1 //===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements classes used to handle lowerings specific to common 10 // object file formats. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h" 15 #include "llvm/ADT/SmallString.h" 16 #include "llvm/ADT/SmallVector.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/StringRef.h" 19 #include "llvm/BinaryFormat/COFF.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/BinaryFormat/ELF.h" 22 #include "llvm/BinaryFormat/MachO.h" 23 #include "llvm/BinaryFormat/Wasm.h" 24 #include "llvm/CodeGen/BasicBlockSectionUtils.h" 25 #include "llvm/CodeGen/MachineBasicBlock.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineModuleInfo.h" 28 #include "llvm/CodeGen/MachineModuleInfoImpls.h" 29 #include "llvm/IR/Comdat.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/DerivedTypes.h" 33 #include "llvm/IR/DiagnosticInfo.h" 34 #include "llvm/IR/DiagnosticPrinter.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/GlobalAlias.h" 37 #include "llvm/IR/GlobalObject.h" 38 #include "llvm/IR/GlobalValue.h" 39 #include "llvm/IR/GlobalVariable.h" 40 #include "llvm/IR/Mangler.h" 41 #include "llvm/IR/Metadata.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/PseudoProbe.h" 44 #include "llvm/IR/Type.h" 45 #include "llvm/MC/MCAsmInfo.h" 46 #include "llvm/MC/MCContext.h" 47 #include "llvm/MC/MCExpr.h" 48 #include "llvm/MC/MCSectionCOFF.h" 49 #include "llvm/MC/MCSectionELF.h" 50 #include "llvm/MC/MCSectionGOFF.h" 51 #include "llvm/MC/MCSectionMachO.h" 52 #include "llvm/MC/MCSectionWasm.h" 53 #include "llvm/MC/MCSectionXCOFF.h" 54 #include "llvm/MC/MCStreamer.h" 55 #include "llvm/MC/MCSymbol.h" 56 #include "llvm/MC/MCSymbolELF.h" 57 #include "llvm/MC/MCValue.h" 58 #include "llvm/MC/SectionKind.h" 59 #include "llvm/ProfileData/InstrProf.h" 60 #include "llvm/Support/Base64.h" 61 #include "llvm/Support/Casting.h" 62 #include "llvm/Support/CodeGen.h" 63 #include "llvm/Support/ErrorHandling.h" 64 #include "llvm/Support/Format.h" 65 #include "llvm/Support/raw_ostream.h" 66 #include "llvm/Target/TargetMachine.h" 67 #include "llvm/TargetParser/Triple.h" 68 #include <cassert> 69 #include <string> 70 71 using namespace llvm; 72 using namespace dwarf; 73 74 static cl::opt<bool> JumpTableInFunctionSection( 75 "jumptable-in-function-section", cl::Hidden, cl::init(false), 76 cl::desc("Putting Jump Table in function section")); 77 78 static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags, 79 StringRef &Section) { 80 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags; 81 M.getModuleFlagsMetadata(ModuleFlags); 82 83 for (const auto &MFE: ModuleFlags) { 84 // Ignore flags with 'Require' behaviour. 85 if (MFE.Behavior == Module::Require) 86 continue; 87 88 StringRef Key = MFE.Key->getString(); 89 if (Key == "Objective-C Image Info Version") { 90 Version = mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue(); 91 } else if (Key == "Objective-C Garbage Collection" || 92 Key == "Objective-C GC Only" || 93 Key == "Objective-C Is Simulated" || 94 Key == "Objective-C Class Properties" || 95 Key == "Objective-C Image Swift Version") { 96 Flags |= mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue(); 97 } else if (Key == "Objective-C Image Info Section") { 98 Section = cast<MDString>(MFE.Val)->getString(); 99 } 100 // Backend generates L_OBJC_IMAGE_INFO from Swift ABI version + major + minor + 101 // "Objective-C Garbage Collection". 102 else if (Key == "Swift ABI Version") { 103 Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 8; 104 } else if (Key == "Swift Major Version") { 105 Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 24; 106 } else if (Key == "Swift Minor Version") { 107 Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 16; 108 } 109 } 110 } 111 112 //===----------------------------------------------------------------------===// 113 // ELF 114 //===----------------------------------------------------------------------===// 115 116 TargetLoweringObjectFileELF::TargetLoweringObjectFileELF() { 117 SupportDSOLocalEquivalentLowering = true; 118 } 119 120 void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx, 121 const TargetMachine &TgtM) { 122 TargetLoweringObjectFile::Initialize(Ctx, TgtM); 123 124 CodeModel::Model CM = TgtM.getCodeModel(); 125 InitializeELF(TgtM.Options.UseInitArray); 126 127 switch (TgtM.getTargetTriple().getArch()) { 128 case Triple::arm: 129 case Triple::armeb: 130 case Triple::thumb: 131 case Triple::thumbeb: 132 if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM) 133 break; 134 // Fallthrough if not using EHABI 135 [[fallthrough]]; 136 case Triple::ppc: 137 case Triple::ppcle: 138 case Triple::x86: 139 PersonalityEncoding = isPositionIndependent() 140 ? dwarf::DW_EH_PE_indirect | 141 dwarf::DW_EH_PE_pcrel | 142 dwarf::DW_EH_PE_sdata4 143 : dwarf::DW_EH_PE_absptr; 144 LSDAEncoding = isPositionIndependent() 145 ? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4 146 : dwarf::DW_EH_PE_absptr; 147 TTypeEncoding = isPositionIndependent() 148 ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 149 dwarf::DW_EH_PE_sdata4 150 : dwarf::DW_EH_PE_absptr; 151 break; 152 case Triple::x86_64: 153 if (isPositionIndependent()) { 154 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 155 ((CM == CodeModel::Small || CM == CodeModel::Medium) 156 ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8); 157 LSDAEncoding = dwarf::DW_EH_PE_pcrel | 158 (CM == CodeModel::Small 159 ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8); 160 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 161 ((CM == CodeModel::Small || CM == CodeModel::Medium) 162 ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8); 163 } else { 164 PersonalityEncoding = 165 (CM == CodeModel::Small || CM == CodeModel::Medium) 166 ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr; 167 LSDAEncoding = (CM == CodeModel::Small) 168 ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr; 169 TTypeEncoding = (CM == CodeModel::Small) 170 ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr; 171 } 172 break; 173 case Triple::hexagon: 174 PersonalityEncoding = dwarf::DW_EH_PE_absptr; 175 LSDAEncoding = dwarf::DW_EH_PE_absptr; 176 TTypeEncoding = dwarf::DW_EH_PE_absptr; 177 if (isPositionIndependent()) { 178 PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel; 179 LSDAEncoding |= dwarf::DW_EH_PE_pcrel; 180 TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel; 181 } 182 break; 183 case Triple::aarch64: 184 case Triple::aarch64_be: 185 case Triple::aarch64_32: 186 // The small model guarantees static code/data size < 4GB, but not where it 187 // will be in memory. Most of these could end up >2GB away so even a signed 188 // pc-relative 32-bit address is insufficient, theoretically. 189 // 190 // Use DW_EH_PE_indirect even for -fno-pic to avoid copy relocations. 191 LSDAEncoding = dwarf::DW_EH_PE_pcrel | 192 (TgtM.getTargetTriple().getEnvironment() == Triple::GNUILP32 193 ? dwarf::DW_EH_PE_sdata4 194 : dwarf::DW_EH_PE_sdata8); 195 PersonalityEncoding = LSDAEncoding | dwarf::DW_EH_PE_indirect; 196 TTypeEncoding = LSDAEncoding | dwarf::DW_EH_PE_indirect; 197 break; 198 case Triple::lanai: 199 LSDAEncoding = dwarf::DW_EH_PE_absptr; 200 PersonalityEncoding = dwarf::DW_EH_PE_absptr; 201 TTypeEncoding = dwarf::DW_EH_PE_absptr; 202 break; 203 case Triple::mips: 204 case Triple::mipsel: 205 case Triple::mips64: 206 case Triple::mips64el: 207 // MIPS uses indirect pointer to refer personality functions and types, so 208 // that the eh_frame section can be read-only. DW.ref.personality will be 209 // generated for relocation. 210 PersonalityEncoding = dwarf::DW_EH_PE_indirect; 211 // FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't 212 // identify N64 from just a triple. 213 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 214 dwarf::DW_EH_PE_sdata4; 215 // We don't support PC-relative LSDA references in GAS so we use the default 216 // DW_EH_PE_absptr for those. 217 218 // FreeBSD must be explicit about the data size and using pcrel since it's 219 // assembler/linker won't do the automatic conversion that the Linux tools 220 // do. 221 if (TgtM.getTargetTriple().isOSFreeBSD()) { 222 PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 223 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 224 } 225 break; 226 case Triple::ppc64: 227 case Triple::ppc64le: 228 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 229 dwarf::DW_EH_PE_udata8; 230 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8; 231 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 232 dwarf::DW_EH_PE_udata8; 233 break; 234 case Triple::sparcel: 235 case Triple::sparc: 236 if (isPositionIndependent()) { 237 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 238 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 239 dwarf::DW_EH_PE_sdata4; 240 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 241 dwarf::DW_EH_PE_sdata4; 242 } else { 243 LSDAEncoding = dwarf::DW_EH_PE_absptr; 244 PersonalityEncoding = dwarf::DW_EH_PE_absptr; 245 TTypeEncoding = dwarf::DW_EH_PE_absptr; 246 } 247 CallSiteEncoding = dwarf::DW_EH_PE_udata4; 248 break; 249 case Triple::riscv32: 250 case Triple::riscv64: 251 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 252 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 253 dwarf::DW_EH_PE_sdata4; 254 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 255 dwarf::DW_EH_PE_sdata4; 256 CallSiteEncoding = dwarf::DW_EH_PE_udata4; 257 break; 258 case Triple::sparcv9: 259 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 260 if (isPositionIndependent()) { 261 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 262 dwarf::DW_EH_PE_sdata4; 263 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 264 dwarf::DW_EH_PE_sdata4; 265 } else { 266 PersonalityEncoding = dwarf::DW_EH_PE_absptr; 267 TTypeEncoding = dwarf::DW_EH_PE_absptr; 268 } 269 break; 270 case Triple::systemz: 271 // All currently-defined code models guarantee that 4-byte PC-relative 272 // values will be in range. 273 if (isPositionIndependent()) { 274 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 275 dwarf::DW_EH_PE_sdata4; 276 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 277 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 278 dwarf::DW_EH_PE_sdata4; 279 } else { 280 PersonalityEncoding = dwarf::DW_EH_PE_absptr; 281 LSDAEncoding = dwarf::DW_EH_PE_absptr; 282 TTypeEncoding = dwarf::DW_EH_PE_absptr; 283 } 284 break; 285 case Triple::loongarch32: 286 case Triple::loongarch64: 287 LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 288 PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 289 dwarf::DW_EH_PE_sdata4; 290 TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | 291 dwarf::DW_EH_PE_sdata4; 292 break; 293 default: 294 break; 295 } 296 } 297 298 void TargetLoweringObjectFileELF::getModuleMetadata(Module &M) { 299 SmallVector<GlobalValue *, 4> Vec; 300 collectUsedGlobalVariables(M, Vec, false); 301 for (GlobalValue *GV : Vec) 302 if (auto *GO = dyn_cast<GlobalObject>(GV)) 303 Used.insert(GO); 304 } 305 306 void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer, 307 Module &M) const { 308 auto &C = getContext(); 309 310 if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) { 311 auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS, 312 ELF::SHF_EXCLUDE); 313 314 Streamer.switchSection(S); 315 316 for (const auto *Operand : LinkerOptions->operands()) { 317 if (cast<MDNode>(Operand)->getNumOperands() != 2) 318 report_fatal_error("invalid llvm.linker.options"); 319 for (const auto &Option : cast<MDNode>(Operand)->operands()) { 320 Streamer.emitBytes(cast<MDString>(Option)->getString()); 321 Streamer.emitInt8(0); 322 } 323 } 324 } 325 326 if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) { 327 auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES, 328 ELF::SHF_MERGE | ELF::SHF_STRINGS, 1); 329 330 Streamer.switchSection(S); 331 332 for (const auto *Operand : DependentLibraries->operands()) { 333 Streamer.emitBytes( 334 cast<MDString>(cast<MDNode>(Operand)->getOperand(0))->getString()); 335 Streamer.emitInt8(0); 336 } 337 } 338 339 if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) { 340 // Emit a descriptor for every function including functions that have an 341 // available external linkage. We may not want this for imported functions 342 // that has code in another thinLTO module but we don't have a good way to 343 // tell them apart from inline functions defined in header files. Therefore 344 // we put each descriptor in a separate comdat section and rely on the 345 // linker to deduplicate. 