xref: /llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp (revision a8cfa4b9bda3014a88e089cadcc6d366317aec5b)
1 //===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements classes used to handle lowerings specific to common
10 // object file formats.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/COFF.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/BinaryFormat/ELF.h"
23 #include "llvm/BinaryFormat/MachO.h"
24 #include "llvm/BinaryFormat/Wasm.h"
25 #include "llvm/CodeGen/BasicBlockSectionUtils.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineFunction.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
30 #include "llvm/IR/Comdat.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DataLayout.h"
33 #include "llvm/IR/DerivedTypes.h"
34 #include "llvm/IR/DiagnosticInfo.h"
35 #include "llvm/IR/DiagnosticPrinter.h"
36 #include "llvm/IR/Function.h"
37 #include "llvm/IR/GlobalAlias.h"
38 #include "llvm/IR/GlobalObject.h"
39 #include "llvm/IR/GlobalValue.h"
40 #include "llvm/IR/GlobalVariable.h"
41 #include "llvm/IR/Mangler.h"
42 #include "llvm/IR/Metadata.h"
43 #include "llvm/IR/Module.h"
44 #include "llvm/IR/PseudoProbe.h"
45 #include "llvm/IR/Type.h"
46 #include "llvm/MC/MCAsmInfo.h"
47 #include "llvm/MC/MCContext.h"
48 #include "llvm/MC/MCExpr.h"
49 #include "llvm/MC/MCSectionCOFF.h"
50 #include "llvm/MC/MCSectionELF.h"
51 #include "llvm/MC/MCSectionGOFF.h"
52 #include "llvm/MC/MCSectionMachO.h"
53 #include "llvm/MC/MCSectionWasm.h"
54 #include "llvm/MC/MCSectionXCOFF.h"
55 #include "llvm/MC/MCStreamer.h"
56 #include "llvm/MC/MCSymbol.h"
57 #include "llvm/MC/MCSymbolELF.h"
58 #include "llvm/MC/MCValue.h"
59 #include "llvm/MC/SectionKind.h"
60 #include "llvm/ProfileData/InstrProf.h"
61 #include "llvm/Support/Casting.h"
62 #include "llvm/Support/CodeGen.h"
63 #include "llvm/Support/ErrorHandling.h"
64 #include "llvm/Support/Format.h"
65 #include "llvm/Support/raw_ostream.h"
66 #include "llvm/Target/TargetMachine.h"
67 #include <cassert>
68 #include <string>
69 
70 using namespace llvm;
71 using namespace dwarf;
72 
73 static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags,
74                              StringRef &Section) {
75   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
76   M.getModuleFlagsMetadata(ModuleFlags);
77 
78   for (const auto &MFE: ModuleFlags) {
79     // Ignore flags with 'Require' behaviour.
80     if (MFE.Behavior == Module::Require)
81       continue;
82 
83     StringRef Key = MFE.Key->getString();
84     if (Key == "Objective-C Image Info Version") {
85       Version = mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
86     } else if (Key == "Objective-C Garbage Collection" ||
87                Key == "Objective-C GC Only" ||
88                Key == "Objective-C Is Simulated" ||
89                Key == "Objective-C Class Properties" ||
90                Key == "Objective-C Image Swift Version") {
91       Flags |= mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
92     } else if (Key == "Objective-C Image Info Section") {
93       Section = cast<MDString>(MFE.Val)->getString();
94     }
95     // Backend generates L_OBJC_IMAGE_INFO from Swift ABI version + major + minor +
96     // "Objective-C Garbage Collection".
97     else if (Key == "Swift ABI Version") {
98       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 8;
99     } else if (Key == "Swift Major Version") {
100       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 24;
101     } else if (Key == "Swift Minor Version") {
102       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 16;
103     }
104   }
105 }
106 
107 //===----------------------------------------------------------------------===//
108 //                                  ELF
109 //===----------------------------------------------------------------------===//
110 
111 TargetLoweringObjectFileELF::TargetLoweringObjectFileELF()
112     : TargetLoweringObjectFile() {
113   SupportDSOLocalEquivalentLowering = true;
114 }
115 
116 void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx,
117                                              const TargetMachine &TgtM) {
118   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
119 
120   CodeModel::Model CM = TgtM.getCodeModel();
121   InitializeELF(TgtM.Options.UseInitArray);
122 
123   switch (TgtM.getTargetTriple().getArch()) {
124   case Triple::arm:
125   case Triple::armeb:
126   case Triple::thumb:
127   case Triple::thumbeb:
128     if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM)
129       break;
130     // Fallthrough if not using EHABI
131     LLVM_FALLTHROUGH;
132   case Triple::ppc:
133   case Triple::ppcle:
134   case Triple::x86:
135     PersonalityEncoding = isPositionIndependent()
136                               ? dwarf::DW_EH_PE_indirect |
137                                     dwarf::DW_EH_PE_pcrel |
138                                     dwarf::DW_EH_PE_sdata4
139                               : dwarf::DW_EH_PE_absptr;
140     LSDAEncoding = isPositionIndependent()
141                        ? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4
142                        : dwarf::DW_EH_PE_absptr;
143     TTypeEncoding = isPositionIndependent()
144                         ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
145                               dwarf::DW_EH_PE_sdata4
146                         : dwarf::DW_EH_PE_absptr;
147     break;
148   case Triple::x86_64:
149     if (isPositionIndependent()) {
150       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
151         ((CM == CodeModel::Small || CM == CodeModel::Medium)
152          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
153       LSDAEncoding = dwarf::DW_EH_PE_pcrel |
154         (CM == CodeModel::Small
155          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
156       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
157         ((CM == CodeModel::Small || CM == CodeModel::Medium)
158          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
159     } else {
160       PersonalityEncoding =
161         (CM == CodeModel::Small || CM == CodeModel::Medium)
162         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
163       LSDAEncoding = (CM == CodeModel::Small)
164         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
165       TTypeEncoding = (CM == CodeModel::Small)
166         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
167     }
168     break;
169   case Triple::hexagon:
170     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
171     LSDAEncoding = dwarf::DW_EH_PE_absptr;
172     TTypeEncoding = dwarf::DW_EH_PE_absptr;
173     if (isPositionIndependent()) {
174       PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
175       LSDAEncoding |= dwarf::DW_EH_PE_pcrel;
176       TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
177     }
178     break;
179   case Triple::aarch64:
180   case Triple::aarch64_be:
181   case Triple::aarch64_32:
182     // The small model guarantees static code/data size < 4GB, but not where it
183     // will be in memory. Most of these could end up >2GB away so even a signed
184     // pc-relative 32-bit address is insufficient, theoretically.
