1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervals.h" 37 #include "llvm/CodeGen/LiveVariables.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/Passes.h" 46 #include "llvm/CodeGen/SlotIndexes.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetOpcodes.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/MC/MCInstrDesc.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CodeGen.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <cassert> 60 #include <iterator> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "twoaddressinstruction" 66 67 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 68 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 69 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 70 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 71 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 72 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 73 74 // Temporary flag to disable rescheduling. 75 static cl::opt<bool> 76 EnableRescheduling("twoaddr-reschedule", 77 cl::desc("Coalesce copies by rescheduling (default=true)"), 78 cl::init(true), cl::Hidden); 79 80 // Limit the number of dataflow edges to traverse when evaluating the benefit 81 // of commuting operands. 82 static cl::opt<unsigned> MaxDataFlowEdge( 83 "dataflow-edge-limit", cl::Hidden, cl::init(3), 84 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 85 "the benefit of commuting operands")); 86 87 namespace { 88 89 class TwoAddressInstructionPass : public MachineFunctionPass { 90 MachineFunction *MF = nullptr; 91 const TargetInstrInfo *TII = nullptr; 92 const TargetRegisterInfo *TRI = nullptr; 93 const InstrItineraryData *InstrItins = nullptr; 94 MachineRegisterInfo *MRI = nullptr; 95 LiveVariables *LV = nullptr; 96 LiveIntervals *LIS = nullptr; 97 AliasAnalysis *AA = nullptr; 98 CodeGenOpt::Level OptLevel = CodeGenOpt::None; 99 100 // The current basic block being processed. 101 MachineBasicBlock *MBB = nullptr; 102 103 // Keep track the distance of a MI from the start of the current basic block. 104 DenseMap<MachineInstr*, unsigned> DistanceMap; 105 106 // Set of already processed instructions in the current block. 107 SmallPtrSet<MachineInstr*, 8> Processed; 108 109 // A map from virtual registers to physical registers which are likely targets 110 // to be coalesced to due to copies from physical registers to virtual 111 // registers. e.g. v1024 = move r0. 112 DenseMap<Register, Register> SrcRegMap; 113 114 // A map from virtual registers to physical registers which are likely targets 115 // to be coalesced to due to copies to physical registers from virtual 116 // registers. e.g. r1 = move v1024. 117 DenseMap<Register, Register> DstRegMap; 118 119 MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB) const; 120 121 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 122 123 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 124 125 bool isCopyToReg(MachineInstr &MI, Register &SrcReg, Register &DstReg, 126 bool &IsSrcPhys, bool &IsDstPhys) const; 127 128 bool isPlainlyKilled(const MachineInstr *MI, Register Reg) const; 129 bool isPlainlyKilled(const MachineOperand &MO) const; 130 131 bool isKilled(MachineInstr &MI, Register Reg, bool allowFalsePositives) const; 132 133 MachineInstr *findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 134 bool &IsCopy, Register &DstReg, 135 bool &IsDstPhys) const; 136 137 bool regsAreCompatible(Register RegA, Register RegB) const; 138 139 void removeMapRegEntry(const MachineOperand &MO, 140 DenseMap<Register, Register> &RegMap) const; 141 142 void removeClobberedSrcRegMap(MachineInstr *MI); 143 144 bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg) const; 145 146 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 147 MachineInstr *MI, unsigned Dist); 148 149 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 150 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 151 152 bool isProfitableToConv3Addr(Register RegA, Register RegB); 153 154 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 155 MachineBasicBlock::iterator &nmi, Register RegA, 156 Register RegB, unsigned &Dist); 157 158 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 159 160 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 161 MachineBasicBlock::iterator &nmi, Register Reg); 162 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 163 MachineBasicBlock::iterator &nmi, Register Reg); 164 165 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 166 MachineBasicBlock::iterator &nmi, 167 unsigned SrcIdx, unsigned DstIdx, 168 unsigned &Dist, bool shouldOnlyCommute); 169 170 bool tryInstructionCommute(MachineInstr *MI, 171 unsigned DstOpIdx, 172 unsigned BaseOpIdx, 173 bool BaseOpKilled, 174 unsigned Dist); 175 void scanUses(Register DstReg); 176 177 void processCopy(MachineInstr *MI); 178 179 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 180 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 181 182 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 183 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 184 void eliminateRegSequence(MachineBasicBlock::iterator&); 185 bool processStatepoint(MachineInstr *MI, TiedOperandMap &TiedOperands); 186 187 public: 188 static char ID; // Pass identification, replacement for typeid 189 190 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 191 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 192 } 193 194 void getAnalysisUsage(AnalysisUsage &AU) const override { 195 AU.setPreservesCFG(); 196 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 197 AU.addUsedIfAvailable<LiveVariables>(); 198 AU.addPreserved<LiveVariables>(); 199 AU.addPreserved<SlotIndexes>(); 200 AU.addPreserved<LiveIntervals>(); 201 AU.addPreservedID(MachineLoopInfoID); 202 AU.addPreservedID(MachineDominatorsID); 203 MachineFunctionPass::getAnalysisUsage(AU); 204 } 205 206 /// Pass entry point. 207 bool runOnMachineFunction(MachineFunction&) override; 208 }; 209 210 } // end anonymous namespace 211 212 char TwoAddressInstructionPass::ID = 0; 213 214 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 215 216 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 217 "Two-Address instruction pass", false, false) 218 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 219 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 220 "Two-Address instruction pass", false, false) 221 222 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 223 MachineInstr * 224 TwoAddressInstructionPass::getSingleDef(Register Reg, 225 MachineBasicBlock *BB) const { 226 MachineInstr *Ret = nullptr; 227 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 228 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 229 continue; 230 if (!Ret) 231 Ret = &DefMI; 232 else if (Ret != &DefMI) 233 return nullptr; 234 } 235 return Ret; 236 } 237 238 /// Check if there is a reversed copy chain from FromReg to ToReg: 239 /// %Tmp1 = copy %Tmp2; 240 /// %FromReg = copy %Tmp1; 241 /// %ToReg = add %FromReg ... 242 /// %Tmp2 = copy %ToReg; 243 /// MaxLen specifies the maximum length of the copy chain the func 244 /// can walk through. 245 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 246 int Maxlen) { 247 Register TmpReg = FromReg; 248 for (int i = 0; i < Maxlen; i++) { 249 MachineInstr *Def = getSingleDef(TmpReg, MBB); 250 if (!Def || !Def->isCopy()) 251 return false; 252 253 TmpReg = Def->getOperand(1).getReg(); 254 255 if (TmpReg == ToReg) 256 return true; 257 } 258 return false; 259 } 260 261 /// Return true if there are no intervening uses between the last instruction 262 /// in the MBB that defines the specified register and the two-address 263 /// instruction which is being processed. It also returns the last def location 264 /// by reference. 265 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 266 unsigned &LastDef) { 267 LastDef = 0; 268 unsigned LastUse = Dist; 269 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 270 MachineInstr *MI = MO.getParent(); 271 if (MI->getParent() != MBB || MI->isDebugValue()) 272 continue; 273 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 274 if (DI == DistanceMap.end()) 275 continue; 276 if (MO.isUse() && DI->second < LastUse) 277 LastUse = DI->second; 278 if (MO.isDef() && DI->second > LastDef) 279 LastDef = DI->second; 280 } 281 282 return !(LastUse > LastDef && LastUse < Dist); 283 } 284 285 /// Return true if the specified MI is a copy instruction or an extract_subreg 286 /// instruction. It also returns the source and destination registers and 287 /// whether they are physical registers by reference. 