xref: /llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp (revision b0ef2070bc7da2b458fb15b9413d9e90abc71759)
1 //===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements classes used to handle lowerings specific to common
10 // object file formats.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/COFF.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/BinaryFormat/ELF.h"
23 #include "llvm/BinaryFormat/MachO.h"
24 #include "llvm/CodeGen/BasicBlockSectionUtils.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Comdat.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/IR/DiagnosticPrinter.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Mangler.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/PseudoProbe.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/MC/MCAsmInfo.h"
46 #include "llvm/MC/MCContext.h"
47 #include "llvm/MC/MCExpr.h"
48 #include "llvm/MC/MCSectionCOFF.h"
49 #include "llvm/MC/MCSectionELF.h"
50 #include "llvm/MC/MCSectionMachO.h"
51 #include "llvm/MC/MCSectionWasm.h"
52 #include "llvm/MC/MCSectionXCOFF.h"
53 #include "llvm/MC/MCStreamer.h"
54 #include "llvm/MC/MCSymbol.h"
55 #include "llvm/MC/MCSymbolELF.h"
56 #include "llvm/MC/MCValue.h"
57 #include "llvm/MC/SectionKind.h"
58 #include "llvm/ProfileData/InstrProf.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/Format.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include <cassert>
66 #include <string>
67 
68 using namespace llvm;
69 using namespace dwarf;
70 
71 static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags,
72                              StringRef &Section) {
73   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
74   M.getModuleFlagsMetadata(ModuleFlags);
75 
76   for (const auto &MFE: ModuleFlags) {
77     // Ignore flags with 'Require' behaviour.
78     if (MFE.Behavior == Module::Require)
79       continue;
80 
81     StringRef Key = MFE.Key->getString();
82     if (Key == "Objective-C Image Info Version") {
83       Version = mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
84     } else if (Key == "Objective-C Garbage Collection" ||
85                Key == "Objective-C GC Only" ||
86                Key == "Objective-C Is Simulated" ||
87                Key == "Objective-C Class Properties" ||
88                Key == "Objective-C Image Swift Version") {
89       Flags |= mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
90     } else if (Key == "Objective-C Image Info Section") {
91       Section = cast<MDString>(MFE.Val)->getString();
92     }
93     // Backend generates L_OBJC_IMAGE_INFO from Swift ABI version + major + minor +
94     // "Objective-C Garbage Collection".
95     else if (Key == "Swift ABI Version") {
96       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 8;
97     } else if (Key == "Swift Major Version") {
98       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 24;
99     } else if (Key == "Swift Minor Version") {
100       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 16;
101     }
102   }
103 }
104 
105 //===----------------------------------------------------------------------===//
106 //                                  ELF
107 //===----------------------------------------------------------------------===//
108 
109 TargetLoweringObjectFileELF::TargetLoweringObjectFileELF()
110     : TargetLoweringObjectFile() {
111   SupportDSOLocalEquivalentLowering = true;
112 }
113 
114 void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx,
115                                              const TargetMachine &TgtM) {
116   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
117 
118   CodeModel::Model CM = TgtM.getCodeModel();
119   InitializeELF(TgtM.Options.UseInitArray);
120 
121   switch (TgtM.getTargetTriple().getArch()) {
122   case Triple::arm:
123   case Triple::armeb:
124   case Triple::thumb:
125   case Triple::thumbeb:
126     if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM)
127       break;
128     // Fallthrough if not using EHABI
129     LLVM_FALLTHROUGH;
130   case Triple::ppc:
131   case Triple::ppcle:
132   case Triple::x86:
133     PersonalityEncoding = isPositionIndependent()
134                               ? dwarf::DW_EH_PE_indirect |
135                                     dwarf::DW_EH_PE_pcrel |
136                                     dwarf::DW_EH_PE_sdata4
137                               : dwarf::DW_EH_PE_absptr;
138     LSDAEncoding = isPositionIndependent()
139                        ? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4
140                        : dwarf::DW_EH_PE_absptr;
141     TTypeEncoding = isPositionIndependent()
142                         ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
143                               dwarf::DW_EH_PE_sdata4
144                         : dwarf::DW_EH_PE_absptr;
145     break;
146   case Triple::x86_64:
147     if (isPositionIndependent()) {
148       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
149         ((CM == CodeModel::Small || CM == CodeModel::Medium)
150          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
151       LSDAEncoding = dwarf::DW_EH_PE_pcrel |
152         (CM == CodeModel::Small
153          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
154       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
155         ((CM == CodeModel::Small || CM == CodeModel::Medium)
156          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
157     } else {
158       PersonalityEncoding =
159         (CM == CodeModel::Small || CM == CodeModel::Medium)
160         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
161       LSDAEncoding = (CM == CodeModel::Small)
162         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
163       TTypeEncoding = (CM == CodeModel::Small)
164         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
165     }
166     break;
167   case Triple::hexagon:
168     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
169     LSDAEncoding = dwarf::DW_EH_PE_absptr;
170     TTypeEncoding = dwarf::DW_EH_PE_absptr;
171     if (isPositionIndependent()) {
172       PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
173       LSDAEncoding |= dwarf::DW_EH_PE_pcrel;
174       TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
175     }
176     break;
177   case Triple::aarch64:
178   case Triple::aarch64_be:
179   case Triple::aarch64_32:
180     // The small model guarantees static code/data size < 4GB, but not where it
181     // will be in memory. Most of these could end up >2GB away so even a signed
182     // pc-relative 32-bit address is insufficient, theoretically.
183     if (isPositionIndependent()) {
184       // ILP32 uses sdata4 instead of sdata8
185       if (TgtM.getTargetTriple().getEnvironment() == Triple::GNUILP32) {
186         PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
187                               dwarf::DW_EH_PE_sdata4;
188         LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
189         TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
190                         dwarf::DW_EH_PE_sdata4;
191       } else {
192         PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
193                               dwarf::DW_EH_PE_sdata8;
194         LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8;
195         TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
196                         dwarf::DW_EH_PE_sdata8;
197       }
198     } else {
199       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
200       LSDAEncoding = dwarf::DW_EH_PE_absptr;
201       TTypeEncoding = dwarf::DW_EH_PE_absptr;
202     }
203     break;
204   case Triple::lanai:
205     LSDAEncoding = dwarf::DW_EH_PE_absptr;
206     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
207     TTypeEncoding = dwarf::DW_EH_PE_absptr;
208     break;
209   case Triple::mips:
210   case Triple::mipsel:
211   case Triple::mips64:
212   case Triple::mips64el:
213     // MIPS uses indirect pointer to refer personality functions and types, so
214     // that the eh_frame section can be read-only. DW.ref.personality will be
215     // generated for relocation.
216     PersonalityEncoding = dwarf::DW_EH_PE_indirect;
217     // FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't
218     //        identify N64 from just a triple.
219     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
220                     dwarf::DW_EH_PE_sdata4;
221     // We don't support PC-relative LSDA references in GAS so we use the default
222     // DW_EH_PE_absptr for those.
223 
224     // FreeBSD must be explicit about the data size and using pcrel since it's
225     // assembler/linker won't do the automatic conversion that the Linux tools
226     // do.
227     if (TgtM.getTargetTriple().isOSFreeBSD()) {
228       PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
229       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
230     }
231     break;
232   case Triple::ppc64:
233   case Triple::ppc64le:
234     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
235       dwarf::DW_EH_PE_udata8;
236     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8;
237     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
238       dwarf::DW_EH_PE_udata8;
239     break;
240   case Triple::sparcel:
241   case Triple::sparc:
242     if (isPositionIndependent()) {
243       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
244       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
245         dwarf::DW_EH_PE_sdata4;
246       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
247         dwarf::DW_EH_PE_sdata4;
248     } else {
249       LSDAEncoding = dwarf::DW_EH_PE_absptr;
250       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
251       TTypeEncoding = dwarf::DW_EH_PE_absptr;
252     }
253     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
254     break;
255   case Triple::riscv32:
256   case Triple::riscv64:
257     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
258     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
259                           dwarf::DW_EH_PE_sdata4;
260     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
261                     dwarf::DW_EH_PE_sdata4;
262     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
263     break;
264   case Triple::sparcv9:
265     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
266     if (isPositionIndependent()) {
267       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
268         dwarf::DW_EH_PE_sdata4;
269       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
270         dwarf::DW_EH_PE_sdata4;
271     } else {
272       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
273       TTypeEncoding = dwarf::DW_EH_PE_absptr;
274     }
275     break;
276   case Triple::systemz:
277     // All currently-defined code models guarantee that 4-byte PC-relative
278     // values will be in range.
279     if (isPositionIndependent()) {
280       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
281         dwarf::DW_EH_PE_sdata4;
282       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
283       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
284         dwarf::DW_EH_PE_sdata4;
285     } else {
286       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
287       LSDAEncoding = dwarf::DW_EH_PE_absptr;
288       TTypeEncoding = dwarf::DW_EH_PE_absptr;
289     }
290     break;
291   default:
292     break;
293   }
294 }
295 
296 void TargetLoweringObjectFileELF::getModuleMetadata(Module &M) {
297   SmallVector<GlobalValue *, 4> Vec;
298   collectUsedGlobalVariables(M, Vec, false);
299   for (GlobalValue *GV : Vec)
300     if (auto *GO = dyn_cast<GlobalObject>(GV))
301       Used.insert(GO);
302 }
303 
304 void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer,
305                                                      Module &M) const {
306   auto &C = getContext();
307 
308   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
309     auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS,
310                               ELF::SHF_EXCLUDE);
311 
312     Streamer.SwitchSection(S);
313 
314     for (const auto *Operand : LinkerOptions->operands()) {
315       if (cast<MDNode>(Operand)->getNumOperands() != 2)
316         report_fatal_error("invalid llvm.linker.options");
317       for (const auto &Option : cast<MDNode>(Operand)->operands()) {
318         Streamer.emitBytes(cast<MDString>(Option)->getString());
319         Streamer.emitInt8(0);
320       }
321     }
322   }
323 
324   if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) {
325     auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES,
326                               ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
327 
328     Streamer.SwitchSection(S);
329 
330     for (const auto *Operand : DependentLibraries->operands()) {
331       Streamer.emitBytes(
332           cast<MDString>(cast<MDNode>(Operand)->getOperand(0))->getString());
333       Streamer.emitInt8(0);
334     }
335   }
336 
337   if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) {
338     // Emit a descriptor for every function including functions that have an
339     // available external linkage. We may not want this for imported functions
340     // that has code in another thinLTO module but we don't have a good way to
341     // tell them apart from inline functions defined in header files. Therefore
342     // we put each descriptor in a separate comdat section and rely on the
343     // linker to deduplicate.
