xref: /llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp (revision f65a21a4ecc2e712c700c59842b6b9a1d2a9a060)
1 //===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements classes used to handle lowerings specific to common
10 // object file formats.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/BinaryFormat/COFF.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/BinaryFormat/ELF.h"
22 #include "llvm/BinaryFormat/MachO.h"
23 #include "llvm/BinaryFormat/Wasm.h"
24 #include "llvm/CodeGen/BasicBlockSectionUtils.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Comdat.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/IR/DiagnosticPrinter.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Mangler.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/PseudoProbe.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/MC/MCAsmInfo.h"
46 #include "llvm/MC/MCAsmInfoDarwin.h"
47 #include "llvm/MC/MCContext.h"
48 #include "llvm/MC/MCExpr.h"
49 #include "llvm/MC/MCSectionCOFF.h"
50 #include "llvm/MC/MCSectionELF.h"
51 #include "llvm/MC/MCSectionGOFF.h"
52 #include "llvm/MC/MCSectionMachO.h"
53 #include "llvm/MC/MCSectionWasm.h"
54 #include "llvm/MC/MCSectionXCOFF.h"
55 #include "llvm/MC/MCStreamer.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/MC/MCSymbolELF.h"
58 #include "llvm/MC/MCValue.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/ProfileData/InstrProf.h"
61 #include "llvm/Support/Base64.h"
62 #include "llvm/Support/Casting.h"
63 #include "llvm/Support/CodeGen.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/Format.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include "llvm/TargetParser/Triple.h"
69 #include <cassert>
70 #include <string>
71 
72 using namespace llvm;
73 using namespace dwarf;
74 
75 static cl::opt<bool> JumpTableInFunctionSection(
76     "jumptable-in-function-section", cl::Hidden, cl::init(false),
77     cl::desc("Putting Jump Table in function section"));
78 
79 static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags,
80                              StringRef &Section) {
81   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
82   M.getModuleFlagsMetadata(ModuleFlags);
83 
84   for (const auto &MFE: ModuleFlags) {
85     // Ignore flags with 'Require' behaviour.
86     if (MFE.Behavior == Module::Require)
87       continue;
88 
89     StringRef Key = MFE.Key->getString();
90     if (Key == "Objective-C Image Info Version") {
91       Version = mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
92     } else if (Key == "Objective-C Garbage Collection" ||
93                Key == "Objective-C GC Only" ||
94                Key == "Objective-C Is Simulated" ||
95                Key == "Objective-C Class Properties" ||
96                Key == "Objective-C Image Swift Version") {
97       Flags |= mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
98     } else if (Key == "Objective-C Image Info Section") {
99       Section = cast<MDString>(MFE.Val)->getString();
100     }
101     // Backend generates L_OBJC_IMAGE_INFO from Swift ABI version + major + minor +
102     // "Objective-C Garbage Collection".
103     else if (Key == "Swift ABI Version") {
104       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 8;
105     } else if (Key == "Swift Major Version") {
106       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 24;
107     } else if (Key == "Swift Minor Version") {
108       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 16;
109     }
110   }
111 }
112 
113 //===----------------------------------------------------------------------===//
114 //                                  ELF
115 //===----------------------------------------------------------------------===//
116 
117 TargetLoweringObjectFileELF::TargetLoweringObjectFileELF() {
118   SupportDSOLocalEquivalentLowering = true;
119 }
120 
121 void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx,
122                                              const TargetMachine &TgtM) {
123   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
124 
125   CodeModel::Model CM = TgtM.getCodeModel();
126   InitializeELF(TgtM.Options.UseInitArray);
127 
128   switch (TgtM.getTargetTriple().getArch()) {
129   case Triple::arm:
130   case Triple::armeb:
131   case Triple::thumb:
132   case Triple::thumbeb:
133     if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM)
134       break;
135     // Fallthrough if not using EHABI
136     [[fallthrough]];
137   case Triple::ppc:
138   case Triple::ppcle:
139   case Triple::x86:
140     PersonalityEncoding = isPositionIndependent()
141                               ? dwarf::DW_EH_PE_indirect |
142                                     dwarf::DW_EH_PE_pcrel |
143                                     dwarf::DW_EH_PE_sdata4
144                               : dwarf::DW_EH_PE_absptr;
145     LSDAEncoding = isPositionIndependent()
146                        ? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4
147                        : dwarf::DW_EH_PE_absptr;
148     TTypeEncoding = isPositionIndependent()
149                         ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
150                               dwarf::DW_EH_PE_sdata4
151                         : dwarf::DW_EH_PE_absptr;
152     break;
153   case Triple::x86_64:
154     if (isPositionIndependent()) {
155       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
156         ((CM == CodeModel::Small || CM == CodeModel::Medium)
157          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
158       LSDAEncoding = dwarf::DW_EH_PE_pcrel |
159         (CM == CodeModel::Small
160          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
161       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
162         ((CM == CodeModel::Small || CM == CodeModel::Medium)
163          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
164     } else {
165       PersonalityEncoding =
166         (CM == CodeModel::Small || CM == CodeModel::Medium)
167         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
168       LSDAEncoding = (CM == CodeModel::Small)
169         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
170       TTypeEncoding = (CM == CodeModel::Small)
171         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
172     }
173     break;
174   case Triple::hexagon:
175     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
176     LSDAEncoding = dwarf::DW_EH_PE_absptr;
177     TTypeEncoding = dwarf::DW_EH_PE_absptr;
178     if (isPositionIndependent()) {
179       PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
180       LSDAEncoding |= dwarf::DW_EH_PE_pcrel;
181       TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
182     }
183     break;
184   case Triple::aarch64:
185   case Triple::aarch64_be:
186   case Triple::aarch64_32:
187     // The small model guarantees static code/data size < 4GB, but not where it
188     // will be in memory. Most of these could end up >2GB away so even a signed
189     // pc-relative 32-bit address is insufficient, theoretically.
190     //
191     // Use DW_EH_PE_indirect even for -fno-pic to avoid copy relocations.
192     LSDAEncoding = dwarf::DW_EH_PE_pcrel |
193                    (TgtM.getTargetTriple().getEnvironment() == Triple::GNUILP32
194                         ? dwarf::DW_EH_PE_sdata4
195                         : dwarf::DW_EH_PE_sdata8);
196     PersonalityEncoding = LSDAEncoding | dwarf::DW_EH_PE_indirect;
197     TTypeEncoding = LSDAEncoding | dwarf::DW_EH_PE_indirect;
198     break;
199   case Triple::lanai:
200     LSDAEncoding = dwarf::DW_EH_PE_absptr;
201     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
202     TTypeEncoding = dwarf::DW_EH_PE_absptr;
203     break;
204   case Triple::mips:
205   case Triple::mipsel:
206   case Triple::mips64:
207   case Triple::mips64el:
208     // MIPS uses indirect pointer to refer personality functions and types, so
209     // that the eh_frame section can be read-only. DW.ref.personality will be
210     // generated for relocation.
211     PersonalityEncoding = dwarf::DW_EH_PE_indirect;
212     // FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't
213     //        identify N64 from just a triple.
214     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
215                     dwarf::DW_EH_PE_sdata4;
216 
217     // FreeBSD must be explicit about the data size and using pcrel since it's
218     // assembler/linker won't do the automatic conversion that the Linux tools
219     // do.
220     if (isPositionIndependent() || TgtM.getTargetTriple().isOSFreeBSD()) {
221       PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
222       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
223     }
224     break;
225   case Triple::ppc64:
226   case Triple::ppc64le:
227     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
228       dwarf::DW_EH_PE_udata8;
229     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8;
230     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
231       dwarf::DW_EH_PE_udata8;
232     break;
233   case Triple::sparcel:
234   case Triple::sparc:
235     if (isPositionIndependent()) {
236       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
237       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
238         dwarf::DW_EH_PE_sdata4;
239       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
240         dwarf::DW_EH_PE_sdata4;
241     } else {
242       LSDAEncoding = dwarf::DW_EH_PE_absptr;
243       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
244       TTypeEncoding = dwarf::DW_EH_PE_absptr;
245     }
246     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
247     break;
248   case Triple::riscv32:
249   case Triple::riscv64:
250     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
251     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
252                           dwarf::DW_EH_PE_sdata4;
253     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
254                     dwarf::DW_EH_PE_sdata4;
255     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
256     break;
257   case Triple::sparcv9:
258     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
259     if (isPositionIndependent()) {
260       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
261         dwarf::DW_EH_PE_sdata4;
262       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
263         dwarf::DW_EH_PE_sdata4;
264     } else {
265       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
266       TTypeEncoding = dwarf::DW_EH_PE_absptr;
267     }
268     break;
269   case Triple::systemz:
270     // All currently-defined code models guarantee that 4-byte PC-relative
271     // values will be in range.
272     if (isPositionIndependent()) {
273       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
274         dwarf::DW_EH_PE_sdata4;
275       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
276       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
277         dwarf::DW_EH_PE_sdata4;
278     } else {
279       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
280       LSDAEncoding = dwarf::DW_EH_PE_absptr;
281       TTypeEncoding = dwarf::DW_EH_PE_absptr;
282     }
283     break;
284   case Triple::loongarch32:
285   case Triple::loongarch64:
286     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
287     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
288                           dwarf::DW_EH_PE_sdata4;
289     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
290                     dwarf::DW_EH_PE_sdata4;
291     break;
292   default:
293     break;
294   }
295 }
296 
297 void TargetLoweringObjectFileELF::getModuleMetadata(Module &M) {
298   SmallVector<GlobalValue *, 4> Vec;
299   collectUsedGlobalVariables(M, Vec, false);
300   for (GlobalValue *GV : Vec)
301     if (auto *GO = dyn_cast<GlobalObject>(GV))
302       Used.insert(GO);
303 }
304 
305 void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer,
306                                                      Module &M) const {
307   auto &C = getContext();
308 
309   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
310     auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS,
311                               ELF::SHF_EXCLUDE);
312 
313     Streamer.switchSection(S);
314 
315     for (const auto *Operand : LinkerOptions->operands()) {
316       if (cast<MDNode>(Operand)->getNumOperands() != 2)
317         report_fatal_error("invalid llvm.linker.options");
318       for (const auto &Option : cast<MDNode>(Operand)->operands()) {
319         Streamer.emitBytes(cast<MDString>(Option)->getString());
320         Streamer.emitInt8(0);
321       }
322     }
323   }
324 
325   if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) {
326     auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES,
327                               ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
328 
329     Streamer.switchSection(S);
330 
331     for (const auto *Operand : DependentLibraries->operands()) {
332       Streamer.emitBytes(
333           cast<MDString>(cast<MDNode>(Operand)->getOperand(0))->getString());
334       Streamer.emitInt8(0);
335     }
336   }
337 
338   if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) {
339     // Emit a descriptor for every function including functions that have an
340     // available external linkage. We may not want this for imported functions
341     // that has code in another thinLTO module but we don't have a good way to
342     // tell them apart from inline functions defined in header files. Therefore
343     // we put each descriptor in a separate comdat section and rely on the
344     // linker to deduplicate.
345     for (const auto *Operand : FuncInfo->operands()) {
346       const auto *MD = cast<MDNode>(Operand);
347       auto *GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
348       auto *Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
349       auto *Name = cast<MDString>(MD->getOperand(2));
350       auto *S = C.getObjectFileInfo()->getPseudoProbeDescSection(
351           TM->getFunctionSections() ? Name->getString() : StringRef());
352 
353       Streamer.switchSection(S);
354       Streamer.emitInt64(GUID->getZExtValue());
355       Streamer.emitInt64(Hash->getZExtValue());
356       Streamer.emitULEB128IntValue(Name->getString().size());
357       Streamer.emitBytes(Name->getString());
358     }
359   }
360 
361   if (NamedMDNode *LLVMStats = M.getNamedMetadata("llvm.stats")) {
362     // Emit the metadata for llvm statistics into .llvm_stats section, which is
363     // formatted as a list of key/value pair, the value is base64 encoded.
364     auto *S = C.getObjectFileInfo()->getLLVMStatsSection();
365     Streamer.switchSection(S);
366     for (const auto *Operand : LLVMStats->operands()) {
367       const auto *MD = cast<MDNode>(Operand);
368       assert(MD->getNumOperands() % 2 == 0 &&
369              ("Operand num should be even for a list of key/value pair"));
370       for (size_t I = 0; I < MD->getNumOperands(); I += 2) {
371         // Encode the key string size.
372         auto *Key = cast<MDString>(MD->getOperand(I));
373         Streamer.emitULEB128IntValue(Key->getString().size());
374         Streamer.emitBytes(Key->getString());
375         // Encode the value into a Base64 string.