288 bool TwoAddressInstructionPass::isCopyToReg(MachineInstr &MI, Register &SrcReg, 289 Register &DstReg, bool &IsSrcPhys, 290 bool &IsDstPhys) const { 291 SrcReg = 0; 292 DstReg = 0; 293 if (MI.isCopy()) { 294 DstReg = MI.getOperand(0).getReg(); 295 SrcReg = MI.getOperand(1).getReg(); 296 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 297 DstReg = MI.getOperand(0).getReg(); 298 SrcReg = MI.getOperand(2).getReg(); 299 } else { 300 return false; 301 } 302 303 IsSrcPhys = SrcReg.isPhysical(); 304 IsDstPhys = DstReg.isPhysical(); 305 return true; 306 } 307 308 /// Test if the given register value, which is used by the 309 /// given instruction, is killed by the given instruction. 310 bool TwoAddressInstructionPass::isPlainlyKilled(const MachineInstr *MI, 311 Register Reg) const { 312 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 313 // FIXME: Sometimes tryInstructionTransform() will add instructions and 314 // test whether they can be folded before keeping them. In this case it 315 // sets a kill before recursively calling tryInstructionTransform() again. 316 // If there is no interval available, we assume that this instruction is 317 // one of those. A kill flag is manually inserted on the operand so the 318 // check below will handle it. 319 LiveInterval &LI = LIS->getInterval(Reg); 320 // This is to match the kill flag version where undefs don't have kill 321 // flags. 322 if (!LI.hasAtLeastOneValue()) 323 return false; 324 325 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 326 LiveInterval::const_iterator I = LI.find(useIdx); 327 assert(I != LI.end() && "Reg must be live-in to use."); 328 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 329 } 330 331 return MI->killsRegister(Reg); 332 } 333 334 /// Test if the register used by the given operand is killed by the operand's 335 /// instruction. 336 bool TwoAddressInstructionPass::isPlainlyKilled( 337 const MachineOperand &MO) const { 338 return MO.isKill() || isPlainlyKilled(MO.getParent(), MO.getReg()); 339 } 340 341 /// Test if the given register value, which is used by the given 342 /// instruction, is killed by the given instruction. This looks through 343 /// coalescable copies to see if the original value is potentially not killed. 344 /// 345 /// For example, in this code: 346 /// 347 /// %reg1034 = copy %reg1024 348 /// %reg1035 = copy killed %reg1025 349 /// %reg1036 = add killed %reg1034, killed %reg1035 350 /// 351 /// %reg1034 is not considered to be killed, since it is copied from a 352 /// register which is not killed. Treating it as not killed lets the 353 /// normal heuristics commute the (two-address) add, which lets 354 /// coalescing eliminate the extra copy. 355 /// 356 /// If allowFalsePositives is true then likely kills are treated as kills even 357 /// if it can't be proven that they are kills. 358 bool TwoAddressInstructionPass::isKilled(MachineInstr &MI, Register Reg, 359 bool allowFalsePositives) const { 360 MachineInstr *DefMI = &MI; 361 while (true) { 362 // All uses of physical registers are likely to be kills. 363 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 364 return true; 365 if (!isPlainlyKilled(DefMI, Reg)) 366 return false; 367 if (Reg.isPhysical()) 368 return true; 369 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 370 // If there are multiple defs, we can't do a simple analysis, so just 371 // go with what the kill flag says. 372 if (std::next(Begin) != MRI->def_end()) 373 return true; 374 DefMI = Begin->getParent(); 375 bool IsSrcPhys, IsDstPhys; 376 Register SrcReg, DstReg; 377 // If the def is something other than a copy, then it isn't going to 378 // be coalesced, so follow the kill flag. 379 if (!isCopyToReg(*DefMI, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 380 return true; 381 Reg = SrcReg; 382 } 383 } 384 385 /// Return true if the specified MI uses the specified register as a two-address 386 /// use. If so, return the destination register by reference. 387 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 388 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 389 const MachineOperand &MO = MI.getOperand(i); 390 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 391 continue; 392 unsigned ti; 393 if (MI.isRegTiedToDefOperand(i, &ti)) { 394 DstReg = MI.getOperand(ti).getReg(); 395 return true; 396 } 397 } 398 return false; 399 } 400 401 /// Given a register, if all its uses are in the same basic block, return the 402 /// last use instruction if it's a copy or a two-address use. 403 MachineInstr *TwoAddressInstructionPass::findOnlyInterestingUse( 404 Register Reg, MachineBasicBlock *MBB, bool &IsCopy, Register &DstReg, 405 bool &IsDstPhys) const { 406 MachineOperand *UseOp = nullptr; 407 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 408 MachineInstr *MI = MO.getParent(); 409 if (MI->getParent() != MBB) 410 return nullptr; 411 if (isPlainlyKilled(MI, Reg)) 412 UseOp = &MO; 413 } 414 if (!UseOp) 415 return nullptr; 416 MachineInstr &UseMI = *UseOp->getParent(); 417 418 Register SrcReg; 419 bool IsSrcPhys; 420 if (isCopyToReg(UseMI, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 421 IsCopy = true; 422 return &UseMI; 423 } 424 IsDstPhys = false; 425 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 426 IsDstPhys = DstReg.isPhysical(); 427 return &UseMI; 428 } 429 if (UseMI.isCommutable()) { 430 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex; 431 unsigned Src2 = UseOp->getOperandNo(); 432 if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) { 433 MachineOperand &MO = UseMI.getOperand(Src1); 434 if (MO.isReg() && MO.isUse() && 435 isTwoAddrUse(UseMI, MO.getReg(), DstReg)) { 436 IsDstPhys = DstReg.isPhysical(); 437 return &UseMI; 438 } 439 } 440 } 441 return nullptr; 442 } 443 444 /// Return the physical register the specified virtual register might be mapped 445 /// to. 446 static MCRegister getMappedReg(Register Reg, 447 DenseMap<Register, Register> &RegMap) { 448 while (Reg.isVirtual()) { 449 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 450 if (SI == RegMap.end()) 451 return 0; 452 Reg = SI->second; 453 } 454 if (Reg.isPhysical()) 455 return Reg; 456 return 0; 457 } 458 459 /// Return true if the two registers are equal or aliased. 460 bool TwoAddressInstructionPass::regsAreCompatible(Register RegA, 461 Register RegB) const { 462 if (RegA == RegB) 463 return true; 464 if (!RegA || !RegB) 465 return false; 466 return TRI->regsOverlap(RegA, RegB); 467 } 468 469 /// From RegMap remove entries mapped to a physical register which overlaps MO. 470 void TwoAddressInstructionPass::removeMapRegEntry( 471 const MachineOperand &MO, DenseMap<Register, Register> &RegMap) const { 472 assert( 473 (MO.isReg() || MO.isRegMask()) && 474 "removeMapRegEntry must be called with a register or regmask operand."); 475 476 SmallVector<Register, 2> Srcs; 477 for (auto SI : RegMap) { 478 Register ToReg = SI.second; 479 if (ToReg.isVirtual()) 480 continue; 481 482 if (MO.isReg()) { 483 Register Reg = MO.getReg(); 484 if (TRI->regsOverlap(ToReg, Reg)) 485 Srcs.push_back(SI.first); 486 } else if (MO.clobbersPhysReg(ToReg)) 487 Srcs.push_back(SI.first); 488 } 489 490 for (auto SrcReg : Srcs) 491 RegMap.erase(SrcReg); 492 } 493 494 /// If a physical register is clobbered, old entries mapped to it should be 495 /// deleted. For example 496 /// 497 /// %2:gr64 = COPY killed $rdx 498 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx 499 /// 500 /// After the MUL instruction, $rdx contains different value than in the COPY 501 /// instruction. So %2 should not map to $rdx after MUL. 502 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) { 503 if (MI->isCopy()) { 504 // If a virtual register is copied to its mapped physical register, it 505 // doesn't change the potential coalescing between them, so we don't remove 506 // entries mapped to the physical register. For example 507 // 508 // %100 = COPY $r8 509 // ... 510 // $r8 = COPY %100 511 // 512 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't 513 // destroy the content of $r8, and should not impact SrcRegMap. 