185     if (isPositionIndependent()) {
186       // ILP32 uses sdata4 instead of sdata8
187       if (TgtM.getTargetTriple().getEnvironment() == Triple::GNUILP32) {
188         PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
189                               dwarf::DW_EH_PE_sdata4;
190         LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
191         TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
192                         dwarf::DW_EH_PE_sdata4;
193       } else {
194         PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
195                               dwarf::DW_EH_PE_sdata8;
196         LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8;
197         TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
198                         dwarf::DW_EH_PE_sdata8;
199       }
200     } else {
201       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
202       LSDAEncoding = dwarf::DW_EH_PE_absptr;
203       TTypeEncoding = dwarf::DW_EH_PE_absptr;
204     }
205     break;
206   case Triple::lanai:
207     LSDAEncoding = dwarf::DW_EH_PE_absptr;
208     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
209     TTypeEncoding = dwarf::DW_EH_PE_absptr;
210     break;
211   case Triple::mips:
212   case Triple::mipsel:
213   case Triple::mips64:
214   case Triple::mips64el:
215     // MIPS uses indirect pointer to refer personality functions and types, so
216     // that the eh_frame section can be read-only. DW.ref.personality will be
217     // generated for relocation.
218     PersonalityEncoding = dwarf::DW_EH_PE_indirect;
219     // FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't
220     //        identify N64 from just a triple.
221     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
222                     dwarf::DW_EH_PE_sdata4;
223     // We don't support PC-relative LSDA references in GAS so we use the default
224     // DW_EH_PE_absptr for those.
225 
226     // FreeBSD must be explicit about the data size and using pcrel since it's
227     // assembler/linker won't do the automatic conversion that the Linux tools
228     // do.
229     if (TgtM.getTargetTriple().isOSFreeBSD()) {
230       PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
231       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
232     }
233     break;
234   case Triple::ppc64:
235   case Triple::ppc64le:
236     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
237       dwarf::DW_EH_PE_udata8;
238     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8;
239     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
240       dwarf::DW_EH_PE_udata8;
241     break;
242   case Triple::sparcel:
243   case Triple::sparc:
244     if (isPositionIndependent()) {
245       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
246       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
247         dwarf::DW_EH_PE_sdata4;
248       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
249         dwarf::DW_EH_PE_sdata4;
250     } else {
251       LSDAEncoding = dwarf::DW_EH_PE_absptr;
252       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
253       TTypeEncoding = dwarf::DW_EH_PE_absptr;
254     }
255     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
256     break;
257   case Triple::riscv32:
258   case Triple::riscv64:
259     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
260     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
261                           dwarf::DW_EH_PE_sdata4;
262     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
263                     dwarf::DW_EH_PE_sdata4;
264     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
265     break;
266   case Triple::sparcv9:
267     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
268     if (isPositionIndependent()) {
269       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
270         dwarf::DW_EH_PE_sdata4;
271       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
272         dwarf::DW_EH_PE_sdata4;
273     } else {
274       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
275       TTypeEncoding = dwarf::DW_EH_PE_absptr;
276     }
277     break;
278   case Triple::systemz:
279     // All currently-defined code models guarantee that 4-byte PC-relative
280     // values will be in range.
281     if (isPositionIndependent()) {
282       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
283         dwarf::DW_EH_PE_sdata4;
284       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
285       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
286         dwarf::DW_EH_PE_sdata4;
287     } else {
288       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
289       LSDAEncoding = dwarf::DW_EH_PE_absptr;
290       TTypeEncoding = dwarf::DW_EH_PE_absptr;
291     }
292     break;
293   default:
294     break;
295   }
296 }
297 
298 void TargetLoweringObjectFileELF::getModuleMetadata(Module &M) {
299   SmallVector<GlobalValue *, 4> Vec;
300   collectUsedGlobalVariables(M, Vec, false);
301   for (GlobalValue *GV : Vec)
302     if (auto *GO = dyn_cast<GlobalObject>(GV))
303       Used.insert(GO);
304 }
305 
306 void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer,
307                                                      Module &M) const {
308   auto &C = getContext();
309 
310   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
311     auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS,
312                               ELF::SHF_EXCLUDE);
313 
314     Streamer.SwitchSection(S);
315 
316     for (const auto *Operand : LinkerOptions->operands()) {
317       if (cast<MDNode>(Operand)->getNumOperands() != 2)
318         report_fatal_error("invalid llvm.linker.options");
319       for (const auto &Option : cast<MDNode>(Operand)->operands()) {
320         Streamer.emitBytes(cast<MDString>(Option)->getString());
321         Streamer.emitInt8(0);
322       }
323     }
324   }
325 
326   if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) {
327     auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES,
328                               ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
329 
330     Streamer.SwitchSection(S);
331 
332     for (const auto *Operand : DependentLibraries->operands()) {
333       Streamer.emitBytes(
334           cast<MDString>(cast<MDNode>(Operand)->getOperand(0))->getString());
335       Streamer.emitInt8(0);
336     }
337   }
338 
339   if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) {
340     // Emit a descriptor for every function including functions that have an
341     // available external linkage. We may not want this for imported functions
342     // that has code in another thinLTO module but we don't have a good way to
343     // tell them apart from inline functions defined in header files. Therefore
344     // we put each descriptor in a separate comdat section and rely on the
345     // linker to deduplicate.
