1 //===- TwoAddressInstructionPass.cpp - Two-Address instruction pass -------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements the TwoAddress instruction pass which is used 10 // by most register allocators. Two-Address instructions are rewritten 11 // from: 12 // 13 // A = B op C 14 // 15 // to: 16 // 17 // A = B 18 // A op= C 19 // 20 // Note that if a register allocator chooses to use this pass, that it 21 // has to be capable of handling the non-SSA nature of these rewritten 22 // virtual registers. 23 // 24 // It is also worth noting that the duplicate operand of the two 25 // address instruction is removed. 26 // 27 //===----------------------------------------------------------------------===// 28 29 #include "llvm/ADT/DenseMap.h" 30 #include "llvm/ADT/SmallPtrSet.h" 31 #include "llvm/ADT/SmallVector.h" 32 #include "llvm/ADT/Statistic.h" 33 #include "llvm/ADT/iterator_range.h" 34 #include "llvm/Analysis/AliasAnalysis.h" 35 #include "llvm/CodeGen/LiveInterval.h" 36 #include "llvm/CodeGen/LiveIntervals.h" 37 #include "llvm/CodeGen/LiveVariables.h" 38 #include "llvm/CodeGen/MachineBasicBlock.h" 39 #include "llvm/CodeGen/MachineFunction.h" 40 #include "llvm/CodeGen/MachineFunctionPass.h" 41 #include "llvm/CodeGen/MachineInstr.h" 42 #include "llvm/CodeGen/MachineInstrBuilder.h" 43 #include "llvm/CodeGen/MachineOperand.h" 44 #include "llvm/CodeGen/MachineRegisterInfo.h" 45 #include "llvm/CodeGen/Passes.h" 46 #include "llvm/CodeGen/SlotIndexes.h" 47 #include "llvm/CodeGen/TargetInstrInfo.h" 48 #include "llvm/CodeGen/TargetOpcodes.h" 49 #include "llvm/CodeGen/TargetRegisterInfo.h" 50 #include "llvm/CodeGen/TargetSubtargetInfo.h" 51 #include "llvm/MC/MCInstrDesc.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/CodeGen.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/ErrorHandling.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include "llvm/Target/TargetMachine.h" 59 #include <cassert> 60 #include <iterator> 61 #include <utility> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "twoaddressinstruction" 66 67 STATISTIC(NumTwoAddressInstrs, "Number of two-address instructions"); 68 STATISTIC(NumCommuted , "Number of instructions commuted to coalesce"); 69 STATISTIC(NumAggrCommuted , "Number of instructions aggressively commuted"); 70 STATISTIC(NumConvertedTo3Addr, "Number of instructions promoted to 3-address"); 71 STATISTIC(NumReSchedUps, "Number of instructions re-scheduled up"); 72 STATISTIC(NumReSchedDowns, "Number of instructions re-scheduled down"); 73 74 // Temporary flag to disable rescheduling. 75 static cl::opt<bool> 76 EnableRescheduling("twoaddr-reschedule", 77 cl::desc("Coalesce copies by rescheduling (default=true)"), 78 cl::init(true), cl::Hidden); 79 80 // Limit the number of dataflow edges to traverse when evaluating the benefit 81 // of commuting operands. 82 static cl::opt<unsigned> MaxDataFlowEdge( 83 "dataflow-edge-limit", cl::Hidden, cl::init(3), 84 cl::desc("Maximum number of dataflow edges to traverse when evaluating " 85 "the benefit of commuting operands")); 86 87 namespace { 88 89 class TwoAddressInstructionPass : public MachineFunctionPass { 90 MachineFunction *MF; 91 const TargetInstrInfo *TII; 92 const TargetRegisterInfo *TRI; 93 const InstrItineraryData *InstrItins; 94 MachineRegisterInfo *MRI; 95 LiveVariables *LV; 96 LiveIntervals *LIS; 97 AliasAnalysis *AA; 98 CodeGenOpt::Level OptLevel; 99 100 // The current basic block being processed. 101 MachineBasicBlock *MBB; 102 103 // Keep track the distance of a MI from the start of the current basic block. 104 DenseMap<MachineInstr*, unsigned> DistanceMap; 105 106 // Set of already processed instructions in the current block. 107 SmallPtrSet<MachineInstr*, 8> Processed; 108 109 // A map from virtual registers to physical registers which are likely targets 110 // to be coalesced to due to copies from physical registers to virtual 111 // registers. e.g. v1024 = move r0. 112 DenseMap<Register, Register> SrcRegMap; 113 114 // A map from virtual registers to physical registers which are likely targets 115 // to be coalesced to due to copies to physical registers from virtual 116 // registers. e.g. r1 = move v1024. 117 DenseMap<Register, Register> DstRegMap; 118 119 void removeClobberedSrcRegMap(MachineInstr *MI); 120 121 bool isRevCopyChain(Register FromReg, Register ToReg, int Maxlen); 122 123 bool noUseAfterLastDef(Register Reg, unsigned Dist, unsigned &LastDef); 124 125 bool isProfitableToCommute(Register RegA, Register RegB, Register RegC, 126 MachineInstr *MI, unsigned Dist); 127 128 bool commuteInstruction(MachineInstr *MI, unsigned DstIdx, 129 unsigned RegBIdx, unsigned RegCIdx, unsigned Dist); 130 131 bool isProfitableToConv3Addr(Register RegA, Register RegB); 132 133 bool convertInstTo3Addr(MachineBasicBlock::iterator &mi, 134 MachineBasicBlock::iterator &nmi, Register RegA, 135 Register RegB, unsigned &Dist); 136 137 bool isDefTooClose(Register Reg, unsigned Dist, MachineInstr *MI); 138 139 bool rescheduleMIBelowKill(MachineBasicBlock::iterator &mi, 140 MachineBasicBlock::iterator &nmi, Register Reg); 141 bool rescheduleKillAboveMI(MachineBasicBlock::iterator &mi, 142 MachineBasicBlock::iterator &nmi, Register Reg); 143 144 bool tryInstructionTransform(MachineBasicBlock::iterator &mi, 145 MachineBasicBlock::iterator &nmi, 146 unsigned SrcIdx, unsigned DstIdx, 147 unsigned &Dist, bool shouldOnlyCommute); 148 149 bool tryInstructionCommute(MachineInstr *MI, 150 unsigned DstOpIdx, 151 unsigned BaseOpIdx, 152 bool BaseOpKilled, 153 unsigned Dist); 154 void scanUses(Register DstReg); 155 156 void processCopy(MachineInstr *MI); 157 158 using TiedPairList = SmallVector<std::pair<unsigned, unsigned>, 4>; 159 using TiedOperandMap = SmallDenseMap<unsigned, TiedPairList>; 160 161 bool collectTiedOperands(MachineInstr *MI, TiedOperandMap&); 162 void processTiedPairs(MachineInstr *MI, TiedPairList&, unsigned &Dist); 163 void eliminateRegSequence(MachineBasicBlock::iterator&); 164 bool processStatepoint(MachineInstr *MI, TiedOperandMap &TiedOperands); 165 166 public: 167 static char ID; // Pass identification, replacement for typeid 168 169 TwoAddressInstructionPass() : MachineFunctionPass(ID) { 170 initializeTwoAddressInstructionPassPass(*PassRegistry::getPassRegistry()); 171 } 172 173 void getAnalysisUsage(AnalysisUsage &AU) const override { 174 AU.setPreservesCFG(); 175 AU.addUsedIfAvailable<AAResultsWrapperPass>(); 176 AU.addUsedIfAvailable<LiveVariables>(); 177 AU.addPreserved<LiveVariables>(); 178 AU.addPreserved<SlotIndexes>(); 179 AU.addPreserved<LiveIntervals>(); 180 AU.addPreservedID(MachineLoopInfoID); 181 AU.addPreservedID(MachineDominatorsID); 182 MachineFunctionPass::getAnalysisUsage(AU); 183 } 184 185 /// Pass entry point. 186 bool runOnMachineFunction(MachineFunction&) override; 187 }; 188 189 } // end anonymous namespace 190 191 char TwoAddressInstructionPass::ID = 0; 192 193 char &llvm::TwoAddressInstructionPassID = TwoAddressInstructionPass::ID; 194 195 INITIALIZE_PASS_BEGIN(TwoAddressInstructionPass, DEBUG_TYPE, 196 "Two-Address instruction pass", false, false) 197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 198 INITIALIZE_PASS_END(TwoAddressInstructionPass, DEBUG_TYPE, 199 "Two-Address instruction pass", false, false) 200 201 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, LiveIntervals *LIS); 202 203 /// Return the MachineInstr* if it is the single def of the Reg in current BB. 204 static MachineInstr *getSingleDef(Register Reg, MachineBasicBlock *BB, 205 const MachineRegisterInfo *MRI) { 206 MachineInstr *Ret = nullptr; 207 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 208 if (DefMI.getParent() != BB || DefMI.isDebugValue()) 209 continue; 210 if (!Ret) 211 Ret = &DefMI; 212 else if (Ret != &DefMI) 213 return nullptr; 214 } 215 return Ret; 216 } 217 218 /// Check if there is a reversed copy chain from FromReg to ToReg: 219 /// %Tmp1 = copy %Tmp2; 220 /// %FromReg = copy %Tmp1; 221 /// %ToReg = add %FromReg ... 222 /// %Tmp2 = copy %ToReg; 223 /// MaxLen specifies the maximum length of the copy chain the func 224 /// can walk through. 225 bool TwoAddressInstructionPass::isRevCopyChain(Register FromReg, Register ToReg, 226 int Maxlen) { 227 Register TmpReg = FromReg; 228 for (int i = 0; i < Maxlen; i++) { 229 MachineInstr *Def = getSingleDef(TmpReg, MBB, MRI); 230 if (!Def || !Def->isCopy()) 231 return false; 232 233 TmpReg = Def->getOperand(1).getReg(); 234 235 if (TmpReg == ToReg) 236 return true; 237 } 238 return false; 239 } 240 241 /// Return true if there are no intervening uses between the last instruction 242 /// in the MBB that defines the specified register and the two-address 243 /// instruction which is being processed. It also returns the last def location 244 /// by reference. 