344     for (const auto *Operand : FuncInfo->operands()) {
345       const auto *MD = cast<MDNode>(Operand);
346       auto *GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
347       auto *Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
348       auto *Name = cast<MDString>(MD->getOperand(2));
349       auto *S = C.getObjectFileInfo()->getPseudoProbeDescSection(
350           TM->getFunctionSections() ? Name->getString() : StringRef());
351 
352       Streamer.SwitchSection(S);
353       Streamer.emitInt64(GUID->getZExtValue());
354       Streamer.emitInt64(Hash->getZExtValue());
355       Streamer.emitULEB128IntValue(Name->getString().size());
356       Streamer.emitBytes(Name->getString());
357     }
358   }
359 
360   unsigned Version = 0;
361   unsigned Flags = 0;
362   StringRef Section;
363 
364   GetObjCImageInfo(M, Version, Flags, Section);
365   if (!Section.empty()) {
366     auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
367     Streamer.SwitchSection(S);
368     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
369     Streamer.emitInt32(Version);
370     Streamer.emitInt32(Flags);
371     Streamer.AddBlankLine();
372   }
373 
374   emitCGProfileMetadata(Streamer, M);
375 }
376 
377 MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol(
378     const GlobalValue *GV, const TargetMachine &TM,
379     MachineModuleInfo *MMI) const {
380   unsigned Encoding = getPersonalityEncoding();
381   if ((Encoding & 0x80) == DW_EH_PE_indirect)
382     return getContext().getOrCreateSymbol(StringRef("DW.ref.") +
383                                           TM.getSymbol(GV)->getName());
384   if ((Encoding & 0x70) == DW_EH_PE_absptr)
385     return TM.getSymbol(GV);
386   report_fatal_error("We do not support this DWARF encoding yet!");
387 }
388 
389 void TargetLoweringObjectFileELF::emitPersonalityValue(
390     MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym) const {
391   SmallString<64> NameData("DW.ref.");
392   NameData += Sym->getName();
393   MCSymbolELF *Label =
394       cast<MCSymbolELF>(getContext().getOrCreateSymbol(NameData));
395   Streamer.emitSymbolAttribute(Label, MCSA_Hidden);
396   Streamer.emitSymbolAttribute(Label, MCSA_Weak);
397   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP;
398   MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(),
399                                                    ELF::SHT_PROGBITS, Flags, 0);
400   unsigned Size = DL.getPointerSize();
401   Streamer.SwitchSection(Sec);
402   Streamer.emitValueToAlignment(DL.getPointerABIAlignment(0).value());
403   Streamer.emitSymbolAttribute(Label, MCSA_ELF_TypeObject);
404   const MCExpr *E = MCConstantExpr::create(Size, getContext());
405   Streamer.emitELFSize(Label, E);
406   Streamer.emitLabel(Label);
407 
408   Streamer.emitSymbolValue(Sym, Size);
409 }
410 
411 const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference(
412     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
413     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
414   if (Encoding & DW_EH_PE_indirect) {
415     MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>();
416 
417     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM);
418 
419     // Add information about the stub reference to ELFMMI so that the stub
420     // gets emitted by the asmprinter.
421     MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
422     if (!StubSym.getPointer()) {
423       MCSymbol *Sym = TM.getSymbol(GV);
424       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
425     }
426 
427     return TargetLoweringObjectFile::
428       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
429                         Encoding & ~DW_EH_PE_indirect, Streamer);
430   }
431 
432   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
433                                                            MMI, Streamer);
434 }
435 
436 static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) {
437   // N.B.: The defaults used in here are not the same ones used in MC.
438   // We follow gcc, MC follows gas. For example, given ".section .eh_frame",
439   // both gas and MC will produce a section with no flags. Given
440   // section(".eh_frame") gcc will produce:
441   //
442   //   .section   .eh_frame,"a",@progbits
443 
444   if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF,
445                                       /*AddSegmentInfo=*/false) ||
446       Name == getInstrProfSectionName(IPSK_covfun, Triple::ELF,
447                                       /*AddSegmentInfo=*/false) ||
448       Name == ".llvmbc" || Name == ".llvmcmd")
449     return SectionKind::getMetadata();
450 
451   if (Name.empty() || Name[0] != '.') return K;
452 
453   // Default implementation based on some magic section names.
454   if (Name == ".bss" ||
455       Name.startswith(".bss.") ||
456       Name.startswith(".gnu.linkonce.b.") ||
457       Name.startswith(".llvm.linkonce.b.") ||
458       Name == ".sbss" ||
459       Name.startswith(".sbss.") ||
460       Name.startswith(".gnu.linkonce.sb.") ||
461       Name.startswith(".llvm.linkonce.sb."))
462     return SectionKind::getBSS();
463 
464   if (Name == ".tdata" ||
465       Name.startswith(".tdata.") ||
466       Name.startswith(".gnu.linkonce.td.") ||
467       Name.startswith(".llvm.linkonce.td."))
468     return SectionKind::getThreadData();
469 
470   if (Name == ".tbss" ||
471       Name.startswith(".tbss.") ||
472       Name.startswith(".gnu.linkonce.tb.") ||
473       Name.startswith(".llvm.linkonce.tb."))
474     return SectionKind::getThreadBSS();
475 
476   return K;
477 }
478 
479 static unsigned getELFSectionType(StringRef Name, SectionKind K) {
480   // Use SHT_NOTE for section whose name starts with ".note" to allow
481   // emitting ELF notes from C variable declaration.
482   // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609
483   if (Name.startswith(".note"))
484     return ELF::SHT_NOTE;
485 
486   if (Name == ".init_array")
487     return ELF::SHT_INIT_ARRAY;
488 
489   if (Name == ".fini_array")
490     return ELF::SHT_FINI_ARRAY;
491 
492   if (Name == ".preinit_array")
493     return ELF::SHT_PREINIT_ARRAY;
494 
495   if (K.isBSS() || K.isThreadBSS())
496     return ELF::SHT_NOBITS;
497 
498   return ELF::SHT_PROGBITS;
499 }
500 
501 static unsigned getELFSectionFlags(SectionKind K) {
502   unsigned Flags = 0;
503 
504   if (!K.isMetadata())
505     Flags |= ELF::SHF_ALLOC;
506 
507   if (K.isText())
508     Flags |= ELF::SHF_EXECINSTR;
509 
510   if (K.isExecuteOnly())
511     Flags |= ELF::SHF_ARM_PURECODE;
512 
513   if (K.isWriteable())
514     Flags |= ELF::SHF_WRITE;
515 
516   if (K.isThreadLocal())
517     Flags |= ELF::SHF_TLS;
518 
519   if (K.isMergeableCString() || K.isMergeableConst())
520     Flags |= ELF::SHF_MERGE;
521 
522   if (K.isMergeableCString())
523     Flags |= ELF::SHF_STRINGS;
524 
525   return Flags;
526 }
527 
528 static const Comdat *getELFComdat(const GlobalValue *GV) {
529   const Comdat *C = GV->getComdat();
530   if (!C)
531     return nullptr;
532 
533   if (C->getSelectionKind() != Comdat::Any &&
534       C->getSelectionKind() != Comdat::NoDuplicates)
535     report_fatal_error("ELF COMDATs only support SelectionKind::Any and "
536                        "SelectionKind::NoDuplicates, '" + C->getName() +
537                        "' cannot be lowered.");
538 
539   return C;
540 }
541 
542 static const MCSymbolELF *getLinkedToSymbol(const GlobalObject *GO,
543                                             const TargetMachine &TM) {
544   MDNode *MD = GO->getMetadata(LLVMContext::MD_associated);
545   if (!MD)
546     return nullptr;
547 
548   const MDOperand &Op = MD->getOperand(0);
549   if (!Op.get())
550     return nullptr;
551 
552   auto *VM = dyn_cast<ValueAsMetadata>(Op);
553   if (!VM)
554     report_fatal_error("MD_associated operand is not ValueAsMetadata");
555 
556   auto *OtherGV = dyn_cast<GlobalValue>(VM->getValue());
557   return OtherGV ? dyn_cast<MCSymbolELF>(TM.getSymbol(OtherGV)) : nullptr;
558 }
559 
560 static unsigned getEntrySizeForKind(SectionKind Kind) {
561   if (Kind.isMergeable1ByteCString())
562     return 1;
563   else if (Kind.isMergeable2ByteCString())
564     return 2;
565   else if (Kind.isMergeable4ByteCString())
566     return 4;
567   else if (Kind.isMergeableConst4())
568     return 4;
569   else if (Kind.isMergeableConst8())
570     return 8;
571   else if (Kind.isMergeableConst16())
572     return 16;
573   else if (Kind.isMergeableConst32())
574     return 32;
575   else {
576     // We shouldn't have mergeable C strings or mergeable constants that we
577     // didn't handle above.
578     assert(!Kind.isMergeableCString() && "unknown string width");
579     assert(!Kind.isMergeableConst() && "unknown data width");
580     return 0;
581   }
582 }
583 
584 /// Return the section prefix name used by options FunctionsSections and
585 /// DataSections.
586 static StringRef getSectionPrefixForGlobal(SectionKind Kind) {
587   if (Kind.isText())
588     return ".text";
589   if (Kind.isReadOnly())
590     return ".rodata";
591   if (Kind.isBSS())
592     return ".bss";
593   if (Kind.isThreadData())
594     return ".tdata";
595   if (Kind.isThreadBSS())
596     return ".tbss";
597   if (Kind.isData())
598     return ".data";
599   if (Kind.isReadOnlyWithRel())
600     return ".data.rel.ro";
601   llvm_unreachable("Unknown section kind");
602 }
603 
604 static SmallString<128>
605 getELFSectionNameForGlobal(const GlobalObject *GO, SectionKind Kind,
606                            Mangler &Mang, const TargetMachine &TM,
607                            unsigned EntrySize, bool UniqueSectionName) {
608   SmallString<128> Name;
609   if (Kind.isMergeableCString()) {
610     // We also need alignment here.
611     // FIXME: this is getting the alignment of the character, not the
612     // alignment of the global!
613     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
614         cast<GlobalVariable>(GO));
615 
616     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
617     Name = SizeSpec + utostr(Alignment.value());
618   } else if (Kind.isMergeableConst()) {
619     Name = ".rodata.cst";
620     Name += utostr(EntrySize);
621   } else {
622     Name = getSectionPrefixForGlobal(Kind);
623   }
624 
625   bool HasPrefix = false;
626   if (const auto *F = dyn_cast<Function>(GO)) {
627     if (Optional<StringRef> Prefix = F->getSectionPrefix()) {
628       raw_svector_ostream(Name) << '.' << *Prefix;
629       HasPrefix = true;
630     }
631   }
632 
633   if (UniqueSectionName) {
634     Name.push_back('.');
635     TM.getNameWithPrefix(Name, GO, Mang, /*MayAlwaysUsePrivate*/true);
636   } else if (HasPrefix)
637     // For distinguishing between .text.${text-section-prefix}. (with trailing
638     // dot) and .text.${function-name}
639     Name.push_back('.');
640   return Name;
641 }
642 
643 namespace {
644 class LoweringDiagnosticInfo : public DiagnosticInfo {
645   const Twine &Msg;
646 
647 public:
648   LoweringDiagnosticInfo(const Twine &DiagMsg,
649                          DiagnosticSeverity Severity = DS_Error)
650       : DiagnosticInfo(DK_Lowering, Severity), Msg(DiagMsg) {}
651   void print(DiagnosticPrinter &DP) const override { DP << Msg; }
652 };
653 }
654 
655 static MCSection *selectExplicitSectionGlobal(
656     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM,
657     MCContext &Ctx, Mangler &Mang, unsigned &NextUniqueID,
658     bool Retain, bool ForceUnique) {
659   StringRef SectionName = GO->getSection();
660 
661   // Check if '#pragma clang section' name is applicable.
662   // Note that pragma directive overrides -ffunction-section, -fdata-section
663   // and so section name is exactly as user specified and not uniqued.
664   const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO);
665   if (GV && GV->hasImplicitSection()) {
666     auto Attrs = GV->getAttributes();
667     if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) {
668       SectionName = Attrs.getAttribute("bss-section").getValueAsString();
669     } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) {
670       SectionName = Attrs.getAttribute("rodata-section").getValueAsString();
671     } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) {
672       SectionName = Attrs.getAttribute("relro-section").getValueAsString();
673     } else if (Attrs.hasAttribute("data-section") && Kind.isData()) {
674       SectionName = Attrs.getAttribute("data-section").getValueAsString();
675     }
676   }
677   const Function *F = dyn_cast<Function>(GO);
678   if (F && F->hasFnAttribute("implicit-section-name")) {
679     SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
680   }
681 
682   // Infer section flags from the section name if we can.