514 Register Dst = MI->getOperand(0).getReg(); 515 if (!Dst || Dst.isVirtual()) 516 return; 517 518 Register Src = MI->getOperand(1).getReg(); 519 if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap))) 520 return; 521 } 522 523 for (const MachineOperand &MO : MI->operands()) { 524 if (MO.isRegMask()) { 525 removeMapRegEntry(MO, SrcRegMap); 526 continue; 527 } 528 if (!MO.isReg() || !MO.isDef()) 529 continue; 530 Register Reg = MO.getReg(); 531 if (!Reg || Reg.isVirtual()) 532 continue; 533 removeMapRegEntry(MO, SrcRegMap); 534 } 535 } 536 537 // Returns true if Reg is equal or aliased to at least one register in Set. 538 bool TwoAddressInstructionPass::regOverlapsSet( 539 const SmallVectorImpl<Register> &Set, Register Reg) const { 540 for (unsigned R : Set) 541 if (TRI->regsOverlap(R, Reg)) 542 return true; 543 544 return false; 545 } 546 547 /// Return true if it's potentially profitable to commute the two-address 548 /// instruction that's being processed. 549 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 550 Register RegB, 551 Register RegC, 552 MachineInstr *MI, 553 unsigned Dist) { 554 if (OptLevel == CodeGenOpt::None) 555 return false; 556 557 // Determine if it's profitable to commute this two address instruction. In 558 // general, we want no uses between this instruction and the definition of 559 // the two-address register. 560 // e.g. 561 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 562 // %reg1029 = COPY %reg1028 563 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 564 // insert => %reg1030 = COPY %reg1028 565 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 566 // In this case, it might not be possible to coalesce the second COPY 567 // instruction if the first one is coalesced. So it would be profitable to 568 // commute it: 569 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 570 // %reg1029 = COPY %reg1028 571 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 572 // insert => %reg1030 = COPY %reg1029 573 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 574 575 if (!isPlainlyKilled(MI, RegC)) 576 return false; 577 578 // Ok, we have something like: 579 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 580 // let's see if it's worth commuting it. 581 582 // Look for situations like this: 583 // %reg1024 = MOV r1 584 // %reg1025 = MOV r0 585 // %reg1026 = ADD %reg1024, %reg1025 586 // r0 = MOV %reg1026 587 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 588 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 589 if (ToRegA) { 590 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 591 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 592 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA); 593 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA); 594 595 // Compute if any of the following are true: 596 // -RegB is not tied to a register and RegC is compatible with RegA. 597 // -RegB is tied to the wrong physical register, but RegC is. 598 // -RegB is tied to the wrong physical register, and RegC isn't tied. 599 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 600 return true; 601 // Don't compute if any of the following are true: 602 // -RegC is not tied to a register and RegB is compatible with RegA. 603 // -RegC is tied to the wrong physical register, but RegB is. 604 // -RegC is tied to the wrong physical register, and RegB isn't tied. 605 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 606 return false; 607 } 608 609 // If there is a use of RegC between its last def (could be livein) and this 610 // instruction, then bail. 611 unsigned LastDefC = 0; 612 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 613 return false; 614 615 // If there is a use of RegB between its last def (could be livein) and this 616 // instruction, then go ahead and make this transformation. 617 unsigned LastDefB = 0; 618 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 619 return true; 620 621 // Look for situation like this: 622 // %reg101 = MOV %reg100 623 // %reg102 = ... 624 // %reg103 = ADD %reg102, %reg101 625 // ... = %reg103 ... 626 // %reg100 = MOV %reg103 627 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 628 // to eliminate an otherwise unavoidable copy. 629 // FIXME: 630 // We can extend the logic further: If an pair of operands in an insn has 631 // been merged, the insn could be regarded as a virtual copy, and the virtual 632 // copy could also be used to construct a copy chain. 633 // To more generally minimize register copies, ideally the logic of two addr 634 // instruction pass should be integrated with register allocation pass where 635 // interference graph is available. 636 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 637 return true; 638 639 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 640 return false; 641 642 // Look for other target specific commute preference. 643 bool Commute; 644 if (TII->hasCommutePreference(*MI, Commute)) 645 return Commute; 646 647 // Since there are no intervening uses for both registers, then commute 648 // if the def of RegC is closer. Its live interval is shorter. 649 return LastDefB && LastDefC && LastDefC > LastDefB; 650 } 651 652 /// Commute a two-address instruction and update the basic block, distance map, 653 /// and live variables if needed. Return true if it is successful. 654 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 655 unsigned DstIdx, 656 unsigned RegBIdx, 657 unsigned RegCIdx, 658 unsigned Dist) { 659 Register RegC = MI->getOperand(RegCIdx).getReg(); 660 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 661 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 662 663 if (NewMI == nullptr) { 664 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 665 return false; 666 } 667 668 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 669 assert(NewMI == MI && 670 "TargetInstrInfo::commuteInstruction() should not return a new " 671 "instruction unless it was requested."); 672 673 // Update source register map. 674 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 675 if (FromRegC) { 676 Register RegA = MI->getOperand(DstIdx).getReg(); 677 SrcRegMap[RegA] = FromRegC; 678 } 679 680 return true; 681 } 682 683 /// Return true if it is profitable to convert the given 2-address instruction 684 /// to a 3-address one. 685 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 686 Register RegB) { 687 // Look for situations like this: 688 // %reg1024 = MOV r1 689 // %reg1025 = MOV r0 690 // %reg1026 = ADD %reg1024, %reg1025 691 // r2 = MOV %reg1026 692 // Turn ADD into a 3-address instruction to avoid a copy. 693 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 694 if (!FromRegB) 695 return false; 696 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 697 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA)); 698 } 699 700 /// Convert the specified two-address instruction into a three address one. 701 /// Return true if this transformation was successful. 702 bool TwoAddressInstructionPass::convertInstTo3Addr( 703 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 704 Register RegA, Register RegB, unsigned &Dist) { 705 MachineInstrSpan MIS(mi, MBB); 706 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS); 707 if (!NewMI) 708 return false; 709 710 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 711 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 712 713 // If the old instruction is debug value tracked, an update is required. 714 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 715 assert(mi->getNumExplicitDefs() == 1); 716 assert(NewMI->getNumExplicitDefs() == 1); 717 718 // Find the old and new def location. 719 unsigned OldIdx = mi->defs().begin()->getOperandNo(); 720 unsigned NewIdx = NewMI->defs().begin()->getOperandNo(); 721 722 // Record that one def has been replaced by the other. 723 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 724 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 725 std::make_pair(NewInstrNum, NewIdx)); 726 } 727 728 MBB->erase(mi); // Nuke the old inst. 729 730 for (MachineInstr &MI : MIS) 731 DistanceMap.insert(std::make_pair(&MI, Dist++)); 732 Dist--; 733 mi = NewMI; 734 nmi = std::next(mi); 735 736 // Update source and destination register maps. 737 SrcRegMap.erase(RegA); 738 DstRegMap.erase(RegB); 739 return true; 740 } 741 742 /// Scan forward recursively for only uses, update maps if the use is a copy or 743 /// a two-address instruction. 