376         std::string Value = encodeBase64(
377             Twine(mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1))
378                       ->getZExtValue())
379                 .str());
380         Streamer.emitULEB128IntValue(Value.size());
381         Streamer.emitBytes(Value);
382       }
383     }
384   }
385 
386   unsigned Version = 0;
387   unsigned Flags = 0;
388   StringRef Section;
389 
390   GetObjCImageInfo(M, Version, Flags, Section);
391   if (!Section.empty()) {
392     auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
393     Streamer.switchSection(S);
394     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
395     Streamer.emitInt32(Version);
396     Streamer.emitInt32(Flags);
397     Streamer.addBlankLine();
398   }
399 
400   emitCGProfileMetadata(Streamer, M);
401 }
402 
403 MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol(
404     const GlobalValue *GV, const TargetMachine &TM,
405     MachineModuleInfo *MMI) const {
406   unsigned Encoding = getPersonalityEncoding();
407   if ((Encoding & 0x80) == DW_EH_PE_indirect)
408     return getContext().getOrCreateSymbol(StringRef("DW.ref.") +
409                                           TM.getSymbol(GV)->getName());
410   if ((Encoding & 0x70) == DW_EH_PE_absptr)
411     return TM.getSymbol(GV);
412   report_fatal_error("We do not support this DWARF encoding yet!");
413 }
414 
415 void TargetLoweringObjectFileELF::emitPersonalityValue(
416     MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym,
417     const MachineModuleInfo *MMI) const {
418   SmallString<64> NameData("DW.ref.");
419   NameData += Sym->getName();
420   MCSymbolELF *Label =
421       cast<MCSymbolELF>(getContext().getOrCreateSymbol(NameData));
422   Streamer.emitSymbolAttribute(Label, MCSA_Hidden);
423   Streamer.emitSymbolAttribute(Label, MCSA_Weak);
424   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP;
425   MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(),
426                                                    ELF::SHT_PROGBITS, Flags, 0);
427   unsigned Size = DL.getPointerSize();
428   Streamer.switchSection(Sec);
429   Streamer.emitValueToAlignment(DL.getPointerABIAlignment(0));
430   Streamer.emitSymbolAttribute(Label, MCSA_ELF_TypeObject);
431   const MCExpr *E = MCConstantExpr::create(Size, getContext());
432   Streamer.emitELFSize(Label, E);
433   Streamer.emitLabel(Label);
434 
435   emitPersonalityValueImpl(Streamer, DL, Sym, MMI);
436 }
437 
438 void TargetLoweringObjectFileELF::emitPersonalityValueImpl(
439     MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym,
440     const MachineModuleInfo *MMI) const {
441   Streamer.emitSymbolValue(Sym, DL.getPointerSize());
442 }
443 
444 const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference(
445     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
446     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
447   if (Encoding & DW_EH_PE_indirect) {
448     MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>();
449 
450     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM);
451 
452     // Add information about the stub reference to ELFMMI so that the stub
453     // gets emitted by the asmprinter.
454     MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
455     if (!StubSym.getPointer()) {
456       MCSymbol *Sym = TM.getSymbol(GV);
457       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
458     }
459 
460     return TargetLoweringObjectFile::
461       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
462                         Encoding & ~DW_EH_PE_indirect, Streamer);
463   }
464 
465   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
466                                                            MMI, Streamer);
467 }
468 
469 static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) {
470   // N.B.: The defaults used in here are not the same ones used in MC.
471   // We follow gcc, MC follows gas. For example, given ".section .eh_frame",
472   // both gas and MC will produce a section with no flags. Given
473   // section(".eh_frame") gcc will produce:
474   //
475   //   .section   .eh_frame,"a",@progbits
476 
477   if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF,
478                                       /*AddSegmentInfo=*/false) ||
479       Name == getInstrProfSectionName(IPSK_covfun, Triple::ELF,
480                                       /*AddSegmentInfo=*/false) ||
481       Name == getInstrProfSectionName(IPSK_covdata, Triple::ELF,
482                                       /*AddSegmentInfo=*/false) ||
483       Name == getInstrProfSectionName(IPSK_covname, Triple::ELF,
484                                       /*AddSegmentInfo=*/false) ||
485       Name == ".llvmbc" || Name == ".llvmcmd")
486     return SectionKind::getMetadata();
487 
488   if (!Name.starts_with(".")) return K;
489 
490   // Default implementation based on some magic section names.
491   if (Name == ".bss" || Name.starts_with(".bss.") ||
492       Name.starts_with(".gnu.linkonce.b.") ||
493       Name.starts_with(".llvm.linkonce.b.") || Name == ".sbss" ||
494       Name.starts_with(".sbss.") || Name.starts_with(".gnu.linkonce.sb.") ||
495       Name.starts_with(".llvm.linkonce.sb."))
496     return SectionKind::getBSS();
497 
498   if (Name == ".tdata" || Name.starts_with(".tdata.") ||
499       Name.starts_with(".gnu.linkonce.td.") ||
500       Name.starts_with(".llvm.linkonce.td."))
501     return SectionKind::getThreadData();
502 
503   if (Name == ".tbss" || Name.starts_with(".tbss.") ||
504       Name.starts_with(".gnu.linkonce.tb.") ||
505       Name.starts_with(".llvm.linkonce.tb."))
506     return SectionKind::getThreadBSS();
507 
508   return K;
509 }
510 
511 static bool hasPrefix(StringRef SectionName, StringRef Prefix) {
512   return SectionName.consume_front(Prefix) &&
513          (SectionName.empty() || SectionName[0] == '.');
514 }
515 
516 static unsigned getELFSectionType(StringRef Name, SectionKind K) {
517   // Use SHT_NOTE for section whose name starts with ".note" to allow
518   // emitting ELF notes from C variable declaration.
519   // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609
520   if (Name.starts_with(".note"))
521     return ELF::SHT_NOTE;
522 
523   if (hasPrefix(Name, ".init_array"))
524     return ELF::SHT_INIT_ARRAY;
525 
526   if (hasPrefix(Name, ".fini_array"))
527     return ELF::SHT_FINI_ARRAY;
528 
529   if (hasPrefix(Name, ".preinit_array"))
530     return ELF::SHT_PREINIT_ARRAY;
531 
532   if (hasPrefix(Name, ".llvm.offloading"))
533     return ELF::SHT_LLVM_OFFLOADING;
534   if (Name == ".llvm.lto")
535     return ELF::SHT_LLVM_LTO;
536 
537   if (K.isBSS() || K.isThreadBSS())
538     return ELF::SHT_NOBITS;
539 
540   return ELF::SHT_PROGBITS;
541 }
542 
543 static unsigned getELFSectionFlags(SectionKind K) {
544   unsigned Flags = 0;
545 
546   if (!K.isMetadata() && !K.isExclude())
547     Flags |= ELF::SHF_ALLOC;
548 
549   if (K.isExclude())
550     Flags |= ELF::SHF_EXCLUDE;
551 
552   if (K.isText())
553     Flags |= ELF::SHF_EXECINSTR;
554 
555   if (K.isExecuteOnly())
556     Flags |= ELF::SHF_ARM_PURECODE;
557 
558   if (K.isWriteable())
559     Flags |= ELF::SHF_WRITE;
560 
561   if (K.isThreadLocal())
562     Flags |= ELF::SHF_TLS;
563 
564   if (K.isMergeableCString() || K.isMergeableConst())
565     Flags |= ELF::SHF_MERGE;
566 
567   if (K.isMergeableCString())
568     Flags |= ELF::SHF_STRINGS;
569 
570   return Flags;
571 }
572 
573 static const Comdat *getELFComdat(const GlobalValue *GV) {
574   const Comdat *C = GV->getComdat();
575   if (!C)
576     return nullptr;
577 
578   if (C->getSelectionKind() != Comdat::Any &&
579       C->getSelectionKind() != Comdat::NoDeduplicate)
580     report_fatal_error("ELF COMDATs only support SelectionKind::Any and "
581                        "SelectionKind::NoDeduplicate, '" +
582                        C->getName() + "' cannot be lowered.");
583 
584   return C;
585 }
586 
587 static const MCSymbolELF *getLinkedToSymbol(const GlobalObject *GO,
588                                             const TargetMachine &TM) {
589   MDNode *MD = GO->getMetadata(LLVMContext::MD_associated);
590   if (!MD)
591     return nullptr;
592 
593   auto *VM = cast<ValueAsMetadata>(MD->getOperand(0).get());
594   auto *OtherGV = dyn_cast<GlobalValue>(VM->getValue());
595   return OtherGV ? dyn_cast<MCSymbolELF>(TM.getSymbol(OtherGV)) : nullptr;
596 }
597 
598 static unsigned getEntrySizeForKind(SectionKind Kind) {
599   if (Kind.isMergeable1ByteCString())
600     return 1;
601   else if (Kind.isMergeable2ByteCString())
602     return 2;
603   else if (Kind.isMergeable4ByteCString())
604     return 4;
605   else if (Kind.isMergeableConst4())
606     return 4;
607   else if (Kind.isMergeableConst8())
608     return 8;
609   else if (Kind.isMergeableConst16())
610     return 16;
611   else if (Kind.isMergeableConst32())
612     return 32;
613   else {
614     // We shouldn't have mergeable C strings or mergeable constants that we
615     // didn't handle above.
616     assert(!Kind.isMergeableCString() && "unknown string width");
617     assert(!Kind.isMergeableConst() && "unknown data width");
618     return 0;
619   }
620 }
621 
622 /// Return the section prefix name used by options FunctionsSections and
623 /// DataSections.
624 static StringRef getSectionPrefixForGlobal(SectionKind Kind, bool IsLarge) {
625   if (Kind.isText())
626     return IsLarge ? ".ltext" : ".text";
627   if (Kind.isReadOnly())
628     return IsLarge ? ".lrodata" : ".rodata";
629   if (Kind.isBSS())
630     return IsLarge ? ".lbss" : ".bss";
631   if (Kind.isThreadData())
632     return ".tdata";
633   if (Kind.isThreadBSS())
634     return ".tbss";
635   if (Kind.isData())
636     return IsLarge ? ".ldata" : ".data";
637   if (Kind.isReadOnlyWithRel())
638     return IsLarge ? ".ldata.rel.ro" : ".data.rel.ro";
639   llvm_unreachable("Unknown section kind");
640 }
641 
642 static SmallString<128>
643 getELFSectionNameForGlobal(const GlobalObject *GO, SectionKind Kind,
644                            Mangler &Mang, const TargetMachine &TM,
645                            unsigned EntrySize, bool UniqueSectionName) {
646   SmallString<128> Name =
647       getSectionPrefixForGlobal(Kind, TM.isLargeGlobalValue(GO));
648   if (Kind.isMergeableCString()) {
649     // We also need alignment here.
650     // FIXME: this is getting the alignment of the character, not the
651     // alignment of the global!
652     Align Alignment = GO->getDataLayout().getPreferredAlign(
653         cast<GlobalVariable>(GO));
654 
655     Name += ".str";
656     Name += utostr(EntrySize);
657     Name += ".";
658     Name += utostr(Alignment.value());
659   } else if (Kind.isMergeableConst()) {
660     Name += ".cst";
661     Name += utostr(EntrySize);
662   }
663 
664   bool HasPrefix = false;
665   if (const auto *F = dyn_cast<Function>(GO)) {
666     if (std::optional<StringRef> Prefix = F->getSectionPrefix()) {
667       raw_svector_ostream(Name) << '.' << *Prefix;
668       HasPrefix = true;
669     }
670   }
671 
672   if (UniqueSectionName) {
673     Name.push_back('.');
674     TM.getNameWithPrefix(Name, GO, Mang, /*MayAlwaysUsePrivate*/true);
675   } else if (HasPrefix)
676     // For distinguishing between .text.${text-section-prefix}. (with trailing
677     // dot) and .text.${function-name}
678     Name.push_back('.');
679   return Name;
680 }
681 
682 namespace {
683 class LoweringDiagnosticInfo : public DiagnosticInfo {
684   const Twine &Msg;
685 
686 public:
687   LoweringDiagnosticInfo(const Twine &DiagMsg,
688                          DiagnosticSeverity Severity = DS_Error)
689       : DiagnosticInfo(DK_Lowering, Severity), Msg(DiagMsg) {}
690   void print(DiagnosticPrinter &DP) const override { DP << Msg; }
691 };
692 }
693 
694 /// Calculate an appropriate unique ID for a section, and update Flags,
695 /// EntrySize and NextUniqueID where appropriate.
696 static unsigned
697 calcUniqueIDUpdateFlagsAndSize(const GlobalObject *GO, StringRef SectionName,
698                                SectionKind Kind, const TargetMachine &TM,
699                                MCContext &Ctx, Mangler &Mang, unsigned &Flags,
700                                unsigned &EntrySize, unsigned &NextUniqueID,
701                                const bool Retain, const bool ForceUnique) {
702   // Increment uniqueID if we are forced to emit a unique section.
703   // This works perfectly fine with section attribute or pragma section as the
704   // sections with the same name are grouped together by the assembler.
705   if (ForceUnique)
706     return NextUniqueID++;
707 
708   // A section can have at most one associated section. Put each global with
709   // MD_associated in a unique section.
710   const bool Associated = GO->getMetadata(LLVMContext::MD_associated);
711   if (Associated) {
712     Flags |= ELF::SHF_LINK_ORDER;
713     return NextUniqueID++;
714   }
715 
716   if (Retain) {
717     if (TM.getTargetTriple().isOSSolaris())
718       Flags |= ELF::SHF_SUNW_NODISCARD;
719     else if (Ctx.getAsmInfo()->useIntegratedAssembler() ||
720              Ctx.getAsmInfo()->binutilsIsAtLeast(2, 36))
721       Flags |= ELF::SHF_GNU_RETAIN;
722     return NextUniqueID++;
723   }
724 
725   // If two symbols with differing sizes end up in the same mergeable section
726   // that section can be assigned an incorrect entry size. To avoid this we
727   // usually put symbols of the same size into distinct mergeable sections with
728   // the same name. Doing so relies on the ",unique ," assembly feature. This
729   // feature is not avalible until bintuils version 2.35
730   // (https://sourceware.org/bugzilla/show_bug.cgi?id=25380).