346 for (const auto *Operand : FuncInfo->operands()) { 347 const auto *MD = cast<MDNode>(Operand); 348 auto *GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0)); 349 auto *Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1)); 350 auto *Name = cast<MDString>(MD->getOperand(2)); 351 auto *S = C.getObjectFileInfo()->getPseudoProbeDescSection( 352 TM->getFunctionSections() ? Name->getString() : StringRef()); 353 354 Streamer.switchSection(S); 355 Streamer.emitInt64(GUID->getZExtValue()); 356 Streamer.emitInt64(Hash->getZExtValue()); 357 Streamer.emitULEB128IntValue(Name->getString().size()); 358 Streamer.emitBytes(Name->getString()); 359 } 360 } 361 362 if (NamedMDNode *LLVMStats = M.getNamedMetadata("llvm.stats")) { 363 // Emit the metadata for llvm statistics into .llvm_stats section, which is 364 // formatted as a list of key/value pair, the value is base64 encoded. 365 auto *S = C.getObjectFileInfo()->getLLVMStatsSection(); 366 Streamer.switchSection(S); 367 for (const auto *Operand : LLVMStats->operands()) { 368 const auto *MD = cast<MDNode>(Operand); 369 assert(MD->getNumOperands() % 2 == 0 && 370 ("Operand num should be even for a list of key/value pair")); 371 for (size_t I = 0; I < MD->getNumOperands(); I += 2) { 372 // Encode the key string size. 373 auto *Key = cast<MDString>(MD->getOperand(I)); 374 Streamer.emitULEB128IntValue(Key->getString().size()); 375 Streamer.emitBytes(Key->getString()); 376 // Encode the value into a Base64 string. 377 std::string Value = encodeBase64( 378 Twine(mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1)) 379 ->getZExtValue()) 380 .str()); 381 Streamer.emitULEB128IntValue(Value.size()); 382 Streamer.emitBytes(Value); 383 } 384 } 385 } 386 387 unsigned Version = 0; 388 unsigned Flags = 0; 389 StringRef Section; 390 391 GetObjCImageInfo(M, Version, Flags, Section); 392 if (!Section.empty()) { 393 auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC); 394 Streamer.switchSection(S); 395 Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO"))); 396 Streamer.emitInt32(Version); 397 Streamer.emitInt32(Flags); 398 Streamer.addBlankLine(); 399 } 400 401 emitCGProfileMetadata(Streamer, M); 402 } 403 404 MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol( 405 const GlobalValue *GV, const TargetMachine &TM, 406 MachineModuleInfo *MMI) const { 407 unsigned Encoding = getPersonalityEncoding(); 408 if ((Encoding & 0x80) == DW_EH_PE_indirect) 409 return getContext().getOrCreateSymbol(StringRef("DW.ref.") + 410 TM.getSymbol(GV)->getName()); 411 if ((Encoding & 0x70) == DW_EH_PE_absptr) 412 return TM.getSymbol(GV); 413 report_fatal_error("We do not support this DWARF encoding yet!"); 414 } 415 416 void TargetLoweringObjectFileELF::emitPersonalityValue( 417 MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym) const { 418 SmallString<64> NameData("DW.ref."); 419 NameData += Sym->getName(); 420 MCSymbolELF *Label = 421 cast<MCSymbolELF>(getContext().getOrCreateSymbol(NameData)); 422 Streamer.emitSymbolAttribute(Label, MCSA_Hidden); 423 Streamer.emitSymbolAttribute(Label, MCSA_Weak); 424 unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP; 425 MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(), 426 ELF::SHT_PROGBITS, Flags, 0); 427 unsigned Size = DL.getPointerSize(); 428 Streamer.switchSection(Sec); 429 Streamer.emitValueToAlignment(DL.getPointerABIAlignment(0)); 430 Streamer.emitSymbolAttribute(Label, MCSA_ELF_TypeObject); 431 const MCExpr *E = MCConstantExpr::create(Size, getContext()); 432 Streamer.emitELFSize(Label, E); 433 Streamer.emitLabel(Label); 434 435 Streamer.emitSymbolValue(Sym, Size); 436 } 437 438 const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference( 439 const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM, 440 MachineModuleInfo *MMI, MCStreamer &Streamer) const { 441 if (Encoding & DW_EH_PE_indirect) { 442 MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>(); 443 444 MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM); 445 446 // Add information about the stub reference to ELFMMI so that the stub 447 // gets emitted by the asmprinter. 448 MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym); 449 if (!StubSym.getPointer()) { 450 MCSymbol *Sym = TM.getSymbol(GV); 451 StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage()); 452 } 453 454 return TargetLoweringObjectFile:: 455 getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()), 456 Encoding & ~DW_EH_PE_indirect, Streamer); 457 } 458 459 return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM, 460 MMI, Streamer); 461 } 462 463 static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) { 464 // N.B.: The defaults used in here are not the same ones used in MC. 465 // We follow gcc, MC follows gas. For example, given ".section .eh_frame", 466 // both gas and MC will produce a section with no flags. Given 467 // section(".eh_frame") gcc will produce: 468 // 469 // .section .eh_frame,"a",@progbits 470 471 if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF, 472 /*AddSegmentInfo=*/false) || 473 Name == getInstrProfSectionName(IPSK_covfun, Triple::ELF, 474 /*AddSegmentInfo=*/false) || 475 Name == ".llvmbc" || Name == ".llvmcmd") 476 return SectionKind::getMetadata(); 477 478 if (Name.empty() || Name[0] != '.') return K; 479 480 // Default implementation based on some magic section names. 481 if (Name == ".bss" || Name.starts_with(".bss.") || 482 Name.starts_with(".gnu.linkonce.b.") || 483 Name.starts_with(".llvm.linkonce.b.") || Name == ".sbss" || 484 Name.starts_with(".sbss.") || Name.starts_with(".gnu.linkonce.sb.") || 485 Name.starts_with(".llvm.linkonce.sb.")) 486 return SectionKind::getBSS(); 487 488 if (Name == ".tdata" || Name.starts_with(".tdata.") || 489 Name.starts_with(".gnu.linkonce.td.") || 490 Name.starts_with(".llvm.linkonce.td.")) 491 return SectionKind::getThreadData(); 492 493 if (Name == ".tbss" || Name.starts_with(".tbss.") || 494 Name.starts_with(".gnu.linkonce.tb.") || 495 Name.starts_with(".llvm.linkonce.tb.")) 496 return SectionKind::getThreadBSS(); 497 498 return K; 499 } 500 501 static bool hasPrefix(StringRef SectionName, StringRef Prefix) { 502 return SectionName.consume_front(Prefix) && 503 (SectionName.empty() || SectionName[0] == '.'); 504 } 505 506 static unsigned getELFSectionType(StringRef Name, SectionKind K) { 507 // Use SHT_NOTE for section whose name starts with ".note" to allow 508 // emitting ELF notes from C variable declaration. 509 // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609 510 if (Name.starts_with(".note")) 511 return ELF::SHT_NOTE; 512 513 if (hasPrefix(Name, ".init_array")) 514 return ELF::SHT_INIT_ARRAY; 515 516 if (hasPrefix(Name, ".fini_array")) 517 return ELF::SHT_FINI_ARRAY; 518 519 if (hasPrefix(Name, ".preinit_array")) 520 return ELF::SHT_PREINIT_ARRAY; 521 522 if (hasPrefix(Name, ".llvm.offloading")) 523 return ELF::SHT_LLVM_OFFLOADING; 524 525 if (K.isBSS() || K.isThreadBSS()) 526 return ELF::SHT_NOBITS; 527 528 return ELF::SHT_PROGBITS; 529 } 530 531 static unsigned getELFSectionFlags(SectionKind K) { 532 unsigned Flags = 0; 533 534 if (!K.isMetadata() && !K.isExclude()) 535 Flags |= ELF::SHF_ALLOC; 536 537 if (K.isExclude()) 538 Flags |= ELF::SHF_EXCLUDE; 539 540 if (K.isText()) 541 Flags |= ELF::SHF_EXECINSTR; 542 543 if (K.isExecuteOnly()) 544 Flags |= ELF::SHF_ARM_PURECODE; 545 546 if (K.isWriteable()) 547 Flags |= ELF::SHF_WRITE; 548 549 if (K.isThreadLocal()) 550 Flags |= ELF::SHF_TLS; 551 552 if (K.isMergeableCString() || K.isMergeableConst()) 553 Flags |= ELF::SHF_MERGE; 554 555 if (K.isMergeableCString()) 556 Flags |= ELF::SHF_STRINGS; 557 558 return Flags; 559 } 560 561 static const Comdat *getELFComdat(const GlobalValue *GV) { 562 const Comdat *C = GV->getComdat(); 563 if (!C) 564 return nullptr; 565 566 if (C->getSelectionKind() != Comdat::Any && 567 C->getSelectionKind() != Comdat::NoDeduplicate) 568 report_fatal_error("ELF COMDATs only support SelectionKind::Any and " 569 "SelectionKind::NoDeduplicate, '" + 570 C->getName() + "' cannot be lowered."); 571 572 return C; 573 } 574 575 static const MCSymbolELF *getLinkedToSymbol(const GlobalObject *GO, 576 const TargetMachine &TM) { 577 MDNode *MD = GO->getMetadata(LLVMContext::MD_associated); 578 if (!MD) 579 return nullptr; 580 581 auto *VM = cast<ValueAsMetadata>(MD->getOperand(0).get()); 582 auto *OtherGV = dyn_cast<GlobalValue>(VM->getValue()); 583 return OtherGV ? dyn_cast<MCSymbolELF>(TM.getSymbol(OtherGV)) : nullptr; 584 } 585 586 static unsigned getEntrySizeForKind(SectionKind Kind) { 587 if (Kind.isMergeable1ByteCString()) 588 return 1; 589 else if (Kind.isMergeable2ByteCString()) 590 return 2; 591 else if (Kind.isMergeable4ByteCString()) 592 return 4; 593 else if (Kind.isMergeableConst4()) 594 return 4; 595 else if (Kind.isMergeableConst8()) 596 return 8; 597 else if (Kind.isMergeableConst16()) 598 return 16; 599 else if (Kind.isMergeableConst32()) 600 return 32; 601 else { 602 // We shouldn't have mergeable C strings or mergeable constants that we 603 // didn't handle above. 604 assert(!Kind.isMergeableCString() && "unknown string width"); 605 assert(!Kind.isMergeableConst() && "unknown data width"); 606 return 0; 607 } 608 } 609 610 /// Return the section prefix name used by options FunctionsSections and 611 /// DataSections. 612 static StringRef getSectionPrefixForGlobal(SectionKind Kind, bool IsLarge) { 613 if (Kind.isText()) 614 return IsLarge ? ".ltext" : ".text"; 615 if (Kind.isReadOnly()) 616 return IsLarge ? ".lrodata" : ".rodata"; 617 if (Kind.isBSS()) 618 return IsLarge ? ".lbss" : ".bss"; 619 if (Kind.isThreadData()) 620 return ".tdata"; 621 if (Kind.isThreadBSS()) 622 return ".tbss"; 623 if (Kind.isData()) 624 return IsLarge ? ".ldata" : ".data"; 625 if (Kind.isReadOnlyWithRel()) 626 return IsLarge ? ".ldata.rel.ro" : ".data.rel.ro"; 627 llvm_unreachable("Unknown section kind"); 628 } 629 630 static SmallString<128> 631 getELFSectionNameForGlobal(const GlobalObject *GO, SectionKind Kind, 632 Mangler &Mang, const TargetMachine &TM, 633 unsigned EntrySize, bool UniqueSectionName) { 634 SmallString<128> Name; 635 if (Kind.isMergeableCString()) { 636 // We also need alignment here. 637 // FIXME: this is getting the alignment of the character, not the 638 // alignment of the global! 639 Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign( 640 cast<GlobalVariable>(GO)); 641 642 std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + "."; 643 Name = SizeSpec + utostr(Alignment.value()); 644 } else if (Kind.isMergeableConst()) { 645 Name = ".rodata.cst"; 646 Name += utostr(EntrySize); 647 } else { 648 Name = getSectionPrefixForGlobal(Kind, TM.isLargeGlobalValue(GO)); 649 } 650 651 bool HasPrefix = false; 652 if (const auto *F = dyn_cast<Function>(GO)) { 653 if (std::optional<StringRef> Prefix = F->getSectionPrefix()) { 654 raw_svector_ostream(Name) << '.' << *Prefix; 655 HasPrefix = true; 656 } 657 } 658 659 if (UniqueSectionName) { 660 Name.push_back('.'); 661 TM.getNameWithPrefix(Name, GO, Mang, /*MayAlwaysUsePrivate*/true); 662 } else if (HasPrefix) 663 // For distinguishing between .text.${text-section-prefix}. (with trailing 664 // dot) and .text.${function-name} 665 Name.push_back('.'); 666 return Name; 667 } 668 669 namespace { 670 class LoweringDiagnosticInfo : public DiagnosticInfo { 671 const Twine &Msg; 672 673 public: 674 LoweringDiagnosticInfo(const Twine &DiagMsg, 675 DiagnosticSeverity Severity = DS_Error) 676 : DiagnosticInfo(DK_Lowering, Severity), Msg(DiagMsg) {} 677 void print(DiagnosticPrinter &DP) const override { DP << Msg; } 678 }; 679 } 680 681 /// Calculate an appropriate unique ID for a section, and update Flags, 682 /// EntrySize and NextUniqueID where appropriate. 683 static unsigned 684 calcUniqueIDUpdateFlagsAndSize(const GlobalObject *GO, StringRef SectionName, 685 SectionKind Kind, const TargetMachine &TM, 686 MCContext &Ctx, Mangler &Mang, unsigned &Flags, 687 unsigned &EntrySize, unsigned &NextUniqueID, 688 const bool Retain, const bool ForceUnique) { 689 // Increment uniqueID if we are forced to emit a unique section. 690 // This works perfectly fine with section attribute or pragma section as the 691 // sections with the same name are grouped together by the assembler. 692 if (ForceUnique) 693 return NextUniqueID++; 694 695 // A section can have at most one associated section. Put each global with 696 // MD_associated in a unique section. 