346     for (const auto *Operand : FuncInfo->operands()) {
347       const auto *MD = cast<MDNode>(Operand);
348       auto *GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
349       auto *Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
350       auto *Name = cast<MDString>(MD->getOperand(2));
351       auto *S = C.getObjectFileInfo()->getPseudoProbeDescSection(
352           TM->getFunctionSections() ? Name->getString() : StringRef());
353 
354       Streamer.SwitchSection(S);
355       Streamer.emitInt64(GUID->getZExtValue());
356       Streamer.emitInt64(Hash->getZExtValue());
357       Streamer.emitULEB128IntValue(Name->getString().size());
358       Streamer.emitBytes(Name->getString());
359     }
360   }
361 
362   unsigned Version = 0;
363   unsigned Flags = 0;
364   StringRef Section;
365 
366   GetObjCImageInfo(M, Version, Flags, Section);
367   if (!Section.empty()) {
368     auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
369     Streamer.SwitchSection(S);
370     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
371     Streamer.emitInt32(Version);
372     Streamer.emitInt32(Flags);
373     Streamer.AddBlankLine();
374   }
375 
376   emitCGProfileMetadata(Streamer, M);
377 }
378 
379 MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol(
380     const GlobalValue *GV, const TargetMachine &TM,
381     MachineModuleInfo *MMI) const {
382   unsigned Encoding = getPersonalityEncoding();
383   if ((Encoding & 0x80) == DW_EH_PE_indirect)
384     return getContext().getOrCreateSymbol(StringRef("DW.ref.") +
385                                           TM.getSymbol(GV)->getName());
386   if ((Encoding & 0x70) == DW_EH_PE_absptr)
387     return TM.getSymbol(GV);
388   report_fatal_error("We do not support this DWARF encoding yet!");
389 }
390 
391 void TargetLoweringObjectFileELF::emitPersonalityValue(
392     MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym) const {
393   SmallString<64> NameData("DW.ref.");
394   NameData += Sym->getName();
395   MCSymbolELF *Label =
396       cast<MCSymbolELF>(getContext().getOrCreateSymbol(NameData));
397   Streamer.emitSymbolAttribute(Label, MCSA_Hidden);
398   Streamer.emitSymbolAttribute(Label, MCSA_Weak);
399   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP;
400   MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(),
401                                                    ELF::SHT_PROGBITS, Flags, 0);
402   unsigned Size = DL.getPointerSize();
403   Streamer.SwitchSection(Sec);
404   Streamer.emitValueToAlignment(DL.getPointerABIAlignment(0).value());
405   Streamer.emitSymbolAttribute(Label, MCSA_ELF_TypeObject);
406   const MCExpr *E = MCConstantExpr::create(Size, getContext());
407   Streamer.emitELFSize(Label, E);
408   Streamer.emitLabel(Label);
409 
410   Streamer.emitSymbolValue(Sym, Size);
411 }
412 
413 const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference(
414     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
415     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
416   if (Encoding & DW_EH_PE_indirect) {
417     MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>();
418 
419     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM);
420 
421     // Add information about the stub reference to ELFMMI so that the stub
422     // gets emitted by the asmprinter.
423     MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
424     if (!StubSym.getPointer()) {
425       MCSymbol *Sym = TM.getSymbol(GV);
426       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
427     }
428 
429     return TargetLoweringObjectFile::
430       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
431                         Encoding & ~DW_EH_PE_indirect, Streamer);
432   }
433 
434   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
435                                                            MMI, Streamer);
436 }
437 
438 static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) {
439   // N.B.: The defaults used in here are not the same ones used in MC.
440   // We follow gcc, MC follows gas. For example, given ".section .eh_frame",
441   // both gas and MC will produce a section with no flags. Given
442   // section(".eh_frame") gcc will produce:
443   //
444   //   .section   .eh_frame,"a",@progbits
445 
446   if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF,
447                                       /*AddSegmentInfo=*/false) ||
448       Name == getInstrProfSectionName(IPSK_covfun, Triple::ELF,
449                                       /*AddSegmentInfo=*/false) ||
450       Name == ".llvmbc" || Name == ".llvmcmd")
451     return SectionKind::getMetadata();
452 
453   if (Name.empty() || Name[0] != '.') return K;
454 
455   // Default implementation based on some magic section names.
456   if (Name == ".bss" ||
457       Name.startswith(".bss.") ||
458       Name.startswith(".gnu.linkonce.b.") ||
459       Name.startswith(".llvm.linkonce.b.") ||
460       Name == ".sbss" ||
461       Name.startswith(".sbss.") ||
462       Name.startswith(".gnu.linkonce.sb.") ||
463       Name.startswith(".llvm.linkonce.sb."))
464     return SectionKind::getBSS();
465 
466   if (Name == ".tdata" ||
467       Name.startswith(".tdata.") ||
468       Name.startswith(".gnu.linkonce.td.") ||
469       Name.startswith(".llvm.linkonce.td."))
470     return SectionKind::getThreadData();
471 
472   if (Name == ".tbss" ||
473       Name.startswith(".tbss.") ||
474       Name.startswith(".gnu.linkonce.tb.") ||
475       Name.startswith(".llvm.linkonce.tb."))
476     return SectionKind::getThreadBSS();
477 
478   return K;
479 }
480 
481 static unsigned getELFSectionType(StringRef Name, SectionKind K) {
482   // Use SHT_NOTE for section whose name starts with ".note" to allow
483   // emitting ELF notes from C variable declaration.