744 void TwoAddressInstructionPass::scanUses(Register DstReg) { 745 SmallVector<Register, 4> VirtRegPairs; 746 bool IsDstPhys; 747 bool IsCopy = false; 748 Register NewReg; 749 Register Reg = DstReg; 750 while (MachineInstr *UseMI = 751 findOnlyInterestingUse(Reg, MBB, IsCopy, NewReg, IsDstPhys)) { 752 if (IsCopy && !Processed.insert(UseMI).second) 753 break; 754 755 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 756 if (DI != DistanceMap.end()) 757 // Earlier in the same MBB.Reached via a back edge. 758 break; 759 760 if (IsDstPhys) { 761 VirtRegPairs.push_back(NewReg); 762 break; 763 } 764 SrcRegMap[NewReg] = Reg; 765 VirtRegPairs.push_back(NewReg); 766 Reg = NewReg; 767 } 768 769 if (!VirtRegPairs.empty()) { 770 unsigned ToReg = VirtRegPairs.back(); 771 VirtRegPairs.pop_back(); 772 while (!VirtRegPairs.empty()) { 773 unsigned FromReg = VirtRegPairs.pop_back_val(); 774 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 775 if (!isNew) 776 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 777 ToReg = FromReg; 778 } 779 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 780 if (!isNew) 781 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 782 } 783 } 784 785 /// If the specified instruction is not yet processed, process it if it's a 786 /// copy. For a copy instruction, we find the physical registers the 787 /// source and destination registers might be mapped to. These are kept in 788 /// point-to maps used to determine future optimizations. e.g. 789 /// v1024 = mov r0 790 /// v1025 = mov r1 791 /// v1026 = add v1024, v1025 792 /// r1 = mov r1026 793 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 794 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 795 /// potentially joined with r1 on the output side. It's worthwhile to commute 796 /// 'add' to eliminate a copy. 797 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 798 if (Processed.count(MI)) 799 return; 800 801 bool IsSrcPhys, IsDstPhys; 802 Register SrcReg, DstReg; 803 if (!isCopyToReg(*MI, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 804 return; 805 806 if (IsDstPhys && !IsSrcPhys) { 807 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 808 } else if (!IsDstPhys && IsSrcPhys) { 809 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 810 if (!isNew) 811 assert(SrcRegMap[DstReg] == SrcReg && 812 "Can't map to two src physical registers!"); 813 814 scanUses(DstReg); 815 } 816 817 Processed.insert(MI); 818 } 819 820 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 821 /// consider moving the instruction below the kill instruction in order to 822 /// eliminate the need for the copy. 823 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 824 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 825 Register Reg) { 826 // Bail immediately if we don't have LV or LIS available. We use them to find 827 // kills efficiently. 828 if (!LV && !LIS) 829 return false; 830 831 MachineInstr *MI = &*mi; 832 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 833 if (DI == DistanceMap.end()) 834 // Must be created from unfolded load. Don't waste time trying this. 835 return false; 836 837 MachineInstr *KillMI = nullptr; 838 if (LIS) { 839 LiveInterval &LI = LIS->getInterval(Reg); 840 assert(LI.end() != LI.begin() && 841 "Reg should not have empty live interval."); 842 843 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 844 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 845 if (I != LI.end() && I->start < MBBEndIdx) 846 return false; 847 848 --I; 849 KillMI = LIS->getInstructionFromIndex(I->end); 850 } else { 851 KillMI = LV->getVarInfo(Reg).findKill(MBB); 852 } 853 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 854 // Don't mess with copies, they may be coalesced later. 855 return false; 856 857 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 858 KillMI->isBranch() || KillMI->isTerminator()) 859 // Don't move pass calls, etc. 860 return false; 861 862 Register DstReg; 863 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 864 return false; 865 866 bool SeenStore = true; 867 if (!MI->isSafeToMove(AA, SeenStore)) 868 return false; 869 870 if (TII->getInstrLatency(InstrItins, *MI) > 1) 871 // FIXME: Needs more sophisticated heuristics. 872 return false; 873 874 SmallVector<Register, 2> Uses; 875 SmallVector<Register, 2> Kills; 876 SmallVector<Register, 2> Defs; 877 for (const MachineOperand &MO : MI->operands()) { 878 if (!MO.isReg()) 879 continue; 880 Register MOReg = MO.getReg(); 881 if (!MOReg) 882 continue; 883 if (MO.isDef()) 884 Defs.push_back(MOReg); 885 else { 886 Uses.push_back(MOReg); 887 if (MOReg != Reg && isPlainlyKilled(MO)) 888 Kills.push_back(MOReg); 889 } 890 } 891 892 // Move the copies connected to MI down as well. 893 MachineBasicBlock::iterator Begin = MI; 894 MachineBasicBlock::iterator AfterMI = std::next(Begin); 895 MachineBasicBlock::iterator End = AfterMI; 896 while (End != MBB->end()) { 897 End = skipDebugInstructionsForward(End, MBB->end()); 898 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg())) 899 Defs.push_back(End->getOperand(0).getReg()); 900 else 901 break; 902 ++End; 903 } 904 905 // Check if the reschedule will not break dependencies. 906 unsigned NumVisited = 0; 907 MachineBasicBlock::iterator KillPos = KillMI; 908 ++KillPos; 909 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 910 // Debug or pseudo instructions cannot be counted against the limit. 911 if (OtherMI.isDebugOrPseudoInstr()) 912 continue; 913 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 914 return false; 915 ++NumVisited; 916 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 917 OtherMI.isBranch() || OtherMI.isTerminator()) 918 // Don't move pass calls, etc. 919 return false; 920 for (const MachineOperand &MO : OtherMI.operands()) { 921 if (!MO.isReg()) 922 continue; 923 Register MOReg = MO.getReg(); 924 if (!MOReg) 925 continue; 926 if (MO.isDef()) { 927 if (regOverlapsSet(Uses, MOReg)) 928 // Physical register use would be clobbered. 929 return false; 930 if (!MO.isDead() && regOverlapsSet(Defs, MOReg)) 931 // May clobber a physical register def. 932 // FIXME: This may be too conservative. It's ok if the instruction 933 // is sunken completely below the use. 934 return false; 935 } else { 936 if (regOverlapsSet(Defs, MOReg)) 937 return false; 938 bool isKill = isPlainlyKilled(MO); 939 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg)) || 940 regOverlapsSet(Kills, MOReg))) 941 // Don't want to extend other live ranges and update kills. 942 return false; 943 if (MOReg == Reg && !isKill) 944 // We can't schedule across a use of the register in question. 945 return false; 946 // Ensure that if this is register in question, its the kill we expect. 947 assert((MOReg != Reg || &OtherMI == KillMI) && 948 "Found multiple kills of a register in a basic block"); 949 } 950 } 951 } 952 953 // Move debug info as well. 954 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 955 --Begin; 956 957 nmi = End; 958 MachineBasicBlock::iterator InsertPos = KillPos; 959 if (LIS) { 960 // We have to move the copies (and any interleaved debug instructions) 961 // first so that the MBB is still well-formed when calling handleMove(). 962 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 963 auto CopyMI = MBBI++; 964 MBB->splice(InsertPos, MBB, CopyMI); 965 if (!CopyMI->isDebugOrPseudoInstr()) 966 LIS->handleMove(*CopyMI); 967 InsertPos = CopyMI; 968 } 969 End = std::next(MachineBasicBlock::iterator(MI)); 970 } 971 972 // Copies following MI may have been moved as well. 973 MBB->splice(InsertPos, MBB, Begin, End); 974 DistanceMap.erase(DI); 975 976 // Update live variables 977 if (LIS) { 978 LIS->handleMove(*MI); 979 } else { 980 LV->removeVirtualRegisterKilled(Reg, *KillMI); 981 LV->addVirtualRegisterKilled(Reg, *MI); 982 } 983 984 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 985 return true; 986 } 987 988 /// Return true if the re-scheduling will put the given instruction too close 989 /// to the defs of its register dependencies. 990 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 991 MachineInstr *MI) { 992 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 993 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 994 continue; 995 if (&DefMI == MI) 996 return true; // MI is defining something KillMI uses 997 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 998 if (DDI == DistanceMap.end()) 999 return true; // Below MI 1000 unsigned DefDist = DDI->second; 1001 assert(Dist > DefDist && "Visited def already?"); 1002 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 1003 return true; 1004 } 1005 return false; 1006 } 1007 1008 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 1009 /// consider moving the kill instruction above the current two-address 1010 /// instruction in order to eliminate the need for the copy. 1011 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 1012 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 1013 Register Reg) { 1014 // Bail immediately if we don't have LV or LIS available. We use them to find 1015 // kills efficiently. 