683   Kind = getELFKindForNamedSection(SectionName, Kind);
684 
685   StringRef Group = "";
686   bool IsComdat = false;
687   unsigned Flags = getELFSectionFlags(Kind);
688   if (const Comdat *C = getELFComdat(GO)) {
689     Group = C->getName();
690     IsComdat = C->getSelectionKind() == Comdat::Any;
691     Flags |= ELF::SHF_GROUP;
692   }
693 
694   unsigned EntrySize = getEntrySizeForKind(Kind);
695 
696   // A section can have at most one associated section. Put each global with
697   // MD_associated in a unique section.
698   unsigned UniqueID = MCContext::GenericSectionID;
699   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
700   const bool Associated = GO->getMetadata(LLVMContext::MD_associated);
701   if (Associated || Retain) {
702     UniqueID = NextUniqueID++;
703     if (Associated)
704       Flags |= ELF::SHF_LINK_ORDER;
705     if (Retain && (Ctx.getAsmInfo()->useIntegratedAssembler() ||
706                    Ctx.getAsmInfo()->binutilsIsAtLeast(2, 36)))
707       Flags |= ELF::SHF_GNU_RETAIN;
708   } else {
709     if (Ctx.getAsmInfo()->useIntegratedAssembler() ||
710         Ctx.getAsmInfo()->binutilsIsAtLeast(2, 35)) {
711       // Symbols must be placed into sections with compatible entry
712       // sizes. Generate unique sections for symbols that have not
713       // been assigned to compatible sections.
714       if (Flags & ELF::SHF_MERGE) {
715         auto maybeID = Ctx.getELFUniqueIDForEntsize(SectionName, Flags,
716                                                     EntrySize);
717         if (maybeID)
718           UniqueID = *maybeID;
719         else {
720           // If the user has specified the same section name as would be created
721           // implicitly for this symbol e.g. .rodata.str1.1, then we don't need
722           // to unique the section as the entry size for this symbol will be
723           // compatible with implicitly created sections.
724           SmallString<128> ImplicitSectionNameStem = getELFSectionNameForGlobal(
725               GO, Kind, Mang, TM, EntrySize, false);
726           if (!(Ctx.isELFImplicitMergeableSectionNamePrefix(SectionName) &&
727                 SectionName.startswith(ImplicitSectionNameStem)))
728             UniqueID = NextUniqueID++;
729         }
730       } else {
731         // We need to unique the section if the user has explicity
732         // assigned a non-mergeable symbol to a section name for
733         // a generic mergeable section.
734         if (Ctx.isELFGenericMergeableSection(SectionName)) {
735           auto maybeID = Ctx.getELFUniqueIDForEntsize(
736               SectionName, Flags, EntrySize);
737           UniqueID = maybeID ? *maybeID : NextUniqueID++;
738         }
739       }
740     } else {
741       // If two symbols with differing sizes end up in the same mergeable
742       // section that section can be assigned an incorrect entry size. To avoid
743       // this we usually put symbols of the same size into distinct mergeable
744       // sections with the same name. Doing so relies on the ",unique ,"
745       // assembly feature. This feature is not avalible until bintuils
746       // version 2.35 (https://sourceware.org/bugzilla/show_bug.cgi?id=25380).
747       Flags &= ~ELF::SHF_MERGE;
748       EntrySize = 0;
749     }
750   }
751 
752   // Increment uniqueID if we are forced to emit a unique section.
753   // This works perfectly fine with section attribute or pragma section as the
754   // sections with the same name are grouped together by the assembler.
755   if (ForceUnique && UniqueID == MCContext::GenericSectionID)
756     UniqueID = NextUniqueID++;
757 
758   MCSectionELF *Section = Ctx.getELFSection(
759       SectionName, getELFSectionType(SectionName, Kind), Flags, EntrySize,
760       Group, IsComdat, UniqueID, LinkedToSym);
761   // Make sure that we did not get some other section with incompatible sh_link.
762   // This should not be possible due to UniqueID code above.
763   assert(Section->getLinkedToSymbol() == LinkedToSym &&
764          "Associated symbol mismatch between sections");
765 
766   if (!(Ctx.getAsmInfo()->useIntegratedAssembler() ||
767         Ctx.getAsmInfo()->binutilsIsAtLeast(2, 35))) {
768     // If we are using GNU as before 2.35, then this symbol might have
769     // been placed in an incompatible mergeable section. Emit an error if this
770     // is the case to avoid creating broken output.
771     if ((Section->getFlags() & ELF::SHF_MERGE) &&
772         (Section->getEntrySize() != getEntrySizeForKind(Kind)))
773       GO->getContext().diagnose(LoweringDiagnosticInfo(
774           "Symbol '" + GO->getName() + "' from module '" +
775           (GO->getParent() ? GO->getParent()->getSourceFileName() : "unknown") +
776           "' required a section with entry-size=" +
777           Twine(getEntrySizeForKind(Kind)) + " but was placed in section '" +
778           SectionName + "' with entry-size=" + Twine(Section->getEntrySize()) +
779           ": Explicit assignment by pragma or attribute of an incompatible "
780           "symbol to this section?"));
781   }
782 
783   return Section;
784 }
785 
786 MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal(
787     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
788   return selectExplicitSectionGlobal(GO, Kind, TM, getContext(), getMangler(),
789                                      NextUniqueID, Used.count(GO),
790                                      /* ForceUnique = */false);
791 }
792 
793 static MCSectionELF *selectELFSectionForGlobal(
794     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
795     const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags,
796     unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) {
797 
798   StringRef Group = "";
799   bool IsComdat = false;
800   if (const Comdat *C = getELFComdat(GO)) {
801     Flags |= ELF::SHF_GROUP;
802     Group = C->getName();
803     IsComdat = C->getSelectionKind() == Comdat::Any;
804   }
805 
806   // Get the section entry size based on the kind.
807   unsigned EntrySize = getEntrySizeForKind(Kind);
808 
809   bool UniqueSectionName = false;
810   unsigned UniqueID = MCContext::GenericSectionID;
811   if (EmitUniqueSection) {
812     if (TM.getUniqueSectionNames()) {
813       UniqueSectionName = true;
814     } else {
815       UniqueID = *NextUniqueID;
816       (*NextUniqueID)++;
817     }
818   }
819   SmallString<128> Name = getELFSectionNameForGlobal(
820       GO, Kind, Mang, TM, EntrySize, UniqueSectionName);
821 
822   // Use 0 as the unique ID for execute-only text.
823   if (Kind.isExecuteOnly())
824     UniqueID = 0;
825   return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags,
826                            EntrySize, Group, IsComdat, UniqueID,
827                            AssociatedSymbol);
828 }
829 
830 static MCSection *selectELFSectionForGlobal(
831     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
832     const TargetMachine &TM, bool Retain, bool EmitUniqueSection,
833     unsigned Flags, unsigned *NextUniqueID) {
834   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
835   if (LinkedToSym) {
836     EmitUniqueSection = true;
837     Flags |= ELF::SHF_LINK_ORDER;
838   }
839   if (Retain && (Ctx.getAsmInfo()->useIntegratedAssembler() ||
840                  Ctx.getAsmInfo()->binutilsIsAtLeast(2, 36))) {
841     EmitUniqueSection = true;
842     Flags |= ELF::SHF_GNU_RETAIN;
843   }
844 
845   MCSectionELF *Section = selectELFSectionForGlobal(
846       Ctx, GO, Kind, Mang, TM, EmitUniqueSection, Flags,
847       NextUniqueID, LinkedToSym);
848   assert(Section->getLinkedToSymbol() == LinkedToSym);
849   return Section;
850 }
851 
852 MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal(
853     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
854   unsigned Flags = getELFSectionFlags(Kind);
855 
856   // If we have -ffunction-section or -fdata-section then we should emit the
857   // global value to a uniqued section specifically for it.
858   bool EmitUniqueSection = false;
859   if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) {
860     if (Kind.isText())
861       EmitUniqueSection = TM.getFunctionSections();
862     else
863       EmitUniqueSection = TM.getDataSections();
864   }
865   EmitUniqueSection |= GO->hasComdat();
866   return selectELFSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
867                                    Used.count(GO), EmitUniqueSection, Flags,
868                                    &NextUniqueID);
869 }
870 
871 MCSection *TargetLoweringObjectFileELF::getUniqueSectionForFunction(
872     const Function &F, const TargetMachine &TM) const {
873   SectionKind Kind = SectionKind::getText();
874   unsigned Flags = getELFSectionFlags(Kind);
875   // If the function's section names is pre-determined via pragma or a
876   // section attribute, call selectExplicitSectionGlobal.
877   if (F.hasSection() || F.hasFnAttribute("implicit-section-name"))
878     return selectExplicitSectionGlobal(
879         &F, Kind, TM, getContext(), getMangler(), NextUniqueID,
880         Used.count(&F), /* ForceUnique = */true);
881   else
882     return selectELFSectionForGlobal(
883         getContext(), &F, Kind, getMangler(), TM, Used.count(&F),
884         /*EmitUniqueSection=*/true, Flags, &NextUniqueID);
885 }
886 
887 MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable(
888     const Function &F, const TargetMachine &TM) const {
889   // If the function can be removed, produce a unique section so that
890   // the table doesn't prevent the removal.
891   const Comdat *C = F.getComdat();
892   bool EmitUniqueSection = TM.getFunctionSections() || C;
893   if (!EmitUniqueSection)
894     return ReadOnlySection;
895 
896   return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(),
897                                    getMangler(), TM, EmitUniqueSection,
898                                    ELF::SHF_ALLOC, &NextUniqueID,
899                                    /* AssociatedSymbol */ nullptr);
900 }
901 
902 MCSection *TargetLoweringObjectFileELF::getSectionForLSDA(
903     const Function &F, const MCSymbol &FnSym, const TargetMachine &TM) const {
904   // If neither COMDAT nor function sections, use the monolithic LSDA section.
905   // Re-use this path if LSDASection is null as in the Arm EHABI.
906   if (!LSDASection || (!F.hasComdat() && !TM.getFunctionSections()))
907     return LSDASection;
908 
909   const auto *LSDA = cast<MCSectionELF>(LSDASection);
910   unsigned Flags = LSDA->getFlags();
911   const MCSymbolELF *LinkedToSym = nullptr;
912   StringRef Group;
913   bool IsComdat = false;
914   if (const Comdat *C = getELFComdat(&F)) {
915     Flags |= ELF::SHF_GROUP;
916     Group = C->getName();
917     IsComdat = C->getSelectionKind() == Comdat::Any;
918   }
919   // Use SHF_LINK_ORDER to facilitate --gc-sections if we can use GNU ld>=2.36
920   // or LLD, which support mixed SHF_LINK_ORDER & non-SHF_LINK_ORDER.
921   if (TM.getFunctionSections() &&
922       (getContext().getAsmInfo()->useIntegratedAssembler() &&
923        getContext().getAsmInfo()->binutilsIsAtLeast(2, 36))) {
924     Flags |= ELF::SHF_LINK_ORDER;
925     LinkedToSym = cast<MCSymbolELF>(&FnSym);
926   }
927 
928   // Append the function name as the suffix like GCC, assuming
929   // -funique-section-names applies to .gcc_except_table sections.
930   return getContext().getELFSection(
931       (TM.getUniqueSectionNames() ? LSDA->getName() + "." + F.getName()
932                                   : LSDA->getName()),
933       LSDA->getType(), Flags, 0, Group, IsComdat, MCSection::NonUniqueID,
934       LinkedToSym);
935 }
936 
937 bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection(
938     bool UsesLabelDifference, const Function &F) const {
939   // We can always create relative relocations, so use another section
940   // that can be marked non-executable.