697 const bool Associated = GO->getMetadata(LLVMContext::MD_associated); 698 if (Associated) { 699 Flags |= ELF::SHF_LINK_ORDER; 700 return NextUniqueID++; 701 } 702 703 if (Retain) { 704 if (TM.getTargetTriple().isOSSolaris()) 705 Flags |= ELF::SHF_SUNW_NODISCARD; 706 else if (Ctx.getAsmInfo()->useIntegratedAssembler() || 707 Ctx.getAsmInfo()->binutilsIsAtLeast(2, 36)) 708 Flags |= ELF::SHF_GNU_RETAIN; 709 return NextUniqueID++; 710 } 711 712 // If two symbols with differing sizes end up in the same mergeable section 713 // that section can be assigned an incorrect entry size. To avoid this we 714 // usually put symbols of the same size into distinct mergeable sections with 715 // the same name. Doing so relies on the ",unique ," assembly feature. This 716 // feature is not avalible until bintuils version 2.35 717 // (https://sourceware.org/bugzilla/show_bug.cgi?id=25380). 718 const bool SupportsUnique = Ctx.getAsmInfo()->useIntegratedAssembler() || 719 Ctx.getAsmInfo()->binutilsIsAtLeast(2, 35); 720 if (!SupportsUnique) { 721 Flags &= ~ELF::SHF_MERGE; 722 EntrySize = 0; 723 return MCContext::GenericSectionID; 724 } 725 726 const bool SymbolMergeable = Flags & ELF::SHF_MERGE; 727 const bool SeenSectionNameBefore = 728 Ctx.isELFGenericMergeableSection(SectionName); 729 // If this is the first ocurrence of this section name, treat it as the 730 // generic section 731 if (!SymbolMergeable && !SeenSectionNameBefore) 732 return MCContext::GenericSectionID; 733 734 // Symbols must be placed into sections with compatible entry sizes. Generate 735 // unique sections for symbols that have not been assigned to compatible 736 // sections. 737 const auto PreviousID = 738 Ctx.getELFUniqueIDForEntsize(SectionName, Flags, EntrySize); 739 if (PreviousID) 740 return *PreviousID; 741 742 // If the user has specified the same section name as would be created 743 // implicitly for this symbol e.g. .rodata.str1.1, then we don't need 744 // to unique the section as the entry size for this symbol will be 745 // compatible with implicitly created sections. 746 SmallString<128> ImplicitSectionNameStem = 747 getELFSectionNameForGlobal(GO, Kind, Mang, TM, EntrySize, false); 748 if (SymbolMergeable && 749 Ctx.isELFImplicitMergeableSectionNamePrefix(SectionName) && 750 SectionName.starts_with(ImplicitSectionNameStem)) 751 return MCContext::GenericSectionID; 752 753 // We have seen this section name before, but with different flags or entity 754 // size. Create a new unique ID. 755 return NextUniqueID++; 756 } 757 758 static std::tuple<StringRef, bool, unsigned> 759 getGlobalObjectInfo(const GlobalObject *GO, const TargetMachine &TM) { 760 StringRef Group = ""; 761 bool IsComdat = false; 762 unsigned Flags = 0; 763 if (const Comdat *C = getELFComdat(GO)) { 764 Flags |= ELF::SHF_GROUP; 765 Group = C->getName(); 766 IsComdat = C->getSelectionKind() == Comdat::Any; 767 } 768 if (TM.isLargeGlobalValue(GO)) 769 Flags |= ELF::SHF_X86_64_LARGE; 770 return {Group, IsComdat, Flags}; 771 } 772 773 static MCSection *selectExplicitSectionGlobal( 774 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM, 775 MCContext &Ctx, Mangler &Mang, unsigned &NextUniqueID, 776 bool Retain, bool ForceUnique) { 777 StringRef SectionName = GO->getSection(); 778 779 // Check if '#pragma clang section' name is applicable. 780 // Note that pragma directive overrides -ffunction-section, -fdata-section 781 // and so section name is exactly as user specified and not uniqued. 782 const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO); 783 if (GV && GV->hasImplicitSection()) { 784 auto Attrs = GV->getAttributes(); 785 if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) { 786 SectionName = Attrs.getAttribute("bss-section").getValueAsString(); 787 } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) { 788 SectionName = Attrs.getAttribute("rodata-section").getValueAsString(); 789 } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) { 790 SectionName = Attrs.getAttribute("relro-section").getValueAsString(); 791 } else if (Attrs.hasAttribute("data-section") && Kind.isData()) { 792 SectionName = Attrs.getAttribute("data-section").getValueAsString(); 793 } 794 } 795 const Function *F = dyn_cast<Function>(GO); 796 if (F && F->hasFnAttribute("implicit-section-name")) { 797 SectionName = F->getFnAttribute("implicit-section-name").getValueAsString(); 798 } 799 800 // Infer section flags from the section name if we can. 801 Kind = getELFKindForNamedSection(SectionName, Kind); 802 803 unsigned Flags = getELFSectionFlags(Kind); 804 auto [Group, IsComdat, ExtraFlags] = getGlobalObjectInfo(GO, TM); 805 Flags |= ExtraFlags; 806 807 unsigned EntrySize = getEntrySizeForKind(Kind); 808 const unsigned UniqueID = calcUniqueIDUpdateFlagsAndSize( 809 GO, SectionName, Kind, TM, Ctx, Mang, Flags, EntrySize, NextUniqueID, 810 Retain, ForceUnique); 811 812 const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM); 813 MCSectionELF *Section = Ctx.getELFSection( 814 SectionName, getELFSectionType(SectionName, Kind), Flags, EntrySize, 815 Group, IsComdat, UniqueID, LinkedToSym); 816 // Make sure that we did not get some other section with incompatible sh_link. 817 // This should not be possible due to UniqueID code above. 818 assert(Section->getLinkedToSymbol() == LinkedToSym && 819 "Associated symbol mismatch between sections"); 820 821 if (!(Ctx.getAsmInfo()->useIntegratedAssembler() || 822 Ctx.getAsmInfo()->binutilsIsAtLeast(2, 35))) { 823 // If we are using GNU as before 2.35, then this symbol might have 824 // been placed in an incompatible mergeable section. Emit an error if this 825 // is the case to avoid creating broken output. 826 if ((Section->getFlags() & ELF::SHF_MERGE) && 827 (Section->getEntrySize() != getEntrySizeForKind(Kind))) 828 GO->getContext().diagnose(LoweringDiagnosticInfo( 829 "Symbol '" + GO->getName() + "' from module '" + 830 (GO->getParent() ? GO->getParent()->getSourceFileName() : "unknown") + 831 "' required a section with entry-size=" + 832 Twine(getEntrySizeForKind(Kind)) + " but was placed in section '" + 833 SectionName + "' with entry-size=" + Twine(Section->getEntrySize()) + 834 ": Explicit assignment by pragma or attribute of an incompatible " 835 "symbol to this section?")); 836 } 837 838 return Section; 839 } 840 841 MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal( 842 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 843 return selectExplicitSectionGlobal(GO, Kind, TM, getContext(), getMangler(), 844 NextUniqueID, Used.count(GO), 845 /* ForceUnique = */false); 846 } 847 848 static MCSectionELF *selectELFSectionForGlobal( 849 MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang, 850 const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags, 851 unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) { 852 853 auto [Group, IsComdat, ExtraFlags] = getGlobalObjectInfo(GO, TM); 854 Flags |= ExtraFlags; 855 856 // Get the section entry size based on the kind. 857 unsigned EntrySize = getEntrySizeForKind(Kind); 858 859 bool UniqueSectionName = false; 860 unsigned UniqueID = MCContext::GenericSectionID; 861 if (EmitUniqueSection) { 862 if (TM.getUniqueSectionNames()) { 863 UniqueSectionName = true; 864 } else { 865 UniqueID = *NextUniqueID; 866 (*NextUniqueID)++; 867 } 868 } 869 SmallString<128> Name = getELFSectionNameForGlobal( 870 GO, Kind, Mang, TM, EntrySize, UniqueSectionName); 871 872 // Use 0 as the unique ID for execute-only text. 873 if (Kind.isExecuteOnly()) 874 UniqueID = 0; 875 return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags, 876 EntrySize, Group, IsComdat, UniqueID, 877 AssociatedSymbol); 878 } 879 880 static MCSection *selectELFSectionForGlobal( 881 MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang, 882 const TargetMachine &TM, bool Retain, bool EmitUniqueSection, 883 unsigned Flags, unsigned *NextUniqueID) { 884 const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM); 885 if (LinkedToSym) { 886 EmitUniqueSection = true; 887 Flags |= ELF::SHF_LINK_ORDER; 888 } 889 if (Retain) { 890 if (TM.getTargetTriple().isOSSolaris()) { 891 EmitUniqueSection = true; 892 Flags |= ELF::SHF_SUNW_NODISCARD; 893 } else if (Ctx.getAsmInfo()->useIntegratedAssembler() || 894 Ctx.getAsmInfo()->binutilsIsAtLeast(2, 36)) { 895 EmitUniqueSection = true; 896 Flags |= ELF::SHF_GNU_RETAIN; 897 } 898 } 899 900 MCSectionELF *Section = selectELFSectionForGlobal( 901 Ctx, GO, Kind, Mang, TM, EmitUniqueSection, Flags, 902 NextUniqueID, LinkedToSym); 903 assert(Section->getLinkedToSymbol() == LinkedToSym); 904 return Section; 905 } 906 907 MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal( 908 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 909 unsigned Flags = getELFSectionFlags(Kind); 910 911 // If we have -ffunction-section or -fdata-section then we should emit the 912 // global value to a uniqued section specifically for it. 913 bool EmitUniqueSection = false; 914 if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) { 915 if (Kind.isText()) 916 EmitUniqueSection = TM.getFunctionSections(); 917 else 918 EmitUniqueSection = TM.getDataSections(); 919 } 920 EmitUniqueSection |= GO->hasComdat(); 921 return selectELFSectionForGlobal(getContext(), GO, Kind, getMangler(), TM, 922 Used.count(GO), EmitUniqueSection, Flags, 923 &NextUniqueID); 924 } 925 926 MCSection *TargetLoweringObjectFileELF::getUniqueSectionForFunction( 927 const Function &F, const TargetMachine &TM) const { 928 SectionKind Kind = SectionKind::getText(); 929 unsigned Flags = getELFSectionFlags(Kind); 930 // If the function's section names is pre-determined via pragma or a 931 // section attribute, call selectExplicitSectionGlobal. 932 if (F.hasSection() || F.hasFnAttribute("implicit-section-name")) 933 return selectExplicitSectionGlobal( 934 &F, Kind, TM, getContext(), getMangler(), NextUniqueID, 935 Used.count(&F), /* ForceUnique = */true); 936 else 937 return selectELFSectionForGlobal( 938 getContext(), &F, Kind, getMangler(), TM, Used.count(&F), 939 /*EmitUniqueSection=*/true, Flags, &NextUniqueID); 940 } 941 942 MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable( 943 const Function &F, const TargetMachine &TM) const { 944 // If the function can be removed, produce a unique section so that 945 // the table doesn't prevent the removal. 946 const Comdat *C = F.getComdat(); 947 bool EmitUniqueSection = TM.getFunctionSections() || C; 948 if (!EmitUniqueSection) 949 return ReadOnlySection; 950 951 return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(), 952 getMangler(), TM, EmitUniqueSection, 953 ELF::SHF_ALLOC, &NextUniqueID, 954 /* AssociatedSymbol */ nullptr); 955 } 956 957 MCSection *TargetLoweringObjectFileELF::getSectionForLSDA( 958 const Function &F, const MCSymbol &FnSym, const TargetMachine &TM) const { 959 // If neither COMDAT nor function sections, use the monolithic LSDA section. 960 // Re-use this path if LSDASection is null as in the Arm EHABI. 961 if (!LSDASection || (!F.hasComdat() && !TM.getFunctionSections())) 962 return LSDASection; 963 964 const auto *LSDA = cast<MCSectionELF>(LSDASection); 965 unsigned Flags = LSDA->getFlags(); 966 const MCSymbolELF *LinkedToSym = nullptr; 967 StringRef Group; 968 bool IsComdat = false; 969 if (const Comdat *C = getELFComdat(&F)) { 970 Flags |= ELF::SHF_GROUP; 971 Group = C->getName(); 972 IsComdat = C->getSelectionKind() == Comdat::Any; 973 } 974 // Use SHF_LINK_ORDER to facilitate --gc-sections if we can use GNU ld>=2.36 975 // or LLD, which support mixed SHF_LINK_ORDER & non-SHF_LINK_ORDER. 976 if (TM.getFunctionSections() && 977 (getContext().getAsmInfo()->useIntegratedAssembler() && 978 getContext().getAsmInfo()->binutilsIsAtLeast(2, 36))) { 979 Flags |= ELF::SHF_LINK_ORDER; 980 LinkedToSym = cast<MCSymbolELF>(&FnSym); 981 } 982 983 // Append the function name as the suffix like GCC, assuming 984 // -funique-section-names applies to .gcc_except_table sections. 985 return getContext().getELFSection( 986 (TM.getUniqueSectionNames() ? LSDA->getName() + "." + F.getName() 987 : LSDA->getName()), 988 LSDA->getType(), Flags, 0, Group, IsComdat, MCSection::NonUniqueID, 989 LinkedToSym); 990 } 991 992 bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection( 993 bool UsesLabelDifference, const Function &F) const { 994 // We can always create relative relocations, so use another section 995 // that can be marked non-executable. 996 return false; 997 } 998 999 /// Given a mergeable constant with the specified size and relocation 1000 /// information, return a section that it should be placed in. 1001 MCSection *TargetLoweringObjectFileELF::getSectionForConstant( 1002 const DataLayout &DL, SectionKind Kind, const Constant *C, 1003 Align &Alignment) const { 1004 if (Kind.isMergeableConst4() && MergeableConst4Section) 1005 return MergeableConst4Section; 1006 if (Kind.isMergeableConst8() && MergeableConst8Section) 1007 return MergeableConst8Section; 1008 if (Kind.isMergeableConst16() && MergeableConst16Section) 1009 return MergeableConst16Section; 1010 if (Kind.isMergeableConst32() && MergeableConst32Section) 1011 return MergeableConst32Section; 1012 if (Kind.isReadOnly()) 1013 return ReadOnlySection; 1014 1015 assert(Kind.isReadOnlyWithRel() && "Unknown section kind"); 1016 return DataRelROSection; 1017 } 1018 1019 /// Returns a unique section for the given machine basic block. 