1016 if (!LV && !LIS) 1017 return false; 1018 1019 MachineInstr *MI = &*mi; 1020 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1021 if (DI == DistanceMap.end()) 1022 // Must be created from unfolded load. Don't waste time trying this. 1023 return false; 1024 1025 MachineInstr *KillMI = nullptr; 1026 if (LIS) { 1027 LiveInterval &LI = LIS->getInterval(Reg); 1028 assert(LI.end() != LI.begin() && 1029 "Reg should not have empty live interval."); 1030 1031 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1032 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1033 if (I != LI.end() && I->start < MBBEndIdx) 1034 return false; 1035 1036 --I; 1037 KillMI = LIS->getInstructionFromIndex(I->end); 1038 } else { 1039 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1040 } 1041 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1042 // Don't mess with copies, they may be coalesced later. 1043 return false; 1044 1045 Register DstReg; 1046 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1047 return false; 1048 1049 bool SeenStore = true; 1050 if (!KillMI->isSafeToMove(AA, SeenStore)) 1051 return false; 1052 1053 SmallVector<Register, 2> Uses; 1054 SmallVector<Register, 2> Kills; 1055 SmallVector<Register, 2> Defs; 1056 SmallVector<Register, 2> LiveDefs; 1057 for (const MachineOperand &MO : KillMI->operands()) { 1058 if (!MO.isReg()) 1059 continue; 1060 Register MOReg = MO.getReg(); 1061 if (MO.isUse()) { 1062 if (!MOReg) 1063 continue; 1064 if (isDefTooClose(MOReg, DI->second, MI)) 1065 return false; 1066 bool isKill = isPlainlyKilled(MO); 1067 if (MOReg == Reg && !isKill) 1068 return false; 1069 Uses.push_back(MOReg); 1070 if (isKill && MOReg != Reg) 1071 Kills.push_back(MOReg); 1072 } else if (MOReg.isPhysical()) { 1073 Defs.push_back(MOReg); 1074 if (!MO.isDead()) 1075 LiveDefs.push_back(MOReg); 1076 } 1077 } 1078 1079 // Check if the reschedule will not break depedencies. 1080 unsigned NumVisited = 0; 1081 for (MachineInstr &OtherMI : 1082 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1083 // Debug or pseudo instructions cannot be counted against the limit. 1084 if (OtherMI.isDebugOrPseudoInstr()) 1085 continue; 1086 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1087 return false; 1088 ++NumVisited; 1089 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1090 OtherMI.isBranch() || OtherMI.isTerminator()) 1091 // Don't move pass calls, etc. 1092 return false; 1093 SmallVector<Register, 2> OtherDefs; 1094 for (const MachineOperand &MO : OtherMI.operands()) { 1095 if (!MO.isReg()) 1096 continue; 1097 Register MOReg = MO.getReg(); 1098 if (!MOReg) 1099 continue; 1100 if (MO.isUse()) { 1101 if (regOverlapsSet(Defs, MOReg)) 1102 // Moving KillMI can clobber the physical register if the def has 1103 // not been seen. 1104 return false; 1105 if (regOverlapsSet(Kills, MOReg)) 1106 // Don't want to extend other live ranges and update kills. 1107 return false; 1108 if (&OtherMI != MI && MOReg == Reg && !isPlainlyKilled(MO)) 1109 // We can't schedule across a use of the register in question. 1110 return false; 1111 } else { 1112 OtherDefs.push_back(MOReg); 1113 } 1114 } 1115 1116 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1117 Register MOReg = OtherDefs[i]; 1118 if (regOverlapsSet(Uses, MOReg)) 1119 return false; 1120 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg)) 1121 return false; 1122 // Physical register def is seen. 1123 llvm::erase_value(Defs, MOReg); 1124 } 1125 } 1126 1127 // Move the old kill above MI, don't forget to move debug info as well. 1128 MachineBasicBlock::iterator InsertPos = mi; 1129 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1130 --InsertPos; 1131 MachineBasicBlock::iterator From = KillMI; 1132 MachineBasicBlock::iterator To = std::next(From); 1133 while (std::prev(From)->isDebugInstr()) 1134 --From; 1135 MBB->splice(InsertPos, MBB, From, To); 1136 1137 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1138 DistanceMap.erase(DI); 1139 1140 // Update live variables 1141 if (LIS) { 1142 LIS->handleMove(*KillMI); 1143 } else { 1144 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1145 LV->addVirtualRegisterKilled(Reg, *MI); 1146 } 1147 1148 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1149 return true; 1150 } 1151 1152 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1153 /// given machine instruction to improve opportunities for coalescing and 1154 /// elimination of a register to register copy. 1155 /// 1156 /// 'DstOpIdx' specifies the index of MI def operand. 1157 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1158 /// operand is killed by the given instruction. 1159 /// The 'Dist' arguments provides the distance of MI from the start of the 1160 /// current basic block and it is used to determine if it is profitable 1161 /// to commute operands in the instruction. 1162 /// 1163 /// Returns true if the transformation happened. Otherwise, returns false. 1164 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1165 unsigned DstOpIdx, 1166 unsigned BaseOpIdx, 1167 bool BaseOpKilled, 1168 unsigned Dist) { 1169 if (!MI->isCommutable()) 1170 return false; 1171 1172 bool MadeChange = false; 1173 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1174 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1175 unsigned OpsNum = MI->getDesc().getNumOperands(); 1176 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1177 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1178 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1179 // and OtherOpIdx are commutable, it does not really search for 1180 // other commutable operands and does not change the values of passed 1181 // variables. 1182 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1183 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1184 continue; 1185 1186 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1187 bool AggressiveCommute = false; 1188 1189 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1190 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1191 bool OtherOpKilled = isKilled(*MI, OtherOpReg, false); 1192 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1193 1194 if (!DoCommute && 1195 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1196 DoCommute = true; 1197 AggressiveCommute = true; 1198 } 1199 1200 // If it's profitable to commute, try to do so. 1201 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1202 Dist)) { 1203 MadeChange = true; 1204 ++NumCommuted; 1205 if (AggressiveCommute) 1206 ++NumAggrCommuted; 1207 1208 // There might be more than two commutable operands, update BaseOp and 1209 // continue scanning. 1210 // FIXME: This assumes that the new instruction's operands are in the 1211 // same positions and were simply swapped. 1212 BaseOpReg = OtherOpReg; 1213 BaseOpKilled = OtherOpKilled; 1214 // Resamples OpsNum in case the number of operands was reduced. This 1215 // happens with X86. 1216 OpsNum = MI->getDesc().getNumOperands(); 1217 } 1218 } 1219 return MadeChange; 1220 } 1221 1222 /// For the case where an instruction has a single pair of tied register 1223 /// operands, attempt some transformations that may either eliminate the tied 1224 /// operands or improve the opportunities for coalescing away the register copy. 1225 /// Returns true if no copy needs to be inserted to untie mi's operands 1226 /// (either because they were untied, or because mi was rescheduled, and will 1227 /// be visited again later). If the shouldOnlyCommute flag is true, only 1228 /// instruction commutation is attempted. 1229 bool TwoAddressInstructionPass:: 1230 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1231 MachineBasicBlock::iterator &nmi, 1232 unsigned SrcIdx, unsigned DstIdx, 1233 unsigned &Dist, bool shouldOnlyCommute) { 1234 if (OptLevel == CodeGenOpt::None) 1235 return false; 1236 1237 MachineInstr &MI = *mi; 1238 Register regA = MI.getOperand(DstIdx).getReg(); 1239 Register regB = MI.getOperand(SrcIdx).getReg(); 1240 1241 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1242 bool regBKilled = isKilled(MI, regB, true); 1243 1244 if (regA.isVirtual()) 1245 scanUses(regA); 1246 1247 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1248 1249 // If the instruction is convertible to 3 Addr, instead 1250 // of returning try 3 Addr transformation aggressively and 1251 // use this variable to check later. Because it might be better. 