731   const bool SupportsUnique = Ctx.getAsmInfo()->useIntegratedAssembler() ||
732                               Ctx.getAsmInfo()->binutilsIsAtLeast(2, 35);
733   if (!SupportsUnique) {
734     Flags &= ~ELF::SHF_MERGE;
735     EntrySize = 0;
736     return MCContext::GenericSectionID;
737   }
738 
739   const bool SymbolMergeable = Flags & ELF::SHF_MERGE;
740   const bool SeenSectionNameBefore =
741       Ctx.isELFGenericMergeableSection(SectionName);
742   // If this is the first ocurrence of this section name, treat it as the
743   // generic section
744   if (!SymbolMergeable && !SeenSectionNameBefore) {
745     if (TM.getSeparateNamedSections())
746       return NextUniqueID++;
747     else
748       return MCContext::GenericSectionID;
749   }
750 
751   // Symbols must be placed into sections with compatible entry sizes. Generate
752   // unique sections for symbols that have not been assigned to compatible
753   // sections.
754   const auto PreviousID =
755       Ctx.getELFUniqueIDForEntsize(SectionName, Flags, EntrySize);
756   if (PreviousID && (!TM.getSeparateNamedSections() ||
757                      *PreviousID == MCContext::GenericSectionID))
758     return *PreviousID;
759 
760   // If the user has specified the same section name as would be created
761   // implicitly for this symbol e.g. .rodata.str1.1, then we don't need
762   // to unique the section as the entry size for this symbol will be
763   // compatible with implicitly created sections.
764   SmallString<128> ImplicitSectionNameStem =
765       getELFSectionNameForGlobal(GO, Kind, Mang, TM, EntrySize, false);
766   if (SymbolMergeable &&
767       Ctx.isELFImplicitMergeableSectionNamePrefix(SectionName) &&
768       SectionName.starts_with(ImplicitSectionNameStem))
769     return MCContext::GenericSectionID;
770 
771   // We have seen this section name before, but with different flags or entity
772   // size. Create a new unique ID.
773   return NextUniqueID++;
774 }
775 
776 static std::tuple<StringRef, bool, unsigned>
777 getGlobalObjectInfo(const GlobalObject *GO, const TargetMachine &TM) {
778   StringRef Group = "";
779   bool IsComdat = false;
780   unsigned Flags = 0;
781   if (const Comdat *C = getELFComdat(GO)) {
782     Flags |= ELF::SHF_GROUP;
783     Group = C->getName();
784     IsComdat = C->getSelectionKind() == Comdat::Any;
785   }
786   if (TM.isLargeGlobalValue(GO))
787     Flags |= ELF::SHF_X86_64_LARGE;
788   return {Group, IsComdat, Flags};
789 }
790 
791 static MCSection *selectExplicitSectionGlobal(
792     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM,
793     MCContext &Ctx, Mangler &Mang, unsigned &NextUniqueID,
794     bool Retain, bool ForceUnique) {
795   StringRef SectionName = GO->getSection();
796 
797   // Check if '#pragma clang section' name is applicable.
798   // Note that pragma directive overrides -ffunction-section, -fdata-section
799   // and so section name is exactly as user specified and not uniqued.
800   const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO);
801   if (GV && GV->hasImplicitSection()) {
802     auto Attrs = GV->getAttributes();
803     if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) {
804       SectionName = Attrs.getAttribute("bss-section").getValueAsString();
805     } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) {
806       SectionName = Attrs.getAttribute("rodata-section").getValueAsString();
807     } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) {
808       SectionName = Attrs.getAttribute("relro-section").getValueAsString();
809     } else if (Attrs.hasAttribute("data-section") && Kind.isData()) {
810       SectionName = Attrs.getAttribute("data-section").getValueAsString();
811     }
812   }
813 
814   // Infer section flags from the section name if we can.
815   Kind = getELFKindForNamedSection(SectionName, Kind);
816 
817   unsigned Flags = getELFSectionFlags(Kind);
818   auto [Group, IsComdat, ExtraFlags] = getGlobalObjectInfo(GO, TM);
819   Flags |= ExtraFlags;
820 
821   unsigned EntrySize = getEntrySizeForKind(Kind);
822   const unsigned UniqueID = calcUniqueIDUpdateFlagsAndSize(
823       GO, SectionName, Kind, TM, Ctx, Mang, Flags, EntrySize, NextUniqueID,
824       Retain, ForceUnique);
825 
826   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
827   MCSectionELF *Section = Ctx.getELFSection(
828       SectionName, getELFSectionType(SectionName, Kind), Flags, EntrySize,
829       Group, IsComdat, UniqueID, LinkedToSym);
830   // Make sure that we did not get some other section with incompatible sh_link.
831   // This should not be possible due to UniqueID code above.
832   assert(Section->getLinkedToSymbol() == LinkedToSym &&
833          "Associated symbol mismatch between sections");
834 
835   if (!(Ctx.getAsmInfo()->useIntegratedAssembler() ||
836         Ctx.getAsmInfo()->binutilsIsAtLeast(2, 35))) {
837     // If we are using GNU as before 2.35, then this symbol might have
838     // been placed in an incompatible mergeable section. Emit an error if this
839     // is the case to avoid creating broken output.
840     if ((Section->getFlags() & ELF::SHF_MERGE) &&
841         (Section->getEntrySize() != getEntrySizeForKind(Kind)))
842       GO->getContext().diagnose(LoweringDiagnosticInfo(
843           "Symbol '" + GO->getName() + "' from module '" +
844           (GO->getParent() ? GO->getParent()->getSourceFileName() : "unknown") +
845           "' required a section with entry-size=" +
846           Twine(getEntrySizeForKind(Kind)) + " but was placed in section '" +
847           SectionName + "' with entry-size=" + Twine(Section->getEntrySize()) +
848           ": Explicit assignment by pragma or attribute of an incompatible "
849           "symbol to this section?"));
850   }
851 
852   return Section;
853 }
854 
855 MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal(
856     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
857   return selectExplicitSectionGlobal(GO, Kind, TM, getContext(), getMangler(),
858                                      NextUniqueID, Used.count(GO),
859                                      /* ForceUnique = */false);
860 }
861 
862 static MCSectionELF *selectELFSectionForGlobal(
863     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
864     const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags,
865     unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) {
866 
867   auto [Group, IsComdat, ExtraFlags] = getGlobalObjectInfo(GO, TM);
868   Flags |= ExtraFlags;
869 
870   // Get the section entry size based on the kind.
871   unsigned EntrySize = getEntrySizeForKind(Kind);
872 
873   bool UniqueSectionName = false;
874   unsigned UniqueID = MCContext::GenericSectionID;
875   if (EmitUniqueSection) {
876     if (TM.getUniqueSectionNames()) {
877       UniqueSectionName = true;
878     } else {
879       UniqueID = *NextUniqueID;
880       (*NextUniqueID)++;
881     }
882   }
883   SmallString<128> Name = getELFSectionNameForGlobal(
884       GO, Kind, Mang, TM, EntrySize, UniqueSectionName);
885 
886   // Use 0 as the unique ID for execute-only text.
887   if (Kind.isExecuteOnly())
888     UniqueID = 0;
889   return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags,
890                            EntrySize, Group, IsComdat, UniqueID,
891                            AssociatedSymbol);
892 }
893 
894 static MCSection *selectELFSectionForGlobal(
895     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
896     const TargetMachine &TM, bool Retain, bool EmitUniqueSection,
897     unsigned Flags, unsigned *NextUniqueID) {
898   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
899   if (LinkedToSym) {
900     EmitUniqueSection = true;
901     Flags |= ELF::SHF_LINK_ORDER;
902   }
903   if (Retain) {
904     if (TM.getTargetTriple().isOSSolaris()) {
905       EmitUniqueSection = true;
906       Flags |= ELF::SHF_SUNW_NODISCARD;
907     } else if (Ctx.getAsmInfo()->useIntegratedAssembler() ||
908                Ctx.getAsmInfo()->binutilsIsAtLeast(2, 36)) {
909       EmitUniqueSection = true;
910       Flags |= ELF::SHF_GNU_RETAIN;
911     }
912   }
913 
914   MCSectionELF *Section = selectELFSectionForGlobal(
915       Ctx, GO, Kind, Mang, TM, EmitUniqueSection, Flags,
916       NextUniqueID, LinkedToSym);
917   assert(Section->getLinkedToSymbol() == LinkedToSym);
918   return Section;
919 }
920 
921 MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal(
922     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
923   unsigned Flags = getELFSectionFlags(Kind);
924 
925   // If we have -ffunction-section or -fdata-section then we should emit the
926   // global value to a uniqued section specifically for it.
927   bool EmitUniqueSection = false;
928   if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) {
929     if (Kind.isText())
930       EmitUniqueSection = TM.getFunctionSections();
931     else
932       EmitUniqueSection = TM.getDataSections();
933   }
934   EmitUniqueSection |= GO->hasComdat();
935   return selectELFSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
936                                    Used.count(GO), EmitUniqueSection, Flags,
937                                    &NextUniqueID);
938 }
939 
940 MCSection *TargetLoweringObjectFileELF::getUniqueSectionForFunction(
941     const Function &F, const TargetMachine &TM) const {
942   SectionKind Kind = SectionKind::getText();
943   unsigned Flags = getELFSectionFlags(Kind);
944   // If the function's section names is pre-determined via pragma or a
945   // section attribute, call selectExplicitSectionGlobal.
946   if (F.hasSection())
947     return selectExplicitSectionGlobal(
948         &F, Kind, TM, getContext(), getMangler(), NextUniqueID,
949         Used.count(&F), /* ForceUnique = */true);
950   else
951     return selectELFSectionForGlobal(
952         getContext(), &F, Kind, getMangler(), TM, Used.count(&F),
953         /*EmitUniqueSection=*/true, Flags, &NextUniqueID);
954 }
955 
956 MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable(
957     const Function &F, const TargetMachine &TM) const {
958   // If the function can be removed, produce a unique section so that
959   // the table doesn't prevent the removal.
960   const Comdat *C = F.getComdat();
961   bool EmitUniqueSection = TM.getFunctionSections() || C;
962   if (!EmitUniqueSection)
963     return ReadOnlySection;
964 
965   return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(),
966                                    getMangler(), TM, EmitUniqueSection,
967                                    ELF::SHF_ALLOC, &NextUniqueID,
968                                    /* AssociatedSymbol */ nullptr);
969 }
970 
971 MCSection *TargetLoweringObjectFileELF::getSectionForLSDA(
972     const Function &F, const MCSymbol &FnSym, const TargetMachine &TM) const {
973   // If neither COMDAT nor function sections, use the monolithic LSDA section.
974   // Re-use this path if LSDASection is null as in the Arm EHABI.
975   if (!LSDASection || (!F.hasComdat() && !TM.getFunctionSections()))
976     return LSDASection;
977 
978   const auto *LSDA = cast<MCSectionELF>(LSDASection);
979   unsigned Flags = LSDA->getFlags();
980   const MCSymbolELF *LinkedToSym = nullptr;
981   StringRef Group;
982   bool IsComdat = false;
983   if (const Comdat *C = getELFComdat(&F)) {
984     Flags |= ELF::SHF_GROUP;
985     Group = C->getName();
986     IsComdat = C->getSelectionKind() == Comdat::Any;
987   }
988   // Use SHF_LINK_ORDER to facilitate --gc-sections if we can use GNU ld>=2.36
989   // or LLD, which support mixed SHF_LINK_ORDER & non-SHF_LINK_ORDER.
990   if (TM.getFunctionSections() &&
991       (getContext().getAsmInfo()->useIntegratedAssembler() &&
992        getContext().getAsmInfo()->binutilsIsAtLeast(2, 36))) {
993     Flags |= ELF::SHF_LINK_ORDER;
994     LinkedToSym = cast<MCSymbolELF>(&FnSym);
995   }
996 
997   // Append the function name as the suffix like GCC, assuming
998   // -funique-section-names applies to .gcc_except_table sections.
999   return getContext().getELFSection(
1000       (TM.getUniqueSectionNames() ? LSDA->getName() + "." + F.getName()
1001                                   : LSDA->getName()),
1002       LSDA->getType(), Flags, 0, Group, IsComdat, MCSection::NonUniqueID,
1003       LinkedToSym);
1004 }
1005 
1006 bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection(
1007     bool UsesLabelDifference, const Function &F) const {
1008   // We can always create relative relocations, so use another section
1009   // that can be marked non-executable.
1010   return false;
1011 }
1012 
1013 /// Given a mergeable constant with the specified size and relocation
1014 /// information, return a section that it should be placed in.
1015 MCSection *TargetLoweringObjectFileELF::getSectionForConstant(
1016     const DataLayout &DL, SectionKind Kind, const Constant *C,
1017     Align &Alignment) const {
1018   if (Kind.isMergeableConst4() && MergeableConst4Section)
1019     return MergeableConst4Section;
1020   if (Kind.isMergeableConst8() && MergeableConst8Section)
1021     return MergeableConst8Section;
1022   if (Kind.isMergeableConst16() && MergeableConst16Section)
1023     return MergeableConst16Section;
1024   if (Kind.isMergeableConst32() && MergeableConst32Section)
1025     return MergeableConst32Section;
1026   if (Kind.isReadOnly())
1027     return ReadOnlySection;
1028 
1029   assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
1030   return DataRelROSection;
1031 }
1032 
1033 /// Returns a unique section for the given machine basic block.