1020 MCSection *TargetLoweringObjectFileELF::getSectionForMachineBasicBlock( 1021 const Function &F, const MachineBasicBlock &MBB, 1022 const TargetMachine &TM) const { 1023 assert(MBB.isBeginSection() && "Basic block does not start a section!"); 1024 unsigned UniqueID = MCContext::GenericSectionID; 1025 1026 // For cold sections use the .text.split. prefix along with the parent 1027 // function name. All cold blocks for the same function go to the same 1028 // section. Similarly all exception blocks are grouped by symbol name 1029 // under the .text.eh prefix. For regular sections, we either use a unique 1030 // name, or a unique ID for the section. 1031 SmallString<128> Name; 1032 StringRef FunctionSectionName = MBB.getParent()->getSection()->getName(); 1033 if (FunctionSectionName.equals(".text") || 1034 FunctionSectionName.starts_with(".text.")) { 1035 // Function is in a regular .text section. 1036 StringRef FunctionName = MBB.getParent()->getName(); 1037 if (MBB.getSectionID() == MBBSectionID::ColdSectionID) { 1038 Name += BBSectionsColdTextPrefix; 1039 Name += FunctionName; 1040 } else if (MBB.getSectionID() == MBBSectionID::ExceptionSectionID) { 1041 Name += ".text.eh."; 1042 Name += FunctionName; 1043 } else { 1044 Name += FunctionSectionName; 1045 if (TM.getUniqueBasicBlockSectionNames()) { 1046 if (!Name.ends_with(".")) 1047 Name += "."; 1048 Name += MBB.getSymbol()->getName(); 1049 } else { 1050 UniqueID = NextUniqueID++; 1051 } 1052 } 1053 } else { 1054 // If the original function has a custom non-dot-text section, then emit 1055 // all basic block sections into that section too, each with a unique id. 1056 Name = FunctionSectionName; 1057 UniqueID = NextUniqueID++; 1058 } 1059 1060 unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR; 1061 std::string GroupName; 1062 if (F.hasComdat()) { 1063 Flags |= ELF::SHF_GROUP; 1064 GroupName = F.getComdat()->getName().str(); 1065 } 1066 return getContext().getELFSection(Name, ELF::SHT_PROGBITS, Flags, 1067 0 /* Entry Size */, GroupName, 1068 F.hasComdat(), UniqueID, nullptr); 1069 } 1070 1071 static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray, 1072 bool IsCtor, unsigned Priority, 1073 const MCSymbol *KeySym) { 1074 std::string Name; 1075 unsigned Type; 1076 unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE; 1077 StringRef Comdat = KeySym ? KeySym->getName() : ""; 1078 1079 if (KeySym) 1080 Flags |= ELF::SHF_GROUP; 1081 1082 if (UseInitArray) { 1083 if (IsCtor) { 1084 Type = ELF::SHT_INIT_ARRAY; 1085 Name = ".init_array"; 1086 } else { 1087 Type = ELF::SHT_FINI_ARRAY; 1088 Name = ".fini_array"; 1089 } 1090 if (Priority != 65535) { 1091 Name += '.'; 1092 Name += utostr(Priority); 1093 } 1094 } else { 1095 // The default scheme is .ctor / .dtor, so we have to invert the priority 1096 // numbering. 1097 if (IsCtor) 1098 Name = ".ctors"; 1099 else 1100 Name = ".dtors"; 1101 if (Priority != 65535) 1102 raw_string_ostream(Name) << format(".%05u", 65535 - Priority); 1103 Type = ELF::SHT_PROGBITS; 1104 } 1105 1106 return Ctx.getELFSection(Name, Type, Flags, 0, Comdat, /*IsComdat=*/true); 1107 } 1108 1109 MCSection *TargetLoweringObjectFileELF::getStaticCtorSection( 1110 unsigned Priority, const MCSymbol *KeySym) const { 1111 return getStaticStructorSection(getContext(), UseInitArray, true, Priority, 1112 KeySym); 1113 } 1114 1115 MCSection *TargetLoweringObjectFileELF::getStaticDtorSection( 1116 unsigned Priority, const MCSymbol *KeySym) const { 1117 return getStaticStructorSection(getContext(), UseInitArray, false, Priority, 1118 KeySym); 1119 } 1120 1121 const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference( 1122 const GlobalValue *LHS, const GlobalValue *RHS, 1123 const TargetMachine &TM) const { 1124 // We may only use a PLT-relative relocation to refer to unnamed_addr 1125 // functions. 1126 if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy()) 1127 return nullptr; 1128 1129 // Basic correctness checks. 1130 if (LHS->getType()->getPointerAddressSpace() != 0 || 1131 RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() || 1132 RHS->isThreadLocal()) 1133 return nullptr; 1134 1135 return MCBinaryExpr::createSub( 1136 MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind, 1137 getContext()), 1138 MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext()); 1139 } 1140 1141 const MCExpr *TargetLoweringObjectFileELF::lowerDSOLocalEquivalent( 1142 const DSOLocalEquivalent *Equiv, const TargetMachine &TM) const { 1143 assert(supportDSOLocalEquivalentLowering()); 1144 1145 const auto *GV = Equiv->getGlobalValue(); 1146 1147 // A PLT entry is not needed for dso_local globals. 1148 if (GV->isDSOLocal() || GV->isImplicitDSOLocal()) 1149 return MCSymbolRefExpr::create(TM.getSymbol(GV), getContext()); 1150 1151 return MCSymbolRefExpr::create(TM.getSymbol(GV), PLTRelativeVariantKind, 1152 getContext()); 1153 } 1154 1155 MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const { 1156 // Use ".GCC.command.line" since this feature is to support clang's 1157 // -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the 1158 // same name. 1159 return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS, 1160 ELF::SHF_MERGE | ELF::SHF_STRINGS, 1); 1161 } 1162 1163 void 1164 TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) { 1165 UseInitArray = UseInitArray_; 1166 MCContext &Ctx = getContext(); 1167 if (!UseInitArray) { 1168 StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS, 1169 ELF::SHF_ALLOC | ELF::SHF_WRITE); 1170 1171 StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS, 1172 ELF::SHF_ALLOC | ELF::SHF_WRITE); 1173 return; 1174 } 1175 1176 StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY, 1177 ELF::SHF_WRITE | ELF::SHF_ALLOC); 1178 StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY, 1179 ELF::SHF_WRITE | ELF::SHF_ALLOC); 1180 } 1181 1182 //===----------------------------------------------------------------------===// 1183 // MachO 1184 //===----------------------------------------------------------------------===// 1185 1186 TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO() { 1187 SupportIndirectSymViaGOTPCRel = true; 1188 } 1189 1190 void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx, 1191 const TargetMachine &TM) { 1192 TargetLoweringObjectFile::Initialize(Ctx, TM); 1193 if (TM.getRelocationModel() == Reloc::Static) { 1194 StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0, 1195 SectionKind::getData()); 1196 StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0, 1197 SectionKind::getData()); 1198 } else { 1199 StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func", 1200 MachO::S_MOD_INIT_FUNC_POINTERS, 1201 SectionKind::getData()); 1202 StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func", 1203 MachO::S_MOD_TERM_FUNC_POINTERS, 1204 SectionKind::getData()); 1205 } 1206 1207 PersonalityEncoding = 1208 dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 1209 LSDAEncoding = dwarf::DW_EH_PE_pcrel; 1210 TTypeEncoding = 1211 dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4; 1212 } 1213 1214 MCSection *TargetLoweringObjectFileMachO::getStaticDtorSection( 1215 unsigned Priority, const MCSymbol *KeySym) const { 1216 return StaticDtorSection; 1217 // In userspace, we lower global destructors via atexit(), but kernel/kext 1218 // environments do not provide this function so we still need to support the 1219 // legacy way here. 1220 // See the -disable-atexit-based-global-dtor-lowering CodeGen flag for more 1221 // context. 1222 } 1223 1224 void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer, 1225 Module &M) const { 1226 // Emit the linker options if present. 1227 if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) { 1228 for (const auto *Option : LinkerOptions->operands()) { 1229 SmallVector<std::string, 4> StrOptions; 1230 for (const auto &Piece : cast<MDNode>(Option)->operands()) 1231 StrOptions.push_back(std::string(cast<MDString>(Piece)->getString())); 1232 Streamer.emitLinkerOptions(StrOptions); 1233 } 1234 } 1235 1236 unsigned VersionVal = 0; 1237 unsigned ImageInfoFlags = 0; 1238 StringRef SectionVal; 1239 1240 GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal); 1241 emitCGProfileMetadata(Streamer, M); 1242 1243 // The section is mandatory. If we don't have it, then we don't have GC info. 1244 if (SectionVal.empty()) 1245 return; 1246 1247 StringRef Segment, Section; 1248 unsigned TAA = 0, StubSize = 0; 1249 bool TAAParsed; 1250 if (Error E = MCSectionMachO::ParseSectionSpecifier( 1251 SectionVal, Segment, Section, TAA, TAAParsed, StubSize)) { 1252 // If invalid, report the error with report_fatal_error. 1253 report_fatal_error("Invalid section specifier '" + Section + 1254 "': " + toString(std::move(E)) + "."); 1255 } 1256 1257 // Get the section. 1258 MCSectionMachO *S = getContext().getMachOSection( 1259 Segment, Section, TAA, StubSize, SectionKind::getData()); 1260 Streamer.switchSection(S); 1261 Streamer.emitLabel(getContext(). 1262 getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO"))); 1263 Streamer.emitInt32(VersionVal); 1264 Streamer.emitInt32(ImageInfoFlags); 1265 Streamer.addBlankLine(); 1266 } 1267 1268 static void checkMachOComdat(const GlobalValue *GV) { 1269 const Comdat *C = GV->getComdat(); 1270 if (!C) 1271 return; 1272 1273 report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() + 1274 "' cannot be lowered."); 1275 } 1276 1277 MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal( 1278 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 1279 1280 StringRef SectionName = GO->getSection(); 1281 1282 const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO); 1283 if (GV && GV->hasImplicitSection()) { 1284 auto Attrs = GV->getAttributes(); 1285 if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) { 1286 SectionName = Attrs.getAttribute("bss-section").getValueAsString(); 1287 } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) { 1288 SectionName = Attrs.getAttribute("rodata-section").getValueAsString(); 1289 } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) { 1290 SectionName = Attrs.getAttribute("relro-section").getValueAsString(); 1291 } else if (Attrs.hasAttribute("data-section") && Kind.isData()) { 1292 SectionName = Attrs.getAttribute("data-section").getValueAsString(); 1293 } 1294 } 1295 1296 const Function *F = dyn_cast<Function>(GO); 1297 if (F && F->hasFnAttribute("implicit-section-name")) { 1298 SectionName = F->getFnAttribute("implicit-section-name").getValueAsString(); 1299 } 1300 1301 // Parse the section specifier and create it if valid. 1302 StringRef Segment, Section; 1303 unsigned TAA = 0, StubSize = 0; 1304 bool TAAParsed; 1305 1306 checkMachOComdat(GO); 1307 1308 if (Error E = MCSectionMachO::ParseSectionSpecifier( 1309 SectionName, Segment, Section, TAA, TAAParsed, StubSize)) { 1310 // If invalid, report the error with report_fatal_error. 1311 report_fatal_error("Global variable '" + GO->getName() + 1312 "' has an invalid section specifier '" + 1313 GO->getSection() + "': " + toString(std::move(E)) + "."); 1314 } 1315 1316 // Get the section. 1317 MCSectionMachO *S = 1318 getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind); 1319 1320 // If TAA wasn't set by ParseSectionSpecifier() above, 1321 // use the value returned by getMachOSection() as a default. 1322 if (!TAAParsed) 1323 TAA = S->getTypeAndAttributes(); 1324 1325 // Okay, now that we got the section, verify that the TAA & StubSize agree. 1326 // If the user declared multiple globals with different section flags, we need 1327 // to reject it here. 1328 if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) { 1329 // If invalid, report the error with report_fatal_error. 1330 report_fatal_error("Global variable '" + GO->getName() + 1331 "' section type or attributes does not match previous" 1332 " section specifier"); 1333 } 1334 1335 return S; 1336 } 1337 1338 MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal( 1339 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 1340 checkMachOComdat(GO); 1341 1342 // Handle thread local data. 1343 if (Kind.isThreadBSS()) return TLSBSSSection; 1344 if (Kind.isThreadData()) return TLSDataSection; 1345 1346 if (Kind.isText()) 1347 return GO->isWeakForLinker() ? TextCoalSection : TextSection; 1348 1349 // If this is weak/linkonce, put this in a coalescable section, either in text 1350 // or data depending on if it is writable. 