245 bool TwoAddressInstructionPass::noUseAfterLastDef(Register Reg, unsigned Dist, 246 unsigned &LastDef) { 247 LastDef = 0; 248 unsigned LastUse = Dist; 249 for (MachineOperand &MO : MRI->reg_operands(Reg)) { 250 MachineInstr *MI = MO.getParent(); 251 if (MI->getParent() != MBB || MI->isDebugValue()) 252 continue; 253 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 254 if (DI == DistanceMap.end()) 255 continue; 256 if (MO.isUse() && DI->second < LastUse) 257 LastUse = DI->second; 258 if (MO.isDef() && DI->second > LastDef) 259 LastDef = DI->second; 260 } 261 262 return !(LastUse > LastDef && LastUse < Dist); 263 } 264 265 /// Return true if the specified MI is a copy instruction or an extract_subreg 266 /// instruction. It also returns the source and destination registers and 267 /// whether they are physical registers by reference. 268 static bool isCopyToReg(MachineInstr &MI, const TargetInstrInfo *TII, 269 Register &SrcReg, Register &DstReg, bool &IsSrcPhys, 270 bool &IsDstPhys) { 271 SrcReg = 0; 272 DstReg = 0; 273 if (MI.isCopy()) { 274 DstReg = MI.getOperand(0).getReg(); 275 SrcReg = MI.getOperand(1).getReg(); 276 } else if (MI.isInsertSubreg() || MI.isSubregToReg()) { 277 DstReg = MI.getOperand(0).getReg(); 278 SrcReg = MI.getOperand(2).getReg(); 279 } else { 280 return false; 281 } 282 283 IsSrcPhys = SrcReg.isPhysical(); 284 IsDstPhys = DstReg.isPhysical(); 285 return true; 286 } 287 288 /// Test if the given register value, which is used by the 289 /// given instruction, is killed by the given instruction. 290 static bool isPlainlyKilled(MachineInstr *MI, Register Reg, 291 LiveIntervals *LIS) { 292 if (LIS && Reg.isVirtual() && !LIS->isNotInMIMap(*MI)) { 293 // FIXME: Sometimes tryInstructionTransform() will add instructions and 294 // test whether they can be folded before keeping them. In this case it 295 // sets a kill before recursively calling tryInstructionTransform() again. 296 // If there is no interval available, we assume that this instruction is 297 // one of those. A kill flag is manually inserted on the operand so the 298 // check below will handle it. 299 LiveInterval &LI = LIS->getInterval(Reg); 300 // This is to match the kill flag version where undefs don't have kill 301 // flags. 302 if (!LI.hasAtLeastOneValue()) 303 return false; 304 305 SlotIndex useIdx = LIS->getInstructionIndex(*MI); 306 LiveInterval::const_iterator I = LI.find(useIdx); 307 assert(I != LI.end() && "Reg must be live-in to use."); 308 return !I->end.isBlock() && SlotIndex::isSameInstr(I->end, useIdx); 309 } 310 311 return MI->killsRegister(Reg); 312 } 313 314 /// Test if the given register value, which is used by the given 315 /// instruction, is killed by the given instruction. This looks through 316 /// coalescable copies to see if the original value is potentially not killed. 317 /// 318 /// For example, in this code: 319 /// 320 /// %reg1034 = copy %reg1024 321 /// %reg1035 = copy killed %reg1025 322 /// %reg1036 = add killed %reg1034, killed %reg1035 323 /// 324 /// %reg1034 is not considered to be killed, since it is copied from a 325 /// register which is not killed. Treating it as not killed lets the 326 /// normal heuristics commute the (two-address) add, which lets 327 /// coalescing eliminate the extra copy. 328 /// 329 /// If allowFalsePositives is true then likely kills are treated as kills even 330 /// if it can't be proven that they are kills. 331 static bool isKilled(MachineInstr &MI, Register Reg, 332 const MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 333 LiveIntervals *LIS, bool allowFalsePositives) { 334 MachineInstr *DefMI = &MI; 335 while (true) { 336 // All uses of physical registers are likely to be kills. 337 if (Reg.isPhysical() && (allowFalsePositives || MRI->hasOneUse(Reg))) 338 return true; 339 if (!isPlainlyKilled(DefMI, Reg, LIS)) 340 return false; 341 if (Reg.isPhysical()) 342 return true; 343 MachineRegisterInfo::def_iterator Begin = MRI->def_begin(Reg); 344 // If there are multiple defs, we can't do a simple analysis, so just 345 // go with what the kill flag says. 346 if (std::next(Begin) != MRI->def_end()) 347 return true; 348 DefMI = Begin->getParent(); 349 bool IsSrcPhys, IsDstPhys; 350 Register SrcReg, DstReg; 351 // If the def is something other than a copy, then it isn't going to 352 // be coalesced, so follow the kill flag. 353 if (!isCopyToReg(*DefMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 354 return true; 355 Reg = SrcReg; 356 } 357 } 358 359 /// Return true if the specified MI uses the specified register as a two-address 360 /// use. If so, return the destination register by reference. 361 static bool isTwoAddrUse(MachineInstr &MI, Register Reg, Register &DstReg) { 362 for (unsigned i = 0, NumOps = MI.getNumOperands(); i != NumOps; ++i) { 363 const MachineOperand &MO = MI.getOperand(i); 364 if (!MO.isReg() || !MO.isUse() || MO.getReg() != Reg) 365 continue; 366 unsigned ti; 367 if (MI.isRegTiedToDefOperand(i, &ti)) { 368 DstReg = MI.getOperand(ti).getReg(); 369 return true; 370 } 371 } 372 return false; 373 } 374 375 /// Given a register, if all its uses are in the same basic block, return the 376 /// last use instruction if it's a copy or a two-address use. 377 static MachineInstr * 378 findOnlyInterestingUse(Register Reg, MachineBasicBlock *MBB, 379 MachineRegisterInfo *MRI, const TargetInstrInfo *TII, 380 bool &IsCopy, Register &DstReg, bool &IsDstPhys, 381 LiveIntervals *LIS) { 382 MachineOperand *UseOp = nullptr; 383 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 384 MachineInstr *MI = MO.getParent(); 385 if (MI->getParent() != MBB) 386 return nullptr; 387 if (isPlainlyKilled(MI, Reg, LIS)) 388 UseOp = &MO; 389 } 390 if (!UseOp) 391 return nullptr; 392 MachineInstr &UseMI = *UseOp->getParent(); 393 394 Register SrcReg; 395 bool IsSrcPhys; 396 if (isCopyToReg(UseMI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) { 397 IsCopy = true; 398 return &UseMI; 399 } 400 IsDstPhys = false; 401 if (isTwoAddrUse(UseMI, Reg, DstReg)) { 402 IsDstPhys = DstReg.isPhysical(); 403 return &UseMI; 404 } 405 if (UseMI.isCommutable()) { 406 unsigned Src1 = TargetInstrInfo::CommuteAnyOperandIndex; 407 unsigned Src2 = UseOp->getOperandNo(); 408 if (TII->findCommutedOpIndices(UseMI, Src1, Src2)) { 409 MachineOperand &MO = UseMI.getOperand(Src1); 410 if (MO.isReg() && MO.isUse() && 411 isTwoAddrUse(UseMI, MO.getReg(), DstReg)) { 412 IsDstPhys = DstReg.isPhysical(); 413 return &UseMI; 414 } 415 } 416 } 417 return nullptr; 418 } 419 420 /// Return the physical register the specified virtual register might be mapped 421 /// to. 422 static MCRegister getMappedReg(Register Reg, 423 DenseMap<Register, Register> &RegMap) { 424 while (Reg.isVirtual()) { 425 DenseMap<Register, Register>::iterator SI = RegMap.find(Reg); 426 if (SI == RegMap.end()) 427 return 0; 428 Reg = SI->second; 429 } 430 if (Reg.isPhysical()) 431 return Reg; 432 return 0; 433 } 434 435 /// Return true if the two registers are equal or aliased. 436 static bool regsAreCompatible(Register RegA, Register RegB, 437 const TargetRegisterInfo *TRI) { 438 if (RegA == RegB) 439 return true; 440 if (!RegA || !RegB) 441 return false; 442 return TRI->regsOverlap(RegA, RegB); 443 } 444 445 /// From RegMap remove entries mapped to a physical register which overlaps MO. 446 static void removeMapRegEntry(const MachineOperand &MO, 447 DenseMap<Register, Register> &RegMap, 448 const TargetRegisterInfo *TRI) { 449 assert( 450 (MO.isReg() || MO.isRegMask()) && 451 "removeMapRegEntry must be called with a register or regmask operand."); 452 453 SmallVector<Register, 2> Srcs; 454 for (auto SI : RegMap) { 455 Register ToReg = SI.second; 456 if (ToReg.isVirtual()) 457 continue; 458 459 if (MO.isReg()) { 460 Register Reg = MO.getReg(); 461 if (TRI->regsOverlap(ToReg, Reg)) 462 Srcs.push_back(SI.first); 463 } else if (MO.clobbersPhysReg(ToReg)) 464 Srcs.push_back(SI.first); 465 } 466 467 for (auto SrcReg : Srcs) 468 RegMap.erase(SrcReg); 469 } 470 471 /// If a physical register is clobbered, old entries mapped to it should be 472 /// deleted. For example 473 /// 474 /// %2:gr64 = COPY killed $rdx 475 /// MUL64r %3:gr64, implicit-def $rax, implicit-def $rdx 476 /// 477 /// After the MUL instruction, $rdx contains different value than in the COPY 478 /// instruction. So %2 should not map to $rdx after MUL. 479 void TwoAddressInstructionPass::removeClobberedSrcRegMap(MachineInstr *MI) { 480 if (MI->isCopy()) { 481 // If a virtual register is copied to its mapped physical register, it 482 // doesn't change the potential coalescing between them, so we don't remove 483 // entries mapped to the physical register. For example 484 // 485 // %100 = COPY $r8 486 // ... 487 // $r8 = COPY %100 488 // 489 // The first copy constructs SrcRegMap[%100] = $r8, the second copy doesn't 490 // destroy the content of $r8, and should not impact SrcRegMap. 