1252 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1253 // instead of the following code. 1254 // addl %esi, %edi 1255 // movl %edi, %eax 1256 // ret 1257 if (Commuted && !MI.isConvertibleTo3Addr()) 1258 return false; 1259 1260 if (shouldOnlyCommute) 1261 return false; 1262 1263 // If there is one more use of regB later in the same MBB, consider 1264 // re-schedule this MI below it. 1265 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1266 ++NumReSchedDowns; 1267 return true; 1268 } 1269 1270 // If we commuted, regB may have changed so we should re-sample it to avoid 1271 // confusing the three address conversion below. 1272 if (Commuted) { 1273 regB = MI.getOperand(SrcIdx).getReg(); 1274 regBKilled = isKilled(MI, regB, true); 1275 } 1276 1277 if (MI.isConvertibleTo3Addr()) { 1278 // This instruction is potentially convertible to a true 1279 // three-address instruction. Check if it is profitable. 1280 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1281 // Try to convert it. 1282 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1283 ++NumConvertedTo3Addr; 1284 return true; // Done with this instruction. 1285 } 1286 } 1287 } 1288 1289 // Return if it is commuted but 3 addr conversion is failed. 1290 if (Commuted) 1291 return false; 1292 1293 // If there is one more use of regB later in the same MBB, consider 1294 // re-schedule it before this MI if it's legal. 1295 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1296 ++NumReSchedUps; 1297 return true; 1298 } 1299 1300 // If this is an instruction with a load folded into it, try unfolding 1301 // the load, e.g. avoid this: 1302 // movq %rdx, %rcx 1303 // addq (%rax), %rcx 1304 // in favor of this: 1305 // movq (%rax), %rcx 1306 // addq %rdx, %rcx 1307 // because it's preferable to schedule a load than a register copy. 1308 if (MI.mayLoad() && !regBKilled) { 1309 // Determine if a load can be unfolded. 1310 unsigned LoadRegIndex; 1311 unsigned NewOpc = 1312 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1313 /*UnfoldLoad=*/true, 1314 /*UnfoldStore=*/false, 1315 &LoadRegIndex); 1316 if (NewOpc != 0) { 1317 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1318 if (UnfoldMCID.getNumDefs() == 1) { 1319 // Unfold the load. 1320 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1321 const TargetRegisterClass *RC = 1322 TRI->getAllocatableClass( 1323 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1324 Register Reg = MRI->createVirtualRegister(RC); 1325 SmallVector<MachineInstr *, 2> NewMIs; 1326 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1327 /*UnfoldLoad=*/true, 1328 /*UnfoldStore=*/false, NewMIs)) { 1329 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1330 return false; 1331 } 1332 assert(NewMIs.size() == 2 && 1333 "Unfolded a load into multiple instructions!"); 1334 // The load was previously folded, so this is the only use. 1335 NewMIs[1]->addRegisterKilled(Reg, TRI); 1336 1337 // Tentatively insert the instructions into the block so that they 1338 // look "normal" to the transformation logic. 1339 MBB->insert(mi, NewMIs[0]); 1340 MBB->insert(mi, NewMIs[1]); 1341 DistanceMap.insert(std::make_pair(NewMIs[0], Dist++)); 1342 DistanceMap.insert(std::make_pair(NewMIs[1], Dist)); 1343 1344 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1345 << "2addr: NEW INST: " << *NewMIs[1]); 1346 1347 // Transform the instruction, now that it no longer has a load. 1348 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1349 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1350 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1351 bool TransformResult = 1352 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1353 (void)TransformResult; 1354 assert(!TransformResult && 1355 "tryInstructionTransform() should return false."); 1356 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1357 // Success, or at least we made an improvement. Keep the unfolded 1358 // instructions and discard the original. 1359 if (LV) { 1360 for (const MachineOperand &MO : MI.operands()) { 1361 if (MO.isReg() && MO.getReg().isVirtual()) { 1362 if (MO.isUse()) { 1363 if (MO.isKill()) { 1364 if (NewMIs[0]->killsRegister(MO.getReg())) 1365 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1366 else { 1367 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1368 "Kill missing after load unfold!"); 1369 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1370 } 1371 } 1372 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1373 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1374 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1375 else { 1376 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1377 "Dead flag missing after load unfold!"); 1378 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1379 } 1380 } 1381 } 1382 } 1383 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1384 } 1385 1386 SmallVector<Register, 4> OrigRegs; 1387 if (LIS) { 1388 for (const MachineOperand &MO : MI.operands()) { 1389 if (MO.isReg()) 1390 OrigRegs.push_back(MO.getReg()); 1391 } 1392 1393 LIS->RemoveMachineInstrFromMaps(MI); 1394 } 1395 1396 MI.eraseFromParent(); 1397 DistanceMap.erase(&MI); 1398 1399 // Update LiveIntervals. 1400 if (LIS) { 1401 MachineBasicBlock::iterator Begin(NewMIs[0]); 1402 MachineBasicBlock::iterator End(NewMIs[1]); 1403 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1404 } 1405 1406 mi = NewMIs[1]; 1407 } else { 1408 // Transforming didn't eliminate the tie and didn't lead to an 1409 // improvement. Clean up the unfolded instructions and keep the 1410 // original. 1411 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1412 NewMIs[0]->eraseFromParent(); 1413 NewMIs[1]->eraseFromParent(); 1414 DistanceMap.erase(NewMIs[0]); 1415 DistanceMap.erase(NewMIs[1]); 1416 Dist--; 1417 } 1418 } 1419 } 1420 } 1421 1422 return false; 1423 } 1424 1425 // Collect tied operands of MI that need to be handled. 1426 // Rewrite trivial cases immediately. 1427 // Return true if any tied operands where found, including the trivial ones. 1428 bool TwoAddressInstructionPass:: 1429 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1430 bool AnyOps = false; 1431 unsigned NumOps = MI->getNumOperands(); 1432 1433 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1434 unsigned DstIdx = 0; 1435 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1436 continue; 1437 AnyOps = true; 1438 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1439 MachineOperand &DstMO = MI->getOperand(DstIdx); 1440 Register SrcReg = SrcMO.getReg(); 1441 Register DstReg = DstMO.getReg(); 1442 // Tied constraint already satisfied? 1443 if (SrcReg == DstReg) 1444 continue; 1445 1446 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1447 1448 // Deal with undef uses immediately - simply rewrite the src operand. 1449 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1450 // Constrain the DstReg register class if required. 1451 if (DstReg.isVirtual()) { 1452 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 1453 MRI->constrainRegClass(DstReg, RC); 1454 } 1455 SrcMO.setReg(DstReg); 1456 SrcMO.setSubReg(0); 1457 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1458 continue; 1459 } 1460 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1461 } 1462 return AnyOps; 1463 } 1464 1465 // Process a list of tied MI operands that all use the same source register. 1466 // The tied pairs are of the form (SrcIdx, DstIdx). 1467 void 1468 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1469 TiedPairList &TiedPairs, 1470 unsigned &Dist) { 1471 bool IsEarlyClobber = llvm::any_of(TiedPairs, [MI](auto const &TP) { 1472 return MI->getOperand(TP.second).isEarlyClobber(); 1473 }); 1474 1475 bool RemovedKillFlag = false; 1476 bool AllUsesCopied = true; 1477 unsigned LastCopiedReg = 0; 1478 SlotIndex LastCopyIdx; 1479 Register RegB = 0; 1480 unsigned SubRegB = 0; 1481 for (auto &TP : TiedPairs) { 1482 unsigned SrcIdx = TP.first; 1483 unsigned DstIdx = TP.second; 1484 1485 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1486 Register RegA = DstMO.getReg(); 1487 1488 // Grab RegB from the instruction because it may have changed if the 1489 // instruction was commuted. 