1034 MCSection *TargetLoweringObjectFileELF::getSectionForMachineBasicBlock(
1035     const Function &F, const MachineBasicBlock &MBB,
1036     const TargetMachine &TM) const {
1037   assert(MBB.isBeginSection() && "Basic block does not start a section!");
1038   unsigned UniqueID = MCContext::GenericSectionID;
1039 
1040   // For cold sections use the .text.split. prefix along with the parent
1041   // function name. All cold blocks for the same function go to the same
1042   // section. Similarly all exception blocks are grouped by symbol name
1043   // under the .text.eh prefix. For regular sections, we either use a unique
1044   // name, or a unique ID for the section.
1045   SmallString<128> Name;
1046   StringRef FunctionSectionName = MBB.getParent()->getSection()->getName();
1047   if (FunctionSectionName == ".text" ||
1048       FunctionSectionName.starts_with(".text.")) {
1049     // Function is in a regular .text section.
1050     StringRef FunctionName = MBB.getParent()->getName();
1051     if (MBB.getSectionID() == MBBSectionID::ColdSectionID) {
1052       Name += BBSectionsColdTextPrefix;
1053       Name += FunctionName;
1054     } else if (MBB.getSectionID() == MBBSectionID::ExceptionSectionID) {
1055       Name += ".text.eh.";
1056       Name += FunctionName;
1057     } else {
1058       Name += FunctionSectionName;
1059       if (TM.getUniqueBasicBlockSectionNames()) {
1060         if (!Name.ends_with("."))
1061           Name += ".";
1062         Name += MBB.getSymbol()->getName();
1063       } else {
1064         UniqueID = NextUniqueID++;
1065       }
1066     }
1067   } else {
1068     // If the original function has a custom non-dot-text section, then emit
1069     // all basic block sections into that section too, each with a unique id.
1070     Name = FunctionSectionName;
1071     UniqueID = NextUniqueID++;
1072   }
1073 
1074   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR;
1075   std::string GroupName;
1076   if (F.hasComdat()) {
1077     Flags |= ELF::SHF_GROUP;
1078     GroupName = F.getComdat()->getName().str();
1079   }
1080   return getContext().getELFSection(Name, ELF::SHT_PROGBITS, Flags,
1081                                     0 /* Entry Size */, GroupName,
1082                                     F.hasComdat(), UniqueID, nullptr);
1083 }
1084 
1085 static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray,
1086                                               bool IsCtor, unsigned Priority,
1087                                               const MCSymbol *KeySym) {
1088   std::string Name;
1089   unsigned Type;
1090   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1091   StringRef Comdat = KeySym ? KeySym->getName() : "";
1092 
1093   if (KeySym)
1094     Flags |= ELF::SHF_GROUP;
1095 
1096   if (UseInitArray) {
1097     if (IsCtor) {
1098       Type = ELF::SHT_INIT_ARRAY;
1099       Name = ".init_array";
1100     } else {
1101       Type = ELF::SHT_FINI_ARRAY;
1102       Name = ".fini_array";
1103     }
1104     if (Priority != 65535) {
1105       Name += '.';
1106       Name += utostr(Priority);
1107     }
1108   } else {
1109     // The default scheme is .ctor / .dtor, so we have to invert the priority
1110     // numbering.
1111     if (IsCtor)
1112       Name = ".ctors";
1113     else
1114       Name = ".dtors";
1115     if (Priority != 65535)
1116       raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1117     Type = ELF::SHT_PROGBITS;
1118   }
1119 
1120   return Ctx.getELFSection(Name, Type, Flags, 0, Comdat, /*IsComdat=*/true);
1121 }
1122 
1123 MCSection *TargetLoweringObjectFileELF::getStaticCtorSection(
1124     unsigned Priority, const MCSymbol *KeySym) const {
1125   return getStaticStructorSection(getContext(), UseInitArray, true, Priority,
1126                                   KeySym);
1127 }
1128 
1129 MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
1130     unsigned Priority, const MCSymbol *KeySym) const {
1131   return getStaticStructorSection(getContext(), UseInitArray, false, Priority,
1132                                   KeySym);
1133 }
1134 
1135 const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference(
1136     const GlobalValue *LHS, const GlobalValue *RHS,
1137     const TargetMachine &TM) const {
1138   // We may only use a PLT-relative relocation to refer to unnamed_addr
1139   // functions.
1140   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
1141     return nullptr;
1142 
1143   // Basic correctness checks.
1144   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1145       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
1146       RHS->isThreadLocal())
1147     return nullptr;
1148 
1149   return MCBinaryExpr::createSub(
1150       MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind,
1151                               getContext()),
1152       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
1153 }
1154 
1155 const MCExpr *TargetLoweringObjectFileELF::lowerDSOLocalEquivalent(
1156     const DSOLocalEquivalent *Equiv, const TargetMachine &TM) const {
1157   assert(supportDSOLocalEquivalentLowering());
1158 
1159   const auto *GV = Equiv->getGlobalValue();
1160 
1161   // A PLT entry is not needed for dso_local globals.
1162   if (GV->isDSOLocal() || GV->isImplicitDSOLocal())
1163     return MCSymbolRefExpr::create(TM.getSymbol(GV), getContext());
1164 
1165   return MCSymbolRefExpr::create(TM.getSymbol(GV), PLTRelativeVariantKind,
1166                                  getContext());
1167 }
1168 
1169 MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const {
1170   // Use ".GCC.command.line" since this feature is to support clang's
1171   // -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the
1172   // same name.
1173   return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS,
1174                                     ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
1175 }
1176 
1177 void
1178 TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) {
1179   UseInitArray = UseInitArray_;
1180   MCContext &Ctx = getContext();
1181   if (!UseInitArray) {
1182     StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS,
1183                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1184 
1185     StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS,
1186                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1187     return;
1188   }
1189 
1190   StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY,
1191                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1192   StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY,
1193                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1194 }
1195 
1196 //===----------------------------------------------------------------------===//
1197 //                                 MachO
1198 //===----------------------------------------------------------------------===//
1199 
1200 TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO() {
1201   SupportIndirectSymViaGOTPCRel = true;
1202 }
1203 
1204 void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx,
1205                                                const TargetMachine &TM) {
1206   TargetLoweringObjectFile::Initialize(Ctx, TM);
1207   if (TM.getRelocationModel() == Reloc::Static) {
1208     StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0,
1209                                             SectionKind::getData());
1210     StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0,
1211                                             SectionKind::getData());
1212   } else {
1213     StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func",
1214                                             MachO::S_MOD_INIT_FUNC_POINTERS,
1215                                             SectionKind::getData());
1216     StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func",
1217                                             MachO::S_MOD_TERM_FUNC_POINTERS,
1218                                             SectionKind::getData());
1219   }
1220 
1221   PersonalityEncoding =
1222       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1223   LSDAEncoding = dwarf::DW_EH_PE_pcrel;
1224   TTypeEncoding =
1225       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1226 }
1227 
1228 MCSection *TargetLoweringObjectFileMachO::getStaticDtorSection(
1229     unsigned Priority, const MCSymbol *KeySym) const {
1230   return StaticDtorSection;
1231   // In userspace, we lower global destructors via atexit(), but kernel/kext
1232   // environments do not provide this function so we still need to support the
1233   // legacy way here.
1234   // See the -disable-atexit-based-global-dtor-lowering CodeGen flag for more
1235   // context.
1236 }
1237 
1238 void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer,
1239                                                        Module &M) const {
1240   // Emit the linker options if present.
1241   if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1242     for (const auto *Option : LinkerOptions->operands()) {
1243       SmallVector<std::string, 4> StrOptions;
1244       for (const auto &Piece : cast<MDNode>(Option)->operands())
1245         StrOptions.push_back(std::string(cast<MDString>(Piece)->getString()));
1246       Streamer.emitLinkerOptions(StrOptions);
1247     }
1248   }
1249 
1250   unsigned VersionVal = 0;
1251   unsigned ImageInfoFlags = 0;
1252   StringRef SectionVal;
1253 
1254   GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal);
1255   emitCGProfileMetadata(Streamer, M);
1256 
1257   // The section is mandatory. If we don't have it, then we don't have GC info.
1258   if (SectionVal.empty())
1259     return;
1260 
1261   StringRef Segment, Section;
1262   unsigned TAA = 0, StubSize = 0;
1263   bool TAAParsed;
1264   if (Error E = MCSectionMachO::ParseSectionSpecifier(
1265           SectionVal, Segment, Section, TAA, TAAParsed, StubSize)) {
1266     // If invalid, report the error with report_fatal_error.
1267     report_fatal_error("Invalid section specifier '" + Section +
1268                        "': " + toString(std::move(E)) + ".");
1269   }
1270 
1271   // Get the section.
1272   MCSectionMachO *S = getContext().getMachOSection(
1273       Segment, Section, TAA, StubSize, SectionKind::getData());
1274   Streamer.switchSection(S);
1275   Streamer.emitLabel(getContext().
1276                      getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO")));
1277   Streamer.emitInt32(VersionVal);
1278   Streamer.emitInt32(ImageInfoFlags);
1279   Streamer.addBlankLine();
1280 }
1281 
1282 static void checkMachOComdat(const GlobalValue *GV) {
1283   const Comdat *C = GV->getComdat();
1284   if (!C)
1285     return;
1286 
1287   report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() +
1288                      "' cannot be lowered.");
1289 }
1290 
1291 MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
1292     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1293 
1294   StringRef SectionName = GO->getSection();
1295 
1296   const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO);
1297   if (GV && GV->hasImplicitSection()) {
1298     auto Attrs = GV->getAttributes();
1299     if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) {
1300       SectionName = Attrs.getAttribute("bss-section").getValueAsString();
1301     } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) {
1302       SectionName = Attrs.getAttribute("rodata-section").getValueAsString();
1303     } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) {
1304       SectionName = Attrs.getAttribute("relro-section").getValueAsString();
1305     } else if (Attrs.hasAttribute("data-section") && Kind.isData()) {
1306       SectionName = Attrs.getAttribute("data-section").getValueAsString();
1307     }
1308   }
1309 
1310   // Parse the section specifier and create it if valid.
1311   StringRef Segment, Section;
1312   unsigned TAA = 0, StubSize = 0;
1313   bool TAAParsed;
1314 
1315   checkMachOComdat(GO);
1316 
1317   if (Error E = MCSectionMachO::ParseSectionSpecifier(
1318           SectionName, Segment, Section, TAA, TAAParsed, StubSize)) {
1319     // If invalid, report the error with report_fatal_error.
1320     report_fatal_error("Global variable '" + GO->getName() +
1321                        "' has an invalid section specifier '" +
1322                        GO->getSection() + "': " + toString(std::move(E)) + ".");
1323   }
1324 
1325   // Get the section.
1326   MCSectionMachO *S =
1327       getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind);
1328 
1329   // If TAA wasn't set by ParseSectionSpecifier() above,
1330   // use the value returned by getMachOSection() as a default.
1331   if (!TAAParsed)
1332     TAA = S->getTypeAndAttributes();
1333 
1334   // Okay, now that we got the section, verify that the TAA & StubSize agree.
1335   // If the user declared multiple globals with different section flags, we need
1336   // to reject it here.
1337   if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) {
1338     // If invalid, report the error with report_fatal_error.
1339     report_fatal_error("Global variable '" + GO->getName() +
1340                        "' section type or attributes does not match previous"
1341                        " section specifier");
1342   }
1343 
1344   return S;
1345 }
1346 
1347 MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal(
1348     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1349   checkMachOComdat(GO);
1350 
1351   // Handle thread local data.
1352   if (Kind.isThreadBSS()) return TLSBSSSection;
1353   if (Kind.isThreadData()) return TLSDataSection;
1354 
1355   if (Kind.isText())
1356     return GO->isWeakForLinker() ? TextCoalSection : TextSection;
1357 
1358   // If this is weak/linkonce, put this in a coalescable section, either in text
1359   // or data depending on if it is writable.
1360   if (GO->isWeakForLinker()) {
1361     if (Kind.isReadOnly())
1362       return ConstTextCoalSection;
1363     if (Kind.isReadOnlyWithRel())
1364       return ConstDataCoalSection;
1365     return DataCoalSection;
1366   }
1367 
1368   // FIXME: Alignment check should be handled by section classifier.
1369   if (Kind.isMergeable1ByteCString() &&
1370       GO->getDataLayout().getPreferredAlign(
1371           cast<GlobalVariable>(GO)) < Align(32))
1372     return CStringSection;
1373 
1374   // Do not put 16-bit arrays in the UString section if they have an
1375   // externally visible label, this runs into issues with certain linker
1376   // versions.
1377   if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() &&
1378       GO->getDataLayout().getPreferredAlign(
1379           cast<GlobalVariable>(GO)) < Align(32))
1380     return UStringSection;
1381 
1382   // With MachO only variables whose corresponding symbol starts with 'l' or
1383   // 'L' can be merged, so we only try merging GVs with private linkage.
1384   if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) {
1385     if (Kind.isMergeableConst4())
1386       return FourByteConstantSection;
1387     if (Kind.isMergeableConst8())
1388       return EightByteConstantSection;
1389     if (Kind.isMergeableConst16())
1390       return SixteenByteConstantSection;
1391   }
1392 
1393   // Otherwise, if it is readonly, but not something we can specially optimize,
1394   // just drop it in .const.
1395   if (Kind.isReadOnly())
1396     return ReadOnlySection;
1397 
1398   // If this is marked const, put it into a const section.  But if the dynamic
1399   // linker needs to write to it, put it in the data segment.
1400   if (Kind.isReadOnlyWithRel())
1401     return ConstDataSection;
1402 
1403   // Put zero initialized globals with strong external linkage in the
1404   // DATA, __common section with the .zerofill directive.