491 Register Dst = MI->getOperand(0).getReg(); 492 if (!Dst || Dst.isVirtual()) 493 return; 494 495 Register Src = MI->getOperand(1).getReg(); 496 if (regsAreCompatible(Dst, getMappedReg(Src, SrcRegMap), TRI)) 497 return; 498 } 499 500 for (const MachineOperand &MO : MI->operands()) { 501 if (MO.isRegMask()) { 502 removeMapRegEntry(MO, SrcRegMap, TRI); 503 continue; 504 } 505 if (!MO.isReg() || !MO.isDef()) 506 continue; 507 Register Reg = MO.getReg(); 508 if (!Reg || Reg.isVirtual()) 509 continue; 510 removeMapRegEntry(MO, SrcRegMap, TRI); 511 } 512 } 513 514 // Returns true if Reg is equal or aliased to at least one register in Set. 515 static bool regOverlapsSet(const SmallVectorImpl<Register> &Set, Register Reg, 516 const TargetRegisterInfo *TRI) { 517 for (unsigned R : Set) 518 if (TRI->regsOverlap(R, Reg)) 519 return true; 520 521 return false; 522 } 523 524 /// Return true if it's potentially profitable to commute the two-address 525 /// instruction that's being processed. 526 bool TwoAddressInstructionPass::isProfitableToCommute(Register RegA, 527 Register RegB, 528 Register RegC, 529 MachineInstr *MI, 530 unsigned Dist) { 531 if (OptLevel == CodeGenOpt::None) 532 return false; 533 534 // Determine if it's profitable to commute this two address instruction. In 535 // general, we want no uses between this instruction and the definition of 536 // the two-address register. 537 // e.g. 538 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 539 // %reg1029 = COPY %reg1028 540 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 541 // insert => %reg1030 = COPY %reg1028 542 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 543 // In this case, it might not be possible to coalesce the second COPY 544 // instruction if the first one is coalesced. So it would be profitable to 545 // commute it: 546 // %reg1028 = EXTRACT_SUBREG killed %reg1027, 1 547 // %reg1029 = COPY %reg1028 548 // %reg1029 = SHR8ri %reg1029, 7, implicit dead %eflags 549 // insert => %reg1030 = COPY %reg1029 550 // %reg1030 = ADD8rr killed %reg1029, killed %reg1028, implicit dead %eflags 551 552 if (!isPlainlyKilled(MI, RegC, LIS)) 553 return false; 554 555 // Ok, we have something like: 556 // %reg1030 = ADD8rr killed %reg1028, killed %reg1029, implicit dead %eflags 557 // let's see if it's worth commuting it. 558 559 // Look for situations like this: 560 // %reg1024 = MOV r1 561 // %reg1025 = MOV r0 562 // %reg1026 = ADD %reg1024, %reg1025 563 // r0 = MOV %reg1026 564 // Commute the ADD to hopefully eliminate an otherwise unavoidable copy. 565 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 566 if (ToRegA) { 567 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 568 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 569 bool CompB = FromRegB && regsAreCompatible(FromRegB, ToRegA, TRI); 570 bool CompC = FromRegC && regsAreCompatible(FromRegC, ToRegA, TRI); 571 572 // Compute if any of the following are true: 573 // -RegB is not tied to a register and RegC is compatible with RegA. 574 // -RegB is tied to the wrong physical register, but RegC is. 575 // -RegB is tied to the wrong physical register, and RegC isn't tied. 576 if ((!FromRegB && CompC) || (FromRegB && !CompB && (!FromRegC || CompC))) 577 return true; 578 // Don't compute if any of the following are true: 579 // -RegC is not tied to a register and RegB is compatible with RegA. 580 // -RegC is tied to the wrong physical register, but RegB is. 581 // -RegC is tied to the wrong physical register, and RegB isn't tied. 582 if ((!FromRegC && CompB) || (FromRegC && !CompC && (!FromRegB || CompB))) 583 return false; 584 } 585 586 // If there is a use of RegC between its last def (could be livein) and this 587 // instruction, then bail. 588 unsigned LastDefC = 0; 589 if (!noUseAfterLastDef(RegC, Dist, LastDefC)) 590 return false; 591 592 // If there is a use of RegB between its last def (could be livein) and this 593 // instruction, then go ahead and make this transformation. 594 unsigned LastDefB = 0; 595 if (!noUseAfterLastDef(RegB, Dist, LastDefB)) 596 return true; 597 598 // Look for situation like this: 599 // %reg101 = MOV %reg100 600 // %reg102 = ... 601 // %reg103 = ADD %reg102, %reg101 602 // ... = %reg103 ... 603 // %reg100 = MOV %reg103 604 // If there is a reversed copy chain from reg101 to reg103, commute the ADD 605 // to eliminate an otherwise unavoidable copy. 606 // FIXME: 607 // We can extend the logic further: If an pair of operands in an insn has 608 // been merged, the insn could be regarded as a virtual copy, and the virtual 609 // copy could also be used to construct a copy chain. 610 // To more generally minimize register copies, ideally the logic of two addr 611 // instruction pass should be integrated with register allocation pass where 612 // interference graph is available. 613 if (isRevCopyChain(RegC, RegA, MaxDataFlowEdge)) 614 return true; 615 616 if (isRevCopyChain(RegB, RegA, MaxDataFlowEdge)) 617 return false; 618 619 // Look for other target specific commute preference. 620 bool Commute; 621 if (TII->hasCommutePreference(*MI, Commute)) 622 return Commute; 623 624 // Since there are no intervening uses for both registers, then commute 625 // if the def of RegC is closer. Its live interval is shorter. 626 return LastDefB && LastDefC && LastDefC > LastDefB; 627 } 628 629 /// Commute a two-address instruction and update the basic block, distance map, 630 /// and live variables if needed. Return true if it is successful. 631 bool TwoAddressInstructionPass::commuteInstruction(MachineInstr *MI, 632 unsigned DstIdx, 633 unsigned RegBIdx, 634 unsigned RegCIdx, 635 unsigned Dist) { 636 Register RegC = MI->getOperand(RegCIdx).getReg(); 637 LLVM_DEBUG(dbgs() << "2addr: COMMUTING : " << *MI); 638 MachineInstr *NewMI = TII->commuteInstruction(*MI, false, RegBIdx, RegCIdx); 639 640 if (NewMI == nullptr) { 641 LLVM_DEBUG(dbgs() << "2addr: COMMUTING FAILED!\n"); 642 return false; 643 } 644 645 LLVM_DEBUG(dbgs() << "2addr: COMMUTED TO: " << *NewMI); 646 assert(NewMI == MI && 647 "TargetInstrInfo::commuteInstruction() should not return a new " 648 "instruction unless it was requested."); 649 650 // Update source register map. 651 MCRegister FromRegC = getMappedReg(RegC, SrcRegMap); 652 if (FromRegC) { 653 Register RegA = MI->getOperand(DstIdx).getReg(); 654 SrcRegMap[RegA] = FromRegC; 655 } 656 657 return true; 658 } 659 660 /// Return true if it is profitable to convert the given 2-address instruction 661 /// to a 3-address one. 662 bool TwoAddressInstructionPass::isProfitableToConv3Addr(Register RegA, 663 Register RegB) { 664 // Look for situations like this: 665 // %reg1024 = MOV r1 666 // %reg1025 = MOV r0 667 // %reg1026 = ADD %reg1024, %reg1025 668 // r2 = MOV %reg1026 669 // Turn ADD into a 3-address instruction to avoid a copy. 670 MCRegister FromRegB = getMappedReg(RegB, SrcRegMap); 671 if (!FromRegB) 672 return false; 673 MCRegister ToRegA = getMappedReg(RegA, DstRegMap); 674 return (ToRegA && !regsAreCompatible(FromRegB, ToRegA, TRI)); 675 } 676 677 /// Convert the specified two-address instruction into a three address one. 678 /// Return true if this transformation was successful. 679 bool TwoAddressInstructionPass::convertInstTo3Addr( 680 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 681 Register RegA, Register RegB, unsigned &Dist) { 682 MachineInstrSpan MIS(mi, MBB); 683 MachineInstr *NewMI = TII->convertToThreeAddress(*mi, LV, LIS); 684 if (!NewMI) 685 return false; 686 687 LLVM_DEBUG(dbgs() << "2addr: CONVERTING 2-ADDR: " << *mi); 688 LLVM_DEBUG(dbgs() << "2addr: TO 3-ADDR: " << *NewMI); 689 690 // If the old instruction is debug value tracked, an update is required. 691 if (auto OldInstrNum = mi->peekDebugInstrNum()) { 692 assert(mi->getNumExplicitDefs() == 1); 693 assert(NewMI->getNumExplicitDefs() == 1); 694 695 // Find the old and new def location. 696 unsigned OldIdx = mi->defs().begin()->getOperandNo(); 697 unsigned NewIdx = NewMI->defs().begin()->getOperandNo(); 698 699 // Record that one def has been replaced by the other. 700 unsigned NewInstrNum = NewMI->getDebugInstrNum(); 701 MF->makeDebugValueSubstitution(std::make_pair(OldInstrNum, OldIdx), 702 std::make_pair(NewInstrNum, NewIdx)); 703 } 704 705 MBB->erase(mi); // Nuke the old inst. 706 707 for (MachineInstr &MI : MIS) 708 DistanceMap.insert(std::make_pair(&MI, Dist++)); 709 Dist--; 710 mi = NewMI; 711 nmi = std::next(mi); 712 713 // Update source and destination register maps. 714 SrcRegMap.erase(RegA); 715 DstRegMap.erase(RegB); 716 return true; 717 } 718 719 /// Scan forward recursively for only uses, update maps if the use is a copy or 720 /// a two-address instruction. 