1490 RegB = MI->getOperand(SrcIdx).getReg(); 1491 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1492 1493 if (RegA == RegB) { 1494 // The register is tied to multiple destinations (or else we would 1495 // not have continued this far), but this use of the register 1496 // already matches the tied destination. Leave it. 1497 AllUsesCopied = false; 1498 continue; 1499 } 1500 LastCopiedReg = RegA; 1501 1502 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1503 1504 #ifndef NDEBUG 1505 // First, verify that we don't have a use of "a" in the instruction 1506 // (a = b + a for example) because our transformation will not 1507 // work. This should never occur because we are in SSA form. 1508 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1509 assert(i == DstIdx || 1510 !MI->getOperand(i).isReg() || 1511 MI->getOperand(i).getReg() != RegA); 1512 #endif 1513 1514 // Emit a copy. 1515 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1516 TII->get(TargetOpcode::COPY), RegA); 1517 // If this operand is folding a truncation, the truncation now moves to the 1518 // copy so that the register classes remain valid for the operands. 1519 MIB.addReg(RegB, 0, SubRegB); 1520 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1521 if (SubRegB) { 1522 if (RegA.isVirtual()) { 1523 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1524 SubRegB) && 1525 "tied subregister must be a truncation"); 1526 // The superreg class will not be used to constrain the subreg class. 1527 RC = nullptr; 1528 } else { 1529 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1530 && "tied subregister must be a truncation"); 1531 } 1532 } 1533 1534 // Update DistanceMap. 1535 MachineBasicBlock::iterator PrevMI = MI; 1536 --PrevMI; 1537 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1538 DistanceMap[MI] = ++Dist; 1539 1540 if (LIS) { 1541 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1542 1543 SlotIndex endIdx = 1544 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1545 if (RegA.isVirtual()) { 1546 LiveInterval &LI = LIS->getInterval(RegA); 1547 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1548 LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1549 for (auto &S : LI.subranges()) { 1550 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1551 S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1552 } 1553 } else { 1554 for (MCRegUnit Unit : TRI->regunits(RegA)) { 1555 if (LiveRange *LR = LIS->getCachedRegUnit(Unit)) { 1556 VNInfo *VNI = 1557 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1558 LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1559 } 1560 } 1561 } 1562 } 1563 1564 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1565 1566 MachineOperand &MO = MI->getOperand(SrcIdx); 1567 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1568 "inconsistent operand info for 2-reg pass"); 1569 if (MO.isKill()) { 1570 MO.setIsKill(false); 1571 RemovedKillFlag = true; 1572 } 1573 1574 // Make sure regA is a legal regclass for the SrcIdx operand. 1575 if (RegA.isVirtual() && RegB.isVirtual()) 1576 MRI->constrainRegClass(RegA, RC); 1577 MO.setReg(RegA); 1578 // The getMatchingSuper asserts guarantee that the register class projected 1579 // by SubRegB is compatible with RegA with no subregister. So regardless of 1580 // whether the dest oper writes a subreg, the source oper should not. 1581 MO.setSubReg(0); 1582 } 1583 1584 if (AllUsesCopied) { 1585 LaneBitmask RemainingUses = LaneBitmask::getNone(); 1586 // Replace other (un-tied) uses of regB with LastCopiedReg. 1587 for (MachineOperand &MO : MI->all_uses()) { 1588 if (MO.getReg() == RegB) { 1589 if (MO.getSubReg() == SubRegB && !IsEarlyClobber) { 1590 if (MO.isKill()) { 1591 MO.setIsKill(false); 1592 RemovedKillFlag = true; 1593 } 1594 MO.setReg(LastCopiedReg); 1595 MO.setSubReg(0); 1596 } else { 1597 RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1598 } 1599 } 1600 } 1601 1602 // Update live variables for regB. 1603 if (RemovedKillFlag && RemainingUses.none() && LV && 1604 LV->getVarInfo(RegB).removeKill(*MI)) { 1605 MachineBasicBlock::iterator PrevMI = MI; 1606 --PrevMI; 1607 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1608 } 1609 1610 if (RemovedKillFlag && RemainingUses.none()) 1611 SrcRegMap[LastCopiedReg] = RegB; 1612 1613 // Update LiveIntervals. 1614 if (LIS) { 1615 SlotIndex UseIdx = LIS->getInstructionIndex(*MI); 1616 auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) { 1617 LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx); 1618 if (!S) 1619 return true; 1620 if ((LaneMask & RemainingUses).any()) 1621 return false; 1622 if (S->end.getBaseIndex() != UseIdx) 1623 return false; 1624 S->end = LastCopyIdx; 1625 return true; 1626 }; 1627 1628 LiveInterval &LI = LIS->getInterval(RegB); 1629 bool ShrinkLI = true; 1630 for (auto &S : LI.subranges()) 1631 ShrinkLI &= Shrink(S, S.LaneMask); 1632 if (ShrinkLI) 1633 Shrink(LI, LaneBitmask::getAll()); 1634 } 1635 } else if (RemovedKillFlag) { 1636 // Some tied uses of regB matched their destination registers, so 1637 // regB is still used in this instruction, but a kill flag was 1638 // removed from a different tied use of regB, so now we need to add 1639 // a kill flag to one of the remaining uses of regB. 1640 for (MachineOperand &MO : MI->all_uses()) { 1641 if (MO.getReg() == RegB) { 1642 MO.setIsKill(true); 1643 break; 1644 } 1645 } 1646 } 1647 } 1648 1649 // For every tied operand pair this function transforms statepoint from 1650 // RegA = STATEPOINT ... RegB(tied-def N) 1651 // to 1652 // RegB = STATEPOINT ... RegB(tied-def N) 1653 // and replaces all uses of RegA with RegB. 1654 // No extra COPY instruction is necessary because tied use is killed at 1655 // STATEPOINT. 1656 bool TwoAddressInstructionPass::processStatepoint( 1657 MachineInstr *MI, TiedOperandMap &TiedOperands) { 1658 1659 bool NeedCopy = false; 1660 for (auto &TO : TiedOperands) { 1661 Register RegB = TO.first; 1662 if (TO.second.size() != 1) { 1663 NeedCopy = true; 1664 continue; 1665 } 1666 1667 unsigned SrcIdx = TO.second[0].first; 1668 unsigned DstIdx = TO.second[0].second; 1669 1670 MachineOperand &DstMO = MI->getOperand(DstIdx); 1671 Register RegA = DstMO.getReg(); 1672 1673 assert(RegB == MI->getOperand(SrcIdx).getReg()); 1674 1675 if (RegA == RegB) 1676 continue; 1677 1678 // CodeGenPrepare can sink pointer compare past statepoint, which 1679 // breaks assumption that statepoint kills tied-use register when 1680 // in SSA form (see note in IR/SafepointIRVerifier.cpp). Fall back 1681 // to generic tied register handling to avoid assertion failures. 1682 // TODO: Recompute LIS/LV information for new range here. 1683 if (LIS) { 1684 const auto &UseLI = LIS->getInterval(RegB); 1685 const auto &DefLI = LIS->getInterval(RegA); 1686 if (DefLI.overlaps(UseLI)) { 1687 LLVM_DEBUG(dbgs() << "LIS: " << printReg(RegB, TRI, 0) 1688 << " UseLI overlaps with DefLI\n"); 1689 NeedCopy = true; 1690 continue; 1691 } 1692 } else if (LV && LV->getVarInfo(RegB).findKill(MI->getParent()) != MI) { 1693 // Note that MachineOperand::isKill does not work here, because it 1694 // is set only on first register use in instruction and for statepoint 1695 // tied-use register will usually be found in preceeding deopt bundle. 1696 LLVM_DEBUG(dbgs() << "LV: " << printReg(RegB, TRI, 0) 1697 << " not killed by statepoint\n"); 1698 NeedCopy = true; 1699 continue; 1700 } 1701 1702 if (!MRI->constrainRegClass(RegB, MRI->getRegClass(RegA))) { 1703 LLVM_DEBUG(dbgs() << "MRI: couldn't constrain" << printReg(RegB, TRI, 0) 1704 << " to register class of " << printReg(RegA, TRI, 0) 1705 << '\n'); 1706 NeedCopy = true; 1707 continue; 1708 } 1709 MRI->replaceRegWith(RegA, RegB); 1710 1711 if (LIS) { 1712 VNInfo::Allocator &A = LIS->getVNInfoAllocator(); 1713 LiveInterval &LI = LIS->getInterval(RegB); 1714 LiveInterval &Other = LIS->getInterval(RegA); 1715 SmallVector<VNInfo *> NewVNIs; 1716 for (const VNInfo *VNI : Other.valnos) { 1717 assert(VNI->id == NewVNIs.size() && "assumed"); 1718 NewVNIs.push_back(LI.createValueCopy(VNI, A)); 1719 } 1720 for (auto &S : Other) { 1721 VNInfo *VNI = NewVNIs[S.valno->id]; 1722 LiveRange::Segment NewSeg(S.start, S.end, VNI); 1723 LI.addSegment(NewSeg); 1724 } 1725 LIS->removeInterval(RegA); 1726 } 1727 1728 if (LV) { 1729 if (MI->getOperand(SrcIdx).isKill()) 1730 LV->removeVirtualRegisterKilled(RegB, *MI); 1731 LiveVariables::VarInfo &SrcInfo = LV->getVarInfo(RegB); 1732 LiveVariables::VarInfo &DstInfo = LV->getVarInfo(RegA); 1733 SrcInfo.AliveBlocks |= DstInfo.AliveBlocks; 1734 DstInfo.AliveBlocks.clear(); 1735 for (auto *KillMI : DstInfo.Kills) 1736 LV->addVirtualRegisterKilled(RegB, *KillMI, false); 1737 } 1738 } 1739 return !NeedCopy; 1740 } 1741 1742 /// Reduce two-address instructions to two operands. 