484   // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609
485   if (Name.startswith(".note"))
486     return ELF::SHT_NOTE;
487 
488   if (Name == ".init_array")
489     return ELF::SHT_INIT_ARRAY;
490 
491   if (Name == ".fini_array")
492     return ELF::SHT_FINI_ARRAY;
493 
494   if (Name == ".preinit_array")
495     return ELF::SHT_PREINIT_ARRAY;
496 
497   if (K.isBSS() || K.isThreadBSS())
498     return ELF::SHT_NOBITS;
499 
500   return ELF::SHT_PROGBITS;
501 }
502 
503 static unsigned getELFSectionFlags(SectionKind K) {
504   unsigned Flags = 0;
505 
506   if (!K.isMetadata())
507     Flags |= ELF::SHF_ALLOC;
508 
509   if (K.isText())
510     Flags |= ELF::SHF_EXECINSTR;
511 
512   if (K.isExecuteOnly())
513     Flags |= ELF::SHF_ARM_PURECODE;
514 
515   if (K.isWriteable())
516     Flags |= ELF::SHF_WRITE;
517 
518   if (K.isThreadLocal())
519     Flags |= ELF::SHF_TLS;
520 
521   if (K.isMergeableCString() || K.isMergeableConst())
522     Flags |= ELF::SHF_MERGE;
523 
524   if (K.isMergeableCString())
525     Flags |= ELF::SHF_STRINGS;
526 
527   return Flags;
528 }
529 
530 static const Comdat *getELFComdat(const GlobalValue *GV) {
531   const Comdat *C = GV->getComdat();
532   if (!C)
533     return nullptr;
534 
535   if (C->getSelectionKind() != Comdat::Any &&
536       C->getSelectionKind() != Comdat::NoDeduplicate)
537     report_fatal_error("ELF COMDATs only support SelectionKind::Any and "
538                        "SelectionKind::NoDeduplicate, '" +
539                        C->getName() + "' cannot be lowered.");
540 
541   return C;
542 }
543 
544 static const MCSymbolELF *getLinkedToSymbol(const GlobalObject *GO,
545                                             const TargetMachine &TM) {
546   MDNode *MD = GO->getMetadata(LLVMContext::MD_associated);
547   if (!MD)
548     return nullptr;
549 
550   const MDOperand &Op = MD->getOperand(0);
551   if (!Op.get())
552     return nullptr;
553 
554   auto *VM = dyn_cast<ValueAsMetadata>(Op);
555   if (!VM)
556     report_fatal_error("MD_associated operand is not ValueAsMetadata");
557 
558   auto *OtherGV = dyn_cast<GlobalValue>(VM->getValue());
559   return OtherGV ? dyn_cast<MCSymbolELF>(TM.getSymbol(OtherGV)) : nullptr;
560 }
561 
562 static unsigned getEntrySizeForKind(SectionKind Kind) {
563   if (Kind.isMergeable1ByteCString())
564     return 1;
565   else if (Kind.isMergeable2ByteCString())
566     return 2;
567   else if (Kind.isMergeable4ByteCString())
568     return 4;
569   else if (Kind.isMergeableConst4())
570     return 4;
571   else if (Kind.isMergeableConst8())
572     return 8;
573   else if (Kind.isMergeableConst16())
574     return 16;
575   else if (Kind.isMergeableConst32())
576     return 32;
577   else {
578     // We shouldn't have mergeable C strings or mergeable constants that we
579     // didn't handle above.
580     assert(!Kind.isMergeableCString() && "unknown string width");
581     assert(!Kind.isMergeableConst() && "unknown data width");
582     return 0;
583   }
584 }
585 
586 /// Return the section prefix name used by options FunctionsSections and
587 /// DataSections.
588 static StringRef getSectionPrefixForGlobal(SectionKind Kind) {
589   if (Kind.isText())
590     return ".text";
591   if (Kind.isReadOnly())
592     return ".rodata";
593   if (Kind.isBSS())
594     return ".bss";
595   if (Kind.isThreadData())
596     return ".tdata";
597   if (Kind.isThreadBSS())
598     return ".tbss";
599   if (Kind.isData())
600     return ".data";
601   if (Kind.isReadOnlyWithRel())
602     return ".data.rel.ro";
603   llvm_unreachable("Unknown section kind");
604 }
605 
606 static SmallString<128>
607 getELFSectionNameForGlobal(const GlobalObject *GO, SectionKind Kind,
608                            Mangler &Mang, const TargetMachine &TM,
609                            unsigned EntrySize, bool UniqueSectionName) {
610   SmallString<128> Name;
611   if (Kind.isMergeableCString()) {
612     // We also need alignment here.
613     // FIXME: this is getting the alignment of the character, not the
614     // alignment of the global!
615     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
616         cast<GlobalVariable>(GO));
617 
618     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
619     Name = SizeSpec + utostr(Alignment.value());
620   } else if (Kind.isMergeableConst()) {
621     Name = ".rodata.cst";
622     Name += utostr(EntrySize);
623   } else {
624     Name = getSectionPrefixForGlobal(Kind);
625   }
626 
627   bool HasPrefix = false;
628   if (const auto *F = dyn_cast<Function>(GO)) {
629     if (Optional<StringRef> Prefix = F->getSectionPrefix()) {
630       raw_svector_ostream(Name) << '.' << *Prefix;
631       HasPrefix = true;
632     }
633   }
634 
635   if (UniqueSectionName) {
636     Name.push_back('.');
637     TM.getNameWithPrefix(Name, GO, Mang, /*MayAlwaysUsePrivate*/true);
638   } else if (HasPrefix)
639     // For distinguishing between .text.${text-section-prefix}. (with trailing
640     // dot) and .text.${function-name}
641     Name.push_back('.');
642   return Name;
643 }
644 
645 namespace {
646 class LoweringDiagnosticInfo : public DiagnosticInfo {
647   const Twine &Msg;
648 
649 public:
650   LoweringDiagnosticInfo(const Twine &DiagMsg,
651                          DiagnosticSeverity Severity = DS_Error)
652       : DiagnosticInfo(DK_Lowering, Severity), Msg(DiagMsg) {}
653   void print(DiagnosticPrinter &DP) const override { DP << Msg; }
654 };
655 }
656 
657 /// Calculate an appropriate unique ID for a section, and update Flags,
658 /// EntrySize and NextUniqueID where appropriate.
659 static unsigned
660 calcUniqueIDUpdateFlagsAndSize(const GlobalObject *GO, StringRef SectionName,
661                                SectionKind Kind, const TargetMachine &TM,
662                                MCContext &Ctx, Mangler &Mang, unsigned &Flags,
663                                unsigned &EntrySize, unsigned &NextUniqueID,
664                                const bool Retain, const bool ForceUnique) {
665   // Increment uniqueID if we are forced to emit a unique section.
666   // This works perfectly fine with section attribute or pragma section as the
667   // sections with the same name are grouped together by the assembler.
668   if (ForceUnique)
669     return NextUniqueID++;
670 
671   // A section can have at most one associated section. Put each global with
672   // MD_associated in a unique section.
673   const bool Associated = GO->getMetadata(LLVMContext::MD_associated);
674   if (Associated) {
675     Flags |= ELF::SHF_LINK_ORDER;
676     return NextUniqueID++;
677   }
678 
679   if (Retain) {
680     if (Ctx.getAsmInfo()->useIntegratedAssembler() ||
681         Ctx.getAsmInfo()->binutilsIsAtLeast(2, 36))
682       Flags |= ELF::SHF_GNU_RETAIN;
683     return NextUniqueID++;
684   }
685 
686   // If two symbols with differing sizes end up in the same mergeable section
687   // that section can be assigned an incorrect entry size. To avoid this we
688   // usually put symbols of the same size into distinct mergeable sections with
689   // the same name. Doing so relies on the ",unique ," assembly feature. This
690   // feature is not avalible until bintuils version 2.35
691   // (https://sourceware.org/bugzilla/show_bug.cgi?id=25380).