721 void TwoAddressInstructionPass::scanUses(Register DstReg) { 722 SmallVector<Register, 4> VirtRegPairs; 723 bool IsDstPhys; 724 bool IsCopy = false; 725 Register NewReg; 726 Register Reg = DstReg; 727 while (MachineInstr *UseMI = findOnlyInterestingUse(Reg, MBB, MRI, TII,IsCopy, 728 NewReg, IsDstPhys, LIS)) { 729 if (IsCopy && !Processed.insert(UseMI).second) 730 break; 731 732 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(UseMI); 733 if (DI != DistanceMap.end()) 734 // Earlier in the same MBB.Reached via a back edge. 735 break; 736 737 if (IsDstPhys) { 738 VirtRegPairs.push_back(NewReg); 739 break; 740 } 741 SrcRegMap[NewReg] = Reg; 742 VirtRegPairs.push_back(NewReg); 743 Reg = NewReg; 744 } 745 746 if (!VirtRegPairs.empty()) { 747 unsigned ToReg = VirtRegPairs.back(); 748 VirtRegPairs.pop_back(); 749 while (!VirtRegPairs.empty()) { 750 unsigned FromReg = VirtRegPairs.pop_back_val(); 751 bool isNew = DstRegMap.insert(std::make_pair(FromReg, ToReg)).second; 752 if (!isNew) 753 assert(DstRegMap[FromReg] == ToReg &&"Can't map to two dst registers!"); 754 ToReg = FromReg; 755 } 756 bool isNew = DstRegMap.insert(std::make_pair(DstReg, ToReg)).second; 757 if (!isNew) 758 assert(DstRegMap[DstReg] == ToReg && "Can't map to two dst registers!"); 759 } 760 } 761 762 /// If the specified instruction is not yet processed, process it if it's a 763 /// copy. For a copy instruction, we find the physical registers the 764 /// source and destination registers might be mapped to. These are kept in 765 /// point-to maps used to determine future optimizations. e.g. 766 /// v1024 = mov r0 767 /// v1025 = mov r1 768 /// v1026 = add v1024, v1025 769 /// r1 = mov r1026 770 /// If 'add' is a two-address instruction, v1024, v1026 are both potentially 771 /// coalesced to r0 (from the input side). v1025 is mapped to r1. v1026 is 772 /// potentially joined with r1 on the output side. It's worthwhile to commute 773 /// 'add' to eliminate a copy. 774 void TwoAddressInstructionPass::processCopy(MachineInstr *MI) { 775 if (Processed.count(MI)) 776 return; 777 778 bool IsSrcPhys, IsDstPhys; 779 Register SrcReg, DstReg; 780 if (!isCopyToReg(*MI, TII, SrcReg, DstReg, IsSrcPhys, IsDstPhys)) 781 return; 782 783 if (IsDstPhys && !IsSrcPhys) { 784 DstRegMap.insert(std::make_pair(SrcReg, DstReg)); 785 } else if (!IsDstPhys && IsSrcPhys) { 786 bool isNew = SrcRegMap.insert(std::make_pair(DstReg, SrcReg)).second; 787 if (!isNew) 788 assert(SrcRegMap[DstReg] == SrcReg && 789 "Can't map to two src physical registers!"); 790 791 scanUses(DstReg); 792 } 793 794 Processed.insert(MI); 795 } 796 797 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 798 /// consider moving the instruction below the kill instruction in order to 799 /// eliminate the need for the copy. 800 bool TwoAddressInstructionPass::rescheduleMIBelowKill( 801 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 802 Register Reg) { 803 // Bail immediately if we don't have LV or LIS available. We use them to find 804 // kills efficiently. 805 if (!LV && !LIS) 806 return false; 807 808 MachineInstr *MI = &*mi; 809 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 810 if (DI == DistanceMap.end()) 811 // Must be created from unfolded load. Don't waste time trying this. 812 return false; 813 814 MachineInstr *KillMI = nullptr; 815 if (LIS) { 816 LiveInterval &LI = LIS->getInterval(Reg); 817 assert(LI.end() != LI.begin() && 818 "Reg should not have empty live interval."); 819 820 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 821 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 822 if (I != LI.end() && I->start < MBBEndIdx) 823 return false; 824 825 --I; 826 KillMI = LIS->getInstructionFromIndex(I->end); 827 } else { 828 KillMI = LV->getVarInfo(Reg).findKill(MBB); 829 } 830 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 831 // Don't mess with copies, they may be coalesced later. 832 return false; 833 834 if (KillMI->hasUnmodeledSideEffects() || KillMI->isCall() || 835 KillMI->isBranch() || KillMI->isTerminator()) 836 // Don't move pass calls, etc. 837 return false; 838 839 Register DstReg; 840 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 841 return false; 842 843 bool SeenStore = true; 844 if (!MI->isSafeToMove(AA, SeenStore)) 845 return false; 846 847 if (TII->getInstrLatency(InstrItins, *MI) > 1) 848 // FIXME: Needs more sophisticated heuristics. 849 return false; 850 851 SmallVector<Register, 2> Uses; 852 SmallVector<Register, 2> Kills; 853 SmallVector<Register, 2> Defs; 854 for (const MachineOperand &MO : MI->operands()) { 855 if (!MO.isReg()) 856 continue; 857 Register MOReg = MO.getReg(); 858 if (!MOReg) 859 continue; 860 if (MO.isDef()) 861 Defs.push_back(MOReg); 862 else { 863 Uses.push_back(MOReg); 864 if (MOReg != Reg && (MO.isKill() || 865 (LIS && isPlainlyKilled(MI, MOReg, LIS)))) 866 Kills.push_back(MOReg); 867 } 868 } 869 870 // Move the copies connected to MI down as well. 871 MachineBasicBlock::iterator Begin = MI; 872 MachineBasicBlock::iterator AfterMI = std::next(Begin); 873 MachineBasicBlock::iterator End = AfterMI; 874 while (End != MBB->end()) { 875 End = skipDebugInstructionsForward(End, MBB->end()); 876 if (End->isCopy() && regOverlapsSet(Defs, End->getOperand(1).getReg(), TRI)) 877 Defs.push_back(End->getOperand(0).getReg()); 878 else 879 break; 880 ++End; 881 } 882 883 // Check if the reschedule will not break dependencies. 884 unsigned NumVisited = 0; 885 MachineBasicBlock::iterator KillPos = KillMI; 886 ++KillPos; 887 for (MachineInstr &OtherMI : make_range(End, KillPos)) { 888 // Debug or pseudo instructions cannot be counted against the limit. 889 if (OtherMI.isDebugOrPseudoInstr()) 890 continue; 891 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 892 return false; 893 ++NumVisited; 894 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 895 OtherMI.isBranch() || OtherMI.isTerminator()) 896 // Don't move pass calls, etc. 897 return false; 898 for (const MachineOperand &MO : OtherMI.operands()) { 899 if (!MO.isReg()) 900 continue; 901 Register MOReg = MO.getReg(); 902 if (!MOReg) 903 continue; 904 if (MO.isDef()) { 905 if (regOverlapsSet(Uses, MOReg, TRI)) 906 // Physical register use would be clobbered. 907 return false; 908 if (!MO.isDead() && regOverlapsSet(Defs, MOReg, TRI)) 909 // May clobber a physical register def. 910 // FIXME: This may be too conservative. It's ok if the instruction 911 // is sunken completely below the use. 912 return false; 913 } else { 914 if (regOverlapsSet(Defs, MOReg, TRI)) 915 return false; 916 bool isKill = 917 MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)); 918 if (MOReg != Reg && ((isKill && regOverlapsSet(Uses, MOReg, TRI)) || 919 regOverlapsSet(Kills, MOReg, TRI))) 920 // Don't want to extend other live ranges and update kills. 921 return false; 922 if (MOReg == Reg && !isKill) 923 // We can't schedule across a use of the register in question. 924 return false; 925 // Ensure that if this is register in question, its the kill we expect. 926 assert((MOReg != Reg || &OtherMI == KillMI) && 927 "Found multiple kills of a register in a basic block"); 928 } 929 } 930 } 931 932 // Move debug info as well. 933 while (Begin != MBB->begin() && std::prev(Begin)->isDebugInstr()) 934 --Begin; 935 936 nmi = End; 937 MachineBasicBlock::iterator InsertPos = KillPos; 938 if (LIS) { 939 // We have to move the copies (and any interleaved debug instructions) 940 // first so that the MBB is still well-formed when calling handleMove(). 941 for (MachineBasicBlock::iterator MBBI = AfterMI; MBBI != End;) { 942 auto CopyMI = MBBI++; 943 MBB->splice(InsertPos, MBB, CopyMI); 944 if (!CopyMI->isDebugOrPseudoInstr()) 945 LIS->handleMove(*CopyMI); 946 InsertPos = CopyMI; 947 } 948 End = std::next(MachineBasicBlock::iterator(MI)); 949 } 950 951 // Copies following MI may have been moved as well. 952 MBB->splice(InsertPos, MBB, Begin, End); 953 DistanceMap.erase(DI); 954 955 // Update live variables 956 if (LIS) { 957 LIS->handleMove(*MI); 958 } else { 959 LV->removeVirtualRegisterKilled(Reg, *KillMI); 960 LV->addVirtualRegisterKilled(Reg, *MI); 961 } 962 963 LLVM_DEBUG(dbgs() << "\trescheduled below kill: " << *KillMI); 964 return true; 965 } 966 967 /// Return true if the re-scheduling will put the given instruction too close 968 /// to the defs of its register dependencies. 