941   return false;
942 }
943 
944 /// Given a mergeable constant with the specified size and relocation
945 /// information, return a section that it should be placed in.
946 MCSection *TargetLoweringObjectFileELF::getSectionForConstant(
947     const DataLayout &DL, SectionKind Kind, const Constant *C,
948     Align &Alignment) const {
949   if (Kind.isMergeableConst4() && MergeableConst4Section)
950     return MergeableConst4Section;
951   if (Kind.isMergeableConst8() && MergeableConst8Section)
952     return MergeableConst8Section;
953   if (Kind.isMergeableConst16() && MergeableConst16Section)
954     return MergeableConst16Section;
955   if (Kind.isMergeableConst32() && MergeableConst32Section)
956     return MergeableConst32Section;
957   if (Kind.isReadOnly())
958     return ReadOnlySection;
959 
960   assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
961   return DataRelROSection;
962 }
963 
964 /// Returns a unique section for the given machine basic block.
965 MCSection *TargetLoweringObjectFileELF::getSectionForMachineBasicBlock(
966     const Function &F, const MachineBasicBlock &MBB,
967     const TargetMachine &TM) const {
968   assert(MBB.isBeginSection() && "Basic block does not start a section!");
969   unsigned UniqueID = MCContext::GenericSectionID;
970 
971   // For cold sections use the .text.split. prefix along with the parent
972   // function name. All cold blocks for the same function go to the same
973   // section. Similarly all exception blocks are grouped by symbol name
974   // under the .text.eh prefix. For regular sections, we either use a unique
975   // name, or a unique ID for the section.
976   SmallString<128> Name;
977   if (MBB.getSectionID() == MBBSectionID::ColdSectionID) {
978     Name += BBSectionsColdTextPrefix;
979     Name += MBB.getParent()->getName();
980   } else if (MBB.getSectionID() == MBBSectionID::ExceptionSectionID) {
981     Name += ".text.eh.";
982     Name += MBB.getParent()->getName();
983   } else {
984     Name += MBB.getParent()->getSection()->getName();
985     if (TM.getUniqueBasicBlockSectionNames()) {
986       if (!Name.endswith("."))
987         Name += ".";
988       Name += MBB.getSymbol()->getName();
989     } else {
990       UniqueID = NextUniqueID++;
991     }
992   }
993 
994   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR;
995   std::string GroupName;
996   if (F.hasComdat()) {
997     Flags |= ELF::SHF_GROUP;
998     GroupName = F.getComdat()->getName().str();
999   }
1000   return getContext().getELFSection(Name, ELF::SHT_PROGBITS, Flags,
1001                                     0 /* Entry Size */, GroupName,
1002                                     F.hasComdat(), UniqueID, nullptr);
1003 }
1004 
1005 static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray,
1006                                               bool IsCtor, unsigned Priority,
1007                                               const MCSymbol *KeySym) {
1008   std::string Name;
1009   unsigned Type;
1010   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1011   StringRef Comdat = KeySym ? KeySym->getName() : "";
1012 
1013   if (KeySym)
1014     Flags |= ELF::SHF_GROUP;
1015 
1016   if (UseInitArray) {
1017     if (IsCtor) {
1018       Type = ELF::SHT_INIT_ARRAY;
1019       Name = ".init_array";
1020     } else {
1021       Type = ELF::SHT_FINI_ARRAY;
1022       Name = ".fini_array";
1023     }
1024     if (Priority != 65535) {
1025       Name += '.';
1026       Name += utostr(Priority);
1027     }
1028   } else {
1029     // The default scheme is .ctor / .dtor, so we have to invert the priority
1030     // numbering.
1031     if (IsCtor)
1032       Name = ".ctors";
1033     else
1034       Name = ".dtors";
1035     if (Priority != 65535)
1036       raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1037     Type = ELF::SHT_PROGBITS;
1038   }
1039 
1040   return Ctx.getELFSection(Name, Type, Flags, 0, Comdat, /*IsComdat=*/true);
1041 }
1042 
1043 MCSection *TargetLoweringObjectFileELF::getStaticCtorSection(
1044     unsigned Priority, const MCSymbol *KeySym) const {
1045   return getStaticStructorSection(getContext(), UseInitArray, true, Priority,
1046                                   KeySym);
1047 }
1048 
1049 MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
1050     unsigned Priority, const MCSymbol *KeySym) const {
1051   return getStaticStructorSection(getContext(), UseInitArray, false, Priority,
1052                                   KeySym);
1053 }
1054 
1055 const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference(
1056     const GlobalValue *LHS, const GlobalValue *RHS,
1057     const TargetMachine &TM) const {
1058   // We may only use a PLT-relative relocation to refer to unnamed_addr
1059   // functions.
1060   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
1061     return nullptr;
1062 
1063   // Basic sanity checks.
1064   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1065       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
1066       RHS->isThreadLocal())
1067     return nullptr;
1068 
1069   return MCBinaryExpr::createSub(
1070       MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind,
1071                               getContext()),
1072       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
1073 }
1074 
1075 const MCExpr *TargetLoweringObjectFileELF::lowerDSOLocalEquivalent(
1076     const DSOLocalEquivalent *Equiv, const TargetMachine &TM) const {
1077   assert(supportDSOLocalEquivalentLowering());
1078 
1079   const auto *GV = Equiv->getGlobalValue();
1080 
1081   // A PLT entry is not needed for dso_local globals.
1082   if (GV->isDSOLocal() || GV->isImplicitDSOLocal())
1083     return MCSymbolRefExpr::create(TM.getSymbol(GV), getContext());
1084 
1085   return MCSymbolRefExpr::create(TM.getSymbol(GV), PLTRelativeVariantKind,
1086                                  getContext());
1087 }
1088 
1089 MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const {
1090   // Use ".GCC.command.line" since this feature is to support clang's
1091   // -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the
1092   // same name.
1093   return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS,
1094                                     ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
1095 }
1096 
1097 void
1098 TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) {
1099   UseInitArray = UseInitArray_;
1100   MCContext &Ctx = getContext();
1101   if (!UseInitArray) {
1102     StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS,
1103                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1104 
1105     StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS,
1106                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1107     return;
1108   }
1109 
1110   StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY,
1111                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1112   StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY,
1113                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1114 }
1115 
1116 //===----------------------------------------------------------------------===//
1117 //                                 MachO
1118 //===----------------------------------------------------------------------===//
1119 
1120 TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO()
1121   : TargetLoweringObjectFile() {
1122   SupportIndirectSymViaGOTPCRel = true;
1123 }
1124 
1125 void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx,
1126                                                const TargetMachine &TM) {
1127   TargetLoweringObjectFile::Initialize(Ctx, TM);
1128   if (TM.getRelocationModel() == Reloc::Static) {
1129     StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0,
1130                                             SectionKind::getData());
1131     StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0,
1132                                             SectionKind::getData());
1133   } else {
1134     StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func",
1135                                             MachO::S_MOD_INIT_FUNC_POINTERS,
1136                                             SectionKind::getData());
1137     StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func",
1138                                             MachO::S_MOD_TERM_FUNC_POINTERS,
1139                                             SectionKind::getData());
1140   }
1141 
1142   PersonalityEncoding =
1143       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1144   LSDAEncoding = dwarf::DW_EH_PE_pcrel;
1145   TTypeEncoding =
1146       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1147 }
1148 
1149 void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer,
1150                                                        Module &M) const {
1151   // Emit the linker options if present.
1152   if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1153     for (const auto *Option : LinkerOptions->operands()) {
1154       SmallVector<std::string, 4> StrOptions;
1155       for (const auto &Piece : cast<MDNode>(Option)->operands())
1156         StrOptions.push_back(std::string(cast<MDString>(Piece)->getString()));
1157       Streamer.emitLinkerOptions(StrOptions);
1158     }
1159   }
1160 
1161   unsigned VersionVal = 0;
1162   unsigned ImageInfoFlags = 0;
1163   StringRef SectionVal;
1164 
1165   GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal);
1166 
1167   // The section is mandatory. If we don't have it, then we don't have GC info.
1168   if (SectionVal.empty())
1169     return;
1170 
1171   StringRef Segment, Section;
1172   unsigned TAA = 0, StubSize = 0;
1173   bool TAAParsed;
1174   if (Error E = MCSectionMachO::ParseSectionSpecifier(
1175           SectionVal, Segment, Section, TAA, TAAParsed, StubSize)) {
1176     // If invalid, report the error with report_fatal_error.
1177     report_fatal_error("Invalid section specifier '" + Section +
1178                        "': " + toString(std::move(E)) + ".");
1179   }
1180 
1181   // Get the section.
1182   MCSectionMachO *S = getContext().getMachOSection(
1183       Segment, Section, TAA, StubSize, SectionKind::getData());
1184   Streamer.SwitchSection(S);
1185   Streamer.emitLabel(getContext().
1186                      getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO")));
1187   Streamer.emitInt32(VersionVal);
1188   Streamer.emitInt32(ImageInfoFlags);
1189   Streamer.AddBlankLine();
1190 }
1191 
1192 static void checkMachOComdat(const GlobalValue *GV) {
1193   const Comdat *C = GV->getComdat();
1194   if (!C)
1195     return;
1196 
1197   report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() +
1198                      "' cannot be lowered.");
1199 }
1200 
1201 MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
1202     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1203 
1204   StringRef SectionName = GO->getSection();
1205 
1206   const Function *F = dyn_cast<Function>(GO);
1207   if (F && F->hasFnAttribute("implicit-section-name")) {
1208     SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
1209   }
1210 
1211   // Parse the section specifier and create it if valid.
1212   StringRef Segment, Section;
1213   unsigned TAA = 0, StubSize = 0;
1214   bool TAAParsed;
1215 
1216   checkMachOComdat(GO);
1217 
1218   if (Error E = MCSectionMachO::ParseSectionSpecifier(
1219           SectionName, Segment, Section, TAA, TAAParsed, StubSize)) {
1220     // If invalid, report the error with report_fatal_error.
1221     report_fatal_error("Global variable '" + GO->getName() +
1222                        "' has an invalid section specifier '" +
1223                        GO->getSection() + "': " + toString(std::move(E)) + ".");
1224   }
1225 
1226   // Get the section.
1227   MCSectionMachO *S =
1228       getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind);
1229 
1230   // If TAA wasn't set by ParseSectionSpecifier() above,
1231   // use the value returned by getMachOSection() as a default.
1232   if (!TAAParsed)
1233     TAA = S->getTypeAndAttributes();
1234 
1235   // Okay, now that we got the section, verify that the TAA & StubSize agree.
1236   // If the user declared multiple globals with different section flags, we need
1237   // to reject it here.
1238   if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) {
1239     // If invalid, report the error with report_fatal_error.
1240     report_fatal_error("Global variable '" + GO->getName() +
1241                        "' section type or attributes does not match previous"
1242                        " section specifier");
1243   }
1244 
1245   return S;
1246 }
1247 
1248 MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal(
1249     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1250   checkMachOComdat(GO);
1251 
1252   // Handle thread local data.
1253   if (Kind.isThreadBSS()) return TLSBSSSection;
1254   if (Kind.isThreadData()) return TLSDataSection;
1255 
1256   if (Kind.isText())
1257     return GO->isWeakForLinker() ? TextCoalSection : TextSection;
1258 
1259   // If this is weak/linkonce, put this in a coalescable section, either in text
1260   // or data depending on if it is writable.
1261   if (GO->isWeakForLinker()) {
1262     if (Kind.isReadOnly())
1263       return ConstTextCoalSection;
1264     if (Kind.isReadOnlyWithRel())
1265       return ConstDataCoalSection;
1266     return DataCoalSection;
1267   }
1268 
1269   // FIXME: Alignment check should be handled by section classifier.