1405   if (Kind.isBSSExtern())
1406     return DataCommonSection;
1407 
1408   // Put zero initialized globals with local linkage in __DATA,__bss directive
1409   // with the .zerofill directive (aka .lcomm).
1410   if (Kind.isBSSLocal())
1411     return DataBSSSection;
1412 
1413   // Otherwise, just drop the variable in the normal data section.
1414   return DataSection;
1415 }
1416 
1417 MCSection *TargetLoweringObjectFileMachO::getSectionForConstant(
1418     const DataLayout &DL, SectionKind Kind, const Constant *C,
1419     Align &Alignment) const {
1420   // If this constant requires a relocation, we have to put it in the data
1421   // segment, not in the text segment.
1422   if (Kind.isData() || Kind.isReadOnlyWithRel())
1423     return ConstDataSection;
1424 
1425   if (Kind.isMergeableConst4())
1426     return FourByteConstantSection;
1427   if (Kind.isMergeableConst8())
1428     return EightByteConstantSection;
1429   if (Kind.isMergeableConst16())
1430     return SixteenByteConstantSection;
1431   return ReadOnlySection;  // .const
1432 }
1433 
1434 MCSection *TargetLoweringObjectFileMachO::getSectionForCommandLines() const {
1435   return getContext().getMachOSection("__TEXT", "__command_line", 0,
1436                                       SectionKind::getReadOnly());
1437 }
1438 
1439 const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference(
1440     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
1441     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1442   // The mach-o version of this method defaults to returning a stub reference.
1443 
1444   if (Encoding & DW_EH_PE_indirect) {
1445     MachineModuleInfoMachO &MachOMMI =
1446       MMI->getObjFileInfo<MachineModuleInfoMachO>();
1447 
1448     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1449 
1450     // Add information about the stub reference to MachOMMI so that the stub
1451     // gets emitted by the asmprinter.
1452     MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1453     if (!StubSym.getPointer()) {
1454       MCSymbol *Sym = TM.getSymbol(GV);
1455       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1456     }
1457 
1458     return TargetLoweringObjectFile::
1459       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
1460                         Encoding & ~DW_EH_PE_indirect, Streamer);
1461   }
1462 
1463   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
1464                                                            MMI, Streamer);
1465 }
1466 
1467 MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol(
1468     const GlobalValue *GV, const TargetMachine &TM,
1469     MachineModuleInfo *MMI) const {
1470   // The mach-o version of this method defaults to returning a stub reference.
1471   MachineModuleInfoMachO &MachOMMI =
1472     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1473 
1474   MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1475 
1476   // Add information about the stub reference to MachOMMI so that the stub
1477   // gets emitted by the asmprinter.
1478   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1479   if (!StubSym.getPointer()) {
1480     MCSymbol *Sym = TM.getSymbol(GV);
1481     StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1482   }
1483 
1484   return SSym;
1485 }
1486 
1487 const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel(
1488     const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV,
1489     int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1490   // Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation
1491   // as 64-bit do, we replace the GOT equivalent by accessing the final symbol
1492   // through a non_lazy_ptr stub instead. One advantage is that it allows the
1493   // computation of deltas to final external symbols. Example:
1494   //
1495   //    _extgotequiv:
1496   //       .long   _extfoo
1497   //
1498   //    _delta:
1499   //       .long   _extgotequiv-_delta
1500   //
1501   // is transformed to:
1502   //
1503   //    _delta:
1504   //       .long   L_extfoo$non_lazy_ptr-(_delta+0)
1505   //
1506   //       .section        __IMPORT,__pointers,non_lazy_symbol_pointers
1507   //    L_extfoo$non_lazy_ptr:
1508   //       .indirect_symbol        _extfoo
1509   //       .long   0
1510   //
1511   // The indirect symbol table (and sections of non_lazy_symbol_pointers type)
1512   // may point to both local (same translation unit) and global (other
1513   // translation units) symbols. Example:
1514   //
1515   // .section __DATA,__pointers,non_lazy_symbol_pointers
1516   // L1:
1517   //    .indirect_symbol _myGlobal
1518   //    .long 0
1519   // L2:
1520   //    .indirect_symbol _myLocal
1521   //    .long _myLocal
1522   //
1523   // If the symbol is local, instead of the symbol's index, the assembler
1524   // places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table.
1525   // Then the linker will notice the constant in the table and will look at the
1526   // content of the symbol.
1527   MachineModuleInfoMachO &MachOMMI =
1528     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1529   MCContext &Ctx = getContext();
1530 
1531   // The offset must consider the original displacement from the base symbol
1532   // since 32-bit targets don't have a GOTPCREL to fold the PC displacement.
1533   Offset = -MV.getConstant();
1534   const MCSymbol *BaseSym = &MV.getSymB()->getSymbol();
1535 
1536   // Access the final symbol via sym$non_lazy_ptr and generate the appropriated
1537   // non_lazy_ptr stubs.
1538   SmallString<128> Name;
1539   StringRef Suffix = "$non_lazy_ptr";
1540   Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix();
1541   Name += Sym->getName();
1542   Name += Suffix;
1543   MCSymbol *Stub = Ctx.getOrCreateSymbol(Name);
1544 
1545   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub);
1546 
1547   if (!StubSym.getPointer())
1548     StubSym = MachineModuleInfoImpl::StubValueTy(const_cast<MCSymbol *>(Sym),
1549                                                  !GV->hasLocalLinkage());
1550 
1551   const MCExpr *BSymExpr =
1552     MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx);
1553   const MCExpr *LHS =
1554     MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx);
1555 
1556   if (!Offset)
1557     return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx);
1558 
1559   const MCExpr *RHS =
1560     MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx);
1561   return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1562 }
1563 
1564 static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo,
1565                                const MCSection &Section) {
1566   if (!MCAsmInfoDarwin::isSectionAtomizableBySymbols(Section))
1567     return true;
1568 
1569   // FIXME: we should be able to use private labels for sections that can't be
1570   // dead-stripped (there's no issue with blocking atomization there), but `ld
1571   // -r` sometimes drops the no_dead_strip attribute from sections so for safety
1572   // we don't allow it.
1573   return false;
1574 }
1575 
1576 void TargetLoweringObjectFileMachO::getNameWithPrefix(
1577     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1578     const TargetMachine &TM) const {
1579   bool CannotUsePrivateLabel = true;
1580   if (auto *GO = GV->getAliaseeObject()) {
1581     SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM);
1582     const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM);
1583     CannotUsePrivateLabel =
1584         !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection);
1585   }
1586   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1587 }
1588 
1589 //===----------------------------------------------------------------------===//
1590 //                                  COFF
1591 //===----------------------------------------------------------------------===//
1592 
1593 static unsigned
1594 getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) {
1595   unsigned Flags = 0;
1596   bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb;
1597 
1598   if (K.isMetadata())
1599     Flags |=
1600       COFF::IMAGE_SCN_MEM_DISCARDABLE;
1601   else if (K.isExclude())
1602     Flags |=
1603       COFF::IMAGE_SCN_LNK_REMOVE | COFF::IMAGE_SCN_MEM_DISCARDABLE;
1604   else if (K.isText())
1605     Flags |=
1606       COFF::IMAGE_SCN_MEM_EXECUTE |
1607       COFF::IMAGE_SCN_MEM_READ |
1608       COFF::IMAGE_SCN_CNT_CODE |
1609       (isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0);
1610   else if (K.isBSS())
1611     Flags |=
1612       COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
1613       COFF::IMAGE_SCN_MEM_READ |
1614       COFF::IMAGE_SCN_MEM_WRITE;
1615   else if (K.isThreadLocal())
1616     Flags |=
1617       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1618       COFF::IMAGE_SCN_MEM_READ |
1619       COFF::IMAGE_SCN_MEM_WRITE;
1620   else if (K.isReadOnly() || K.isReadOnlyWithRel())
1621     Flags |=
1622       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1623       COFF::IMAGE_SCN_MEM_READ;
1624   else if (K.isWriteable())
1625     Flags |=
1626       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1627       COFF::IMAGE_SCN_MEM_READ |
1628       COFF::IMAGE_SCN_MEM_WRITE;
1629 
1630   return Flags;
1631 }
1632 
1633 static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) {
1634   const Comdat *C = GV->getComdat();
1635   assert(C && "expected GV to have a Comdat!");
1636 
1637   StringRef ComdatGVName = C->getName();
1638   const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName);
1639   if (!ComdatGV)
1640     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1641                        "' does not exist.");
1642 
1643   if (ComdatGV->getComdat() != C)
1644     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1645                        "' is not a key for its COMDAT.");
1646 
1647   return ComdatGV;
1648 }
1649 
1650 static int getSelectionForCOFF(const GlobalValue *GV) {
1651   if (const Comdat *C = GV->getComdat()) {
1652     const GlobalValue *ComdatKey = getComdatGVForCOFF(GV);
1653     if (const auto *GA = dyn_cast<GlobalAlias>(ComdatKey))
1654       ComdatKey = GA->getAliaseeObject();
1655     if (ComdatKey == GV) {
1656       switch (C->getSelectionKind()) {
1657       case Comdat::Any:
1658         return COFF::IMAGE_COMDAT_SELECT_ANY;
1659       case Comdat::ExactMatch:
1660         return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH;
1661       case Comdat::Largest:
1662         return COFF::IMAGE_COMDAT_SELECT_LARGEST;
1663       case Comdat::NoDeduplicate:
1664         return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1665       case Comdat::SameSize:
1666         return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE;
1667       }
1668     } else {
1669       return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE;
1670     }
1671   }
1672   return 0;
1673 }
1674 
1675 MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal(
1676     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1677   StringRef Name = GO->getSection();
1678   if (Name == getInstrProfSectionName(IPSK_covmap, Triple::COFF,
1679                                       /*AddSegmentInfo=*/false) ||
1680       Name == getInstrProfSectionName(IPSK_covfun, Triple::COFF,
1681                                       /*AddSegmentInfo=*/false) ||
1682       Name == getInstrProfSectionName(IPSK_covdata, Triple::COFF,
1683                                       /*AddSegmentInfo=*/false) ||
1684       Name == getInstrProfSectionName(IPSK_covname, Triple::COFF,
1685                                       /*AddSegmentInfo=*/false))
1686     Kind = SectionKind::getMetadata();
1687   int Selection = 0;
1688   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1689   StringRef COMDATSymName = "";
1690   if (GO->hasComdat()) {
1691     Selection = getSelectionForCOFF(GO);
1692     const GlobalValue *ComdatGV;
1693     if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
1694       ComdatGV = getComdatGVForCOFF(GO);
1695     else
1696       ComdatGV = GO;
1697 
1698     if (!ComdatGV->hasPrivateLinkage()) {
1699       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1700       COMDATSymName = Sym->getName();
1701       Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1702     } else {
1703       Selection = 0;
1704     }
1705   }
1706 
1707   return getContext().getCOFFSection(Name, Characteristics, COMDATSymName,
1708                                      Selection);
1709 }
1710 
1711 static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) {
1712   if (Kind.isText())
1713     return ".text";
1714   if (Kind.isBSS())
1715     return ".bss";
1716   if (Kind.isThreadLocal())
1717     return ".tls$";
1718   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1719     return ".rdata";
1720   return ".data";
1721 }
1722 
1723 MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
1724     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1725   // If we have -ffunction-sections then we should emit the global value to a
1726   // uniqued section specifically for it.
1727   bool EmitUniquedSection;
1728   if (Kind.isText())
1729     EmitUniquedSection = TM.getFunctionSections();
1730   else
1731     EmitUniquedSection = TM.getDataSections();
1732 
1733   if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) {
1734     SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind);
1735 
1736     unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1737 
1738     Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1739     int Selection = getSelectionForCOFF(GO);
1740     if (!Selection)
1741       Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1742     const GlobalValue *ComdatGV;
1743     if (GO->hasComdat())
1744       ComdatGV = getComdatGVForCOFF(GO);
1745     else
1746       ComdatGV = GO;
1747 
1748     unsigned UniqueID = MCContext::GenericSectionID;
1749     if (EmitUniquedSection)
1750       UniqueID = NextUniqueID++;
1751 
1752     if (!ComdatGV->hasPrivateLinkage()) {
1753       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1754       StringRef COMDATSymName = Sym->getName();
1755 
1756       if (const auto *F = dyn_cast<Function>(GO))
1757         if (std::optional<StringRef> Prefix = F->getSectionPrefix())
1758           raw_svector_ostream(Name) << '$' << *Prefix;
1759 
1760       // Append "$symbol" to the section name *before* IR-level mangling is
1761       // applied when targetting mingw. This is what GCC does, and the ld.bfd
1762       // COFF linker will not properly handle comdats otherwise.
1763       if (getContext().getTargetTriple().isWindowsGNUEnvironment())
1764         raw_svector_ostream(Name) << '$' << ComdatGV->getName();
1765 
1766       return getContext().getCOFFSection(Name, Characteristics, COMDATSymName,
1767                                          Selection, UniqueID);
1768     } else {
1769       SmallString<256> TmpData;
1770       getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true);
1771       return getContext().getCOFFSection(Name, Characteristics, TmpData,
1772                                          Selection, UniqueID);
1773     }
1774   }
1775 
1776   if (Kind.isText())
1777     return TextSection;
1778 
1779   if (Kind.isThreadLocal())
1780     return TLSDataSection;
1781 
1782   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1783     return ReadOnlySection;
1784 
1785   // Note: we claim that common symbols are put in BSSSection, but they are
1786   // really emitted with the magic .comm directive, which creates a symbol table
1787   // entry but not a section.