1351 if (GO->isWeakForLinker()) { 1352 if (Kind.isReadOnly()) 1353 return ConstTextCoalSection; 1354 if (Kind.isReadOnlyWithRel()) 1355 return ConstDataCoalSection; 1356 return DataCoalSection; 1357 } 1358 1359 // FIXME: Alignment check should be handled by section classifier. 1360 if (Kind.isMergeable1ByteCString() && 1361 GO->getParent()->getDataLayout().getPreferredAlign( 1362 cast<GlobalVariable>(GO)) < Align(32)) 1363 return CStringSection; 1364 1365 // Do not put 16-bit arrays in the UString section if they have an 1366 // externally visible label, this runs into issues with certain linker 1367 // versions. 1368 if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() && 1369 GO->getParent()->getDataLayout().getPreferredAlign( 1370 cast<GlobalVariable>(GO)) < Align(32)) 1371 return UStringSection; 1372 1373 // With MachO only variables whose corresponding symbol starts with 'l' or 1374 // 'L' can be merged, so we only try merging GVs with private linkage. 1375 if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) { 1376 if (Kind.isMergeableConst4()) 1377 return FourByteConstantSection; 1378 if (Kind.isMergeableConst8()) 1379 return EightByteConstantSection; 1380 if (Kind.isMergeableConst16()) 1381 return SixteenByteConstantSection; 1382 } 1383 1384 // Otherwise, if it is readonly, but not something we can specially optimize, 1385 // just drop it in .const. 1386 if (Kind.isReadOnly()) 1387 return ReadOnlySection; 1388 1389 // If this is marked const, put it into a const section. But if the dynamic 1390 // linker needs to write to it, put it in the data segment. 1391 if (Kind.isReadOnlyWithRel()) 1392 return ConstDataSection; 1393 1394 // Put zero initialized globals with strong external linkage in the 1395 // DATA, __common section with the .zerofill directive. 1396 if (Kind.isBSSExtern()) 1397 return DataCommonSection; 1398 1399 // Put zero initialized globals with local linkage in __DATA,__bss directive 1400 // with the .zerofill directive (aka .lcomm). 1401 if (Kind.isBSSLocal()) 1402 return DataBSSSection; 1403 1404 // Otherwise, just drop the variable in the normal data section. 1405 return DataSection; 1406 } 1407 1408 MCSection *TargetLoweringObjectFileMachO::getSectionForConstant( 1409 const DataLayout &DL, SectionKind Kind, const Constant *C, 1410 Align &Alignment) const { 1411 // If this constant requires a relocation, we have to put it in the data 1412 // segment, not in the text segment. 1413 if (Kind.isData() || Kind.isReadOnlyWithRel()) 1414 return ConstDataSection; 1415 1416 if (Kind.isMergeableConst4()) 1417 return FourByteConstantSection; 1418 if (Kind.isMergeableConst8()) 1419 return EightByteConstantSection; 1420 if (Kind.isMergeableConst16()) 1421 return SixteenByteConstantSection; 1422 return ReadOnlySection; // .const 1423 } 1424 1425 MCSection *TargetLoweringObjectFileMachO::getSectionForCommandLines() const { 1426 return getContext().getMachOSection("__TEXT", "__command_line", 0, 1427 SectionKind::getReadOnly()); 1428 } 1429 1430 const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference( 1431 const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM, 1432 MachineModuleInfo *MMI, MCStreamer &Streamer) const { 1433 // The mach-o version of this method defaults to returning a stub reference. 1434 1435 if (Encoding & DW_EH_PE_indirect) { 1436 MachineModuleInfoMachO &MachOMMI = 1437 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 1438 1439 MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM); 1440 1441 // Add information about the stub reference to MachOMMI so that the stub 1442 // gets emitted by the asmprinter. 1443 MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym); 1444 if (!StubSym.getPointer()) { 1445 MCSymbol *Sym = TM.getSymbol(GV); 1446 StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage()); 1447 } 1448 1449 return TargetLoweringObjectFile:: 1450 getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()), 1451 Encoding & ~DW_EH_PE_indirect, Streamer); 1452 } 1453 1454 return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM, 1455 MMI, Streamer); 1456 } 1457 1458 MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol( 1459 const GlobalValue *GV, const TargetMachine &TM, 1460 MachineModuleInfo *MMI) const { 1461 // The mach-o version of this method defaults to returning a stub reference. 1462 MachineModuleInfoMachO &MachOMMI = 1463 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 1464 1465 MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM); 1466 1467 // Add information about the stub reference to MachOMMI so that the stub 1468 // gets emitted by the asmprinter. 1469 MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym); 1470 if (!StubSym.getPointer()) { 1471 MCSymbol *Sym = TM.getSymbol(GV); 1472 StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage()); 1473 } 1474 1475 return SSym; 1476 } 1477 1478 const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel( 1479 const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV, 1480 int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const { 1481 // Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation 1482 // as 64-bit do, we replace the GOT equivalent by accessing the final symbol 1483 // through a non_lazy_ptr stub instead. One advantage is that it allows the 1484 // computation of deltas to final external symbols. Example: 1485 // 1486 // _extgotequiv: 1487 // .long _extfoo 1488 // 1489 // _delta: 1490 // .long _extgotequiv-_delta 1491 // 1492 // is transformed to: 1493 // 1494 // _delta: 1495 // .long L_extfoo$non_lazy_ptr-(_delta+0) 1496 // 1497 // .section __IMPORT,__pointers,non_lazy_symbol_pointers 1498 // L_extfoo$non_lazy_ptr: 1499 // .indirect_symbol _extfoo 1500 // .long 0 1501 // 1502 // The indirect symbol table (and sections of non_lazy_symbol_pointers type) 1503 // may point to both local (same translation unit) and global (other 1504 // translation units) symbols. Example: 1505 // 1506 // .section __DATA,__pointers,non_lazy_symbol_pointers 1507 // L1: 1508 // .indirect_symbol _myGlobal 1509 // .long 0 1510 // L2: 1511 // .indirect_symbol _myLocal 1512 // .long _myLocal 1513 // 1514 // If the symbol is local, instead of the symbol's index, the assembler 1515 // places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table. 1516 // Then the linker will notice the constant in the table and will look at the 1517 // content of the symbol. 1518 MachineModuleInfoMachO &MachOMMI = 1519 MMI->getObjFileInfo<MachineModuleInfoMachO>(); 1520 MCContext &Ctx = getContext(); 1521 1522 // The offset must consider the original displacement from the base symbol 1523 // since 32-bit targets don't have a GOTPCREL to fold the PC displacement. 1524 Offset = -MV.getConstant(); 1525 const MCSymbol *BaseSym = &MV.getSymB()->getSymbol(); 1526 1527 // Access the final symbol via sym$non_lazy_ptr and generate the appropriated 1528 // non_lazy_ptr stubs. 1529 SmallString<128> Name; 1530 StringRef Suffix = "$non_lazy_ptr"; 1531 Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix(); 1532 Name += Sym->getName(); 1533 Name += Suffix; 1534 MCSymbol *Stub = Ctx.getOrCreateSymbol(Name); 1535 1536 MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub); 1537 1538 if (!StubSym.getPointer()) 1539 StubSym = MachineModuleInfoImpl::StubValueTy(const_cast<MCSymbol *>(Sym), 1540 !GV->hasLocalLinkage()); 1541 1542 const MCExpr *BSymExpr = 1543 MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx); 1544 const MCExpr *LHS = 1545 MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx); 1546 1547 if (!Offset) 1548 return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx); 1549 1550 const MCExpr *RHS = 1551 MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx); 1552 return MCBinaryExpr::createSub(LHS, RHS, Ctx); 1553 } 1554 1555 static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo, 1556 const MCSection &Section) { 1557 if (!AsmInfo.isSectionAtomizableBySymbols(Section)) 1558 return true; 1559 1560 // FIXME: we should be able to use private labels for sections that can't be 1561 // dead-stripped (there's no issue with blocking atomization there), but `ld 1562 // -r` sometimes drops the no_dead_strip attribute from sections so for safety 1563 // we don't allow it. 1564 return false; 1565 } 1566 1567 void TargetLoweringObjectFileMachO::getNameWithPrefix( 1568 SmallVectorImpl<char> &OutName, const GlobalValue *GV, 1569 const TargetMachine &TM) const { 1570 bool CannotUsePrivateLabel = true; 1571 if (auto *GO = GV->getAliaseeObject()) { 1572 SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM); 1573 const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM); 1574 CannotUsePrivateLabel = 1575 !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection); 1576 } 1577 getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel); 1578 } 1579 1580 //===----------------------------------------------------------------------===// 1581 // COFF 1582 //===----------------------------------------------------------------------===// 1583 1584 static unsigned 1585 getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) { 1586 unsigned Flags = 0; 1587 bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb; 1588 1589 if (K.isMetadata()) 1590 Flags |= 1591 COFF::IMAGE_SCN_MEM_DISCARDABLE; 1592 else if (K.isExclude()) 1593 Flags |= 1594 COFF::IMAGE_SCN_LNK_REMOVE | COFF::IMAGE_SCN_MEM_DISCARDABLE; 1595 else if (K.isText()) 1596 Flags |= 1597 COFF::IMAGE_SCN_MEM_EXECUTE | 1598 COFF::IMAGE_SCN_MEM_READ | 1599 COFF::IMAGE_SCN_CNT_CODE | 1600 (isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0); 1601 else if (K.isBSS()) 1602 Flags |= 1603 COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA | 1604 COFF::IMAGE_SCN_MEM_READ | 1605 COFF::IMAGE_SCN_MEM_WRITE; 1606 else if (K.isThreadLocal()) 1607 Flags |= 1608 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1609 COFF::IMAGE_SCN_MEM_READ | 1610 COFF::IMAGE_SCN_MEM_WRITE; 1611 else if (K.isReadOnly() || K.isReadOnlyWithRel()) 1612 Flags |= 1613 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1614 COFF::IMAGE_SCN_MEM_READ; 1615 else if (K.isWriteable()) 1616 Flags |= 1617 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1618 COFF::IMAGE_SCN_MEM_READ | 1619 COFF::IMAGE_SCN_MEM_WRITE; 1620 1621 return Flags; 1622 } 1623 1624 static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) { 1625 const Comdat *C = GV->getComdat(); 1626 assert(C && "expected GV to have a Comdat!"); 1627 1628 StringRef ComdatGVName = C->getName(); 1629 const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName); 1630 if (!ComdatGV) 1631 report_fatal_error("Associative COMDAT symbol '" + ComdatGVName + 1632 "' does not exist."); 1633 1634 if (ComdatGV->getComdat() != C) 1635 report_fatal_error("Associative COMDAT symbol '" + ComdatGVName + 1636 "' is not a key for its COMDAT."); 1637 1638 return ComdatGV; 1639 } 1640 1641 static int getSelectionForCOFF(const GlobalValue *GV) { 1642 if (const Comdat *C = GV->getComdat()) { 1643 const GlobalValue *ComdatKey = getComdatGVForCOFF(GV); 1644 if (const auto *GA = dyn_cast<GlobalAlias>(ComdatKey)) 1645 ComdatKey = GA->getAliaseeObject(); 1646 if (ComdatKey == GV) { 1647 switch (C->getSelectionKind()) { 1648 case Comdat::Any: 1649 return COFF::IMAGE_COMDAT_SELECT_ANY; 1650 case Comdat::ExactMatch: 1651 return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH; 1652 case Comdat::Largest: 1653 return COFF::IMAGE_COMDAT_SELECT_LARGEST; 1654 case Comdat::NoDeduplicate: 1655 return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES; 1656 case Comdat::SameSize: 1657 return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE; 1658 } 1659 } else { 1660 return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE; 1661 } 1662 } 1663 return 0; 1664 } 1665 1666 MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal( 1667 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 1668 int Selection = 0; 1669 unsigned Characteristics = getCOFFSectionFlags(Kind, TM); 1670 StringRef Name = GO->getSection(); 1671 StringRef COMDATSymName = ""; 1672 if (GO->hasComdat()) { 1673 Selection = getSelectionForCOFF(GO); 1674 const GlobalValue *ComdatGV; 1675 if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE) 1676 ComdatGV = getComdatGVForCOFF(GO); 1677 else 1678 ComdatGV = GO; 1679 1680 if (!ComdatGV->hasPrivateLinkage()) { 1681 MCSymbol *Sym = TM.getSymbol(ComdatGV); 1682 COMDATSymName = Sym->getName(); 1683 Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT; 1684 } else { 1685 Selection = 0; 1686 } 1687 } 1688 1689 return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName, 1690 Selection); 1691 } 1692 1693 static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) { 1694 if (Kind.isText()) 1695 return ".text"; 1696 if (Kind.isBSS()) 1697 return ".bss"; 1698 if (Kind.isThreadLocal()) 1699 return ".tls$"; 1700 if (Kind.isReadOnly() || Kind.isReadOnlyWithRel()) 1701 return ".rdata"; 1702 return ".data"; 1703 } 1704 1705 MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal( 1706 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 1707 // If we have -ffunction-sections then we should emit the global value to a 1708 // uniqued section specifically for it. 1709 bool EmitUniquedSection; 1710 if (Kind.isText()) 1711 EmitUniquedSection = TM.getFunctionSections(); 1712 else 1713 EmitUniquedSection = TM.getDataSections(); 1714 1715 if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) { 1716 SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind); 1717 1718 unsigned Characteristics = getCOFFSectionFlags(Kind, TM); 1719 1720 Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT; 1721 int Selection = getSelectionForCOFF(GO); 1722 if (!Selection) 1723 Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES; 1724 const GlobalValue *ComdatGV; 1725 if (GO->hasComdat()) 1726 ComdatGV = getComdatGVForCOFF(GO); 1727 else 1728 ComdatGV = GO; 1729 1730 unsigned UniqueID = MCContext::GenericSectionID; 1731 if (EmitUniquedSection) 1732 UniqueID = NextUniqueID++; 1733 1734 if (!ComdatGV->hasPrivateLinkage()) { 1735 MCSymbol *Sym = TM.getSymbol(ComdatGV); 1736 StringRef COMDATSymName = Sym->getName(); 1737 1738 if (const auto *F = dyn_cast<Function>(GO)) 1739 if (std::optional<StringRef> Prefix = F->getSectionPrefix()) 1740 raw_svector_ostream(Name) << '$' << *Prefix; 1741 1742 // Append "$symbol" to the section name *before* IR-level mangling is 1743 // applied when targetting mingw. This is what GCC does, and the ld.bfd 1744 // COFF linker will not properly handle comdats otherwise. 