1270   if (Kind.isMergeable1ByteCString() &&
1271       GO->getParent()->getDataLayout().getPreferredAlign(
1272           cast<GlobalVariable>(GO)) < Align(32))
1273     return CStringSection;
1274 
1275   // Do not put 16-bit arrays in the UString section if they have an
1276   // externally visible label, this runs into issues with certain linker
1277   // versions.
1278   if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() &&
1279       GO->getParent()->getDataLayout().getPreferredAlign(
1280           cast<GlobalVariable>(GO)) < Align(32))
1281     return UStringSection;
1282 
1283   // With MachO only variables whose corresponding symbol starts with 'l' or
1284   // 'L' can be merged, so we only try merging GVs with private linkage.
1285   if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) {
1286     if (Kind.isMergeableConst4())
1287       return FourByteConstantSection;
1288     if (Kind.isMergeableConst8())
1289       return EightByteConstantSection;
1290     if (Kind.isMergeableConst16())
1291       return SixteenByteConstantSection;
1292   }
1293 
1294   // Otherwise, if it is readonly, but not something we can specially optimize,
1295   // just drop it in .const.
1296   if (Kind.isReadOnly())
1297     return ReadOnlySection;
1298 
1299   // If this is marked const, put it into a const section.  But if the dynamic
1300   // linker needs to write to it, put it in the data segment.
1301   if (Kind.isReadOnlyWithRel())
1302     return ConstDataSection;
1303 
1304   // Put zero initialized globals with strong external linkage in the
1305   // DATA, __common section with the .zerofill directive.
1306   if (Kind.isBSSExtern())
1307     return DataCommonSection;
1308 
1309   // Put zero initialized globals with local linkage in __DATA,__bss directive
1310   // with the .zerofill directive (aka .lcomm).
1311   if (Kind.isBSSLocal())
1312     return DataBSSSection;
1313 
1314   // Otherwise, just drop the variable in the normal data section.
1315   return DataSection;
1316 }
1317 
1318 MCSection *TargetLoweringObjectFileMachO::getSectionForConstant(
1319     const DataLayout &DL, SectionKind Kind, const Constant *C,
1320     Align &Alignment) const {
1321   // If this constant requires a relocation, we have to put it in the data
1322   // segment, not in the text segment.
1323   if (Kind.isData() || Kind.isReadOnlyWithRel())
1324     return ConstDataSection;
1325 
1326   if (Kind.isMergeableConst4())
1327     return FourByteConstantSection;
1328   if (Kind.isMergeableConst8())
1329     return EightByteConstantSection;
1330   if (Kind.isMergeableConst16())
1331     return SixteenByteConstantSection;
1332   return ReadOnlySection;  // .const
1333 }
1334 
1335 const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference(
1336     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
1337     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1338   // The mach-o version of this method defaults to returning a stub reference.
1339 
1340   if (Encoding & DW_EH_PE_indirect) {
1341     MachineModuleInfoMachO &MachOMMI =
1342       MMI->getObjFileInfo<MachineModuleInfoMachO>();
1343 
1344     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1345 
1346     // Add information about the stub reference to MachOMMI so that the stub
1347     // gets emitted by the asmprinter.
1348     MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1349     if (!StubSym.getPointer()) {
1350       MCSymbol *Sym = TM.getSymbol(GV);
1351       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1352     }
1353 
1354     return TargetLoweringObjectFile::
1355       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
1356                         Encoding & ~DW_EH_PE_indirect, Streamer);
1357   }
1358 
1359   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
1360                                                            MMI, Streamer);
1361 }
1362 
1363 MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol(
1364     const GlobalValue *GV, const TargetMachine &TM,
1365     MachineModuleInfo *MMI) const {
1366   // The mach-o version of this method defaults to returning a stub reference.
1367   MachineModuleInfoMachO &MachOMMI =
1368     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1369 
1370   MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1371 
1372   // Add information about the stub reference to MachOMMI so that the stub
1373   // gets emitted by the asmprinter.
1374   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1375   if (!StubSym.getPointer()) {
1376     MCSymbol *Sym = TM.getSymbol(GV);
1377     StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1378   }
1379 
1380   return SSym;
1381 }
1382 
1383 const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel(
1384     const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV,
1385     int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1386   // Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation
1387   // as 64-bit do, we replace the GOT equivalent by accessing the final symbol
1388   // through a non_lazy_ptr stub instead. One advantage is that it allows the
1389   // computation of deltas to final external symbols. Example:
1390   //
1391   //    _extgotequiv:
1392   //       .long   _extfoo
1393   //
1394   //    _delta:
1395   //       .long   _extgotequiv-_delta
1396   //
1397   // is transformed to:
1398   //
1399   //    _delta:
1400   //       .long   L_extfoo$non_lazy_ptr-(_delta+0)
1401   //
1402   //       .section        __IMPORT,__pointers,non_lazy_symbol_pointers
1403   //    L_extfoo$non_lazy_ptr:
1404   //       .indirect_symbol        _extfoo
1405   //       .long   0
1406   //
1407   // The indirect symbol table (and sections of non_lazy_symbol_pointers type)
1408   // may point to both local (same translation unit) and global (other
1409   // translation units) symbols. Example:
1410   //
1411   // .section __DATA,__pointers,non_lazy_symbol_pointers
1412   // L1:
1413   //    .indirect_symbol _myGlobal
1414   //    .long 0
1415   // L2:
1416   //    .indirect_symbol _myLocal
1417   //    .long _myLocal
1418   //
1419   // If the symbol is local, instead of the symbol's index, the assembler
1420   // places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table.
1421   // Then the linker will notice the constant in the table and will look at the
1422   // content of the symbol.
1423   MachineModuleInfoMachO &MachOMMI =
1424     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1425   MCContext &Ctx = getContext();
1426 
1427   // The offset must consider the original displacement from the base symbol
1428   // since 32-bit targets don't have a GOTPCREL to fold the PC displacement.
1429   Offset = -MV.getConstant();
1430   const MCSymbol *BaseSym = &MV.getSymB()->getSymbol();
1431 
1432   // Access the final symbol via sym$non_lazy_ptr and generate the appropriated
1433   // non_lazy_ptr stubs.
1434   SmallString<128> Name;
1435   StringRef Suffix = "$non_lazy_ptr";
1436   Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix();
1437   Name += Sym->getName();
1438   Name += Suffix;
1439   MCSymbol *Stub = Ctx.getOrCreateSymbol(Name);
1440 
1441   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub);
1442 
1443   if (!StubSym.getPointer())
1444     StubSym = MachineModuleInfoImpl::StubValueTy(const_cast<MCSymbol *>(Sym),
1445                                                  !GV->hasLocalLinkage());
1446 
1447   const MCExpr *BSymExpr =
1448     MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx);
1449   const MCExpr *LHS =
1450     MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx);
1451 
1452   if (!Offset)
1453     return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx);
1454 
1455   const MCExpr *RHS =
1456     MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx);
1457   return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1458 }
1459 
1460 static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo,
1461                                const MCSection &Section) {
1462   if (!AsmInfo.isSectionAtomizableBySymbols(Section))
1463     return true;
1464 
1465   // If it is not dead stripped, it is safe to use private labels.
1466   const MCSectionMachO &SMO = cast<MCSectionMachO>(Section);
1467   if (SMO.hasAttribute(MachO::S_ATTR_NO_DEAD_STRIP))
1468     return true;
1469 
1470   return false;
1471 }
1472 
1473 void TargetLoweringObjectFileMachO::getNameWithPrefix(
1474     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1475     const TargetMachine &TM) const {
1476   bool CannotUsePrivateLabel = true;
1477   if (auto *GO = GV->getBaseObject()) {
1478     SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM);
1479     const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM);
1480     CannotUsePrivateLabel =
1481         !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection);
1482   }
1483   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1484 }
1485 
1486 //===----------------------------------------------------------------------===//
1487 //                                  COFF
1488 //===----------------------------------------------------------------------===//
1489 
1490 static unsigned
1491 getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) {
1492   unsigned Flags = 0;
1493   bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb;
1494 
1495   if (K.isMetadata())
1496     Flags |=
1497       COFF::IMAGE_SCN_MEM_DISCARDABLE;
1498   else if (K.isText())
1499     Flags |=
1500       COFF::IMAGE_SCN_MEM_EXECUTE |
1501       COFF::IMAGE_SCN_MEM_READ |
1502       COFF::IMAGE_SCN_CNT_CODE |
1503       (isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0);
1504   else if (K.isBSS())
1505     Flags |=
1506       COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
1507       COFF::IMAGE_SCN_MEM_READ |
1508       COFF::IMAGE_SCN_MEM_WRITE;
1509   else if (K.isThreadLocal())
1510     Flags |=
1511       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1512       COFF::IMAGE_SCN_MEM_READ |
1513       COFF::IMAGE_SCN_MEM_WRITE;
1514   else if (K.isReadOnly() || K.isReadOnlyWithRel())
1515     Flags |=
1516       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1517       COFF::IMAGE_SCN_MEM_READ;
1518   else if (K.isWriteable())
1519     Flags |=
1520       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1521       COFF::IMAGE_SCN_MEM_READ |
1522       COFF::IMAGE_SCN_MEM_WRITE;
1523 
1524   return Flags;
1525 }
1526 
1527 static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) {
1528   const Comdat *C = GV->getComdat();
1529   assert(C && "expected GV to have a Comdat!");
1530 
1531   StringRef ComdatGVName = C->getName();
1532   const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName);
1533   if (!ComdatGV)
1534     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1535                        "' does not exist.");
1536 
1537   if (ComdatGV->getComdat() != C)
1538     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1539                        "' is not a key for its COMDAT.");
1540 
1541   return ComdatGV;
1542 }
1543 
1544 static int getSelectionForCOFF(const GlobalValue *GV) {
1545   if (const Comdat *C = GV->getComdat()) {
1546     const GlobalValue *ComdatKey = getComdatGVForCOFF(GV);
1547     if (const auto *GA = dyn_cast<GlobalAlias>(ComdatKey))
1548       ComdatKey = GA->getBaseObject();
1549     if (ComdatKey == GV) {
1550       switch (C->getSelectionKind()) {
1551       case Comdat::Any:
1552         return COFF::IMAGE_COMDAT_SELECT_ANY;
1553       case Comdat::ExactMatch:
1554         return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH;
1555       case Comdat::Largest:
1556         return COFF::IMAGE_COMDAT_SELECT_LARGEST;
1557       case Comdat::NoDuplicates:
1558         return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1559       case Comdat::SameSize:
1560         return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE;
1561       }
1562     } else {
1563       return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE;
1564     }
1565   }
1566   return 0;
1567 }
1568 
1569 MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal(
1570     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1571   int Selection = 0;
1572   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1573   StringRef Name = GO->getSection();
1574   StringRef COMDATSymName = "";
1575   if (GO->hasComdat()) {
1576     Selection = getSelectionForCOFF(GO);
1577     const GlobalValue *ComdatGV;
1578     if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
1579       ComdatGV = getComdatGVForCOFF(GO);
1580     else
1581       ComdatGV = GO;
1582 
1583     if (!ComdatGV->hasPrivateLinkage()) {
1584       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1585       COMDATSymName = Sym->getName();
1586       Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1587     } else {
1588       Selection = 0;
1589     }
1590   }
1591 
1592   return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName,
1593                                      Selection);
1594 }
1595 
1596 static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) {
1597   if (Kind.isText())
1598     return ".text";
1599   if (Kind.isBSS())
1600     return ".bss";
1601   if (Kind.isThreadLocal())
1602     return ".tls$";
1603   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1604     return ".rdata";
1605   return ".data";
1606 }
1607 
1608 MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
1609     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1610   // If we have -ffunction-sections then we should emit the global value to a
1611   // uniqued section specifically for it.