969 bool TwoAddressInstructionPass::isDefTooClose(Register Reg, unsigned Dist, 970 MachineInstr *MI) { 971 for (MachineInstr &DefMI : MRI->def_instructions(Reg)) { 972 if (DefMI.getParent() != MBB || DefMI.isCopy() || DefMI.isCopyLike()) 973 continue; 974 if (&DefMI == MI) 975 return true; // MI is defining something KillMI uses 976 DenseMap<MachineInstr*, unsigned>::iterator DDI = DistanceMap.find(&DefMI); 977 if (DDI == DistanceMap.end()) 978 return true; // Below MI 979 unsigned DefDist = DDI->second; 980 assert(Dist > DefDist && "Visited def already?"); 981 if (TII->getInstrLatency(InstrItins, DefMI) > (Dist - DefDist)) 982 return true; 983 } 984 return false; 985 } 986 987 /// If there is one more local instruction that reads 'Reg' and it kills 'Reg, 988 /// consider moving the kill instruction above the current two-address 989 /// instruction in order to eliminate the need for the copy. 990 bool TwoAddressInstructionPass::rescheduleKillAboveMI( 991 MachineBasicBlock::iterator &mi, MachineBasicBlock::iterator &nmi, 992 Register Reg) { 993 // Bail immediately if we don't have LV or LIS available. We use them to find 994 // kills efficiently. 995 if (!LV && !LIS) 996 return false; 997 998 MachineInstr *MI = &*mi; 999 DenseMap<MachineInstr*, unsigned>::iterator DI = DistanceMap.find(MI); 1000 if (DI == DistanceMap.end()) 1001 // Must be created from unfolded load. Don't waste time trying this. 1002 return false; 1003 1004 MachineInstr *KillMI = nullptr; 1005 if (LIS) { 1006 LiveInterval &LI = LIS->getInterval(Reg); 1007 assert(LI.end() != LI.begin() && 1008 "Reg should not have empty live interval."); 1009 1010 SlotIndex MBBEndIdx = LIS->getMBBEndIdx(MBB).getPrevSlot(); 1011 LiveInterval::const_iterator I = LI.find(MBBEndIdx); 1012 if (I != LI.end() && I->start < MBBEndIdx) 1013 return false; 1014 1015 --I; 1016 KillMI = LIS->getInstructionFromIndex(I->end); 1017 } else { 1018 KillMI = LV->getVarInfo(Reg).findKill(MBB); 1019 } 1020 if (!KillMI || MI == KillMI || KillMI->isCopy() || KillMI->isCopyLike()) 1021 // Don't mess with copies, they may be coalesced later. 1022 return false; 1023 1024 Register DstReg; 1025 if (isTwoAddrUse(*KillMI, Reg, DstReg)) 1026 return false; 1027 1028 bool SeenStore = true; 1029 if (!KillMI->isSafeToMove(AA, SeenStore)) 1030 return false; 1031 1032 SmallVector<Register, 2> Uses; 1033 SmallVector<Register, 2> Kills; 1034 SmallVector<Register, 2> Defs; 1035 SmallVector<Register, 2> LiveDefs; 1036 for (const MachineOperand &MO : KillMI->operands()) { 1037 if (!MO.isReg()) 1038 continue; 1039 Register MOReg = MO.getReg(); 1040 if (MO.isUse()) { 1041 if (!MOReg) 1042 continue; 1043 if (isDefTooClose(MOReg, DI->second, MI)) 1044 return false; 1045 bool isKill = MO.isKill() || (LIS && isPlainlyKilled(KillMI, MOReg, LIS)); 1046 if (MOReg == Reg && !isKill) 1047 return false; 1048 Uses.push_back(MOReg); 1049 if (isKill && MOReg != Reg) 1050 Kills.push_back(MOReg); 1051 } else if (MOReg.isPhysical()) { 1052 Defs.push_back(MOReg); 1053 if (!MO.isDead()) 1054 LiveDefs.push_back(MOReg); 1055 } 1056 } 1057 1058 // Check if the reschedule will not break depedencies. 1059 unsigned NumVisited = 0; 1060 for (MachineInstr &OtherMI : 1061 make_range(mi, MachineBasicBlock::iterator(KillMI))) { 1062 // Debug or pseudo instructions cannot be counted against the limit. 1063 if (OtherMI.isDebugOrPseudoInstr()) 1064 continue; 1065 if (NumVisited > 10) // FIXME: Arbitrary limit to reduce compile time cost. 1066 return false; 1067 ++NumVisited; 1068 if (OtherMI.hasUnmodeledSideEffects() || OtherMI.isCall() || 1069 OtherMI.isBranch() || OtherMI.isTerminator()) 1070 // Don't move pass calls, etc. 1071 return false; 1072 SmallVector<Register, 2> OtherDefs; 1073 for (const MachineOperand &MO : OtherMI.operands()) { 1074 if (!MO.isReg()) 1075 continue; 1076 Register MOReg = MO.getReg(); 1077 if (!MOReg) 1078 continue; 1079 if (MO.isUse()) { 1080 if (regOverlapsSet(Defs, MOReg, TRI)) 1081 // Moving KillMI can clobber the physical register if the def has 1082 // not been seen. 1083 return false; 1084 if (regOverlapsSet(Kills, MOReg, TRI)) 1085 // Don't want to extend other live ranges and update kills. 1086 return false; 1087 if (&OtherMI != MI && MOReg == Reg && 1088 !(MO.isKill() || (LIS && isPlainlyKilled(&OtherMI, MOReg, LIS)))) 1089 // We can't schedule across a use of the register in question. 1090 return false; 1091 } else { 1092 OtherDefs.push_back(MOReg); 1093 } 1094 } 1095 1096 for (unsigned i = 0, e = OtherDefs.size(); i != e; ++i) { 1097 Register MOReg = OtherDefs[i]; 1098 if (regOverlapsSet(Uses, MOReg, TRI)) 1099 return false; 1100 if (MOReg.isPhysical() && regOverlapsSet(LiveDefs, MOReg, TRI)) 1101 return false; 1102 // Physical register def is seen. 1103 llvm::erase_value(Defs, MOReg); 1104 } 1105 } 1106 1107 // Move the old kill above MI, don't forget to move debug info as well. 1108 MachineBasicBlock::iterator InsertPos = mi; 1109 while (InsertPos != MBB->begin() && std::prev(InsertPos)->isDebugInstr()) 1110 --InsertPos; 1111 MachineBasicBlock::iterator From = KillMI; 1112 MachineBasicBlock::iterator To = std::next(From); 1113 while (std::prev(From)->isDebugInstr()) 1114 --From; 1115 MBB->splice(InsertPos, MBB, From, To); 1116 1117 nmi = std::prev(InsertPos); // Backtrack so we process the moved instr. 1118 DistanceMap.erase(DI); 1119 1120 // Update live variables 1121 if (LIS) { 1122 LIS->handleMove(*KillMI); 1123 } else { 1124 LV->removeVirtualRegisterKilled(Reg, *KillMI); 1125 LV->addVirtualRegisterKilled(Reg, *MI); 1126 } 1127 1128 LLVM_DEBUG(dbgs() << "\trescheduled kill: " << *KillMI); 1129 return true; 1130 } 1131 1132 /// Tries to commute the operand 'BaseOpIdx' and some other operand in the 1133 /// given machine instruction to improve opportunities for coalescing and 1134 /// elimination of a register to register copy. 1135 /// 1136 /// 'DstOpIdx' specifies the index of MI def operand. 1137 /// 'BaseOpKilled' specifies if the register associated with 'BaseOpIdx' 1138 /// operand is killed by the given instruction. 1139 /// The 'Dist' arguments provides the distance of MI from the start of the 1140 /// current basic block and it is used to determine if it is profitable 1141 /// to commute operands in the instruction. 1142 /// 1143 /// Returns true if the transformation happened. Otherwise, returns false. 1144 bool TwoAddressInstructionPass::tryInstructionCommute(MachineInstr *MI, 1145 unsigned DstOpIdx, 1146 unsigned BaseOpIdx, 1147 bool BaseOpKilled, 1148 unsigned Dist) { 1149 if (!MI->isCommutable()) 1150 return false; 1151 1152 bool MadeChange = false; 1153 Register DstOpReg = MI->getOperand(DstOpIdx).getReg(); 1154 Register BaseOpReg = MI->getOperand(BaseOpIdx).getReg(); 1155 unsigned OpsNum = MI->getDesc().getNumOperands(); 1156 unsigned OtherOpIdx = MI->getDesc().getNumDefs(); 1157 for (; OtherOpIdx < OpsNum; OtherOpIdx++) { 1158 // The call of findCommutedOpIndices below only checks if BaseOpIdx 1159 // and OtherOpIdx are commutable, it does not really search for 1160 // other commutable operands and does not change the values of passed 1161 // variables. 1162 if (OtherOpIdx == BaseOpIdx || !MI->getOperand(OtherOpIdx).isReg() || 1163 !TII->findCommutedOpIndices(*MI, BaseOpIdx, OtherOpIdx)) 1164 continue; 1165 1166 Register OtherOpReg = MI->getOperand(OtherOpIdx).getReg(); 1167 bool AggressiveCommute = false; 1168 1169 // If OtherOp dies but BaseOp does not, swap the OtherOp and BaseOp 1170 // operands. This makes the live ranges of DstOp and OtherOp joinable. 1171 bool OtherOpKilled = isKilled(*MI, OtherOpReg, MRI, TII, LIS, false); 1172 bool DoCommute = !BaseOpKilled && OtherOpKilled; 1173 1174 if (!DoCommute && 1175 isProfitableToCommute(DstOpReg, BaseOpReg, OtherOpReg, MI, Dist)) { 1176 DoCommute = true; 1177 AggressiveCommute = true; 1178 } 1179 1180 // If it's profitable to commute, try to do so. 1181 if (DoCommute && commuteInstruction(MI, DstOpIdx, BaseOpIdx, OtherOpIdx, 1182 Dist)) { 1183 MadeChange = true; 1184 ++NumCommuted; 1185 if (AggressiveCommute) 1186 ++NumAggrCommuted; 1187 1188 // There might be more than two commutable operands, update BaseOp and 1189 // continue scanning. 1190 // FIXME: This assumes that the new instruction's operands are in the 1191 // same positions and were simply swapped. 1192 BaseOpReg = OtherOpReg; 1193 BaseOpKilled = OtherOpKilled; 1194 // Resamples OpsNum in case the number of operands was reduced. This 1195 // happens with X86. 1196 OpsNum = MI->getDesc().getNumOperands(); 1197 } 1198 } 1199 return MadeChange; 1200 } 1201 1202 /// For the case where an instruction has a single pair of tied register 1203 /// operands, attempt some transformations that may either eliminate the tied 1204 /// operands or improve the opportunities for coalescing away the register copy. 1205 /// Returns true if no copy needs to be inserted to untie mi's operands 1206 /// (either because they were untied, or because mi was rescheduled, and will 1207 /// be visited again later). If the shouldOnlyCommute flag is true, only 1208 /// instruction commutation is attempted. 