1788   if (Kind.isBSS() || Kind.isCommon())
1789     return BSSSection;
1790 
1791   return DataSection;
1792 }
1793 
1794 void TargetLoweringObjectFileCOFF::getNameWithPrefix(
1795     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1796     const TargetMachine &TM) const {
1797   bool CannotUsePrivateLabel = false;
1798   if (GV->hasPrivateLinkage() &&
1799       ((isa<Function>(GV) && TM.getFunctionSections()) ||
1800        (isa<GlobalVariable>(GV) && TM.getDataSections())))
1801     CannotUsePrivateLabel = true;
1802 
1803   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1804 }
1805 
1806 MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
1807     const Function &F, const TargetMachine &TM) const {
1808   // If the function can be removed, produce a unique section so that
1809   // the table doesn't prevent the removal.
1810   const Comdat *C = F.getComdat();
1811   bool EmitUniqueSection = TM.getFunctionSections() || C;
1812   if (!EmitUniqueSection)
1813     return ReadOnlySection;
1814 
1815   // FIXME: we should produce a symbol for F instead.
1816   if (F.hasPrivateLinkage())
1817     return ReadOnlySection;
1818 
1819   MCSymbol *Sym = TM.getSymbol(&F);
1820   StringRef COMDATSymName = Sym->getName();
1821 
1822   SectionKind Kind = SectionKind::getReadOnly();
1823   StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind);
1824   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1825   Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1826   unsigned UniqueID = NextUniqueID++;
1827 
1828   return getContext().getCOFFSection(SecName, Characteristics, COMDATSymName,
1829                                      COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE,
1830                                      UniqueID);
1831 }
1832 
1833 bool TargetLoweringObjectFileCOFF::shouldPutJumpTableInFunctionSection(
1834     bool UsesLabelDifference, const Function &F) const {
1835   if (TM->getTargetTriple().getArch() == Triple::x86_64) {
1836     if (!JumpTableInFunctionSection) {
1837       // We can always create relative relocations, so use another section
1838       // that can be marked non-executable.
1839       return false;
1840     }
1841   }
1842   return TargetLoweringObjectFile::shouldPutJumpTableInFunctionSection(
1843     UsesLabelDifference, F);
1844 }
1845 
1846 void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer,
1847                                                       Module &M) const {
1848   emitLinkerDirectives(Streamer, M);
1849 
1850   unsigned Version = 0;
1851   unsigned Flags = 0;
1852   StringRef Section;
1853 
1854   GetObjCImageInfo(M, Version, Flags, Section);
1855   if (!Section.empty()) {
1856     auto &C = getContext();
1857     auto *S = C.getCOFFSection(Section, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1858                                             COFF::IMAGE_SCN_MEM_READ);
1859     Streamer.switchSection(S);
1860     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
1861     Streamer.emitInt32(Version);
1862     Streamer.emitInt32(Flags);
1863     Streamer.addBlankLine();
1864   }
1865 
1866   emitCGProfileMetadata(Streamer, M);
1867 }
1868 
1869 void TargetLoweringObjectFileCOFF::emitLinkerDirectives(
1870     MCStreamer &Streamer, Module &M) const {
1871   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1872     // Emit the linker options to the linker .drectve section.  According to the
1873     // spec, this section is a space-separated string containing flags for
1874     // linker.
1875     MCSection *Sec = getDrectveSection();
1876     Streamer.switchSection(Sec);
1877     for (const auto *Option : LinkerOptions->operands()) {
1878       for (const auto &Piece : cast<MDNode>(Option)->operands()) {
1879         // Lead with a space for consistency with our dllexport implementation.
1880         std::string Directive(" ");
1881         Directive.append(std::string(cast<MDString>(Piece)->getString()));
1882         Streamer.emitBytes(Directive);
1883       }
1884     }
1885   }
1886 
1887   // Emit /EXPORT: flags for each exported global as necessary.
1888   std::string Flags;
1889   for (const GlobalValue &GV : M.global_values()) {
1890     raw_string_ostream OS(Flags);
1891     emitLinkerFlagsForGlobalCOFF(OS, &GV, getContext().getTargetTriple(),
1892                                  getMangler());
1893     OS.flush();
1894     if (!Flags.empty()) {
1895       Streamer.switchSection(getDrectveSection());
1896       Streamer.emitBytes(Flags);
1897     }
1898     Flags.clear();
1899   }
1900 
1901   // Emit /INCLUDE: flags for each used global as necessary.
1902   if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1903     assert(LU->hasInitializer() && "expected llvm.used to have an initializer");
1904     assert(isa<ArrayType>(LU->getValueType()) &&
1905            "expected llvm.used to be an array type");
1906     if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1907       for (const Value *Op : A->operands()) {
1908         const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1909         // Global symbols with internal or private linkage are not visible to
1910         // the linker, and thus would cause an error when the linker tried to
1911         // preserve the symbol due to the `/include:` directive.
1912         if (GV->hasLocalLinkage())
1913           continue;
1914 
1915         raw_string_ostream OS(Flags);
1916         emitLinkerFlagsForUsedCOFF(OS, GV, getContext().getTargetTriple(),
1917                                    getMangler());
1918         OS.flush();
1919 
1920         if (!Flags.empty()) {
1921           Streamer.switchSection(getDrectveSection());
1922           Streamer.emitBytes(Flags);
1923         }
1924         Flags.clear();
1925       }
1926     }
1927   }
1928 }
1929 
1930 void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx,
1931                                               const TargetMachine &TM) {
1932   TargetLoweringObjectFile::Initialize(Ctx, TM);
1933   this->TM = &TM;
1934   const Triple &T = TM.getTargetTriple();
1935   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1936     StaticCtorSection =
1937         Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1938                                            COFF::IMAGE_SCN_MEM_READ);
1939     StaticDtorSection =
1940         Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1941                                            COFF::IMAGE_SCN_MEM_READ);
1942   } else {
1943     StaticCtorSection = Ctx.getCOFFSection(
1944         ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1945                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE);
1946     StaticDtorSection = Ctx.getCOFFSection(
1947         ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1948                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE);
1949   }
1950 }
1951 
1952 static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx,
1953                                                    const Triple &T, bool IsCtor,
1954                                                    unsigned Priority,
1955                                                    const MCSymbol *KeySym,
1956                                                    MCSectionCOFF *Default) {
1957   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1958     // If the priority is the default, use .CRT$XCU, possibly associative.
1959     if (Priority == 65535)
1960       return Ctx.getAssociativeCOFFSection(Default, KeySym, 0);
1961 
1962     // Otherwise, we need to compute a new section name. Low priorities should
1963     // run earlier. The linker will sort sections ASCII-betically, and we need a
1964     // string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we
1965     // make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really
1966     // low priorities need to sort before 'L', since the CRT uses that
1967     // internally, so we use ".CRT$XCA00001" for them. We have a contract with
1968     // the frontend that "init_seg(compiler)" corresponds to priority 200 and
1969     // "init_seg(lib)" corresponds to priority 400, and those respectively use
1970     // 'C' and 'L' without the priority suffix. Priorities between 200 and 400
1971     // use 'C' with the priority as a suffix.
1972     SmallString<24> Name;
1973     char LastLetter = 'T';
1974     bool AddPrioritySuffix = Priority != 200 && Priority != 400;
1975     if (Priority < 200)
1976       LastLetter = 'A';
1977     else if (Priority < 400)
1978       LastLetter = 'C';
1979     else if (Priority == 400)
1980       LastLetter = 'L';
1981     raw_svector_ostream OS(Name);
1982     OS << ".CRT$X" << (IsCtor ? "C" : "T") << LastLetter;
1983     if (AddPrioritySuffix)
1984       OS << format("%05u", Priority);
1985     MCSectionCOFF *Sec = Ctx.getCOFFSection(
1986         Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ);
1987     return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0);
1988   }
1989 
1990   std::string Name = IsCtor ? ".ctors" : ".dtors";
1991   if (Priority != 65535)
1992     raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1993 
1994   return Ctx.getAssociativeCOFFSection(
1995       Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1996                                    COFF::IMAGE_SCN_MEM_READ |
1997                                    COFF::IMAGE_SCN_MEM_WRITE),
1998       KeySym, 0);
1999 }
2000 
2001 MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection(
2002     unsigned Priority, const MCSymbol *KeySym) const {
2003   return getCOFFStaticStructorSection(
2004       getContext(), getContext().getTargetTriple(), true, Priority, KeySym,
2005       cast<MCSectionCOFF>(StaticCtorSection));
2006 }
2007 
2008 MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection(
2009     unsigned Priority, const MCSymbol *KeySym) const {
2010   return getCOFFStaticStructorSection(
2011       getContext(), getContext().getTargetTriple(), false, Priority, KeySym,
2012       cast<MCSectionCOFF>(StaticDtorSection));
2013 }
2014 
2015 const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference(
2016     const GlobalValue *LHS, const GlobalValue *RHS,
2017     const TargetMachine &TM) const {
2018   const Triple &T = TM.getTargetTriple();
2019   if (T.isOSCygMing())
2020     return nullptr;
2021 
2022   // Our symbols should exist in address space zero, cowardly no-op if
2023   // otherwise.
2024   if (LHS->getType()->getPointerAddressSpace() != 0 ||
2025       RHS->getType()->getPointerAddressSpace() != 0)
2026     return nullptr;
2027 
2028   // Both ptrtoint instructions must wrap global objects:
2029   // - Only global variables are eligible for image relative relocations.
2030   // - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable.
2031   // We expect __ImageBase to be a global variable without a section, externally
2032   // defined.
2033   //
2034   // It should look something like this: @__ImageBase = external constant i8
2035   if (!isa<GlobalObject>(LHS) || !isa<GlobalVariable>(RHS) ||
2036       LHS->isThreadLocal() || RHS->isThreadLocal() ||
2037       RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() ||
2038       cast<GlobalVariable>(RHS)->hasInitializer() || RHS->hasSection())
2039     return nullptr;
2040 
2041   return MCSymbolRefExpr::create(TM.getSymbol(LHS),
2042                                  MCSymbolRefExpr::VK_COFF_IMGREL32,
2043                                  getContext());
2044 }
2045 
2046 static std::string APIntToHexString(const APInt &AI) {
2047   unsigned Width = (AI.getBitWidth() / 8) * 2;
2048   std::string HexString = toString(AI, 16, /*Signed=*/false);
2049   llvm::transform(HexString, HexString.begin(), tolower);
2050   unsigned Size = HexString.size();
2051   assert(Width >= Size && "hex string is too large!");
2052   HexString.insert(HexString.begin(), Width - Size, '0');
2053 
2054   return HexString;
2055 }
2056 
2057 static std::string scalarConstantToHexString(const Constant *C) {
2058   Type *Ty = C->getType();
2059   if (isa<UndefValue>(C)) {
2060     return APIntToHexString(APInt::getZero(Ty->getPrimitiveSizeInBits()));
2061   } else if (const auto *CFP = dyn_cast<ConstantFP>(C)) {
2062     return APIntToHexString(CFP->getValueAPF().bitcastToAPInt());
2063   } else if (const auto *CI = dyn_cast<ConstantInt>(C)) {
2064     return APIntToHexString(CI->getValue());
2065   } else {
2066     unsigned NumElements;
2067     if (auto *VTy = dyn_cast<VectorType>(Ty))
2068       NumElements = cast<FixedVectorType>(VTy)->getNumElements();
2069     else
2070       NumElements = Ty->getArrayNumElements();
2071     std::string HexString;
2072     for (int I = NumElements - 1, E = -1; I != E; --I)
2073       HexString += scalarConstantToHexString(C->getAggregateElement(I));
2074     return HexString;
2075   }
2076 }
2077 
2078 MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant(
2079     const DataLayout &DL, SectionKind Kind, const Constant *C,
2080     Align &Alignment) const {
2081   if (Kind.isMergeableConst() && C &&
2082       getContext().getAsmInfo()->hasCOFFComdatConstants()) {
2083     // This creates comdat sections with the given symbol name, but unless
2084     // AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol
2085     // will be created with a null storage class, which makes GNU binutils
2086     // error out.
2087     const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
2088                                      COFF::IMAGE_SCN_MEM_READ |
2089                                      COFF::IMAGE_SCN_LNK_COMDAT;
2090     std::string COMDATSymName;
2091     if (Kind.isMergeableConst4()) {
2092       if (Alignment <= 4) {
2093         COMDATSymName = "__real@" + scalarConstantToHexString(C);
2094         Alignment = Align(4);
2095       }
2096     } else if (Kind.isMergeableConst8()) {
2097       if (Alignment <= 8) {
2098         COMDATSymName = "__real@" + scalarConstantToHexString(C);
2099         Alignment = Align(8);
2100       }
2101     } else if (Kind.isMergeableConst16()) {
2102       // FIXME: These may not be appropriate for non-x86 architectures.