1612   bool EmitUniquedSection;
1613   if (Kind.isText())
1614     EmitUniquedSection = TM.getFunctionSections();
1615   else
1616     EmitUniquedSection = TM.getDataSections();
1617 
1618   if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) {
1619     SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind);
1620 
1621     unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1622 
1623     Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1624     int Selection = getSelectionForCOFF(GO);
1625     if (!Selection)
1626       Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1627     const GlobalValue *ComdatGV;
1628     if (GO->hasComdat())
1629       ComdatGV = getComdatGVForCOFF(GO);
1630     else
1631       ComdatGV = GO;
1632 
1633     unsigned UniqueID = MCContext::GenericSectionID;
1634     if (EmitUniquedSection)
1635       UniqueID = NextUniqueID++;
1636 
1637     if (!ComdatGV->hasPrivateLinkage()) {
1638       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1639       StringRef COMDATSymName = Sym->getName();
1640 
1641       if (const auto *F = dyn_cast<Function>(GO))
1642         if (Optional<StringRef> Prefix = F->getSectionPrefix())
1643           raw_svector_ostream(Name) << '$' << *Prefix;
1644 
1645       // Append "$symbol" to the section name *before* IR-level mangling is
1646       // applied when targetting mingw. This is what GCC does, and the ld.bfd
1647       // COFF linker will not properly handle comdats otherwise.
1648       if (getContext().getTargetTriple().isWindowsGNUEnvironment())
1649         raw_svector_ostream(Name) << '$' << ComdatGV->getName();
1650 
1651       return getContext().getCOFFSection(Name, Characteristics, Kind,
1652                                          COMDATSymName, Selection, UniqueID);
1653     } else {
1654       SmallString<256> TmpData;
1655       getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true);
1656       return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData,
1657                                          Selection, UniqueID);
1658     }
1659   }
1660 
1661   if (Kind.isText())
1662     return TextSection;
1663 
1664   if (Kind.isThreadLocal())
1665     return TLSDataSection;
1666 
1667   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1668     return ReadOnlySection;
1669 
1670   // Note: we claim that common symbols are put in BSSSection, but they are
1671   // really emitted with the magic .comm directive, which creates a symbol table
1672   // entry but not a section.
1673   if (Kind.isBSS() || Kind.isCommon())
1674     return BSSSection;
1675 
1676   return DataSection;
1677 }
1678 
1679 void TargetLoweringObjectFileCOFF::getNameWithPrefix(
1680     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1681     const TargetMachine &TM) const {
1682   bool CannotUsePrivateLabel = false;
1683   if (GV->hasPrivateLinkage() &&
1684       ((isa<Function>(GV) && TM.getFunctionSections()) ||
1685        (isa<GlobalVariable>(GV) && TM.getDataSections())))
1686     CannotUsePrivateLabel = true;
1687 
1688   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1689 }
1690 
1691 MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
1692     const Function &F, const TargetMachine &TM) const {
1693   // If the function can be removed, produce a unique section so that
1694   // the table doesn't prevent the removal.
1695   const Comdat *C = F.getComdat();
1696   bool EmitUniqueSection = TM.getFunctionSections() || C;
1697   if (!EmitUniqueSection)
1698     return ReadOnlySection;
1699 
1700   // FIXME: we should produce a symbol for F instead.
1701   if (F.hasPrivateLinkage())
1702     return ReadOnlySection;
1703 
1704   MCSymbol *Sym = TM.getSymbol(&F);
1705   StringRef COMDATSymName = Sym->getName();
1706 
1707   SectionKind Kind = SectionKind::getReadOnly();
1708   StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind);
1709   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1710   Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1711   unsigned UniqueID = NextUniqueID++;
1712 
1713   return getContext().getCOFFSection(
1714       SecName, Characteristics, Kind, COMDATSymName,
1715       COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID);
1716 }
1717 
1718 void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer,
1719                                                       Module &M) const {
1720   emitLinkerDirectives(Streamer, M);
1721 
1722   unsigned Version = 0;
1723   unsigned Flags = 0;
1724   StringRef Section;
1725 
1726   GetObjCImageInfo(M, Version, Flags, Section);
1727   if (!Section.empty()) {
1728     auto &C = getContext();
1729     auto *S = C.getCOFFSection(Section,
1730                                COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1731                                    COFF::IMAGE_SCN_MEM_READ,
1732                                SectionKind::getReadOnly());
1733     Streamer.SwitchSection(S);
1734     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
1735     Streamer.emitInt32(Version);
1736     Streamer.emitInt32(Flags);
1737     Streamer.AddBlankLine();
1738   }
1739 
1740   emitCGProfileMetadata(Streamer, M);
1741 }
1742 
1743 void TargetLoweringObjectFileCOFF::emitLinkerDirectives(
1744     MCStreamer &Streamer, Module &M) const {
1745   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1746     // Emit the linker options to the linker .drectve section.  According to the
1747     // spec, this section is a space-separated string containing flags for
1748     // linker.
1749     MCSection *Sec = getDrectveSection();
1750     Streamer.SwitchSection(Sec);
1751     for (const auto *Option : LinkerOptions->operands()) {
1752       for (const auto &Piece : cast<MDNode>(Option)->operands()) {
1753         // Lead with a space for consistency with our dllexport implementation.
1754         std::string Directive(" ");
1755         Directive.append(std::string(cast<MDString>(Piece)->getString()));
1756         Streamer.emitBytes(Directive);
1757       }
1758     }
1759   }
1760 
1761   // Emit /EXPORT: flags for each exported global as necessary.
1762   std::string Flags;
1763   for (const GlobalValue &GV : M.global_values()) {
1764     raw_string_ostream OS(Flags);
1765     emitLinkerFlagsForGlobalCOFF(OS, &GV, getContext().getTargetTriple(),
1766                                  getMangler());
1767     OS.flush();
1768     if (!Flags.empty()) {
1769       Streamer.SwitchSection(getDrectveSection());
1770       Streamer.emitBytes(Flags);
1771     }
1772     Flags.clear();
1773   }
1774 
1775   // Emit /INCLUDE: flags for each used global as necessary.
1776   if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1777     assert(LU->hasInitializer() && "expected llvm.used to have an initializer");
1778     assert(isa<ArrayType>(LU->getValueType()) &&
1779            "expected llvm.used to be an array type");
1780     if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1781       for (const Value *Op : A->operands()) {
1782         const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1783         // Global symbols with internal or private linkage are not visible to
1784         // the linker, and thus would cause an error when the linker tried to
1785         // preserve the symbol due to the `/include:` directive.
1786         if (GV->hasLocalLinkage())
1787           continue;
1788 
1789         raw_string_ostream OS(Flags);
1790         emitLinkerFlagsForUsedCOFF(OS, GV, getContext().getTargetTriple(),
1791                                    getMangler());
1792         OS.flush();
1793 
1794         if (!Flags.empty()) {
1795           Streamer.SwitchSection(getDrectveSection());
1796           Streamer.emitBytes(Flags);
1797         }
1798         Flags.clear();
1799       }
1800     }
1801   }
1802 }
1803 
1804 void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx,
1805                                               const TargetMachine &TM) {
1806   TargetLoweringObjectFile::Initialize(Ctx, TM);
1807   this->TM = &TM;
1808   const Triple &T = TM.getTargetTriple();
1809   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1810     StaticCtorSection =
1811         Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1812                                            COFF::IMAGE_SCN_MEM_READ,
1813                            SectionKind::getReadOnly());
1814     StaticDtorSection =
1815         Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1816                                            COFF::IMAGE_SCN_MEM_READ,
1817                            SectionKind::getReadOnly());
1818   } else {
1819     StaticCtorSection = Ctx.getCOFFSection(
1820         ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1821                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1822         SectionKind::getData());
1823     StaticDtorSection = Ctx.getCOFFSection(
1824         ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1825                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1826         SectionKind::getData());
1827   }
1828 }
1829 
1830 static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx,
1831                                                    const Triple &T, bool IsCtor,
1832                                                    unsigned Priority,
1833                                                    const MCSymbol *KeySym,
1834                                                    MCSectionCOFF *Default) {
1835   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1836     // If the priority is the default, use .CRT$XCU, possibly associative.
1837     if (Priority == 65535)
1838       return Ctx.getAssociativeCOFFSection(Default, KeySym, 0);
1839 
1840     // Otherwise, we need to compute a new section name. Low priorities should
1841     // run earlier. The linker will sort sections ASCII-betically, and we need a
1842     // string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we
1843     // make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really
1844     // low priorities need to sort before 'L', since the CRT uses that
1845     // internally, so we use ".CRT$XCA00001" for them.
1846     SmallString<24> Name;
1847     raw_svector_ostream OS(Name);
1848     OS << ".CRT$X" << (IsCtor ? "C" : "T") <<
1849         (Priority < 200 ? 'A' : 'T') << format("%05u", Priority);
1850     MCSectionCOFF *Sec = Ctx.getCOFFSection(
1851         Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ,
1852         SectionKind::getReadOnly());
1853     return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0);
1854   }
1855 
1856   std::string Name = IsCtor ? ".ctors" : ".dtors";
1857   if (Priority != 65535)
1858     raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1859 
1860   return Ctx.getAssociativeCOFFSection(
1861       Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1862                                    COFF::IMAGE_SCN_MEM_READ |
1863                                    COFF::IMAGE_SCN_MEM_WRITE,
1864                          SectionKind::getData()),
1865       KeySym, 0);
1866 }
1867 
1868 MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection(
1869     unsigned Priority, const MCSymbol *KeySym) const {
1870   return getCOFFStaticStructorSection(
1871       getContext(), getContext().getTargetTriple(), true, Priority, KeySym,
1872       cast<MCSectionCOFF>(StaticCtorSection));
1873 }
1874 
1875 MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection(
1876     unsigned Priority, const MCSymbol *KeySym) const {
1877   return getCOFFStaticStructorSection(
1878       getContext(), getContext().getTargetTriple(), false, Priority, KeySym,
1879       cast<MCSectionCOFF>(StaticDtorSection));
1880 }
1881 
1882 const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference(
1883     const GlobalValue *LHS, const GlobalValue *RHS,
1884     const TargetMachine &TM) const {
1885   const Triple &T = TM.getTargetTriple();
1886   if (T.isOSCygMing())
1887     return nullptr;
1888 
1889   // Our symbols should exist in address space zero, cowardly no-op if
1890   // otherwise.
1891   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1892       RHS->getType()->getPointerAddressSpace() != 0)
1893     return nullptr;
1894 
1895   // Both ptrtoint instructions must wrap global objects:
1896   // - Only global variables are eligible for image relative relocations.
1897   // - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable.
1898   // We expect __ImageBase to be a global variable without a section, externally
1899   // defined.