692   const bool SupportsUnique = Ctx.getAsmInfo()->useIntegratedAssembler() ||
693                               Ctx.getAsmInfo()->binutilsIsAtLeast(2, 35);
694   if (!SupportsUnique) {
695     Flags &= ~ELF::SHF_MERGE;
696     EntrySize = 0;
697     return MCContext::GenericSectionID;
698   }
699 
700   const bool SymbolMergeable = Flags & ELF::SHF_MERGE;
701   const bool SeenSectionNameBefore =
702       Ctx.isELFGenericMergeableSection(SectionName);
703   // If this is the first ocurrence of this section name, treat it as the
704   // generic section
705   if (!SymbolMergeable && !SeenSectionNameBefore)
706     return MCContext::GenericSectionID;
707 
708   // Symbols must be placed into sections with compatible entry sizes. Generate
709   // unique sections for symbols that have not been assigned to compatible
710   // sections.
711   const auto PreviousID =
712       Ctx.getELFUniqueIDForEntsize(SectionName, Flags, EntrySize);
713   if (PreviousID)
714     return *PreviousID;
715 
716   // If the user has specified the same section name as would be created
717   // implicitly for this symbol e.g. .rodata.str1.1, then we don't need
718   // to unique the section as the entry size for this symbol will be
719   // compatible with implicitly created sections.
720   SmallString<128> ImplicitSectionNameStem =
721       getELFSectionNameForGlobal(GO, Kind, Mang, TM, EntrySize, false);
722   if (SymbolMergeable &&
723       Ctx.isELFImplicitMergeableSectionNamePrefix(SectionName) &&
724       SectionName.startswith(ImplicitSectionNameStem))
725     return MCContext::GenericSectionID;
726 
727   // We have seen this section name before, but with different flags or entity
728   // size. Create a new unique ID.
729   return NextUniqueID++;
730 }
731 
732 static MCSection *selectExplicitSectionGlobal(
733     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM,
734     MCContext &Ctx, Mangler &Mang, unsigned &NextUniqueID,
735     bool Retain, bool ForceUnique) {
736   StringRef SectionName = GO->getSection();
737 
738   // Check if '#pragma clang section' name is applicable.
739   // Note that pragma directive overrides -ffunction-section, -fdata-section
740   // and so section name is exactly as user specified and not uniqued.
741   const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO);
742   if (GV && GV->hasImplicitSection()) {
743     auto Attrs = GV->getAttributes();
744     if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) {
745       SectionName = Attrs.getAttribute("bss-section").getValueAsString();
746     } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) {
747       SectionName = Attrs.getAttribute("rodata-section").getValueAsString();
748     } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) {
749       SectionName = Attrs.getAttribute("relro-section").getValueAsString();
750     } else if (Attrs.hasAttribute("data-section") && Kind.isData()) {
751       SectionName = Attrs.getAttribute("data-section").getValueAsString();
752     }
753   }
754   const Function *F = dyn_cast<Function>(GO);
755   if (F && F->hasFnAttribute("implicit-section-name")) {
756     SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
757   }
758 
759   // Infer section flags from the section name if we can.
760   Kind = getELFKindForNamedSection(SectionName, Kind);
761 
762   StringRef Group = "";
763   bool IsComdat = false;
764   unsigned Flags = getELFSectionFlags(Kind);
765   if (const Comdat *C = getELFComdat(GO)) {
766     Group = C->getName();
767     IsComdat = C->getSelectionKind() == Comdat::Any;
768     Flags |= ELF::SHF_GROUP;
769   }
770 
771   unsigned EntrySize = getEntrySizeForKind(Kind);
772   const unsigned UniqueID = calcUniqueIDUpdateFlagsAndSize(
773       GO, SectionName, Kind, TM, Ctx, Mang, Flags, EntrySize, NextUniqueID,
774       Retain, ForceUnique);
775 
776   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
777   MCSectionELF *Section = Ctx.getELFSection(
778       SectionName, getELFSectionType(SectionName, Kind), Flags, EntrySize,
779       Group, IsComdat, UniqueID, LinkedToSym);
780   // Make sure that we did not get some other section with incompatible sh_link.
781   // This should not be possible due to UniqueID code above.
782   assert(Section->getLinkedToSymbol() == LinkedToSym &&
783          "Associated symbol mismatch between sections");
784 
785   if (!(Ctx.getAsmInfo()->useIntegratedAssembler() ||
786         Ctx.getAsmInfo()->binutilsIsAtLeast(2, 35))) {
787     // If we are using GNU as before 2.35, then this symbol might have
788     // been placed in an incompatible mergeable section. Emit an error if this
789     // is the case to avoid creating broken output.
790     if ((Section->getFlags() & ELF::SHF_MERGE) &&
791         (Section->getEntrySize() != getEntrySizeForKind(Kind)))
792       GO->getContext().diagnose(LoweringDiagnosticInfo(
793           "Symbol '" + GO->getName() + "' from module '" +
794           (GO->getParent() ? GO->getParent()->getSourceFileName() : "unknown") +
795           "' required a section with entry-size=" +
796           Twine(getEntrySizeForKind(Kind)) + " but was placed in section '" +
797           SectionName + "' with entry-size=" + Twine(Section->getEntrySize()) +
798           ": Explicit assignment by pragma or attribute of an incompatible "
799           "symbol to this section?"));
800   }
801 
802   return Section;
803 }
804 
805 MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal(
806     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
807   return selectExplicitSectionGlobal(GO, Kind, TM, getContext(), getMangler(),
808                                      NextUniqueID, Used.count(GO),
809                                      /* ForceUnique = */false);
810 }
811 
812 static MCSectionELF *selectELFSectionForGlobal(
813     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
814     const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags,
815     unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) {
816 
817   StringRef Group = "";
818   bool IsComdat = false;
819   if (const Comdat *C = getELFComdat(GO)) {
820     Flags |= ELF::SHF_GROUP;
821     Group = C->getName();
822     IsComdat = C->getSelectionKind() == Comdat::Any;
823   }
824 
825   // Get the section entry size based on the kind.