2103       if (Alignment <= 16) {
2104         COMDATSymName = "__xmm@" + scalarConstantToHexString(C);
2105         Alignment = Align(16);
2106       }
2107     } else if (Kind.isMergeableConst32()) {
2108       if (Alignment <= 32) {
2109         COMDATSymName = "__ymm@" + scalarConstantToHexString(C);
2110         Alignment = Align(32);
2111       }
2112     }
2113 
2114     if (!COMDATSymName.empty())
2115       return getContext().getCOFFSection(".rdata", Characteristics,
2116                                          COMDATSymName,
2117                                          COFF::IMAGE_COMDAT_SELECT_ANY);
2118   }
2119 
2120   return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C,
2121                                                          Alignment);
2122 }
2123 
2124 //===----------------------------------------------------------------------===//
2125 //                                  Wasm
2126 //===----------------------------------------------------------------------===//
2127 
2128 static const Comdat *getWasmComdat(const GlobalValue *GV) {
2129   const Comdat *C = GV->getComdat();
2130   if (!C)
2131     return nullptr;
2132 
2133   if (C->getSelectionKind() != Comdat::Any)
2134     report_fatal_error("WebAssembly COMDATs only support "
2135                        "SelectionKind::Any, '" + C->getName() + "' cannot be "
2136                        "lowered.");
2137 
2138   return C;
2139 }
2140 
2141 static unsigned getWasmSectionFlags(SectionKind K, bool Retain) {
2142   unsigned Flags = 0;
2143 
2144   if (K.isThreadLocal())
2145     Flags |= wasm::WASM_SEG_FLAG_TLS;
2146 
2147   if (K.isMergeableCString())
2148     Flags |= wasm::WASM_SEG_FLAG_STRINGS;
2149 
2150   if (Retain)
2151     Flags |= wasm::WASM_SEG_FLAG_RETAIN;
2152 
2153   // TODO(sbc): Add suport for K.isMergeableConst()
2154 
2155   return Flags;
2156 }
2157 
2158 void TargetLoweringObjectFileWasm::getModuleMetadata(Module &M) {
2159   SmallVector<GlobalValue *, 4> Vec;
2160   collectUsedGlobalVariables(M, Vec, false);
2161   for (GlobalValue *GV : Vec)
2162     if (auto *GO = dyn_cast<GlobalObject>(GV))
2163       Used.insert(GO);
2164 }
2165 
2166 MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal(
2167     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2168   // We don't support explict section names for functions in the wasm object
2169   // format.  Each function has to be in its own unique section.
2170   if (isa<Function>(GO)) {
2171     return SelectSectionForGlobal(GO, Kind, TM);
2172   }
2173 
2174   StringRef Name = GO->getSection();
2175 
2176   // Certain data sections we treat as named custom sections rather than
2177   // segments within the data section.
2178   // This could be avoided if all data segements (the wasm sense) were
2179   // represented as their own sections (in the llvm sense).
2180   // TODO(sbc): https://github.com/WebAssembly/tool-conventions/issues/138
2181   if (Name == getInstrProfSectionName(IPSK_covmap, Triple::Wasm,
2182                                       /*AddSegmentInfo=*/false) ||
2183       Name == getInstrProfSectionName(IPSK_covfun, Triple::Wasm,
2184                                       /*AddSegmentInfo=*/false) ||
2185       Name == ".llvmbc" || Name == ".llvmcmd")
2186     Kind = SectionKind::getMetadata();
2187 
2188   StringRef Group = "";
2189   if (const Comdat *C = getWasmComdat(GO)) {
2190     Group = C->getName();
2191   }
2192 
2193   unsigned Flags = getWasmSectionFlags(Kind, Used.count(GO));
2194   MCSectionWasm *Section = getContext().getWasmSection(
2195       Name, Kind, Flags, Group, MCContext::GenericSectionID);
2196 
2197   return Section;
2198 }
2199 
2200 static MCSectionWasm *
2201 selectWasmSectionForGlobal(MCContext &Ctx, const GlobalObject *GO,
2202                            SectionKind Kind, Mangler &Mang,
2203                            const TargetMachine &TM, bool EmitUniqueSection,
2204                            unsigned *NextUniqueID, bool Retain) {
2205   StringRef Group = "";
2206   if (const Comdat *C = getWasmComdat(GO)) {
2207     Group = C->getName();
2208   }
2209 
2210   bool UniqueSectionNames = TM.getUniqueSectionNames();
2211   SmallString<128> Name = getSectionPrefixForGlobal(Kind, /*IsLarge=*/false);
2212 
2213   if (const auto *F = dyn_cast<Function>(GO)) {
2214     const auto &OptionalPrefix = F->getSectionPrefix();
2215     if (OptionalPrefix)
2216       raw_svector_ostream(Name) << '.' << *OptionalPrefix;
2217   }
2218 
2219   if (EmitUniqueSection && UniqueSectionNames) {
2220     Name.push_back('.');
2221     TM.getNameWithPrefix(Name, GO, Mang, true);
2222   }
2223   unsigned UniqueID = MCContext::GenericSectionID;
2224   if (EmitUniqueSection && !UniqueSectionNames) {
2225     UniqueID = *NextUniqueID;
2226     (*NextUniqueID)++;
2227   }
2228 
2229   unsigned Flags = getWasmSectionFlags(Kind, Retain);
2230   return Ctx.getWasmSection(Name, Kind, Flags, Group, UniqueID);
2231 }
2232 
2233 MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal(
2234     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2235 
2236   if (Kind.isCommon())
2237     report_fatal_error("mergable sections not supported yet on wasm");
2238 
2239   // If we have -ffunction-section or -fdata-section then we should emit the
2240   // global value to a uniqued section specifically for it.
2241   bool EmitUniqueSection = false;
2242   if (Kind.isText())
2243     EmitUniqueSection = TM.getFunctionSections();
2244   else
2245     EmitUniqueSection = TM.getDataSections();
2246   EmitUniqueSection |= GO->hasComdat();
2247   bool Retain = Used.count(GO);
2248   EmitUniqueSection |= Retain;
2249 
2250   return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
2251                                     EmitUniqueSection, &NextUniqueID, Retain);
2252 }
2253 
2254 bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection(
2255     bool UsesLabelDifference, const Function &F) const {
2256   // We can always create relative relocations, so use another section
2257   // that can be marked non-executable.
2258   return false;
2259 }
2260 
2261 const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference(
2262     const GlobalValue *LHS, const GlobalValue *RHS,
2263     const TargetMachine &TM) const {
2264   // We may only use a PLT-relative relocation to refer to unnamed_addr
2265   // functions.
2266   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
2267     return nullptr;
2268 
2269   // Basic correctness checks.
2270   if (LHS->getType()->getPointerAddressSpace() != 0 ||
2271       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
2272       RHS->isThreadLocal())
2273     return nullptr;
2274 
2275   return MCBinaryExpr::createSub(
2276       MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None,
2277                               getContext()),
2278       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
2279 }
2280 
2281 void TargetLoweringObjectFileWasm::InitializeWasm() {
2282   StaticCtorSection =
2283       getContext().getWasmSection(".init_array", SectionKind::getData());
2284 
2285   // We don't use PersonalityEncoding and LSDAEncoding because we don't emit
2286   // .cfi directives. We use TTypeEncoding to encode typeinfo global variables.
2287   TTypeEncoding = dwarf::DW_EH_PE_absptr;
2288 }
2289 
2290 MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection(
2291     unsigned Priority, const MCSymbol *KeySym) const {
2292   return Priority == UINT16_MAX ?
2293          StaticCtorSection :
2294          getContext().getWasmSection(".init_array." + utostr(Priority),
2295                                      SectionKind::getData());
2296 }
2297 
2298 MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection(
2299     unsigned Priority, const MCSymbol *KeySym) const {
2300   report_fatal_error("@llvm.global_dtors should have been lowered already");
2301 }
2302 
2303 //===----------------------------------------------------------------------===//
2304 //                                  XCOFF
2305 //===----------------------------------------------------------------------===//
2306 bool TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(
2307     const MachineFunction *MF) {
2308   if (!MF->getLandingPads().empty())
2309     return true;
2310 
2311   const Function &F = MF->getFunction();
2312   if (!F.hasPersonalityFn() || !F.needsUnwindTableEntry())
2313     return false;
2314 
2315   const GlobalValue *Per =
2316       dyn_cast<GlobalValue>(F.getPersonalityFn()->stripPointerCasts());
2317   assert(Per && "Personality routine is not a GlobalValue type.");
2318   if (isNoOpWithoutInvoke(classifyEHPersonality(Per)))
2319     return false;
2320 
2321   return true;
2322 }
2323 
2324 bool TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(
2325     const MachineFunction *MF) {
2326   const Function &F = MF->getFunction();
2327   if (!F.hasStackProtectorFnAttr())
2328     return false;
2329   // FIXME: check presence of canary word
2330   // There are cases that the stack protectors are not really inserted even if
2331   // the attributes are on.
2332   return true;
2333 }
2334 
2335 MCSymbol *
2336 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(const MachineFunction *MF) {
2337   MCSymbol *EHInfoSym = MF->getContext().getOrCreateSymbol(
2338       "__ehinfo." + Twine(MF->getFunctionNumber()));
2339   cast<MCSymbolXCOFF>(EHInfoSym)->setEHInfo();
2340   return EHInfoSym;
2341 }
2342 
2343 MCSymbol *
2344 TargetLoweringObjectFileXCOFF::getTargetSymbol(const GlobalValue *GV,
2345                                                const TargetMachine &TM) const {
2346   // We always use a qualname symbol for a GV that represents
2347   // a declaration, a function descriptor, or a common symbol.
2348   // If a GV represents a GlobalVariable and -fdata-sections is enabled, we
2349   // also return a qualname so that a label symbol could be avoided.
2350   // It is inherently ambiguous when the GO represents the address of a
2351   // function, as the GO could either represent a function descriptor or a
2352   // function entry point. We choose to always return a function descriptor
2353   // here.
2354   if (const GlobalObject *GO = dyn_cast<GlobalObject>(GV)) {
2355     if (GO->isDeclarationForLinker())
2356       return cast<MCSectionXCOFF>(getSectionForExternalReference(GO, TM))
2357           ->getQualNameSymbol();
2358 
2359     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
2360       if (GVar->hasAttribute("toc-data"))
2361         return cast<MCSectionXCOFF>(
2362                    SectionForGlobal(GVar, SectionKind::getData(), TM))
2363             ->getQualNameSymbol();
2364 
2365     SectionKind GOKind = getKindForGlobal(GO, TM);
2366     if (GOKind.isText())
2367       return cast<MCSectionXCOFF>(
2368                  getSectionForFunctionDescriptor(cast<Function>(GO), TM))
2369           ->getQualNameSymbol();
2370     if ((TM.getDataSections() && !GO->hasSection()) || GO->hasCommonLinkage() ||
2371         GOKind.isBSSLocal() || GOKind.isThreadBSSLocal())
2372       return cast<MCSectionXCOFF>(SectionForGlobal(GO, GOKind, TM))
2373           ->getQualNameSymbol();
2374   }
2375 
2376   // For all other cases, fall back to getSymbol to return the unqualified name.
2377   return nullptr;
2378 }
2379 
2380 MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal(
2381     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2382   if (!GO->hasSection())
2383     report_fatal_error("#pragma clang section is not yet supported");
2384 
2385   StringRef SectionName = GO->getSection();
2386 
2387   // Handle the XCOFF::TD case first, then deal with the rest.
2388   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GO))
2389     if (GVar->hasAttribute("toc-data"))
2390       return getContext().getXCOFFSection(
2391           SectionName, Kind,
2392           XCOFF::CsectProperties(/*MappingClass*/ XCOFF::XMC_TD, XCOFF::XTY_SD),
2393           /* MultiSymbolsAllowed*/ true);
2394 
2395   XCOFF::StorageMappingClass MappingClass;
2396   if (Kind.isText())
2397     MappingClass = XCOFF::XMC_PR;
2398   else if (Kind.isData() || Kind.isBSS())
2399     MappingClass = XCOFF::XMC_RW;
2400   else if (Kind.isReadOnlyWithRel())
2401     MappingClass =
2402         TM.Options.XCOFFReadOnlyPointers ? XCOFF::XMC_RO : XCOFF::XMC_RW;
2403   else if (Kind.isReadOnly())
2404     MappingClass = XCOFF::XMC_RO;
2405   else
2406     report_fatal_error("XCOFF other section types not yet implemented.");
2407 
2408   return getContext().getXCOFFSection(
2409       SectionName, Kind, XCOFF::CsectProperties(MappingClass, XCOFF::XTY_SD),
2410       /* MultiSymbolsAllowed*/ true);
2411 }
2412 
2413 MCSection *TargetLoweringObjectFileXCOFF::getSectionForExternalReference(
2414     const GlobalObject *GO, const TargetMachine &TM) const {
2415   assert(GO->isDeclarationForLinker() &&
2416          "Tried to get ER section for a defined global.");
2417 
2418   SmallString<128> Name;
2419   getNameWithPrefix(Name, GO, TM);
2420 
2421   // AIX TLS local-dynamic does not need the external reference for the
2422   // "_$TLSML" symbol.
2423   if (GO->getThreadLocalMode() == GlobalVariable::LocalDynamicTLSModel &&
2424       GO->hasName() && GO->getName() == "_$TLSML") {
2425     return getContext().getXCOFFSection(
2426         Name, SectionKind::getData(),
2427         XCOFF::CsectProperties(XCOFF::XMC_TC, XCOFF::XTY_SD));
2428   }
2429 
2430   XCOFF::StorageMappingClass SMC =
2431       isa<Function>(GO) ? XCOFF::XMC_DS : XCOFF::XMC_UA;
2432   if (GO->isThreadLocal())
2433     SMC = XCOFF::XMC_UL;
2434 
2435   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GO))
2436     if (GVar->hasAttribute("toc-data"))
2437       SMC = XCOFF::XMC_TD;
2438 
2439   // Externals go into a csect of type ER.
2440   return getContext().getXCOFFSection(
2441       Name, SectionKind::getMetadata(),
2442       XCOFF::CsectProperties(SMC, XCOFF::XTY_ER));
2443 }
2444 
2445 MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal(
2446     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2447   // Handle the XCOFF::TD case first, then deal with the rest.