1745 if (getContext().getTargetTriple().isWindowsGNUEnvironment()) 1746 raw_svector_ostream(Name) << '$' << ComdatGV->getName(); 1747 1748 return getContext().getCOFFSection(Name, Characteristics, Kind, 1749 COMDATSymName, Selection, UniqueID); 1750 } else { 1751 SmallString<256> TmpData; 1752 getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true); 1753 return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData, 1754 Selection, UniqueID); 1755 } 1756 } 1757 1758 if (Kind.isText()) 1759 return TextSection; 1760 1761 if (Kind.isThreadLocal()) 1762 return TLSDataSection; 1763 1764 if (Kind.isReadOnly() || Kind.isReadOnlyWithRel()) 1765 return ReadOnlySection; 1766 1767 // Note: we claim that common symbols are put in BSSSection, but they are 1768 // really emitted with the magic .comm directive, which creates a symbol table 1769 // entry but not a section. 1770 if (Kind.isBSS() || Kind.isCommon()) 1771 return BSSSection; 1772 1773 return DataSection; 1774 } 1775 1776 void TargetLoweringObjectFileCOFF::getNameWithPrefix( 1777 SmallVectorImpl<char> &OutName, const GlobalValue *GV, 1778 const TargetMachine &TM) const { 1779 bool CannotUsePrivateLabel = false; 1780 if (GV->hasPrivateLinkage() && 1781 ((isa<Function>(GV) && TM.getFunctionSections()) || 1782 (isa<GlobalVariable>(GV) && TM.getDataSections()))) 1783 CannotUsePrivateLabel = true; 1784 1785 getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel); 1786 } 1787 1788 MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable( 1789 const Function &F, const TargetMachine &TM) const { 1790 // If the function can be removed, produce a unique section so that 1791 // the table doesn't prevent the removal. 1792 const Comdat *C = F.getComdat(); 1793 bool EmitUniqueSection = TM.getFunctionSections() || C; 1794 if (!EmitUniqueSection) 1795 return ReadOnlySection; 1796 1797 // FIXME: we should produce a symbol for F instead. 1798 if (F.hasPrivateLinkage()) 1799 return ReadOnlySection; 1800 1801 MCSymbol *Sym = TM.getSymbol(&F); 1802 StringRef COMDATSymName = Sym->getName(); 1803 1804 SectionKind Kind = SectionKind::getReadOnly(); 1805 StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind); 1806 unsigned Characteristics = getCOFFSectionFlags(Kind, TM); 1807 Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT; 1808 unsigned UniqueID = NextUniqueID++; 1809 1810 return getContext().getCOFFSection( 1811 SecName, Characteristics, Kind, COMDATSymName, 1812 COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID); 1813 } 1814 1815 bool TargetLoweringObjectFileCOFF::shouldPutJumpTableInFunctionSection( 1816 bool UsesLabelDifference, const Function &F) const { 1817 if (TM->getTargetTriple().getArch() == Triple::x86_64) { 1818 if (!JumpTableInFunctionSection) { 1819 // We can always create relative relocations, so use another section 1820 // that can be marked non-executable. 1821 return false; 1822 } 1823 } 1824 return TargetLoweringObjectFile::shouldPutJumpTableInFunctionSection( 1825 UsesLabelDifference, F); 1826 } 1827 1828 void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer, 1829 Module &M) const { 1830 emitLinkerDirectives(Streamer, M); 1831 1832 unsigned Version = 0; 1833 unsigned Flags = 0; 1834 StringRef Section; 1835 1836 GetObjCImageInfo(M, Version, Flags, Section); 1837 if (!Section.empty()) { 1838 auto &C = getContext(); 1839 auto *S = C.getCOFFSection(Section, 1840 COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1841 COFF::IMAGE_SCN_MEM_READ, 1842 SectionKind::getReadOnly()); 1843 Streamer.switchSection(S); 1844 Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO"))); 1845 Streamer.emitInt32(Version); 1846 Streamer.emitInt32(Flags); 1847 Streamer.addBlankLine(); 1848 } 1849 1850 emitCGProfileMetadata(Streamer, M); 1851 } 1852 1853 void TargetLoweringObjectFileCOFF::emitLinkerDirectives( 1854 MCStreamer &Streamer, Module &M) const { 1855 if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) { 1856 // Emit the linker options to the linker .drectve section. According to the 1857 // spec, this section is a space-separated string containing flags for 1858 // linker. 1859 MCSection *Sec = getDrectveSection(); 1860 Streamer.switchSection(Sec); 1861 for (const auto *Option : LinkerOptions->operands()) { 1862 for (const auto &Piece : cast<MDNode>(Option)->operands()) { 1863 // Lead with a space for consistency with our dllexport implementation. 1864 std::string Directive(" "); 1865 Directive.append(std::string(cast<MDString>(Piece)->getString())); 1866 Streamer.emitBytes(Directive); 1867 } 1868 } 1869 } 1870 1871 // Emit /EXPORT: flags for each exported global as necessary. 1872 std::string Flags; 1873 for (const GlobalValue &GV : M.global_values()) { 1874 raw_string_ostream OS(Flags); 1875 emitLinkerFlagsForGlobalCOFF(OS, &GV, getContext().getTargetTriple(), 1876 getMangler()); 1877 OS.flush(); 1878 if (!Flags.empty()) { 1879 Streamer.switchSection(getDrectveSection()); 1880 Streamer.emitBytes(Flags); 1881 } 1882 Flags.clear(); 1883 } 1884 1885 // Emit /INCLUDE: flags for each used global as necessary. 1886 if (const auto *LU = M.getNamedGlobal("llvm.used")) { 1887 assert(LU->hasInitializer() && "expected llvm.used to have an initializer"); 1888 assert(isa<ArrayType>(LU->getValueType()) && 1889 "expected llvm.used to be an array type"); 1890 if (const auto *A = cast<ConstantArray>(LU->getInitializer())) { 1891 for (const Value *Op : A->operands()) { 1892 const auto *GV = cast<GlobalValue>(Op->stripPointerCasts()); 1893 // Global symbols with internal or private linkage are not visible to 1894 // the linker, and thus would cause an error when the linker tried to 1895 // preserve the symbol due to the `/include:` directive. 1896 if (GV->hasLocalLinkage()) 1897 continue; 1898 1899 raw_string_ostream OS(Flags); 1900 emitLinkerFlagsForUsedCOFF(OS, GV, getContext().getTargetTriple(), 1901 getMangler()); 1902 OS.flush(); 1903 1904 if (!Flags.empty()) { 1905 Streamer.switchSection(getDrectveSection()); 1906 Streamer.emitBytes(Flags); 1907 } 1908 Flags.clear(); 1909 } 1910 } 1911 } 1912 } 1913 1914 void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx, 1915 const TargetMachine &TM) { 1916 TargetLoweringObjectFile::Initialize(Ctx, TM); 1917 this->TM = &TM; 1918 const Triple &T = TM.getTargetTriple(); 1919 if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) { 1920 StaticCtorSection = 1921 Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1922 COFF::IMAGE_SCN_MEM_READ, 1923 SectionKind::getReadOnly()); 1924 StaticDtorSection = 1925 Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1926 COFF::IMAGE_SCN_MEM_READ, 1927 SectionKind::getReadOnly()); 1928 } else { 1929 StaticCtorSection = Ctx.getCOFFSection( 1930 ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1931 COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE, 1932 SectionKind::getData()); 1933 StaticDtorSection = Ctx.getCOFFSection( 1934 ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1935 COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE, 1936 SectionKind::getData()); 1937 } 1938 } 1939 1940 static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx, 1941 const Triple &T, bool IsCtor, 1942 unsigned Priority, 1943 const MCSymbol *KeySym, 1944 MCSectionCOFF *Default) { 1945 if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) { 1946 // If the priority is the default, use .CRT$XCU, possibly associative. 1947 if (Priority == 65535) 1948 return Ctx.getAssociativeCOFFSection(Default, KeySym, 0); 1949 1950 // Otherwise, we need to compute a new section name. Low priorities should 1951 // run earlier. The linker will sort sections ASCII-betically, and we need a 1952 // string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we 1953 // make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really 1954 // low priorities need to sort before 'L', since the CRT uses that 1955 // internally, so we use ".CRT$XCA00001" for them. We have a contract with 1956 // the frontend that "init_seg(compiler)" corresponds to priority 200 and 1957 // "init_seg(lib)" corresponds to priority 400, and those respectively use 1958 // 'C' and 'L' without the priority suffix. Priorities between 200 and 400 1959 // use 'C' with the priority as a suffix. 1960 SmallString<24> Name; 1961 char LastLetter = 'T'; 1962 bool AddPrioritySuffix = Priority != 200 && Priority != 400; 1963 if (Priority < 200) 1964 LastLetter = 'A'; 1965 else if (Priority < 400) 1966 LastLetter = 'C'; 1967 else if (Priority == 400) 1968 LastLetter = 'L'; 1969 raw_svector_ostream OS(Name); 1970 OS << ".CRT$X" << (IsCtor ? "C" : "T") << LastLetter; 1971 if (AddPrioritySuffix) 1972 OS << format("%05u", Priority); 1973 MCSectionCOFF *Sec = Ctx.getCOFFSection( 1974 Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ, 1975 SectionKind::getReadOnly()); 1976 return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0); 1977 } 1978 1979 std::string Name = IsCtor ? ".ctors" : ".dtors"; 1980 if (Priority != 65535) 1981 raw_string_ostream(Name) << format(".%05u", 65535 - Priority); 1982 1983 return Ctx.getAssociativeCOFFSection( 1984 Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 1985 COFF::IMAGE_SCN_MEM_READ | 1986 COFF::IMAGE_SCN_MEM_WRITE, 1987 SectionKind::getData()), 1988 KeySym, 0); 1989 } 1990 1991 MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection( 1992 unsigned Priority, const MCSymbol *KeySym) const { 1993 return getCOFFStaticStructorSection( 1994 getContext(), getContext().getTargetTriple(), true, Priority, KeySym, 1995 cast<MCSectionCOFF>(StaticCtorSection)); 1996 } 1997 1998 MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection( 1999 unsigned Priority, const MCSymbol *KeySym) const { 2000 return getCOFFStaticStructorSection( 2001 getContext(), getContext().getTargetTriple(), false, Priority, KeySym, 2002 cast<MCSectionCOFF>(StaticDtorSection)); 2003 } 2004 2005 const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference( 2006 const GlobalValue *LHS, const GlobalValue *RHS, 2007 const TargetMachine &TM) const { 2008 const Triple &T = TM.getTargetTriple(); 2009 if (T.isOSCygMing()) 2010 return nullptr; 2011 2012 // Our symbols should exist in address space zero, cowardly no-op if 2013 // otherwise. 2014 if (LHS->getType()->getPointerAddressSpace() != 0 || 2015 RHS->getType()->getPointerAddressSpace() != 0) 2016 return nullptr; 2017 2018 // Both ptrtoint instructions must wrap global objects: 2019 // - Only global variables are eligible for image relative relocations. 2020 // - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable. 2021 // We expect __ImageBase to be a global variable without a section, externally 2022 // defined. 