1743 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1744 MF = &Func; 1745 const TargetMachine &TM = MF->getTarget(); 1746 MRI = &MF->getRegInfo(); 1747 TII = MF->getSubtarget().getInstrInfo(); 1748 TRI = MF->getSubtarget().getRegisterInfo(); 1749 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1750 LV = getAnalysisIfAvailable<LiveVariables>(); 1751 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1752 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1753 AA = &AAPass->getAAResults(); 1754 else 1755 AA = nullptr; 1756 OptLevel = TM.getOptLevel(); 1757 // Disable optimizations if requested. We cannot skip the whole pass as some 1758 // fixups are necessary for correctness. 1759 if (skipFunction(Func.getFunction())) 1760 OptLevel = CodeGenOpt::None; 1761 1762 bool MadeChange = false; 1763 1764 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1765 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1766 1767 // This pass takes the function out of SSA form. 1768 MRI->leaveSSA(); 1769 1770 // This pass will rewrite the tied-def to meet the RegConstraint. 1771 MF->getProperties() 1772 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1773 1774 TiedOperandMap TiedOperands; 1775 for (MachineBasicBlock &MBBI : *MF) { 1776 MBB = &MBBI; 1777 unsigned Dist = 0; 1778 DistanceMap.clear(); 1779 SrcRegMap.clear(); 1780 DstRegMap.clear(); 1781 Processed.clear(); 1782 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1783 mi != me; ) { 1784 MachineBasicBlock::iterator nmi = std::next(mi); 1785 // Skip debug instructions. 1786 if (mi->isDebugInstr()) { 1787 mi = nmi; 1788 continue; 1789 } 1790 1791 // Expand REG_SEQUENCE instructions. This will position mi at the first 1792 // expanded instruction. 1793 if (mi->isRegSequence()) 1794 eliminateRegSequence(mi); 1795 1796 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1797 1798 processCopy(&*mi); 1799 1800 // First scan through all the tied register uses in this instruction 1801 // and record a list of pairs of tied operands for each register. 1802 if (!collectTiedOperands(&*mi, TiedOperands)) { 1803 removeClobberedSrcRegMap(&*mi); 1804 mi = nmi; 1805 continue; 1806 } 1807 1808 ++NumTwoAddressInstrs; 1809 MadeChange = true; 1810 LLVM_DEBUG(dbgs() << '\t' << *mi); 1811 1812 // If the instruction has a single pair of tied operands, try some 1813 // transformations that may either eliminate the tied operands or 1814 // improve the opportunities for coalescing away the register copy. 1815 if (TiedOperands.size() == 1) { 1816 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1817 = TiedOperands.begin()->second; 1818 if (TiedPairs.size() == 1) { 1819 unsigned SrcIdx = TiedPairs[0].first; 1820 unsigned DstIdx = TiedPairs[0].second; 1821 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1822 Register DstReg = mi->getOperand(DstIdx).getReg(); 1823 if (SrcReg != DstReg && 1824 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1825 // The tied operands have been eliminated or shifted further down 1826 // the block to ease elimination. Continue processing with 'nmi'. 1827 TiedOperands.clear(); 1828 removeClobberedSrcRegMap(&*mi); 1829 mi = nmi; 1830 continue; 1831 } 1832 } 1833 } 1834 1835 if (mi->getOpcode() == TargetOpcode::STATEPOINT && 1836 processStatepoint(&*mi, TiedOperands)) { 1837 TiedOperands.clear(); 1838 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1839 mi = nmi; 1840 continue; 1841 } 1842 1843 // Now iterate over the information collected above. 1844 for (auto &TO : TiedOperands) { 1845 processTiedPairs(&*mi, TO.second, Dist); 1846 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1847 } 1848 1849 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1850 if (mi->isInsertSubreg()) { 1851 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1852 // To %reg:subidx = COPY %subreg 1853 unsigned SubIdx = mi->getOperand(3).getImm(); 1854 mi->removeOperand(3); 1855 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1856 mi->getOperand(0).setSubReg(SubIdx); 1857 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1858 mi->removeOperand(1); 1859 mi->setDesc(TII->get(TargetOpcode::COPY)); 1860 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1861 1862 // Update LiveIntervals. 1863 if (LIS) { 1864 Register Reg = mi->getOperand(0).getReg(); 1865 LiveInterval &LI = LIS->getInterval(Reg); 1866 if (LI.hasSubRanges()) { 1867 // The COPY no longer defines subregs of %reg except for 1868 // %reg.subidx. 1869 LaneBitmask LaneMask = 1870 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg()); 1871 SlotIndex Idx = LIS->getInstructionIndex(*mi); 1872 for (auto &S : LI.subranges()) { 1873 if ((S.LaneMask & LaneMask).none()) { 1874 LiveRange::iterator UseSeg = S.FindSegmentContaining(Idx); 1875 LiveRange::iterator DefSeg = std::next(UseSeg); 1876 S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno); 1877 } 1878 } 1879 1880 // The COPY no longer has a use of %reg. 1881 LIS->shrinkToUses(&LI); 1882 } else { 1883 // The live interval for Reg did not have subranges but now it needs 1884 // them because we have introduced a subreg def. Recompute it. 1885 LIS->removeInterval(Reg); 1886 LIS->createAndComputeVirtRegInterval(Reg); 1887 } 1888 } 1889 } 1890 1891 // Clear TiedOperands here instead of at the top of the loop 1892 // since most instructions do not have tied operands. 1893 TiedOperands.clear(); 1894 removeClobberedSrcRegMap(&*mi); 1895 mi = nmi; 1896 } 1897 } 1898 1899 return MadeChange; 1900 } 1901 1902 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1903 /// 1904 /// The instruction is turned into a sequence of sub-register copies: 1905 /// 1906 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1907 /// 1908 /// Becomes: 1909 /// 1910 /// undef %dst:ssub0 = COPY %v1 1911 /// %dst:ssub1 = COPY %v2 1912 void TwoAddressInstructionPass:: 1913 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1914 MachineInstr &MI = *MBBI; 1915 Register DstReg = MI.getOperand(0).getReg(); 1916 1917 SmallVector<Register, 4> OrigRegs; 1918 if (LIS) { 1919 OrigRegs.push_back(MI.getOperand(0).getReg()); 1920 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1921 OrigRegs.push_back(MI.getOperand(i).getReg()); 1922 } 1923 1924 bool DefEmitted = false; 1925 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1926 MachineOperand &UseMO = MI.getOperand(i); 1927 Register SrcReg = UseMO.getReg(); 1928 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1929 // Nothing needs to be inserted for undef operands. 1930 if (UseMO.isUndef()) 1931 continue; 1932 1933 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1934 // might insert a COPY that uses SrcReg after is was killed. 1935 bool isKill = UseMO.isKill(); 1936 if (isKill) 1937 for (unsigned j = i + 2; j < e; j += 2) 1938 if (MI.getOperand(j).getReg() == SrcReg) { 1939 MI.getOperand(j).setIsKill(); 1940 UseMO.setIsKill(false); 1941 isKill = false; 1942 break; 1943 } 1944 1945 // Insert the sub-register copy. 1946 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1947 TII->get(TargetOpcode::COPY)) 1948 .addReg(DstReg, RegState::Define, SubIdx) 1949 .add(UseMO); 1950 1951 // The first def needs an undef flag because there is no live register 1952 // before it. 1953 if (!DefEmitted) { 1954 CopyMI->getOperand(0).setIsUndef(true); 1955 // Return an iterator pointing to the first inserted instr. 1956 MBBI = CopyMI; 1957 } 1958 DefEmitted = true; 1959 1960 // Update LiveVariables' kill info. 1961 if (LV && isKill && !SrcReg.isPhysical()) 1962 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1963 1964 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1965 } 1966 1967 MachineBasicBlock::iterator EndMBBI = 1968 std::next(MachineBasicBlock::iterator(MI)); 1969 1970 if (!DefEmitted) { 1971 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1972 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1973 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1974 MI.removeOperand(j); 1975 } else { 1976 if (LIS) 1977 LIS->RemoveMachineInstrFromMaps(MI); 1978 1979 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1980 MI.eraseFromParent(); 1981 } 1982 1983 // Udpate LiveIntervals. 1984 if (LIS) 1985 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1986 } 1987