826   unsigned EntrySize = getEntrySizeForKind(Kind);
827 
828   bool UniqueSectionName = false;
829   unsigned UniqueID = MCContext::GenericSectionID;
830   if (EmitUniqueSection) {
831     if (TM.getUniqueSectionNames()) {
832       UniqueSectionName = true;
833     } else {
834       UniqueID = *NextUniqueID;
835       (*NextUniqueID)++;
836     }
837   }
838   SmallString<128> Name = getELFSectionNameForGlobal(
839       GO, Kind, Mang, TM, EntrySize, UniqueSectionName);
840 
841   // Use 0 as the unique ID for execute-only text.
842   if (Kind.isExecuteOnly())
843     UniqueID = 0;
844   return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags,
845                            EntrySize, Group, IsComdat, UniqueID,
846                            AssociatedSymbol);
847 }
848 
849 static MCSection *selectELFSectionForGlobal(
850     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
851     const TargetMachine &TM, bool Retain, bool EmitUniqueSection,
852     unsigned Flags, unsigned *NextUniqueID) {
853   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
854   if (LinkedToSym) {
855     EmitUniqueSection = true;
856     Flags |= ELF::SHF_LINK_ORDER;
857   }
858   if (Retain && (Ctx.getAsmInfo()->useIntegratedAssembler() ||
859                  Ctx.getAsmInfo()->binutilsIsAtLeast(2, 36))) {
860     EmitUniqueSection = true;
861     Flags |= ELF::SHF_GNU_RETAIN;
862   }
863 
864   MCSectionELF *Section = selectELFSectionForGlobal(
865       Ctx, GO, Kind, Mang, TM, EmitUniqueSection, Flags,
866       NextUniqueID, LinkedToSym);
867   assert(Section->getLinkedToSymbol() == LinkedToSym);
868   return Section;
869 }
870 
871 MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal(
872     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
873   unsigned Flags = getELFSectionFlags(Kind);
874 
875   // If we have -ffunction-section or -fdata-section then we should emit the
876   // global value to a uniqued section specifically for it.
877   bool EmitUniqueSection = false;
878   if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) {
879     if (Kind.isText())
880       EmitUniqueSection = TM.getFunctionSections();
881     else
882       EmitUniqueSection = TM.getDataSections();
883   }
884   EmitUniqueSection |= GO->hasComdat();
885   return selectELFSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
886                                    Used.count(GO), EmitUniqueSection, Flags,
887                                    &NextUniqueID);
888 }
889 
890 MCSection *TargetLoweringObjectFileELF::getUniqueSectionForFunction(
891     const Function &F, const TargetMachine &TM) const {
892   SectionKind Kind = SectionKind::getText();
893   unsigned Flags = getELFSectionFlags(Kind);
894   // If the function's section names is pre-determined via pragma or a
895   // section attribute, call selectExplicitSectionGlobal.
896   if (F.hasSection() || F.hasFnAttribute("implicit-section-name"))
897     return selectExplicitSectionGlobal(
898         &F, Kind, TM, getContext(), getMangler(), NextUniqueID,
899         Used.count(&F), /* ForceUnique = */true);
900   else
901     return selectELFSectionForGlobal(
902         getContext(), &F, Kind, getMangler(), TM, Used.count(&F),
903         /*EmitUniqueSection=*/true, Flags, &NextUniqueID);
904 }
905 
906 MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable(
907     const Function &F, const TargetMachine &TM) const {
908   // If the function can be removed, produce a unique section so that
909   // the table doesn't prevent the removal.
910   const Comdat *C = F.getComdat();
911   bool EmitUniqueSection = TM.getFunctionSections() || C;
912   if (!EmitUniqueSection)
913     return ReadOnlySection;
914 
915   return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(),
916                                    getMangler(), TM, EmitUniqueSection,
917                                    ELF::SHF_ALLOC, &NextUniqueID,
918                                    /* AssociatedSymbol */ nullptr);
919 }
920 
921 MCSection *TargetLoweringObjectFileELF::getSectionForLSDA(
922     const Function &F, const MCSymbol &FnSym, const TargetMachine &TM) const {
923   // If neither COMDAT nor function sections, use the monolithic LSDA section.
924   // Re-use this path if LSDASection is null as in the Arm EHABI.
925   if (!LSDASection || (!F.hasComdat() && !TM.getFunctionSections()))
926     return LSDASection;
927 
928   const auto *LSDA = cast<MCSectionELF>(LSDASection);
929   unsigned Flags = LSDA->getFlags();
930   const MCSymbolELF *LinkedToSym = nullptr;
931   StringRef Group;
932   bool IsComdat = false;
933   if (const Comdat *C = getELFComdat(&F)) {
934     Flags |= ELF::SHF_GROUP;
935     Group = C->getName();
936     IsComdat = C->getSelectionKind() == Comdat::Any;
937   }
938   // Use SHF_LINK_ORDER to facilitate --gc-sections if we can use GNU ld>=2.36
939   // or LLD, which support mixed SHF_LINK_ORDER & non-SHF_LINK_ORDER.
940   if (TM.getFunctionSections() &&
941       (getContext().getAsmInfo()->useIntegratedAssembler() &&
942        getContext().getAsmInfo()->binutilsIsAtLeast(2, 36))) {
943     Flags |= ELF::SHF_LINK_ORDER;
944     LinkedToSym = cast<MCSymbolELF>(&FnSym);
945   }
946 
947   // Append the function name as the suffix like GCC, assuming
948   // -funique-section-names applies to .gcc_except_table sections.
949   return getContext().getELFSection(
950       (TM.getUniqueSectionNames() ? LSDA->getName() + "." + F.getName()
951                                   : LSDA->getName()),
952       LSDA->getType(), Flags, 0, Group, IsComdat, MCSection::NonUniqueID,
953       LinkedToSym);
954 }
955 
956 bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection(
957     bool UsesLabelDifference, const Function &F) const {
958   // We can always create relative relocations, so use another section
959   // that can be marked non-executable.
960   return false;
961 }
962 
963 /// Given a mergeable constant with the specified size and relocation
964 /// information, return a section that it should be placed in.
965 MCSection *TargetLoweringObjectFileELF::getSectionForConstant(
966     const DataLayout &DL, SectionKind Kind, const Constant *C,
967     Align &Alignment) const {
968   if (Kind.isMergeableConst4() && MergeableConst4Section)
969     return MergeableConst4Section;
970   if (Kind.isMergeableConst8() && MergeableConst8Section)
971     return MergeableConst8Section;
972   if (Kind.isMergeableConst16() && MergeableConst16Section)
973     return MergeableConst16Section;
974   if (Kind.isMergeableConst32() && MergeableConst32Section)
975     return MergeableConst32Section;
976   if (Kind.isReadOnly())
977     return ReadOnlySection;
978 
979   assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
980   return DataRelROSection;
981 }
982 
983 /// Returns a unique section for the given machine basic block.