2023 // 2024 // It should look something like this: @__ImageBase = external constant i8 2025 if (!isa<GlobalObject>(LHS) || !isa<GlobalVariable>(RHS) || 2026 LHS->isThreadLocal() || RHS->isThreadLocal() || 2027 RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() || 2028 cast<GlobalVariable>(RHS)->hasInitializer() || RHS->hasSection()) 2029 return nullptr; 2030 2031 return MCSymbolRefExpr::create(TM.getSymbol(LHS), 2032 MCSymbolRefExpr::VK_COFF_IMGREL32, 2033 getContext()); 2034 } 2035 2036 static std::string APIntToHexString(const APInt &AI) { 2037 unsigned Width = (AI.getBitWidth() / 8) * 2; 2038 std::string HexString = toString(AI, 16, /*Signed=*/false); 2039 llvm::transform(HexString, HexString.begin(), tolower); 2040 unsigned Size = HexString.size(); 2041 assert(Width >= Size && "hex string is too large!"); 2042 HexString.insert(HexString.begin(), Width - Size, '0'); 2043 2044 return HexString; 2045 } 2046 2047 static std::string scalarConstantToHexString(const Constant *C) { 2048 Type *Ty = C->getType(); 2049 if (isa<UndefValue>(C)) { 2050 return APIntToHexString(APInt::getZero(Ty->getPrimitiveSizeInBits())); 2051 } else if (const auto *CFP = dyn_cast<ConstantFP>(C)) { 2052 return APIntToHexString(CFP->getValueAPF().bitcastToAPInt()); 2053 } else if (const auto *CI = dyn_cast<ConstantInt>(C)) { 2054 return APIntToHexString(CI->getValue()); 2055 } else { 2056 unsigned NumElements; 2057 if (auto *VTy = dyn_cast<VectorType>(Ty)) 2058 NumElements = cast<FixedVectorType>(VTy)->getNumElements(); 2059 else 2060 NumElements = Ty->getArrayNumElements(); 2061 std::string HexString; 2062 for (int I = NumElements - 1, E = -1; I != E; --I) 2063 HexString += scalarConstantToHexString(C->getAggregateElement(I)); 2064 return HexString; 2065 } 2066 } 2067 2068 MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant( 2069 const DataLayout &DL, SectionKind Kind, const Constant *C, 2070 Align &Alignment) const { 2071 if (Kind.isMergeableConst() && C && 2072 getContext().getAsmInfo()->hasCOFFComdatConstants()) { 2073 // This creates comdat sections with the given symbol name, but unless 2074 // AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol 2075 // will be created with a null storage class, which makes GNU binutils 2076 // error out. 2077 const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | 2078 COFF::IMAGE_SCN_MEM_READ | 2079 COFF::IMAGE_SCN_LNK_COMDAT; 2080 std::string COMDATSymName; 2081 if (Kind.isMergeableConst4()) { 2082 if (Alignment <= 4) { 2083 COMDATSymName = "__real@" + scalarConstantToHexString(C); 2084 Alignment = Align(4); 2085 } 2086 } else if (Kind.isMergeableConst8()) { 2087 if (Alignment <= 8) { 2088 COMDATSymName = "__real@" + scalarConstantToHexString(C); 2089 Alignment = Align(8); 2090 } 2091 } else if (Kind.isMergeableConst16()) { 2092 // FIXME: These may not be appropriate for non-x86 architectures. 2093 if (Alignment <= 16) { 2094 COMDATSymName = "__xmm@" + scalarConstantToHexString(C); 2095 Alignment = Align(16); 2096 } 2097 } else if (Kind.isMergeableConst32()) { 2098 if (Alignment <= 32) { 2099 COMDATSymName = "__ymm@" + scalarConstantToHexString(C); 2100 Alignment = Align(32); 2101 } 2102 } 2103 2104 if (!COMDATSymName.empty()) 2105 return getContext().getCOFFSection(".rdata", Characteristics, Kind, 2106 COMDATSymName, 2107 COFF::IMAGE_COMDAT_SELECT_ANY); 2108 } 2109 2110 return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C, 2111 Alignment); 2112 } 2113 2114 //===----------------------------------------------------------------------===// 2115 // Wasm 2116 //===----------------------------------------------------------------------===// 2117 2118 static const Comdat *getWasmComdat(const GlobalValue *GV) { 2119 const Comdat *C = GV->getComdat(); 2120 if (!C) 2121 return nullptr; 2122 2123 if (C->getSelectionKind() != Comdat::Any) 2124 report_fatal_error("WebAssembly COMDATs only support " 2125 "SelectionKind::Any, '" + C->getName() + "' cannot be " 2126 "lowered."); 2127 2128 return C; 2129 } 2130 2131 static unsigned getWasmSectionFlags(SectionKind K) { 2132 unsigned Flags = 0; 2133 2134 if (K.isThreadLocal()) 2135 Flags |= wasm::WASM_SEG_FLAG_TLS; 2136 2137 if (K.isMergeableCString()) 2138 Flags |= wasm::WASM_SEG_FLAG_STRINGS; 2139 2140 // TODO(sbc): Add suport for K.isMergeableConst() 2141 2142 return Flags; 2143 } 2144 2145 MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal( 2146 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 2147 // We don't support explict section names for functions in the wasm object 2148 // format. Each function has to be in its own unique section. 2149 if (isa<Function>(GO)) { 2150 return SelectSectionForGlobal(GO, Kind, TM); 2151 } 2152 2153 StringRef Name = GO->getSection(); 2154 2155 // Certain data sections we treat as named custom sections rather than 2156 // segments within the data section. 2157 // This could be avoided if all data segements (the wasm sense) were 2158 // represented as their own sections (in the llvm sense). 2159 // TODO(sbc): https://github.com/WebAssembly/tool-conventions/issues/138 2160 if (Name == ".llvmcmd" || Name == ".llvmbc") 2161 Kind = SectionKind::getMetadata(); 2162 2163 StringRef Group = ""; 2164 if (const Comdat *C = getWasmComdat(GO)) { 2165 Group = C->getName(); 2166 } 2167 2168 unsigned Flags = getWasmSectionFlags(Kind); 2169 MCSectionWasm *Section = getContext().getWasmSection( 2170 Name, Kind, Flags, Group, MCContext::GenericSectionID); 2171 2172 return Section; 2173 } 2174 2175 static MCSectionWasm *selectWasmSectionForGlobal( 2176 MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang, 2177 const TargetMachine &TM, bool EmitUniqueSection, unsigned *NextUniqueID) { 2178 StringRef Group = ""; 2179 if (const Comdat *C = getWasmComdat(GO)) { 2180 Group = C->getName(); 2181 } 2182 2183 bool UniqueSectionNames = TM.getUniqueSectionNames(); 2184 SmallString<128> Name = getSectionPrefixForGlobal(Kind, /*IsLarge=*/false); 2185 2186 if (const auto *F = dyn_cast<Function>(GO)) { 2187 const auto &OptionalPrefix = F->getSectionPrefix(); 2188 if (OptionalPrefix) 2189 raw_svector_ostream(Name) << '.' << *OptionalPrefix; 2190 } 2191 2192 if (EmitUniqueSection && UniqueSectionNames) { 2193 Name.push_back('.'); 2194 TM.getNameWithPrefix(Name, GO, Mang, true); 2195 } 2196 unsigned UniqueID = MCContext::GenericSectionID; 2197 if (EmitUniqueSection && !UniqueSectionNames) { 2198 UniqueID = *NextUniqueID; 2199 (*NextUniqueID)++; 2200 } 2201 2202 unsigned Flags = getWasmSectionFlags(Kind); 2203 return Ctx.getWasmSection(Name, Kind, Flags, Group, UniqueID); 2204 } 2205 2206 MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal( 2207 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 2208 2209 if (Kind.isCommon()) 2210 report_fatal_error("mergable sections not supported yet on wasm"); 2211 2212 // If we have -ffunction-section or -fdata-section then we should emit the 2213 // global value to a uniqued section specifically for it. 2214 bool EmitUniqueSection = false; 2215 if (Kind.isText()) 2216 EmitUniqueSection = TM.getFunctionSections(); 2217 else 2218 EmitUniqueSection = TM.getDataSections(); 2219 EmitUniqueSection |= GO->hasComdat(); 2220 2221 return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM, 2222 EmitUniqueSection, &NextUniqueID); 2223 } 2224 2225 bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection( 2226 bool UsesLabelDifference, const Function &F) const { 2227 // We can always create relative relocations, so use another section 2228 // that can be marked non-executable. 2229 return false; 2230 } 2231 2232 const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference( 2233 const GlobalValue *LHS, const GlobalValue *RHS, 2234 const TargetMachine &TM) const { 2235 // We may only use a PLT-relative relocation to refer to unnamed_addr 2236 // functions. 2237 if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy()) 2238 return nullptr; 2239 2240 // Basic correctness checks. 2241 if (LHS->getType()->getPointerAddressSpace() != 0 || 2242 RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() || 2243 RHS->isThreadLocal()) 2244 return nullptr; 2245 2246 return MCBinaryExpr::createSub( 2247 MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None, 2248 getContext()), 2249 MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext()); 2250 } 2251 2252 void TargetLoweringObjectFileWasm::InitializeWasm() { 2253 StaticCtorSection = 2254 getContext().getWasmSection(".init_array", SectionKind::getData()); 2255 2256 // We don't use PersonalityEncoding and LSDAEncoding because we don't emit 2257 // .cfi directives. We use TTypeEncoding to encode typeinfo global variables. 2258 TTypeEncoding = dwarf::DW_EH_PE_absptr; 2259 } 2260 2261 MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection( 2262 unsigned Priority, const MCSymbol *KeySym) const { 2263 return Priority == UINT16_MAX ? 2264 StaticCtorSection : 2265 getContext().getWasmSection(".init_array." + utostr(Priority), 2266 SectionKind::getData()); 2267 } 2268 2269 MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection( 2270 unsigned Priority, const MCSymbol *KeySym) const { 2271 report_fatal_error("@llvm.global_dtors should have been lowered already"); 2272 } 2273 2274 //===----------------------------------------------------------------------===// 2275 // XCOFF 2276 //===----------------------------------------------------------------------===// 2277 bool TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock( 2278 const MachineFunction *MF) { 2279 if (!MF->getLandingPads().empty()) 2280 return true; 2281 2282 const Function &F = MF->getFunction(); 2283 if (!F.hasPersonalityFn() || !F.needsUnwindTableEntry()) 2284 return false; 2285 2286 const GlobalValue *Per = 2287 dyn_cast<GlobalValue>(F.getPersonalityFn()->stripPointerCasts()); 2288 assert(Per && "Personality routine is not a GlobalValue type."); 2289 if (isNoOpWithoutInvoke(classifyEHPersonality(Per))) 2290 return false; 2291 2292 return true; 2293 } 2294 2295 bool TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB( 2296 const MachineFunction *MF) { 2297 const Function &F = MF->getFunction(); 2298 if (!F.hasStackProtectorFnAttr()) 2299 return false; 2300 // FIXME: check presence of canary word 2301 // There are cases that the stack protectors are not really inserted even if 2302 // the attributes are on. 2303 return true; 2304 } 2305 2306 MCSymbol * 2307 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(const MachineFunction *MF) { 2308 MCSymbol *EHInfoSym = MF->getMMI().getContext().getOrCreateSymbol( 2309 "__ehinfo." + Twine(MF->getFunctionNumber())); 2310 cast<MCSymbolXCOFF>(EHInfoSym)->setEHInfo(); 2311 return EHInfoSym; 2312 } 2313 2314 MCSymbol * 2315 TargetLoweringObjectFileXCOFF::getTargetSymbol(const GlobalValue *GV, 2316 const TargetMachine &TM) const { 2317 // We always use a qualname symbol for a GV that represents 2318 // a declaration, a function descriptor, or a common symbol. 2319 // If a GV represents a GlobalVariable and -fdata-sections is enabled, we 2320 // also return a qualname so that a label symbol could be avoided. 2321 // It is inherently ambiguous when the GO represents the address of a 2322 // function, as the GO could either represent a function descriptor or a 2323 // function entry point. We choose to always return a function descriptor 2324 // here. 2325 if (const GlobalObject *GO = dyn_cast<GlobalObject>(GV)) { 2326 if (GO->isDeclarationForLinker()) 2327 return cast<MCSectionXCOFF>(getSectionForExternalReference(GO, TM)) 2328 ->getQualNameSymbol(); 2329 2330 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV)) 2331 if (GVar->hasAttribute("toc-data")) 2332 return cast<MCSectionXCOFF>( 2333 SectionForGlobal(GVar, SectionKind::getData(), TM)) 2334 ->getQualNameSymbol(); 2335 2336 SectionKind GOKind = getKindForGlobal(GO, TM); 2337 if (GOKind.isText()) 2338 return cast<MCSectionXCOFF>( 2339 getSectionForFunctionDescriptor(cast<Function>(GO), TM)) 2340 ->getQualNameSymbol(); 2341 if ((TM.getDataSections() && !GO->hasSection()) || GO->hasCommonLinkage() || 2342 GOKind.isBSSLocal() || GOKind.isThreadBSSLocal()) 2343 return cast<MCSectionXCOFF>(SectionForGlobal(GO, GOKind, TM)) 2344 ->getQualNameSymbol(); 2345 } 2346 2347 // For all other cases, fall back to getSymbol to return the unqualified name. 2348 return nullptr; 2349 } 2350 2351 MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal( 2352 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 2353 if (!GO->hasSection()) 2354 report_fatal_error("#pragma clang section is not yet supported"); 2355 2356 StringRef SectionName = GO->getSection(); 2357 2358 // Handle the XCOFF::TD case first, then deal with the rest. 2359 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GO)) 2360 if (GVar->hasAttribute("toc-data")) 2361 return getContext().getXCOFFSection( 2362 SectionName, Kind, 2363 XCOFF::CsectProperties(/*MappingClass*/ XCOFF::XMC_TD, XCOFF::XTY_SD), 2364 /* MultiSymbolsAllowed*/ true); 2365 2366 XCOFF::StorageMappingClass MappingClass; 2367 if (Kind.isText()) 2368 MappingClass = XCOFF::XMC_PR; 2369 else if (Kind.isData() || Kind.isBSS()) 2370 MappingClass = XCOFF::XMC_RW; 2371 else if (Kind.isReadOnlyWithRel()) 2372 MappingClass = 2373 TM.Options.XCOFFReadOnlyPointers ? XCOFF::XMC_RO : XCOFF::XMC_RW; 2374 else if (Kind.isReadOnly()) 2375 MappingClass = XCOFF::XMC_RO; 2376 else 2377 report_fatal_error("XCOFF other section types not yet implemented."); 2378 2379 return getContext().getXCOFFSection( 2380 SectionName, Kind, XCOFF::CsectProperties(MappingClass, XCOFF::XTY_SD), 2381 /* MultiSymbolsAllowed*/ true); 2382 } 2383 2384 MCSection *TargetLoweringObjectFileXCOFF::getSectionForExternalReference( 2385 const GlobalObject *GO, const TargetMachine &TM) const { 2386 assert(GO->isDeclarationForLinker() && 2387 "Tried to get ER section for a defined global."); 2388 2389 SmallString<128> Name; 2390 getNameWithPrefix(Name, GO, TM); 2391 2392 XCOFF::StorageMappingClass SMC = 2393 isa<Function>(GO) ? XCOFF::XMC_DS : XCOFF::XMC_UA; 2394 if (GO->isThreadLocal()) 2395 SMC = XCOFF::XMC_UL; 2396 2397 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GO)) 2398 if (GVar->hasAttribute("toc-data")) 2399 SMC = XCOFF::XMC_TD; 2400 2401 // Externals go into a csect of type ER. 2402 return getContext().getXCOFFSection( 2403 Name, SectionKind::getMetadata(), 2404 XCOFF::CsectProperties(SMC, XCOFF::XTY_ER)); 2405 } 2406 2407 MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal( 2408 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 2409 // Handle the XCOFF::TD case first, then deal with the rest. 2410 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GO)) 2411 if (GVar->hasAttribute("toc-data")) { 2412 SmallString<128> Name; 2413 getNameWithPrefix(Name, GO, TM); 2414 return getContext().getXCOFFSection( 2415 Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_TD, XCOFF::XTY_SD), 2416 /* MultiSymbolsAllowed*/ true); 2417 } 2418 2419 // Common symbols go into a csect with matching name which will get mapped 2420 // into the .bss section. 2421 // Zero-initialized local TLS symbols go into a csect with matching name which 2422 // will get mapped into the .tbss section. 2423 if (Kind.isBSSLocal() || GO->hasCommonLinkage() || Kind.isThreadBSSLocal()) { 2424 SmallString<128> Name; 2425 getNameWithPrefix(Name, GO, TM); 2426 XCOFF::StorageMappingClass SMC = Kind.isBSSLocal() ? XCOFF::XMC_BS 2427 : Kind.isCommon() ? XCOFF::XMC_RW 2428 : XCOFF::XMC_UL; 2429 return getContext().getXCOFFSection( 2430 Name, Kind, XCOFF::CsectProperties(SMC, XCOFF::XTY_CM)); 2431 } 2432 2433 if (Kind.isText()) { 2434 if (TM.getFunctionSections()) { 2435 return cast<MCSymbolXCOFF>(getFunctionEntryPointSymbol(GO, TM)) 2436 ->getRepresentedCsect(); 2437 } 2438 return TextSection; 2439 } 2440 2441 if (TM.Options.XCOFFReadOnlyPointers && Kind.isReadOnlyWithRel()) { 2442 if (!TM.getDataSections()) 2443 report_fatal_error( 2444 "ReadOnlyPointers is supported only if data sections is turned on"); 2445 2446 SmallString<128> Name; 2447 getNameWithPrefix(Name, GO, TM); 2448 return getContext().getXCOFFSection( 2449 Name, SectionKind::getReadOnly(), 2450 XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD)); 2451 } 2452 2453 // For BSS kind, zero initialized data must be emitted to the .data section 2454 // because external linkage control sections that get mapped to the .bss 2455 // section will be linked as tentative defintions, which is only appropriate 2456 // for SectionKind::Common. 2457 if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) { 2458 if (TM.getDataSections()) { 2459 SmallString<128> Name; 2460 getNameWithPrefix(Name, GO, TM); 2461 return getContext().getXCOFFSection( 2462 Name, SectionKind::getData(), 2463 XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD)); 2464 } 2465 return DataSection; 2466 } 2467 2468 if (Kind.isReadOnly()) { 2469 if (TM.getDataSections()) { 2470 SmallString<128> Name; 2471 getNameWithPrefix(Name, GO, TM); 2472 return getContext().getXCOFFSection( 2473 Name, SectionKind::getReadOnly(), 2474 XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD)); 2475 } 2476 return ReadOnlySection; 2477 } 2478 2479 // External/weak TLS data and initialized local TLS data are not eligible 2480 // to be put into common csect. If data sections are enabled, thread 2481 // data are emitted into separate sections. Otherwise, thread data 2482 // are emitted into the .tdata section. 2483 if (Kind.isThreadLocal()) { 2484 if (TM.getDataSections()) { 2485 SmallString<128> Name; 2486 getNameWithPrefix(Name, GO, TM); 2487 return getContext().getXCOFFSection( 2488 Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_TL, XCOFF::XTY_SD)); 2489 } 2490 return TLSDataSection; 2491 } 2492 2493 report_fatal_error("XCOFF other section types not yet implemented."); 2494 } 2495 2496 MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable( 2497 const Function &F, const TargetMachine &TM) const { 2498 assert (!F.getComdat() && "Comdat not supported on XCOFF."); 2499 2500 if (!TM.getFunctionSections()) 2501 return ReadOnlySection; 2502 2503 // If the function can be removed, produce a unique section so that 2504 // the table doesn't prevent the removal. 2505 SmallString<128> NameStr(".rodata.jmp.."); 2506 getNameWithPrefix(NameStr, &F, TM); 2507 return getContext().getXCOFFSection( 2508 NameStr, SectionKind::getReadOnly(), 2509 XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD)); 2510 } 2511 2512 bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection( 2513 bool UsesLabelDifference, const Function &F) const { 2514 return false; 2515 } 2516 2517 /// Given a mergeable constant with the specified size and relocation 2518 /// information, return a section that it should be placed in. 2519 MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant( 2520 const DataLayout &DL, SectionKind Kind, const Constant *C, 2521 Align &Alignment) const { 2522 // TODO: Enable emiting constant pool to unique sections when we support it. 2523 if (Alignment > Align(16)) 2524 report_fatal_error("Alignments greater than 16 not yet supported."); 2525 2526 if (Alignment == Align(8)) { 2527 assert(ReadOnly8Section && "Section should always be initialized."); 2528 return ReadOnly8Section; 2529 } 2530 2531 if (Alignment == Align(16)) { 2532 assert(ReadOnly16Section && "Section should always be initialized."); 2533 return ReadOnly16Section; 2534 } 2535 2536 return ReadOnlySection; 2537 } 2538 2539 void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx, 2540 const TargetMachine &TgtM) { 2541 TargetLoweringObjectFile::Initialize(Ctx, TgtM); 2542 TTypeEncoding = 2543 dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_datarel | 2544 (TgtM.getTargetTriple().isArch32Bit() ? dwarf::DW_EH_PE_sdata4 2545 : dwarf::DW_EH_PE_sdata8); 2546 PersonalityEncoding = 0; 2547 LSDAEncoding = 0; 2548 CallSiteEncoding = dwarf::DW_EH_PE_udata4; 2549 2550 // AIX debug for thread local location is not ready. And for integrated as 2551 // mode, the relocatable address for the thread local variable will cause 2552 // linker error. So disable the location attribute generation for thread local 2553 // variables for now. 2554 // FIXME: when TLS debug on AIX is ready, remove this setting. 2555 SupportDebugThreadLocalLocation = false; 2556 } 2557 2558 MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection( 2559 unsigned Priority, const MCSymbol *KeySym) const { 2560 report_fatal_error("no static constructor section on AIX"); 2561 } 2562 2563 MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection( 2564 unsigned Priority, const MCSymbol *KeySym) const { 2565 report_fatal_error("no static destructor section on AIX"); 2566 } 2567 2568 const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference( 2569 const GlobalValue *LHS, const GlobalValue *RHS, 2570 const TargetMachine &TM) const { 2571 /* Not implemented yet, but don't crash, return nullptr. */ 2572 return nullptr; 2573 } 2574 2575 XCOFF::StorageClass 2576 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(const GlobalValue *GV) { 2577 assert(!isa<GlobalIFunc>(GV) && "GlobalIFunc is not supported on AIX."); 2578 2579 switch (GV->getLinkage()) { 2580 case GlobalValue::InternalLinkage: 2581 case GlobalValue::PrivateLinkage: 2582 return XCOFF::C_HIDEXT; 2583 case GlobalValue::ExternalLinkage: 2584 case GlobalValue::CommonLinkage: 2585 case GlobalValue::AvailableExternallyLinkage: 2586 return XCOFF::C_EXT; 2587 case GlobalValue::ExternalWeakLinkage: 2588 case GlobalValue::LinkOnceAnyLinkage: 2589 case GlobalValue::LinkOnceODRLinkage: 2590 case GlobalValue::WeakAnyLinkage: 2591 case GlobalValue::WeakODRLinkage: 2592 return XCOFF::C_WEAKEXT; 2593 case GlobalValue::AppendingLinkage: 2594 report_fatal_error( 2595 "There is no mapping that implements AppendingLinkage for XCOFF."); 2596 } 2597 llvm_unreachable("Unknown linkage type!"); 2598 } 2599 2600 MCSymbol *TargetLoweringObjectFileXCOFF::getFunctionEntryPointSymbol( 2601 const GlobalValue *Func, const TargetMachine &TM) const { 2602 assert((isa<Function>(Func) || 2603 (isa<GlobalAlias>(Func) && 2604 isa_and_nonnull<Function>( 2605 cast<GlobalAlias>(Func)->getAliaseeObject()))) && 2606 "Func must be a function or an alias which has a function as base " 2607 "object."); 2608 2609 SmallString<128> NameStr; 2610 NameStr.push_back('.'); 2611 getNameWithPrefix(NameStr, Func, TM); 2612 2613 // When -function-sections is enabled and explicit section is not specified, 2614 // it's not necessary to emit function entry point label any more. We will use 2615 // function entry point csect instead. And for function delcarations, the 2616 // undefined symbols gets treated as csect with XTY_ER property. 2617 if (((TM.getFunctionSections() && !Func->hasSection()) || 2618 Func->isDeclarationForLinker()) && 2619 isa<Function>(Func)) { 2620 return getContext() 2621 .getXCOFFSection( 2622 NameStr, SectionKind::getText(), 2623 XCOFF::CsectProperties(XCOFF::XMC_PR, Func->isDeclarationForLinker() 2624 ? XCOFF::XTY_ER 2625 : XCOFF::XTY_SD)) 2626 ->getQualNameSymbol(); 2627 } 2628 2629 return getContext().getOrCreateSymbol(NameStr); 2630 } 2631 2632 MCSection *TargetLoweringObjectFileXCOFF::getSectionForFunctionDescriptor( 2633 const Function *F, const TargetMachine &TM) const { 2634 SmallString<128> NameStr; 2635 getNameWithPrefix(NameStr, F, TM); 2636 return getContext().getXCOFFSection( 2637 NameStr, SectionKind::getData(), 2638 XCOFF::CsectProperties(XCOFF::XMC_DS, XCOFF::XTY_SD)); 2639 } 2640 2641 MCSection *TargetLoweringObjectFileXCOFF::getSectionForTOCEntry( 2642 const MCSymbol *Sym, const TargetMachine &TM) const { 2643 // Use TE storage-mapping class when large code model is enabled so that 2644 // the chance of needing -bbigtoc is decreased. Also, the toc-entry for 2645 // EH info is never referenced directly using instructions so it can be 2646 // allocated with TE storage-mapping class. 2647 return getContext().getXCOFFSection( 2648 cast<MCSymbolXCOFF>(Sym)->getSymbolTableName(), SectionKind::getData(), 2649 XCOFF::CsectProperties((TM.getCodeModel() == CodeModel::Large || 2650 cast<MCSymbolXCOFF>(Sym)->isEHInfo()) 2651 ? XCOFF::XMC_TE 2652 : XCOFF::XMC_TC, 2653 XCOFF::XTY_SD)); 2654 } 2655 2656 MCSection *TargetLoweringObjectFileXCOFF::getSectionForLSDA( 2657 const Function &F, const MCSymbol &FnSym, const TargetMachine &TM) const { 2658 auto *LSDA = cast<MCSectionXCOFF>(LSDASection); 2659 if (TM.getFunctionSections()) { 2660 // If option -ffunction-sections is on, append the function name to the 2661 // name of the LSDA csect so that each function has its own LSDA csect. 2662 // This helps the linker to garbage-collect EH info of unused functions. 2663 SmallString<128> NameStr = LSDA->getName(); 2664 raw_svector_ostream(NameStr) << '.' << F.getName(); 2665 LSDA = getContext().getXCOFFSection(NameStr, LSDA->getKind(), 2666 LSDA->getCsectProp()); 2667 } 2668 return LSDA; 2669 } 2670 //===----------------------------------------------------------------------===// 2671 // GOFF 2672 //===----------------------------------------------------------------------===// 2673 TargetLoweringObjectFileGOFF::TargetLoweringObjectFileGOFF() = default; 2674 2675 MCSection *TargetLoweringObjectFileGOFF::getExplicitSectionGlobal( 2676 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 2677 return SelectSectionForGlobal(GO, Kind, TM); 2678 } 2679 2680 MCSection *TargetLoweringObjectFileGOFF::SelectSectionForGlobal( 2681 const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const { 2682 auto *Symbol = TM.getSymbol(GO); 2683 if (Kind.isBSS()) 2684 return getContext().getGOFFSection(Symbol->getName(), SectionKind::getBSS(), 2685 nullptr, nullptr); 2686 2687 return getContext().getObjectFileInfo()->getTextSection(); 2688 } 2689