1209 bool TwoAddressInstructionPass:: 1210 tryInstructionTransform(MachineBasicBlock::iterator &mi, 1211 MachineBasicBlock::iterator &nmi, 1212 unsigned SrcIdx, unsigned DstIdx, 1213 unsigned &Dist, bool shouldOnlyCommute) { 1214 if (OptLevel == CodeGenOpt::None) 1215 return false; 1216 1217 MachineInstr &MI = *mi; 1218 Register regA = MI.getOperand(DstIdx).getReg(); 1219 Register regB = MI.getOperand(SrcIdx).getReg(); 1220 1221 assert(regB.isVirtual() && "cannot make instruction into two-address form"); 1222 bool regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1223 1224 if (regA.isVirtual()) 1225 scanUses(regA); 1226 1227 bool Commuted = tryInstructionCommute(&MI, DstIdx, SrcIdx, regBKilled, Dist); 1228 1229 // If the instruction is convertible to 3 Addr, instead 1230 // of returning try 3 Addr transformation aggressively and 1231 // use this variable to check later. Because it might be better. 1232 // For example, we can just use `leal (%rsi,%rdi), %eax` and `ret` 1233 // instead of the following code. 1234 // addl %esi, %edi 1235 // movl %edi, %eax 1236 // ret 1237 if (Commuted && !MI.isConvertibleTo3Addr()) 1238 return false; 1239 1240 if (shouldOnlyCommute) 1241 return false; 1242 1243 // If there is one more use of regB later in the same MBB, consider 1244 // re-schedule this MI below it. 1245 if (!Commuted && EnableRescheduling && rescheduleMIBelowKill(mi, nmi, regB)) { 1246 ++NumReSchedDowns; 1247 return true; 1248 } 1249 1250 // If we commuted, regB may have changed so we should re-sample it to avoid 1251 // confusing the three address conversion below. 1252 if (Commuted) { 1253 regB = MI.getOperand(SrcIdx).getReg(); 1254 regBKilled = isKilled(MI, regB, MRI, TII, LIS, true); 1255 } 1256 1257 if (MI.isConvertibleTo3Addr()) { 1258 // This instruction is potentially convertible to a true 1259 // three-address instruction. Check if it is profitable. 1260 if (!regBKilled || isProfitableToConv3Addr(regA, regB)) { 1261 // Try to convert it. 1262 if (convertInstTo3Addr(mi, nmi, regA, regB, Dist)) { 1263 ++NumConvertedTo3Addr; 1264 return true; // Done with this instruction. 1265 } 1266 } 1267 } 1268 1269 // Return if it is commuted but 3 addr conversion is failed. 1270 if (Commuted) 1271 return false; 1272 1273 // If there is one more use of regB later in the same MBB, consider 1274 // re-schedule it before this MI if it's legal. 1275 if (EnableRescheduling && rescheduleKillAboveMI(mi, nmi, regB)) { 1276 ++NumReSchedUps; 1277 return true; 1278 } 1279 1280 // If this is an instruction with a load folded into it, try unfolding 1281 // the load, e.g. avoid this: 1282 // movq %rdx, %rcx 1283 // addq (%rax), %rcx 1284 // in favor of this: 1285 // movq (%rax), %rcx 1286 // addq %rdx, %rcx 1287 // because it's preferable to schedule a load than a register copy. 1288 if (MI.mayLoad() && !regBKilled) { 1289 // Determine if a load can be unfolded. 1290 unsigned LoadRegIndex; 1291 unsigned NewOpc = 1292 TII->getOpcodeAfterMemoryUnfold(MI.getOpcode(), 1293 /*UnfoldLoad=*/true, 1294 /*UnfoldStore=*/false, 1295 &LoadRegIndex); 1296 if (NewOpc != 0) { 1297 const MCInstrDesc &UnfoldMCID = TII->get(NewOpc); 1298 if (UnfoldMCID.getNumDefs() == 1) { 1299 // Unfold the load. 1300 LLVM_DEBUG(dbgs() << "2addr: UNFOLDING: " << MI); 1301 const TargetRegisterClass *RC = 1302 TRI->getAllocatableClass( 1303 TII->getRegClass(UnfoldMCID, LoadRegIndex, TRI, *MF)); 1304 Register Reg = MRI->createVirtualRegister(RC); 1305 SmallVector<MachineInstr *, 2> NewMIs; 1306 if (!TII->unfoldMemoryOperand(*MF, MI, Reg, 1307 /*UnfoldLoad=*/true, 1308 /*UnfoldStore=*/false, NewMIs)) { 1309 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1310 return false; 1311 } 1312 assert(NewMIs.size() == 2 && 1313 "Unfolded a load into multiple instructions!"); 1314 // The load was previously folded, so this is the only use. 1315 NewMIs[1]->addRegisterKilled(Reg, TRI); 1316 1317 // Tentatively insert the instructions into the block so that they 1318 // look "normal" to the transformation logic. 1319 MBB->insert(mi, NewMIs[0]); 1320 MBB->insert(mi, NewMIs[1]); 1321 DistanceMap.insert(std::make_pair(NewMIs[0], Dist++)); 1322 DistanceMap.insert(std::make_pair(NewMIs[1], Dist)); 1323 1324 LLVM_DEBUG(dbgs() << "2addr: NEW LOAD: " << *NewMIs[0] 1325 << "2addr: NEW INST: " << *NewMIs[1]); 1326 1327 // Transform the instruction, now that it no longer has a load. 1328 unsigned NewDstIdx = NewMIs[1]->findRegisterDefOperandIdx(regA); 1329 unsigned NewSrcIdx = NewMIs[1]->findRegisterUseOperandIdx(regB); 1330 MachineBasicBlock::iterator NewMI = NewMIs[1]; 1331 bool TransformResult = 1332 tryInstructionTransform(NewMI, mi, NewSrcIdx, NewDstIdx, Dist, true); 1333 (void)TransformResult; 1334 assert(!TransformResult && 1335 "tryInstructionTransform() should return false."); 1336 if (NewMIs[1]->getOperand(NewSrcIdx).isKill()) { 1337 // Success, or at least we made an improvement. Keep the unfolded 1338 // instructions and discard the original. 1339 if (LV) { 1340 for (const MachineOperand &MO : MI.operands()) { 1341 if (MO.isReg() && MO.getReg().isVirtual()) { 1342 if (MO.isUse()) { 1343 if (MO.isKill()) { 1344 if (NewMIs[0]->killsRegister(MO.getReg())) 1345 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[0]); 1346 else { 1347 assert(NewMIs[1]->killsRegister(MO.getReg()) && 1348 "Kill missing after load unfold!"); 1349 LV->replaceKillInstruction(MO.getReg(), MI, *NewMIs[1]); 1350 } 1351 } 1352 } else if (LV->removeVirtualRegisterDead(MO.getReg(), MI)) { 1353 if (NewMIs[1]->registerDefIsDead(MO.getReg())) 1354 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[1]); 1355 else { 1356 assert(NewMIs[0]->registerDefIsDead(MO.getReg()) && 1357 "Dead flag missing after load unfold!"); 1358 LV->addVirtualRegisterDead(MO.getReg(), *NewMIs[0]); 1359 } 1360 } 1361 } 1362 } 1363 LV->addVirtualRegisterKilled(Reg, *NewMIs[1]); 1364 } 1365 1366 SmallVector<Register, 4> OrigRegs; 1367 if (LIS) { 1368 for (const MachineOperand &MO : MI.operands()) { 1369 if (MO.isReg()) 1370 OrigRegs.push_back(MO.getReg()); 1371 } 1372 1373 LIS->RemoveMachineInstrFromMaps(MI); 1374 } 1375 1376 MI.eraseFromParent(); 1377 DistanceMap.erase(&MI); 1378 1379 // Update LiveIntervals. 1380 if (LIS) { 1381 MachineBasicBlock::iterator Begin(NewMIs[0]); 1382 MachineBasicBlock::iterator End(NewMIs[1]); 1383 LIS->repairIntervalsInRange(MBB, Begin, End, OrigRegs); 1384 } 1385 1386 mi = NewMIs[1]; 1387 } else { 1388 // Transforming didn't eliminate the tie and didn't lead to an 1389 // improvement. Clean up the unfolded instructions and keep the 1390 // original. 1391 LLVM_DEBUG(dbgs() << "2addr: ABANDONING UNFOLD\n"); 1392 NewMIs[0]->eraseFromParent(); 1393 NewMIs[1]->eraseFromParent(); 1394 DistanceMap.erase(NewMIs[0]); 1395 DistanceMap.erase(NewMIs[1]); 1396 Dist--; 1397 } 1398 } 1399 } 1400 } 1401 1402 return false; 1403 } 1404 1405 // Collect tied operands of MI that need to be handled. 1406 // Rewrite trivial cases immediately. 1407 // Return true if any tied operands where found, including the trivial ones. 1408 bool TwoAddressInstructionPass:: 1409 collectTiedOperands(MachineInstr *MI, TiedOperandMap &TiedOperands) { 1410 bool AnyOps = false; 1411 unsigned NumOps = MI->getNumOperands(); 1412 1413 for (unsigned SrcIdx = 0; SrcIdx < NumOps; ++SrcIdx) { 1414 unsigned DstIdx = 0; 1415 if (!MI->isRegTiedToDefOperand(SrcIdx, &DstIdx)) 1416 continue; 1417 AnyOps = true; 1418 MachineOperand &SrcMO = MI->getOperand(SrcIdx); 1419 MachineOperand &DstMO = MI->getOperand(DstIdx); 1420 Register SrcReg = SrcMO.getReg(); 1421 Register DstReg = DstMO.getReg(); 1422 // Tied constraint already satisfied? 1423 if (SrcReg == DstReg) 1424 continue; 1425 1426 assert(SrcReg && SrcMO.isUse() && "two address instruction invalid"); 1427 1428 // Deal with undef uses immediately - simply rewrite the src operand. 1429 if (SrcMO.isUndef() && !DstMO.getSubReg()) { 1430 // Constrain the DstReg register class if required. 1431 if (DstReg.isVirtual()) { 1432 const TargetRegisterClass *RC = MRI->getRegClass(SrcReg); 1433 MRI->constrainRegClass(DstReg, RC); 1434 } 1435 SrcMO.setReg(DstReg); 1436 SrcMO.setSubReg(0); 1437 LLVM_DEBUG(dbgs() << "\t\trewrite undef:\t" << *MI); 1438 continue; 1439 } 1440 TiedOperands[SrcReg].push_back(std::make_pair(SrcIdx, DstIdx)); 1441 } 1442 return AnyOps; 1443 } 1444 1445 // Process a list of tied MI operands that all use the same source register. 1446 // The tied pairs are of the form (SrcIdx, DstIdx). 1447 void 1448 TwoAddressInstructionPass::processTiedPairs(MachineInstr *MI, 1449 TiedPairList &TiedPairs, 1450 unsigned &Dist) { 1451 bool IsEarlyClobber = llvm::any_of(TiedPairs, [MI](auto const &TP) { 1452 return MI->getOperand(TP.second).isEarlyClobber(); 1453 }); 1454 1455 bool RemovedKillFlag = false; 1456 bool AllUsesCopied = true; 1457 unsigned LastCopiedReg = 0; 1458 SlotIndex LastCopyIdx; 1459 Register RegB = 0; 1460 unsigned SubRegB = 0; 1461 for (auto &TP : TiedPairs) { 1462 unsigned SrcIdx = TP.first; 1463 unsigned DstIdx = TP.second; 1464 1465 const MachineOperand &DstMO = MI->getOperand(DstIdx); 1466 Register RegA = DstMO.getReg(); 1467 1468 // Grab RegB from the instruction because it may have changed if the 1469 // instruction was commuted. 