             if (auto PromotedWidth = GetPromoteWidth(OpI)) {
983               MadeChange |= TryToPromote(OpI, PromotedWidth, LI);
984               break;
985             }
986           }
987         }
988       }
989     }
990     if (!InstsToRemove.empty()) {
991       for (auto *I : InstsToRemove)
992         I->eraseFromParent();
993       InstsToRemove.clear();
994     }
995   }
996 
997   AllVisited.clear();
998   SafeToPromote.clear();
999   SafeWrap.clear();
1000 
1001   return MadeChange;
1002 }
1003 
1004 INITIALIZE_PASS_BEGIN(TypePromotionLegacy, DEBUG_TYPE, PASS_NAME, false, false)
1005 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
1006 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
1007 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
1008 INITIALIZE_PASS_END(TypePromotionLegacy, DEBUG_TYPE, PASS_NAME, false, false)
1009 
1010 char TypePromotionLegacy::ID = 0;
1011 
1012 bool TypePromotionLegacy::runOnFunction(Function &F) {
1013   if (skipFunction(F))
1014     return false;
1015 
1016   auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
1017   if (!TPC)
1018     return false;
1019 
1020   auto *TM = &TPC->getTM<TargetMachine>();
1021   auto &TTI = getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
1022   auto &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
1023 
1024   TypePromotionImpl TP;
1025   return TP.run(F, TM, TTI, LI);
1026 }
1027 
1028 FunctionPass *llvm::createTypePromotionLegacyPass() {
1029   return new TypePromotionLegacy();
1030 }
1031 
1032 PreservedAnalyses TypePromotionPass::run(Function &F,
1033                                          FunctionAnalysisManager &AM) {
1034   auto &TTI = AM.getResult<TargetIRAnalysis>(F);
1035   auto &LI = AM.getResult<LoopAnalysis>(F);
1036   TypePromotionImpl TP;
1037 
1038   bool Changed = TP.run(F, TM, TTI, LI);
1039   if (!Changed)
1040     return PreservedAnalyses::all();
1041 
1042   PreservedAnalyses PA;
1043   PA.preserveSet<CFGAnalyses>();
1044   PA.preserve<LoopAnalysis>();
1045   return PA;
1046 }
1047