984 MCSection *TargetLoweringObjectFileELF::getSectionForMachineBasicBlock(
985     const Function &F, const MachineBasicBlock &MBB,
986     const TargetMachine &TM) const {
987   assert(MBB.isBeginSection() && "Basic block does not start a section!");
988   unsigned UniqueID = MCContext::GenericSectionID;
989 
990   // For cold sections use the .text.split. prefix along with the parent
991   // function name. All cold blocks for the same function go to the same
992   // section. Similarly all exception blocks are grouped by symbol name
993   // under the .text.eh prefix. For regular sections, we either use a unique
994   // name, or a unique ID for the section.
995   SmallString<128> Name;
996   if (MBB.getSectionID() == MBBSectionID::ColdSectionID) {
997     Name += BBSectionsColdTextPrefix;
998     Name += MBB.getParent()->getName();
999   } else if (MBB.getSectionID() == MBBSectionID::ExceptionSectionID) {
1000     Name += ".text.eh.";
1001     Name += MBB.getParent()->getName();
1002   } else {
1003     Name += MBB.getParent()->getSection()->getName();
1004     if (TM.getUniqueBasicBlockSectionNames()) {
1005       if (!Name.endswith("."))
1006         Name += ".";
1007       Name += MBB.getSymbol()->getName();
1008     } else {
1009       UniqueID = NextUniqueID++;
1010     }
1011   }
1012 
1013   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR;
1014   std::string GroupName;
1015   if (F.hasComdat()) {
1016     Flags |= ELF::SHF_GROUP;
1017     GroupName = F.getComdat()->getName().str();
1018   }
1019   return getContext().getELFSection(Name, ELF::SHT_PROGBITS, Flags,
1020                                     0 /* Entry Size */, GroupName,
1021                                     F.hasComdat(), UniqueID, nullptr);
1022 }
1023 
1024 static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray,
1025                                               bool IsCtor, unsigned Priority,
1026                                               const MCSymbol *KeySym) {
1027   std::string Name;
1028   unsigned Type;
1029   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
1030   StringRef Comdat = KeySym ? KeySym->getName() : "";
1031 
1032   if (KeySym)
1033     Flags |= ELF::SHF_GROUP;
1034 
1035   if (UseInitArray) {
1036     if (IsCtor) {
1037       Type = ELF::SHT_INIT_ARRAY;
1038       Name = ".init_array";
1039     } else {
1040       Type = ELF::SHT_FINI_ARRAY;
1041       Name = ".fini_array";
1042     }
1043     if (Priority != 65535) {
1044       Name += '.';
1045       Name += utostr(Priority);
1046     }
1047   } else {
1048     // The default scheme is .ctor / .dtor, so we have to invert the priority
1049     // numbering.
1050     if (IsCtor)
1051       Name = ".ctors";
1052     else
1053       Name = ".dtors";
1054     if (Priority != 65535)
1055       raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1056     Type = ELF::SHT_PROGBITS;
1057   }
1058 
1059   return Ctx.getELFSection(Name, Type, Flags, 0, Comdat, /*IsComdat=*/true);
1060 }
1061 
1062 MCSection *TargetLoweringObjectFileELF::getStaticCtorSection(
1063     unsigned Priority, const MCSymbol *KeySym) const {
1064   return getStaticStructorSection(getContext(), UseInitArray, true, Priority,
1065                                   KeySym);
1066 }
1067 
1068 MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
1069     unsigned Priority, const MCSymbol *KeySym) const {
1070   return getStaticStructorSection(getContext(), UseInitArray, false, Priority,
1071                                   KeySym);
1072 }
1073 
1074 const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference(
1075     const GlobalValue *LHS, const GlobalValue *RHS,
1076     const TargetMachine &TM) const {
1077   // We may only use a PLT-relative relocation to refer to unnamed_addr
1078   // functions.
1079   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
1080     return nullptr;
1081 
1082   // Basic sanity checks.
1083   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1084       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
1085       RHS->isThreadLocal())
1086     return nullptr;
1087 
1088   return MCBinaryExpr::createSub(
1089       MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind,
1090                               getContext()),
1091       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
1092 }
1093 
1094 const MCExpr *TargetLoweringObjectFileELF::lowerDSOLocalEquivalent(
1095     const DSOLocalEquivalent *Equiv, const TargetMachine &TM) const {
1096   assert(supportDSOLocalEquivalentLowering());
1097 
1098   const auto *GV = Equiv->getGlobalValue();
1099 
1100   // A PLT entry is not needed for dso_local globals.
1101   if (GV->isDSOLocal() || GV->isImplicitDSOLocal())
1102     return MCSymbolRefExpr::create(TM.getSymbol(GV), getContext());
1103 
1104   return MCSymbolRefExpr::create(TM.getSymbol(GV), PLTRelativeVariantKind,
1105                                  getContext());
1106 }
1107 
1108 MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const {
1109   // Use ".GCC.command.line" since this feature is to support clang's
1110   // -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the
1111   // same name.
1112   return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS,
1113                                     ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
1114 }
1115 
1116 void
1117 TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) {
1118   UseInitArray = UseInitArray_;
1119   MCContext &Ctx = getContext();
1120   if (!UseInitArray) {
1121     StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS,
1122                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1123 
1124     StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS,
1125                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1126     return;
1127   }
1128 
1129   StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY,
1130                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1131   StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY,
1132                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1133 }
1134 
1135 //===----------------------------------------------------------------------===//
1136 //                                 MachO
1137 //===----------------------------------------------------------------------===//
1138 
1139 TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO()
1140   : TargetLoweringObjectFile() {
1141   SupportIndirectSymViaGOTPCRel = true;
1142 }
1143 
1144 void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx,
1145                                                const TargetMachine &TM) {
1146   TargetLoweringObjectFile::Initialize(Ctx, TM);
1147   if (TM.getRelocationModel() == Reloc::Static) {
1148     StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0,
1149                                             SectionKind::getData());
1150     StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0,
1151                                             SectionKind::getData());
1152   } else {
1153     StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func",
1154                                             MachO::S_MOD_INIT_FUNC_POINTERS,
1155                                             SectionKind::getData());
1156     StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func",
1157                                             MachO::S_MOD_TERM_FUNC_POINTERS,
1158                                             SectionKind::getData());
1159   }
1160 
1161   PersonalityEncoding =
1162       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1163   LSDAEncoding = dwarf::DW_EH_PE_pcrel;
1164   TTypeEncoding =
1165       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1166 }
1167 
1168 void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer,
1169                                                        Module &M) const {
1170   // Emit the linker options if present.