1470 RegB = MI->getOperand(SrcIdx).getReg(); 1471 SubRegB = MI->getOperand(SrcIdx).getSubReg(); 1472 1473 if (RegA == RegB) { 1474 // The register is tied to multiple destinations (or else we would 1475 // not have continued this far), but this use of the register 1476 // already matches the tied destination. Leave it. 1477 AllUsesCopied = false; 1478 continue; 1479 } 1480 LastCopiedReg = RegA; 1481 1482 assert(RegB.isVirtual() && "cannot make instruction into two-address form"); 1483 1484 #ifndef NDEBUG 1485 // First, verify that we don't have a use of "a" in the instruction 1486 // (a = b + a for example) because our transformation will not 1487 // work. This should never occur because we are in SSA form. 1488 for (unsigned i = 0; i != MI->getNumOperands(); ++i) 1489 assert(i == DstIdx || 1490 !MI->getOperand(i).isReg() || 1491 MI->getOperand(i).getReg() != RegA); 1492 #endif 1493 1494 // Emit a copy. 1495 MachineInstrBuilder MIB = BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), 1496 TII->get(TargetOpcode::COPY), RegA); 1497 // If this operand is folding a truncation, the truncation now moves to the 1498 // copy so that the register classes remain valid for the operands. 1499 MIB.addReg(RegB, 0, SubRegB); 1500 const TargetRegisterClass *RC = MRI->getRegClass(RegB); 1501 if (SubRegB) { 1502 if (RegA.isVirtual()) { 1503 assert(TRI->getMatchingSuperRegClass(RC, MRI->getRegClass(RegA), 1504 SubRegB) && 1505 "tied subregister must be a truncation"); 1506 // The superreg class will not be used to constrain the subreg class. 1507 RC = nullptr; 1508 } else { 1509 assert(TRI->getMatchingSuperReg(RegA, SubRegB, MRI->getRegClass(RegB)) 1510 && "tied subregister must be a truncation"); 1511 } 1512 } 1513 1514 // Update DistanceMap. 1515 MachineBasicBlock::iterator PrevMI = MI; 1516 --PrevMI; 1517 DistanceMap.insert(std::make_pair(&*PrevMI, Dist)); 1518 DistanceMap[MI] = ++Dist; 1519 1520 if (LIS) { 1521 LastCopyIdx = LIS->InsertMachineInstrInMaps(*PrevMI).getRegSlot(); 1522 1523 SlotIndex endIdx = 1524 LIS->getInstructionIndex(*MI).getRegSlot(IsEarlyClobber); 1525 if (RegA.isVirtual()) { 1526 LiveInterval &LI = LIS->getInterval(RegA); 1527 VNInfo *VNI = LI.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1528 LI.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1529 for (auto &S : LI.subranges()) { 1530 VNI = S.getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1531 S.addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1532 } 1533 } else { 1534 for (MCRegUnitIterator Unit(RegA, TRI); Unit.isValid(); ++Unit) { 1535 if (LiveRange *LR = LIS->getCachedRegUnit(*Unit)) { 1536 VNInfo *VNI = 1537 LR->getNextValue(LastCopyIdx, LIS->getVNInfoAllocator()); 1538 LR->addSegment(LiveRange::Segment(LastCopyIdx, endIdx, VNI)); 1539 } 1540 } 1541 } 1542 } 1543 1544 LLVM_DEBUG(dbgs() << "\t\tprepend:\t" << *MIB); 1545 1546 MachineOperand &MO = MI->getOperand(SrcIdx); 1547 assert(MO.isReg() && MO.getReg() == RegB && MO.isUse() && 1548 "inconsistent operand info for 2-reg pass"); 1549 if (MO.isKill()) { 1550 MO.setIsKill(false); 1551 RemovedKillFlag = true; 1552 } 1553 1554 // Make sure regA is a legal regclass for the SrcIdx operand. 1555 if (RegA.isVirtual() && RegB.isVirtual()) 1556 MRI->constrainRegClass(RegA, RC); 1557 MO.setReg(RegA); 1558 // The getMatchingSuper asserts guarantee that the register class projected 1559 // by SubRegB is compatible with RegA with no subregister. So regardless of 1560 // whether the dest oper writes a subreg, the source oper should not. 1561 MO.setSubReg(0); 1562 } 1563 1564 if (AllUsesCopied) { 1565 LaneBitmask RemainingUses = LaneBitmask::getNone(); 1566 // Replace other (un-tied) uses of regB with LastCopiedReg. 1567 for (MachineOperand &MO : MI->operands()) { 1568 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1569 if (MO.getSubReg() == SubRegB && !IsEarlyClobber) { 1570 if (MO.isKill()) { 1571 MO.setIsKill(false); 1572 RemovedKillFlag = true; 1573 } 1574 MO.setReg(LastCopiedReg); 1575 MO.setSubReg(0); 1576 } else { 1577 RemainingUses |= TRI->getSubRegIndexLaneMask(MO.getSubReg()); 1578 } 1579 } 1580 } 1581 1582 // Update live variables for regB. 1583 if (RemovedKillFlag && RemainingUses.none() && LV && 1584 LV->getVarInfo(RegB).removeKill(*MI)) { 1585 MachineBasicBlock::iterator PrevMI = MI; 1586 --PrevMI; 1587 LV->addVirtualRegisterKilled(RegB, *PrevMI); 1588 } 1589 1590 if (RemovedKillFlag && RemainingUses.none()) 1591 SrcRegMap[LastCopiedReg] = RegB; 1592 1593 // Update LiveIntervals. 1594 if (LIS) { 1595 SlotIndex UseIdx = LIS->getInstructionIndex(*MI); 1596 auto Shrink = [=](LiveRange &LR, LaneBitmask LaneMask) { 1597 LiveRange::Segment *S = LR.getSegmentContaining(LastCopyIdx); 1598 if (!S) 1599 return true; 1600 if ((LaneMask & RemainingUses).any()) 1601 return false; 1602 if (S->end.getBaseIndex() != UseIdx) 1603 return false; 1604 S->end = LastCopyIdx; 1605 return true; 1606 }; 1607 1608 LiveInterval &LI = LIS->getInterval(RegB); 1609 bool ShrinkLI = true; 1610 for (auto &S : LI.subranges()) 1611 ShrinkLI &= Shrink(S, S.LaneMask); 1612 if (ShrinkLI) 1613 Shrink(LI, LaneBitmask::getAll()); 1614 } 1615 } else if (RemovedKillFlag) { 1616 // Some tied uses of regB matched their destination registers, so 1617 // regB is still used in this instruction, but a kill flag was 1618 // removed from a different tied use of regB, so now we need to add 1619 // a kill flag to one of the remaining uses of regB. 1620 for (MachineOperand &MO : MI->operands()) { 1621 if (MO.isReg() && MO.getReg() == RegB && MO.isUse()) { 1622 MO.setIsKill(true); 1623 break; 1624 } 1625 } 1626 } 1627 } 1628 1629 // For every tied operand pair this function transforms statepoint from 1630 // RegA = STATEPOINT ... RegB(tied-def N) 1631 // to 1632 // RegB = STATEPOINT ... RegB(tied-def N) 1633 // and replaces all uses of RegA with RegB. 1634 // No extra COPY instruction is necessary because tied use is killed at 1635 // STATEPOINT. 1636 bool TwoAddressInstructionPass::processStatepoint( 1637 MachineInstr *MI, TiedOperandMap &TiedOperands) { 1638 1639 bool NeedCopy = false; 1640 for (auto &TO : TiedOperands) { 1641 Register RegB = TO.first; 1642 if (TO.second.size() != 1) { 1643 NeedCopy = true; 1644 continue; 1645 } 1646 1647 unsigned SrcIdx = TO.second[0].first; 1648 unsigned DstIdx = TO.second[0].second; 1649 1650 MachineOperand &DstMO = MI->getOperand(DstIdx); 1651 Register RegA = DstMO.getReg(); 1652 1653 assert(RegB == MI->getOperand(SrcIdx).getReg()); 1654 1655 if (RegA == RegB) 1656 continue; 1657 1658 // CodeGenPrepare can sink pointer compare past statepoint, which 1659 // breaks assumption that statepoint kills tied-use register when 1660 // in SSA form (see note in IR/SafepointIRVerifier.cpp). Fall back 1661 // to generic tied register handling to avoid assertion failures. 1662 // TODO: Recompute LIS/LV information for new range here. 1663 if (LIS) { 1664 const auto &UseLI = LIS->getInterval(RegB); 1665 const auto &DefLI = LIS->getInterval(RegA); 1666 if (DefLI.overlaps(UseLI)) { 1667 LLVM_DEBUG(dbgs() << "LIS: " << printReg(RegB, TRI, 0) 1668 << " UseLI overlaps with DefLI\n"); 1669 NeedCopy = true; 1670 continue; 1671 } 1672 } else if (LV && LV->getVarInfo(RegB).findKill(MI->getParent()) != MI) { 1673 // Note that MachineOperand::isKill does not work here, because it 1674 // is set only on first register use in instruction and for statepoint 1675 // tied-use register will usually be found in preceeding deopt bundle. 1676 LLVM_DEBUG(dbgs() << "LV: " << printReg(RegB, TRI, 0) 1677 << " not killed by statepoint\n"); 1678 NeedCopy = true; 1679 continue; 1680 } 1681 1682 if (!MRI->constrainRegClass(RegB, MRI->getRegClass(RegA))) { 1683 LLVM_DEBUG(dbgs() << "MRI: couldn't constrain" << printReg(RegB, TRI, 0) 1684 << " to register class of " << printReg(RegA, TRI, 0) 1685 << '\n'); 1686 NeedCopy = true; 1687 continue; 1688 } 1689 MRI->replaceRegWith(RegA, RegB); 1690 1691 if (LIS) { 1692 VNInfo::Allocator &A = LIS->getVNInfoAllocator(); 1693 LiveInterval &LI = LIS->getInterval(RegB); 1694 LiveInterval &Other = LIS->getInterval(RegA); 1695 SmallVector<VNInfo *> NewVNIs; 1696 for (const VNInfo *VNI : Other.valnos) { 1697 assert(VNI->id == NewVNIs.size() && "assumed"); 1698 NewVNIs.push_back(LI.createValueCopy(VNI, A)); 1699 } 1700 for (auto &S : Other) { 1701 VNInfo *VNI = NewVNIs[S.valno->id]; 1702 LiveRange::Segment NewSeg(S.start, S.end, VNI); 1703 LI.addSegment(NewSeg); 1704 } 1705 LIS->removeInterval(RegA); 1706 } 1707 1708 if (LV) { 1709 if (MI->getOperand(SrcIdx).isKill()) 1710 LV->removeVirtualRegisterKilled(RegB, *MI); 1711 LiveVariables::VarInfo &SrcInfo = LV->getVarInfo(RegB); 1712 LiveVariables::VarInfo &DstInfo = LV->getVarInfo(RegA); 1713 SrcInfo.AliveBlocks |= DstInfo.AliveBlocks; 1714 DstInfo.AliveBlocks.clear(); 1715 for (auto *KillMI : DstInfo.Kills) 1716 LV->addVirtualRegisterKilled(RegB, *KillMI, false); 1717 } 1718 } 1719 return !NeedCopy; 1720 } 1721 1722 /// Reduce two-address instructions to two operands. 