2448   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GO))
2449     if (GVar->hasAttribute("toc-data")) {
2450       SmallString<128> Name;
2451       getNameWithPrefix(Name, GO, TM);
2452       XCOFF::SymbolType symType =
2453           GO->hasCommonLinkage() ? XCOFF::XTY_CM : XCOFF::XTY_SD;
2454       return getContext().getXCOFFSection(
2455           Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_TD, symType),
2456           /* MultiSymbolsAllowed*/ true);
2457     }
2458 
2459   // Common symbols go into a csect with matching name which will get mapped
2460   // into the .bss section.
2461   // Zero-initialized local TLS symbols go into a csect with matching name which
2462   // will get mapped into the .tbss section.
2463   if (Kind.isBSSLocal() || GO->hasCommonLinkage() || Kind.isThreadBSSLocal()) {
2464     SmallString<128> Name;
2465     getNameWithPrefix(Name, GO, TM);
2466     XCOFF::StorageMappingClass SMC = Kind.isBSSLocal() ? XCOFF::XMC_BS
2467                                      : Kind.isCommon() ? XCOFF::XMC_RW
2468                                                        : XCOFF::XMC_UL;
2469     return getContext().getXCOFFSection(
2470         Name, Kind, XCOFF::CsectProperties(SMC, XCOFF::XTY_CM));
2471   }
2472 
2473   if (Kind.isText()) {
2474     if (TM.getFunctionSections()) {
2475       return cast<MCSymbolXCOFF>(getFunctionEntryPointSymbol(GO, TM))
2476           ->getRepresentedCsect();
2477     }
2478     return TextSection;
2479   }
2480 
2481   if (TM.Options.XCOFFReadOnlyPointers && Kind.isReadOnlyWithRel()) {
2482     if (!TM.getDataSections())
2483       report_fatal_error(
2484           "ReadOnlyPointers is supported only if data sections is turned on");
2485 
2486     SmallString<128> Name;
2487     getNameWithPrefix(Name, GO, TM);
2488     return getContext().getXCOFFSection(
2489         Name, SectionKind::getReadOnly(),
2490         XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD));
2491   }
2492 
2493   // For BSS kind, zero initialized data must be emitted to the .data section
2494   // because external linkage control sections that get mapped to the .bss
2495   // section will be linked as tentative defintions, which is only appropriate
2496   // for SectionKind::Common.
2497   if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) {
2498     if (TM.getDataSections()) {
2499       SmallString<128> Name;
2500       getNameWithPrefix(Name, GO, TM);
2501       return getContext().getXCOFFSection(
2502           Name, SectionKind::getData(),
2503           XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD));
2504     }
2505     return DataSection;
2506   }
2507 
2508   if (Kind.isReadOnly()) {
2509     if (TM.getDataSections()) {
2510       SmallString<128> Name;
2511       getNameWithPrefix(Name, GO, TM);
2512       return getContext().getXCOFFSection(
2513           Name, SectionKind::getReadOnly(),
2514           XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD));
2515     }
2516     return ReadOnlySection;
2517   }
2518 
2519   // External/weak TLS data and initialized local TLS data are not eligible
2520   // to be put into common csect. If data sections are enabled, thread
2521   // data are emitted into separate sections. Otherwise, thread data
2522   // are emitted into the .tdata section.
2523   if (Kind.isThreadLocal()) {
2524     if (TM.getDataSections()) {
2525       SmallString<128> Name;
2526       getNameWithPrefix(Name, GO, TM);
2527       return getContext().getXCOFFSection(
2528           Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_TL, XCOFF::XTY_SD));
2529     }
2530     return TLSDataSection;
2531   }
2532 
2533   report_fatal_error("XCOFF other section types not yet implemented.");
2534 }
2535 
2536 MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable(
2537     const Function &F, const TargetMachine &TM) const {
2538   assert (!F.getComdat() && "Comdat not supported on XCOFF.");
2539 
2540   if (!TM.getFunctionSections())
2541     return ReadOnlySection;
2542 
2543   // If the function can be removed, produce a unique section so that
2544   // the table doesn't prevent the removal.
2545   SmallString<128> NameStr(".rodata.jmp..");
2546   getNameWithPrefix(NameStr, &F, TM);
2547   return getContext().getXCOFFSection(
2548       NameStr, SectionKind::getReadOnly(),
2549       XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD));
2550 }
2551 
2552 bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection(
2553     bool UsesLabelDifference, const Function &F) const {
2554   return false;
2555 }
2556 
2557 /// Given a mergeable constant with the specified size and relocation
2558 /// information, return a section that it should be placed in.
2559 MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant(
2560     const DataLayout &DL, SectionKind Kind, const Constant *C,
2561     Align &Alignment) const {
2562   // TODO: Enable emiting constant pool to unique sections when we support it.
2563   if (Alignment > Align(16))
2564     report_fatal_error("Alignments greater than 16 not yet supported.");
2565 
2566   if (Alignment == Align(8)) {
2567     assert(ReadOnly8Section && "Section should always be initialized.");
2568     return ReadOnly8Section;
2569   }
2570 
2571   if (Alignment == Align(16)) {
2572     assert(ReadOnly16Section && "Section should always be initialized.");
2573     return ReadOnly16Section;
2574   }
2575 
2576   return ReadOnlySection;
2577 }
2578 
2579 void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx,
2580                                                const TargetMachine &TgtM) {
2581   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
2582   TTypeEncoding =
2583       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_datarel |
2584       (TgtM.getTargetTriple().isArch32Bit() ? dwarf::DW_EH_PE_sdata4
2585                                             : dwarf::DW_EH_PE_sdata8);
2586   PersonalityEncoding = 0;
2587   LSDAEncoding = 0;
2588   CallSiteEncoding = dwarf::DW_EH_PE_udata4;
2589 
2590   // AIX debug for thread local location is not ready. And for integrated as
2591   // mode, the relocatable address for the thread local variable will cause
2592   // linker error. So disable the location attribute generation for thread local
2593   // variables for now.
2594   // FIXME: when TLS debug on AIX is ready, remove this setting.
2595   SupportDebugThreadLocalLocation = false;
2596 }
2597 
2598 MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection(
2599 	unsigned Priority, const MCSymbol *KeySym) const {
2600   report_fatal_error("no static constructor section on AIX");
2601 }
2602 
2603 MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection(
2604 	unsigned Priority, const MCSymbol *KeySym) const {
2605   report_fatal_error("no static destructor section on AIX");
2606 }
2607 
2608 const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference(
2609     const GlobalValue *LHS, const GlobalValue *RHS,
2610     const TargetMachine &TM) const {
2611   /* Not implemented yet, but don't crash, return nullptr. */
2612   return nullptr;
2613 }
2614 
2615 XCOFF::StorageClass
2616 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(const GlobalValue *GV) {
2617   assert(!isa<GlobalIFunc>(GV) && "GlobalIFunc is not supported on AIX.");
2618 
2619   switch (GV->getLinkage()) {
2620   case GlobalValue::InternalLinkage:
2621   case GlobalValue::PrivateLinkage:
2622     return XCOFF::C_HIDEXT;
2623   case GlobalValue::ExternalLinkage:
2624   case GlobalValue::CommonLinkage:
2625   case GlobalValue::AvailableExternallyLinkage:
2626     return XCOFF::C_EXT;
2627   case GlobalValue::ExternalWeakLinkage:
2628   case GlobalValue::LinkOnceAnyLinkage:
2629   case GlobalValue::LinkOnceODRLinkage:
2630   case GlobalValue::WeakAnyLinkage:
2631   case GlobalValue::WeakODRLinkage:
2632     return XCOFF::C_WEAKEXT;
2633   case GlobalValue::AppendingLinkage:
2634     report_fatal_error(
2635         "There is no mapping that implements AppendingLinkage for XCOFF.");
2636   }
2637   llvm_unreachable("Unknown linkage type!");
2638 }
2639 
2640 MCSymbol *TargetLoweringObjectFileXCOFF::getFunctionEntryPointSymbol(
2641     const GlobalValue *Func, const TargetMachine &TM) const {
2642   assert((isa<Function>(Func) ||
2643           (isa<GlobalAlias>(Func) &&
2644            isa_and_nonnull<Function>(
2645                cast<GlobalAlias>(Func)->getAliaseeObject()))) &&
2646          "Func must be a function or an alias which has a function as base "
2647          "object.");
2648 
2649   SmallString<128> NameStr;
2650   NameStr.push_back('.');
2651   getNameWithPrefix(NameStr, Func, TM);
2652 
2653   // When -function-sections is enabled and explicit section is not specified,
2654   // it's not necessary to emit function entry point label any more. We will use
2655   // function entry point csect instead. And for function delcarations, the
2656   // undefined symbols gets treated as csect with XTY_ER property.
2657   if (((TM.getFunctionSections() && !Func->hasSection()) ||
2658        Func->isDeclarationForLinker()) &&
2659       isa<Function>(Func)) {
2660     return getContext()
2661         .getXCOFFSection(
2662             NameStr, SectionKind::getText(),
2663             XCOFF::CsectProperties(XCOFF::XMC_PR, Func->isDeclarationForLinker()
2664                                                       ? XCOFF::XTY_ER
2665                                                       : XCOFF::XTY_SD))
2666         ->getQualNameSymbol();
2667   }
2668 
2669   return getContext().getOrCreateSymbol(NameStr);
2670 }
2671 
2672 MCSection *TargetLoweringObjectFileXCOFF::getSectionForFunctionDescriptor(
2673     const Function *F, const TargetMachine &TM) const {
2674   SmallString<128> NameStr;
2675   getNameWithPrefix(NameStr, F, TM);
2676   return getContext().getXCOFFSection(
2677       NameStr, SectionKind::getData(),
2678       XCOFF::CsectProperties(XCOFF::XMC_DS, XCOFF::XTY_SD));
2679 }
2680 
2681 MCSection *TargetLoweringObjectFileXCOFF::getSectionForTOCEntry(
2682     const MCSymbol *Sym, const TargetMachine &TM) const {
2683   const XCOFF::StorageMappingClass SMC = [](const MCSymbol *Sym,
2684                                             const TargetMachine &TM) {
2685     const MCSymbolXCOFF *XSym = cast<MCSymbolXCOFF>(Sym);
2686 
2687     // The "_$TLSML" symbol for TLS local-dynamic mode requires XMC_TC,
2688     // otherwise the AIX assembler will complain.
2689     if (XSym->getSymbolTableName() == "_$TLSML")
2690       return XCOFF::XMC_TC;
2691 
2692     // Use large code model toc entries for ehinfo symbols as they are
2693     // never referenced directly. The runtime loads their TOC entry
2694     // addresses from the trace-back table.
2695     if (XSym->isEHInfo())
2696       return XCOFF::XMC_TE;
2697 
2698     // If the symbol does not have a code model specified use the module value.
2699     if (!XSym->hasPerSymbolCodeModel())
2700       return TM.getCodeModel() == CodeModel::Large ? XCOFF::XMC_TE
2701                                                    : XCOFF::XMC_TC;
2702 
2703     return XSym->getPerSymbolCodeModel() == MCSymbolXCOFF::CM_Large
2704                ? XCOFF::XMC_TE
2705                : XCOFF::XMC_TC;
2706   }(Sym, TM);
2707 
2708   return getContext().getXCOFFSection(
2709       cast<MCSymbolXCOFF>(Sym)->getSymbolTableName(), SectionKind::getData(),
2710       XCOFF::CsectProperties(SMC, XCOFF::XTY_SD));
2711 }
2712 
2713 MCSection *TargetLoweringObjectFileXCOFF::getSectionForLSDA(
2714     const Function &F, const MCSymbol &FnSym, const TargetMachine &TM) const {
2715   auto *LSDA = cast<MCSectionXCOFF>(LSDASection);
2716   if (TM.getFunctionSections()) {
2717     // If option -ffunction-sections is on, append the function name to the
2718     // name of the LSDA csect so that each function has its own LSDA csect.
2719     // This helps the linker to garbage-collect EH info of unused functions.
2720     SmallString<128> NameStr = LSDA->getName();
2721     raw_svector_ostream(NameStr) << '.' << F.getName();
2722     LSDA = getContext().getXCOFFSection(NameStr, LSDA->getKind(),
2723                                         LSDA->getCsectProp());
2724   }
2725   return LSDA;
2726 }
2727 //===----------------------------------------------------------------------===//
2728 //                                  GOFF
2729 //===----------------------------------------------------------------------===//
2730 TargetLoweringObjectFileGOFF::TargetLoweringObjectFileGOFF() = default;
2731 
2732 MCSection *TargetLoweringObjectFileGOFF::getExplicitSectionGlobal(
2733     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2734   return SelectSectionForGlobal(GO, Kind, TM);
2735 }
2736 
2737 MCSection *TargetLoweringObjectFileGOFF::getSectionForLSDA(
2738     const Function &F, const MCSymbol &FnSym, const TargetMachine &TM) const {
2739   std::string Name = ".gcc_exception_table." + F.getName().str();
2740   return getContext().getGOFFSection(Name, SectionKind::getData(), nullptr, 0);
2741 }
2742 
2743 MCSection *TargetLoweringObjectFileGOFF::SelectSectionForGlobal(
2744     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2745   auto *Symbol = TM.getSymbol(GO);
2746   if (Kind.isBSS())
2747     return getContext().getGOFFSection(Symbol->getName(), SectionKind::getBSS(),
2748                                        nullptr, 0);
2749 
2750   return getContext().getObjectFileInfo()->getTextSection();
2751 }
2752