1900   //
1901   // It should look something like this: @__ImageBase = external constant i8
1902   if (!isa<GlobalObject>(LHS) || !isa<GlobalVariable>(RHS) ||
1903       LHS->isThreadLocal() || RHS->isThreadLocal() ||
1904       RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() ||
1905       cast<GlobalVariable>(RHS)->hasInitializer() || RHS->hasSection())
1906     return nullptr;
1907 
1908   return MCSymbolRefExpr::create(TM.getSymbol(LHS),
1909                                  MCSymbolRefExpr::VK_COFF_IMGREL32,
1910                                  getContext());
1911 }
1912 
1913 static std::string APIntToHexString(const APInt &AI) {
1914   unsigned Width = (AI.getBitWidth() / 8) * 2;
1915   std::string HexString = AI.toString(16, /*Signed=*/false);
1916   llvm::transform(HexString, HexString.begin(), tolower);
1917   unsigned Size = HexString.size();
1918   assert(Width >= Size && "hex string is too large!");
1919   HexString.insert(HexString.begin(), Width - Size, '0');
1920 
1921   return HexString;
1922 }
1923 
1924 static std::string scalarConstantToHexString(const Constant *C) {
1925   Type *Ty = C->getType();
1926   if (isa<UndefValue>(C)) {
1927     return APIntToHexString(APInt::getNullValue(Ty->getPrimitiveSizeInBits()));
1928   } else if (const auto *CFP = dyn_cast<ConstantFP>(C)) {
1929     return APIntToHexString(CFP->getValueAPF().bitcastToAPInt());
1930   } else if (const auto *CI = dyn_cast<ConstantInt>(C)) {
1931     return APIntToHexString(CI->getValue());
1932   } else {
1933     unsigned NumElements;
1934     if (auto *VTy = dyn_cast<VectorType>(Ty))
1935       NumElements = cast<FixedVectorType>(VTy)->getNumElements();
1936     else
1937       NumElements = Ty->getArrayNumElements();
1938     std::string HexString;
1939     for (int I = NumElements - 1, E = -1; I != E; --I)
1940       HexString += scalarConstantToHexString(C->getAggregateElement(I));
1941     return HexString;
1942   }
1943 }
1944 
1945 MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant(
1946     const DataLayout &DL, SectionKind Kind, const Constant *C,
1947     Align &Alignment) const {
1948   if (Kind.isMergeableConst() && C &&
1949       getContext().getAsmInfo()->hasCOFFComdatConstants()) {
1950     // This creates comdat sections with the given symbol name, but unless
1951     // AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol
1952     // will be created with a null storage class, which makes GNU binutils
1953     // error out.
1954     const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1955                                      COFF::IMAGE_SCN_MEM_READ |
1956                                      COFF::IMAGE_SCN_LNK_COMDAT;
1957     std::string COMDATSymName;
1958     if (Kind.isMergeableConst4()) {
1959       if (Alignment <= 4) {
1960         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1961         Alignment = Align(4);
1962       }
1963     } else if (Kind.isMergeableConst8()) {
1964       if (Alignment <= 8) {
1965         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1966         Alignment = Align(8);
1967       }
1968     } else if (Kind.isMergeableConst16()) {
1969       // FIXME: These may not be appropriate for non-x86 architectures.
1970       if (Alignment <= 16) {
1971         COMDATSymName = "__xmm@" + scalarConstantToHexString(C);
1972         Alignment = Align(16);
1973       }
1974     } else if (Kind.isMergeableConst32()) {
1975       if (Alignment <= 32) {
1976         COMDATSymName = "__ymm@" + scalarConstantToHexString(C);
1977         Alignment = Align(32);
1978       }
1979     }
1980 
1981     if (!COMDATSymName.empty())
1982       return getContext().getCOFFSection(".rdata", Characteristics, Kind,
1983                                          COMDATSymName,
1984                                          COFF::IMAGE_COMDAT_SELECT_ANY);
1985   }
1986 
1987   return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C,
1988                                                          Alignment);
1989 }
1990 
1991 //===----------------------------------------------------------------------===//
1992 //                                  Wasm
1993 //===----------------------------------------------------------------------===//
1994 
1995 static const Comdat *getWasmComdat(const GlobalValue *GV) {
1996   const Comdat *C = GV->getComdat();
1997   if (!C)
1998     return nullptr;
1999 
2000   if (C->getSelectionKind() != Comdat::Any)
2001     report_fatal_error("WebAssembly COMDATs only support "
2002                        "SelectionKind::Any, '" + C->getName() + "' cannot be "
2003                        "lowered.");
2004 
2005   return C;
2006 }
2007 
2008 MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal(
2009     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2010   // We don't support explict section names for functions in the wasm object
2011   // format.  Each function has to be in its own unique section.
2012   if (isa<Function>(GO)) {
2013     return SelectSectionForGlobal(GO, Kind, TM);
2014   }
2015 
2016   StringRef Name = GO->getSection();
2017 
2018   // Certain data sections we treat as named custom sections rather than
2019   // segments within the data section.
2020   // This could be avoided if all data segements (the wasm sense) were
2021   // represented as their own sections (in the llvm sense).
2022   // TODO(sbc): https://github.com/WebAssembly/tool-conventions/issues/138
2023   if (Name == ".llvmcmd" || Name == ".llvmbc")
2024     Kind = SectionKind::getMetadata();
2025 
2026   StringRef Group = "";
2027   if (const Comdat *C = getWasmComdat(GO)) {
2028     Group = C->getName();
2029   }
2030 
2031   MCSectionWasm* Section =
2032       getContext().getWasmSection(Name, Kind, Group,
2033                                   MCContext::GenericSectionID);
2034 
2035   return Section;
2036 }
2037 
2038 static MCSectionWasm *selectWasmSectionForGlobal(
2039     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
2040     const TargetMachine &TM, bool EmitUniqueSection, unsigned *NextUniqueID) {
2041   StringRef Group = "";
2042   if (const Comdat *C = getWasmComdat(GO)) {
2043     Group = C->getName();
2044   }
2045 
2046   bool UniqueSectionNames = TM.getUniqueSectionNames();
2047   SmallString<128> Name = getSectionPrefixForGlobal(Kind);
2048 
2049   if (const auto *F = dyn_cast<Function>(GO)) {
2050     const auto &OptionalPrefix = F->getSectionPrefix();
2051     if (OptionalPrefix)
2052       raw_svector_ostream(Name) << '.' << *OptionalPrefix;
2053   }
2054 
2055   if (EmitUniqueSection && UniqueSectionNames) {
2056     Name.push_back('.');
2057     TM.getNameWithPrefix(Name, GO, Mang, true);
2058   }
2059   unsigned UniqueID = MCContext::GenericSectionID;
2060   if (EmitUniqueSection && !UniqueSectionNames) {
2061     UniqueID = *NextUniqueID;
2062     (*NextUniqueID)++;
2063   }
2064 
2065   return Ctx.getWasmSection(Name, Kind, Group, UniqueID);
2066 }
2067 
2068 MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal(
2069     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2070 
2071   if (Kind.isCommon())
2072     report_fatal_error("mergable sections not supported yet on wasm");
2073 
2074   // If we have -ffunction-section or -fdata-section then we should emit the
2075   // global value to a uniqued section specifically for it.
2076   bool EmitUniqueSection = false;
2077   if (Kind.isText())
2078     EmitUniqueSection = TM.getFunctionSections();
2079   else
2080     EmitUniqueSection = TM.getDataSections();
2081   EmitUniqueSection |= GO->hasComdat();
2082 
2083   return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
2084                                     EmitUniqueSection, &NextUniqueID);
2085 }
2086 
2087 bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection(
2088     bool UsesLabelDifference, const Function &F) const {
2089   // We can always create relative relocations, so use another section
2090   // that can be marked non-executable.
2091   return false;
2092 }
2093 
2094 const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference(
2095     const GlobalValue *LHS, const GlobalValue *RHS,
2096     const TargetMachine &TM) const {
2097   // We may only use a PLT-relative relocation to refer to unnamed_addr
2098   // functions.
2099   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
2100     return nullptr;
2101 
2102   // Basic sanity checks.
2103   if (LHS->getType()->getPointerAddressSpace() != 0 ||
2104       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
2105       RHS->isThreadLocal())
2106     return nullptr;
2107 
2108   return MCBinaryExpr::createSub(
2109       MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None,
2110                               getContext()),
2111       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
2112 }
2113 
2114 void TargetLoweringObjectFileWasm::InitializeWasm() {
2115   StaticCtorSection =
2116       getContext().getWasmSection(".init_array", SectionKind::getData());
2117 
2118   // We don't use PersonalityEncoding and LSDAEncoding because we don't emit
2119   // .cfi directives. We use TTypeEncoding to encode typeinfo global variables.
2120   TTypeEncoding = dwarf::DW_EH_PE_absptr;
2121 }
2122 
2123 MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection(
2124     unsigned Priority, const MCSymbol *KeySym) const {
2125   return Priority == UINT16_MAX ?
2126          StaticCtorSection :
2127          getContext().getWasmSection(".init_array." + utostr(Priority),
2128                                      SectionKind::getData());
2129 }
2130 
2131 MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection(
2132     unsigned Priority, const MCSymbol *KeySym) const {
2133   llvm_unreachable("@llvm.global_dtors should have been lowered already");
2134   return nullptr;
2135 }
2136 
2137 //===----------------------------------------------------------------------===//
2138 //                                  XCOFF
2139 //===----------------------------------------------------------------------===//
2140 bool TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(
2141     const MachineFunction *MF) {
2142   if (!MF->getLandingPads().empty())
2143     return true;
2144 
2145   const Function &F = MF->getFunction();
2146   if (!F.hasPersonalityFn() || !F.needsUnwindTableEntry())
2147     return false;
2148 
2149   const GlobalValue *Per =
2150       dyn_cast<GlobalValue>(F.getPersonalityFn()->stripPointerCasts());
2151   assert(Per && "Personality routine is not a GlobalValue type.");
2152   if (isNoOpWithoutInvoke(classifyEHPersonality(Per)))
2153     return false;
2154 
2155   return true;
2156 }
2157 
2158 MCSymbol *
2159 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(const MachineFunction *MF) {
2160   return MF->getMMI().getContext().getOrCreateSymbol(
2161       "__ehinfo." + Twine(MF->getFunctionNumber()));
2162 }
2163 
2164 MCSymbol *
2165 TargetLoweringObjectFileXCOFF::getTargetSymbol(const GlobalValue *GV,
2166                                                const TargetMachine &TM) const {
2167   // We always use a qualname symbol for a GV that represents
2168   // a declaration, a function descriptor, or a common symbol.
2169   // If a GV represents a GlobalVariable and -fdata-sections is enabled, we
2170   // also return a qualname so that a label symbol could be avoided.
2171   // It is inherently ambiguous when the GO represents the address of a
2172   // function, as the GO could either represent a function descriptor or a
2173   // function entry point. We choose to always return a function descriptor
2174   // here.
2175   if (const GlobalObject *GO = dyn_cast<GlobalObject>(GV)) {
2176     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
2177       if (GVar->hasAttribute("toc-data"))
2178         return cast<MCSectionXCOFF>(
2179                    SectionForGlobal(GVar, SectionKind::getData(), TM))
2180             ->getQualNameSymbol();
2181 
2182     if (GO->isDeclarationForLinker())
2183       return cast<MCSectionXCOFF>(getSectionForExternalReference(GO, TM))
2184           ->getQualNameSymbol();
2185 
2186     SectionKind GOKind = getKindForGlobal(GO, TM);
2187     if (GOKind.isText())
2188       return cast<MCSectionXCOFF>(
2189                  getSectionForFunctionDescriptor(cast<Function>(GO), TM))
2190           ->getQualNameSymbol();
2191     if ((TM.getDataSections() && !GO->hasSection()) || GO->hasCommonLinkage() ||
2192         GOKind.isBSSLocal() || GOKind.isThreadBSSLocal())
2193       return cast<MCSectionXCOFF>(SectionForGlobal(GO, GOKind, TM))
2194           ->getQualNameSymbol();
2195   }
2196 
2197   // For all other cases, fall back to getSymbol to return the unqualified name.
2198   return nullptr;
2199 }
2200 
2201 MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal(
2202     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2203   if (!GO->hasSection())
2204     report_fatal_error("#pragma clang section is not yet supported");
2205 
2206   StringRef SectionName = GO->getSection();
2207 
2208   // Handle the XCOFF::TD case first, then deal with the rest.