1723 bool TwoAddressInstructionPass::runOnMachineFunction(MachineFunction &Func) { 1724 MF = &Func; 1725 const TargetMachine &TM = MF->getTarget(); 1726 MRI = &MF->getRegInfo(); 1727 TII = MF->getSubtarget().getInstrInfo(); 1728 TRI = MF->getSubtarget().getRegisterInfo(); 1729 InstrItins = MF->getSubtarget().getInstrItineraryData(); 1730 LV = getAnalysisIfAvailable<LiveVariables>(); 1731 LIS = getAnalysisIfAvailable<LiveIntervals>(); 1732 if (auto *AAPass = getAnalysisIfAvailable<AAResultsWrapperPass>()) 1733 AA = &AAPass->getAAResults(); 1734 else 1735 AA = nullptr; 1736 OptLevel = TM.getOptLevel(); 1737 // Disable optimizations if requested. We cannot skip the whole pass as some 1738 // fixups are necessary for correctness. 1739 if (skipFunction(Func.getFunction())) 1740 OptLevel = CodeGenOpt::None; 1741 1742 bool MadeChange = false; 1743 1744 LLVM_DEBUG(dbgs() << "********** REWRITING TWO-ADDR INSTRS **********\n"); 1745 LLVM_DEBUG(dbgs() << "********** Function: " << MF->getName() << '\n'); 1746 1747 // This pass takes the function out of SSA form. 1748 MRI->leaveSSA(); 1749 1750 // This pass will rewrite the tied-def to meet the RegConstraint. 1751 MF->getProperties() 1752 .set(MachineFunctionProperties::Property::TiedOpsRewritten); 1753 1754 TiedOperandMap TiedOperands; 1755 for (MachineBasicBlock &MBBI : *MF) { 1756 MBB = &MBBI; 1757 unsigned Dist = 0; 1758 DistanceMap.clear(); 1759 SrcRegMap.clear(); 1760 DstRegMap.clear(); 1761 Processed.clear(); 1762 for (MachineBasicBlock::iterator mi = MBB->begin(), me = MBB->end(); 1763 mi != me; ) { 1764 MachineBasicBlock::iterator nmi = std::next(mi); 1765 // Skip debug instructions. 1766 if (mi->isDebugInstr()) { 1767 mi = nmi; 1768 continue; 1769 } 1770 1771 // Expand REG_SEQUENCE instructions. This will position mi at the first 1772 // expanded instruction. 1773 if (mi->isRegSequence()) 1774 eliminateRegSequence(mi); 1775 1776 DistanceMap.insert(std::make_pair(&*mi, ++Dist)); 1777 1778 processCopy(&*mi); 1779 1780 // First scan through all the tied register uses in this instruction 1781 // and record a list of pairs of tied operands for each register. 1782 if (!collectTiedOperands(&*mi, TiedOperands)) { 1783 removeClobberedSrcRegMap(&*mi); 1784 mi = nmi; 1785 continue; 1786 } 1787 1788 ++NumTwoAddressInstrs; 1789 MadeChange = true; 1790 LLVM_DEBUG(dbgs() << '\t' << *mi); 1791 1792 // If the instruction has a single pair of tied operands, try some 1793 // transformations that may either eliminate the tied operands or 1794 // improve the opportunities for coalescing away the register copy. 1795 if (TiedOperands.size() == 1) { 1796 SmallVectorImpl<std::pair<unsigned, unsigned>> &TiedPairs 1797 = TiedOperands.begin()->second; 1798 if (TiedPairs.size() == 1) { 1799 unsigned SrcIdx = TiedPairs[0].first; 1800 unsigned DstIdx = TiedPairs[0].second; 1801 Register SrcReg = mi->getOperand(SrcIdx).getReg(); 1802 Register DstReg = mi->getOperand(DstIdx).getReg(); 1803 if (SrcReg != DstReg && 1804 tryInstructionTransform(mi, nmi, SrcIdx, DstIdx, Dist, false)) { 1805 // The tied operands have been eliminated or shifted further down 1806 // the block to ease elimination. Continue processing with 'nmi'. 1807 TiedOperands.clear(); 1808 removeClobberedSrcRegMap(&*mi); 1809 mi = nmi; 1810 continue; 1811 } 1812 } 1813 } 1814 1815 if (mi->getOpcode() == TargetOpcode::STATEPOINT && 1816 processStatepoint(&*mi, TiedOperands)) { 1817 TiedOperands.clear(); 1818 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1819 mi = nmi; 1820 continue; 1821 } 1822 1823 // Now iterate over the information collected above. 1824 for (auto &TO : TiedOperands) { 1825 processTiedPairs(&*mi, TO.second, Dist); 1826 LLVM_DEBUG(dbgs() << "\t\trewrite to:\t" << *mi); 1827 } 1828 1829 // Rewrite INSERT_SUBREG as COPY now that we no longer need SSA form. 1830 if (mi->isInsertSubreg()) { 1831 // From %reg = INSERT_SUBREG %reg, %subreg, subidx 1832 // To %reg:subidx = COPY %subreg 1833 unsigned SubIdx = mi->getOperand(3).getImm(); 1834 mi->removeOperand(3); 1835 assert(mi->getOperand(0).getSubReg() == 0 && "Unexpected subreg idx"); 1836 mi->getOperand(0).setSubReg(SubIdx); 1837 mi->getOperand(0).setIsUndef(mi->getOperand(1).isUndef()); 1838 mi->removeOperand(1); 1839 mi->setDesc(TII->get(TargetOpcode::COPY)); 1840 LLVM_DEBUG(dbgs() << "\t\tconvert to:\t" << *mi); 1841 1842 // Update LiveIntervals. 1843 if (LIS) { 1844 Register Reg = mi->getOperand(0).getReg(); 1845 LiveInterval &LI = LIS->getInterval(Reg); 1846 if (LI.hasSubRanges()) { 1847 // The COPY no longer defines subregs of %reg except for 1848 // %reg.subidx. 1849 LaneBitmask LaneMask = 1850 TRI->getSubRegIndexLaneMask(mi->getOperand(0).getSubReg()); 1851 SlotIndex Idx = LIS->getInstructionIndex(*mi); 1852 for (auto &S : LI.subranges()) { 1853 if ((S.LaneMask & LaneMask).none()) { 1854 LiveRange::iterator UseSeg = S.FindSegmentContaining(Idx); 1855 LiveRange::iterator DefSeg = std::next(UseSeg); 1856 S.MergeValueNumberInto(DefSeg->valno, UseSeg->valno); 1857 } 1858 } 1859 1860 // The COPY no longer has a use of %reg. 1861 LIS->shrinkToUses(&LI); 1862 } else { 1863 // The live interval for Reg did not have subranges but now it needs 1864 // them because we have introduced a subreg def. Recompute it. 1865 LIS->removeInterval(Reg); 1866 LIS->createAndComputeVirtRegInterval(Reg); 1867 } 1868 } 1869 } 1870 1871 // Clear TiedOperands here instead of at the top of the loop 1872 // since most instructions do not have tied operands. 1873 TiedOperands.clear(); 1874 removeClobberedSrcRegMap(&*mi); 1875 mi = nmi; 1876 } 1877 } 1878 1879 return MadeChange; 1880 } 1881 1882 /// Eliminate a REG_SEQUENCE instruction as part of the de-ssa process. 1883 /// 1884 /// The instruction is turned into a sequence of sub-register copies: 1885 /// 1886 /// %dst = REG_SEQUENCE %v1, ssub0, %v2, ssub1 1887 /// 1888 /// Becomes: 1889 /// 1890 /// undef %dst:ssub0 = COPY %v1 1891 /// %dst:ssub1 = COPY %v2 1892 void TwoAddressInstructionPass:: 1893 eliminateRegSequence(MachineBasicBlock::iterator &MBBI) { 1894 MachineInstr &MI = *MBBI; 1895 Register DstReg = MI.getOperand(0).getReg(); 1896 1897 SmallVector<Register, 4> OrigRegs; 1898 if (LIS) { 1899 OrigRegs.push_back(MI.getOperand(0).getReg()); 1900 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) 1901 OrigRegs.push_back(MI.getOperand(i).getReg()); 1902 } 1903 1904 bool DefEmitted = false; 1905 for (unsigned i = 1, e = MI.getNumOperands(); i < e; i += 2) { 1906 MachineOperand &UseMO = MI.getOperand(i); 1907 Register SrcReg = UseMO.getReg(); 1908 unsigned SubIdx = MI.getOperand(i+1).getImm(); 1909 // Nothing needs to be inserted for undef operands. 1910 if (UseMO.isUndef()) 1911 continue; 1912 1913 // Defer any kill flag to the last operand using SrcReg. Otherwise, we 1914 // might insert a COPY that uses SrcReg after is was killed. 1915 bool isKill = UseMO.isKill(); 1916 if (isKill) 1917 for (unsigned j = i + 2; j < e; j += 2) 1918 if (MI.getOperand(j).getReg() == SrcReg) { 1919 MI.getOperand(j).setIsKill(); 1920 UseMO.setIsKill(false); 1921 isKill = false; 1922 break; 1923 } 1924 1925 // Insert the sub-register copy. 1926 MachineInstr *CopyMI = BuildMI(*MI.getParent(), MI, MI.getDebugLoc(), 1927 TII->get(TargetOpcode::COPY)) 1928 .addReg(DstReg, RegState::Define, SubIdx) 1929 .add(UseMO); 1930 1931 // The first def needs an undef flag because there is no live register 1932 // before it. 1933 if (!DefEmitted) { 1934 CopyMI->getOperand(0).setIsUndef(true); 1935 // Return an iterator pointing to the first inserted instr. 1936 MBBI = CopyMI; 1937 } 1938 DefEmitted = true; 1939 1940 // Update LiveVariables' kill info. 1941 if (LV && isKill && !SrcReg.isPhysical()) 1942 LV->replaceKillInstruction(SrcReg, MI, *CopyMI); 1943 1944 LLVM_DEBUG(dbgs() << "Inserted: " << *CopyMI); 1945 } 1946 1947 MachineBasicBlock::iterator EndMBBI = 1948 std::next(MachineBasicBlock::iterator(MI)); 1949 1950 if (!DefEmitted) { 1951 LLVM_DEBUG(dbgs() << "Turned: " << MI << " into an IMPLICIT_DEF"); 1952 MI.setDesc(TII->get(TargetOpcode::IMPLICIT_DEF)); 1953 for (int j = MI.getNumOperands() - 1, ee = 0; j > ee; --j) 1954 MI.removeOperand(j); 1955 } else { 1956 if (LIS) 1957 LIS->RemoveMachineInstrFromMaps(MI); 1958 1959 LLVM_DEBUG(dbgs() << "Eliminated: " << MI); 1960 MI.eraseFromParent(); 1961 } 1962 1963 // Udpate LiveIntervals. 1964 if (LIS) 1965 LIS->repairIntervalsInRange(MBB, MBBI, EndMBBI, OrigRegs); 1966 } 1967