2209   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GO))
2210     if (GVar->hasAttribute("toc-data"))
2211       return getContext().getXCOFFSection(
2212           SectionName, Kind,
2213           XCOFF::CsectProperties(/*MappingClass*/ XCOFF::XMC_TD, XCOFF::XTY_SD),
2214           /* MultiSymbolsAllowed*/ true);
2215 
2216   XCOFF::StorageMappingClass MappingClass;
2217   if (Kind.isText())
2218     MappingClass = XCOFF::XMC_PR;
2219   else if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS())
2220     MappingClass = XCOFF::XMC_RW;
2221   else if (Kind.isReadOnly())
2222     MappingClass = XCOFF::XMC_RO;
2223   else
2224     report_fatal_error("XCOFF other section types not yet implemented.");
2225 
2226   return getContext().getXCOFFSection(
2227       SectionName, Kind, XCOFF::CsectProperties(MappingClass, XCOFF::XTY_SD),
2228       /* MultiSymbolsAllowed*/ true);
2229 }
2230 
2231 MCSection *TargetLoweringObjectFileXCOFF::getSectionForExternalReference(
2232     const GlobalObject *GO, const TargetMachine &TM) const {
2233   assert(GO->isDeclarationForLinker() &&
2234          "Tried to get ER section for a defined global.");
2235 
2236   SmallString<128> Name;
2237   getNameWithPrefix(Name, GO, TM);
2238 
2239   XCOFF::StorageMappingClass SMC =
2240       isa<Function>(GO) ? XCOFF::XMC_DS : XCOFF::XMC_UA;
2241   if (GO->isThreadLocal())
2242     SMC = XCOFF::XMC_UL;
2243 
2244   // Externals go into a csect of type ER.
2245   return getContext().getXCOFFSection(
2246       Name, SectionKind::getMetadata(),
2247       XCOFF::CsectProperties(SMC, XCOFF::XTY_ER));
2248 }
2249 
2250 MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal(
2251     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2252   // Handle the XCOFF::TD case first, then deal with the rest.
2253   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GO))
2254     if (GVar->hasAttribute("toc-data")) {
2255       SmallString<128> Name;
2256       getNameWithPrefix(Name, GO, TM);
2257       return getContext().getXCOFFSection(
2258           Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_TD, XCOFF::XTY_SD),
2259           /* MultiSymbolsAllowed*/ true);
2260     }
2261 
2262   // Common symbols go into a csect with matching name which will get mapped
2263   // into the .bss section.
2264   // Zero-initialized local TLS symbols go into a csect with matching name which
2265   // will get mapped into the .tbss section.
2266   if (Kind.isBSSLocal() || GO->hasCommonLinkage() || Kind.isThreadBSSLocal()) {
2267     SmallString<128> Name;
2268     getNameWithPrefix(Name, GO, TM);
2269     XCOFF::StorageMappingClass SMC = Kind.isBSSLocal() ? XCOFF::XMC_BS
2270                                      : Kind.isCommon() ? XCOFF::XMC_RW
2271                                                        : XCOFF::XMC_UL;
2272     return getContext().getXCOFFSection(
2273         Name, Kind, XCOFF::CsectProperties(SMC, XCOFF::XTY_CM));
2274   }
2275 
2276   if (Kind.isMergeableCString()) {
2277     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
2278         cast<GlobalVariable>(GO));
2279 
2280     unsigned EntrySize = getEntrySizeForKind(Kind);
2281     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
2282     SmallString<128> Name;
2283     Name = SizeSpec + utostr(Alignment.value());
2284 
2285     if (TM.getDataSections())
2286       getNameWithPrefix(Name, GO, TM);
2287 
2288     return getContext().getXCOFFSection(
2289         Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD),
2290         /* MultiSymbolsAllowed*/ !TM.getDataSections());
2291   }
2292 
2293   if (Kind.isText()) {
2294     if (TM.getFunctionSections()) {
2295       return cast<MCSymbolXCOFF>(getFunctionEntryPointSymbol(GO, TM))
2296           ->getRepresentedCsect();
2297     }
2298     return TextSection;
2299   }
2300 
2301   // TODO: We may put Kind.isReadOnlyWithRel() under option control, because
2302   // user may want to have read-only data with relocations placed into a
2303   // read-only section by the compiler.
2304   // For BSS kind, zero initialized data must be emitted to the .data section
2305   // because external linkage control sections that get mapped to the .bss
2306   // section will be linked as tentative defintions, which is only appropriate
2307   // for SectionKind::Common.
2308   if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) {
2309     if (TM.getDataSections()) {
2310       SmallString<128> Name;
2311       getNameWithPrefix(Name, GO, TM);
2312       return getContext().getXCOFFSection(
2313           Name, SectionKind::getData(),
2314           XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD));
2315     }
2316     return DataSection;
2317   }
2318 
2319   if (Kind.isReadOnly()) {
2320     if (TM.getDataSections()) {
2321       SmallString<128> Name;
2322       getNameWithPrefix(Name, GO, TM);
2323       return getContext().getXCOFFSection(
2324           Name, SectionKind::getReadOnly(),
2325           XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD));
2326     }
2327     return ReadOnlySection;
2328   }
2329 
2330   // External/weak TLS data and initialized local TLS data are not eligible
2331   // to be put into common csect. If data sections are enabled, thread
2332   // data are emitted into separate sections. Otherwise, thread data
2333   // are emitted into the .tdata section.
2334   if (Kind.isThreadLocal()) {
2335     if (TM.getDataSections()) {
2336       SmallString<128> Name;
2337       getNameWithPrefix(Name, GO, TM);
2338       return getContext().getXCOFFSection(
2339           Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_TL, XCOFF::XTY_SD));
2340     }
2341     return TLSDataSection;
2342   }
2343 
2344   report_fatal_error("XCOFF other section types not yet implemented.");
2345 }
2346 
2347 MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable(
2348     const Function &F, const TargetMachine &TM) const {
2349   assert (!F.getComdat() && "Comdat not supported on XCOFF.");
2350 
2351   if (!TM.getFunctionSections())
2352     return ReadOnlySection;
2353 
2354   // If the function can be removed, produce a unique section so that
2355   // the table doesn't prevent the removal.
2356   SmallString<128> NameStr(".rodata.jmp..");
2357   getNameWithPrefix(NameStr, &F, TM);
2358   return getContext().getXCOFFSection(
2359       NameStr, SectionKind::getReadOnly(),
2360       XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD));
2361 }
2362 
2363 bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection(
2364     bool UsesLabelDifference, const Function &F) const {
2365   return false;
2366 }
2367 
2368 /// Given a mergeable constant with the specified size and relocation
2369 /// information, return a section that it should be placed in.
2370 MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant(
2371     const DataLayout &DL, SectionKind Kind, const Constant *C,
2372     Align &Alignment) const {
2373   //TODO: Enable emiting constant pool to unique sections when we support it.
2374   return ReadOnlySection;
2375 }
2376 
2377 void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx,
2378                                                const TargetMachine &TgtM) {
2379   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
2380   TTypeEncoding =
2381       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_datarel |
2382       (TgtM.getTargetTriple().isArch32Bit() ? dwarf::DW_EH_PE_sdata4
2383                                             : dwarf::DW_EH_PE_sdata8);
2384   PersonalityEncoding = 0;
2385   LSDAEncoding = 0;
2386   CallSiteEncoding = dwarf::DW_EH_PE_udata4;
2387 }
2388 
2389 MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection(
2390 	unsigned Priority, const MCSymbol *KeySym) const {
2391   report_fatal_error("no static constructor section on AIX");
2392 }
2393 
2394 MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection(
2395 	unsigned Priority, const MCSymbol *KeySym) const {
2396   report_fatal_error("no static destructor section on AIX");
2397 }
2398 
2399 const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference(
2400     const GlobalValue *LHS, const GlobalValue *RHS,
2401     const TargetMachine &TM) const {
2402   report_fatal_error("XCOFF not yet implemented.");
2403 }
2404 
2405 XCOFF::StorageClass
2406 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(const GlobalValue *GV) {
2407   assert(!isa<GlobalIFunc>(GV) && "GlobalIFunc is not supported on AIX.");
2408 
2409   switch (GV->getLinkage()) {
2410   case GlobalValue::InternalLinkage:
2411   case GlobalValue::PrivateLinkage:
2412     return XCOFF::C_HIDEXT;
2413   case GlobalValue::ExternalLinkage:
2414   case GlobalValue::CommonLinkage:
2415   case GlobalValue::AvailableExternallyLinkage:
2416     return XCOFF::C_EXT;
2417   case GlobalValue::ExternalWeakLinkage:
2418   case GlobalValue::LinkOnceAnyLinkage:
2419   case GlobalValue::LinkOnceODRLinkage:
2420   case GlobalValue::WeakAnyLinkage:
2421   case GlobalValue::WeakODRLinkage:
2422     return XCOFF::C_WEAKEXT;
2423   case GlobalValue::AppendingLinkage:
2424     report_fatal_error(
2425         "There is no mapping that implements AppendingLinkage for XCOFF.");
2426   }
2427   llvm_unreachable("Unknown linkage type!");
2428 }
2429 
2430 MCSymbol *TargetLoweringObjectFileXCOFF::getFunctionEntryPointSymbol(
2431     const GlobalValue *Func, const TargetMachine &TM) const {
2432   assert(
2433       (isa<Function>(Func) ||
2434        (isa<GlobalAlias>(Func) &&
2435         isa_and_nonnull<Function>(cast<GlobalAlias>(Func)->getBaseObject()))) &&
2436       "Func must be a function or an alias which has a function as base "
2437       "object.");
2438 
2439   SmallString<128> NameStr;
2440   NameStr.push_back('.');
2441   getNameWithPrefix(NameStr, Func, TM);
2442 
2443   // When -function-sections is enabled and explicit section is not specified,
2444   // it's not necessary to emit function entry point label any more. We will use
2445   // function entry point csect instead. And for function delcarations, the
2446   // undefined symbols gets treated as csect with XTY_ER property.
2447   if (((TM.getFunctionSections() && !Func->hasSection()) ||
2448        Func->isDeclaration()) &&
2449       isa<Function>(Func)) {
2450     return getContext()
2451         .getXCOFFSection(
2452             NameStr, SectionKind::getText(),
2453             XCOFF::CsectProperties(XCOFF::XMC_PR, Func->isDeclaration()
2454                                                       ? XCOFF::XTY_ER
2455                                                       : XCOFF::XTY_SD))
2456         ->getQualNameSymbol();
2457   }
2458 
2459   return getContext().getOrCreateSymbol(NameStr);
2460 }
2461 
2462 MCSection *TargetLoweringObjectFileXCOFF::getSectionForFunctionDescriptor(
2463     const Function *F, const TargetMachine &TM) const {
2464   SmallString<128> NameStr;
2465   getNameWithPrefix(NameStr, F, TM);
2466   return getContext().getXCOFFSection(
2467       NameStr, SectionKind::getData(),
2468       XCOFF::CsectProperties(XCOFF::XMC_DS, XCOFF::XTY_SD));
2469 }
2470 
2471 MCSection *TargetLoweringObjectFileXCOFF::getSectionForTOCEntry(
2472     const MCSymbol *Sym, const TargetMachine &TM) const {
2473   // Use TE storage-mapping class when large code model is enabled so that
2474   // the chance of needing -bbigtoc is decreased.
2475   return getContext().getXCOFFSection(
2476       cast<MCSymbolXCOFF>(Sym)->getSymbolTableName(), SectionKind::getData(),
2477       XCOFF::CsectProperties(
2478           TM.getCodeModel() == CodeModel::Large ? XCOFF::XMC_TE : XCOFF::XMC_TC,
2479           XCOFF::XTY_SD));
2480 }
2481