1171   if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1172     for (const auto *Option : LinkerOptions->operands()) {
1173       SmallVector<std::string, 4> StrOptions;
1174       for (const auto &Piece : cast<MDNode>(Option)->operands())
1175         StrOptions.push_back(std::string(cast<MDString>(Piece)->getString()));
1176       Streamer.emitLinkerOptions(StrOptions);
1177     }
1178   }
1179 
1180   unsigned VersionVal = 0;
1181   unsigned ImageInfoFlags = 0;
1182   StringRef SectionVal;
1183 
1184   GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal);
1185 
1186   // The section is mandatory. If we don't have it, then we don't have GC info.
1187   if (SectionVal.empty())
1188     return;
1189 
1190   StringRef Segment, Section;
1191   unsigned TAA = 0, StubSize = 0;
1192   bool TAAParsed;
1193   if (Error E = MCSectionMachO::ParseSectionSpecifier(
1194           SectionVal, Segment, Section, TAA, TAAParsed, StubSize)) {
1195     // If invalid, report the error with report_fatal_error.
1196     report_fatal_error("Invalid section specifier '" + Section +
1197                        "': " + toString(std::move(E)) + ".");
1198   }
1199 
1200   // Get the section.
1201   MCSectionMachO *S = getContext().getMachOSection(
1202       Segment, Section, TAA, StubSize, SectionKind::getData());
1203   Streamer.SwitchSection(S);
1204   Streamer.emitLabel(getContext().
1205                      getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO")));
1206   Streamer.emitInt32(VersionVal);
1207   Streamer.emitInt32(ImageInfoFlags);
1208   Streamer.AddBlankLine();
1209 }
1210 
1211 static void checkMachOComdat(const GlobalValue *GV) {
1212   const Comdat *C = GV->getComdat();
1213   if (!C)
1214     return;
1215 
1216   report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() +
1217                      "' cannot be lowered.");
1218 }
1219 
1220 MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
1221     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1222 
1223   StringRef SectionName = GO->getSection();
1224 
1225   const Function *F = dyn_cast<Function>(GO);
1226   if (F && F->hasFnAttribute("implicit-section-name")) {
1227     SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
1228   }
1229 
1230   // Parse the section specifier and create it if valid.
1231   StringRef Segment, Section;
1232   unsigned TAA = 0, StubSize = 0;
1233   bool TAAParsed;
1234 
1235   checkMachOComdat(GO);
1236 
1237   if (Error E = MCSectionMachO::ParseSectionSpecifier(
1238           SectionName, Segment, Section, TAA, TAAParsed, StubSize)) {
1239     // If invalid, report the error with report_fatal_error.
1240     report_fatal_error("Global variable '" + GO->getName() +
1241                        "' has an invalid section specifier '" +
1242                        GO->getSection() + "': " + toString(std::move(E)) + ".");
1243   }
1244 
1245   // Get the section.
1246   MCSectionMachO *S =
1247       getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind);
1248 
1249   // If TAA wasn't set by ParseSectionSpecifier() above,
1250   // use the value returned by getMachOSection() as a default.
1251   if (!TAAParsed)
1252     TAA = S->getTypeAndAttributes();
1253 
1254   // Okay, now that we got the section, verify that the TAA & StubSize agree.
1255   // If the user declared multiple globals with different section flags, we need
1256   // to reject it here.
1257   if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) {
1258     // If invalid, report the error with report_fatal_error.
1259     report_fatal_error("Global variable '" + GO->getName() +
1260                        "' section type or attributes does not match previous"
1261                        " section specifier");
1262   }
1263 
1264   return S;
1265 }
1266 
1267 MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal(
1268     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1269   checkMachOComdat(GO);
1270 
1271   // Handle thread local data.
1272   if (Kind.isThreadBSS()) return TLSBSSSection;
1273   if (Kind.isThreadData()) return TLSDataSection;
1274 
1275   if (Kind.isText())
1276     return GO->isWeakForLinker() ? TextCoalSection : TextSection;
1277 
1278   // If this is weak/linkonce, put this in a coalescable section, either in text
1279   // or data depending on if it is writable.
1280   if (GO->isWeakForLinker()) {
1281     if (Kind.isReadOnly())
1282       return ConstTextCoalSection;
1283     if (Kind.isReadOnlyWithRel())
1284       return ConstDataCoalSection;
1285     return DataCoalSection;
1286   }
1287 
1288   // FIXME: Alignment check should be handled by section classifier.
1289   if (Kind.isMergeable1ByteCString() &&
1290       GO->getParent()->getDataLayout().getPreferredAlign(
1291           cast<GlobalVariable>(GO)) < Align(32))
1292     return CStringSection;
1293 
1294   // Do not put 16-bit arrays in the UString section if they have an
1295   // externally visible label, this runs into issues with certain linker
1296   // versions.
1297   if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() &&
1298       GO->getParent()->getDataLayout().getPreferredAlign(
1299           cast<GlobalVariable>(GO)) < Align(32))
1300     return UStringSection;
1301 
1302   // With MachO only variables whose corresponding symbol starts with 'l' or
1303   // 'L' can be merged, so we only try merging GVs with private linkage.
1304   if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) {
1305     if (Kind.isMergeableConst4())
1306       return FourByteConstantSection;
1307     if (Kind.isMergeableConst8())
1308       return EightByteConstantSection;
1309     if (Kind.isMergeableConst16())
1310       return SixteenByteConstantSection;
1311   }
1312 
1313   // Otherwise, if it is readonly, but not something we can specially optimize,
1314   // just drop it in .const.
1315   if (Kind.isReadOnly())
1316     return ReadOnlySection;
1317 
1318   // If this is marked const, put it into a const section.  But if the dynamic
1319   // linker needs to write to it, put it in the data segment.
1320   if (Kind.isReadOnlyWithRel())
1321     return ConstDataSection;
1322 
1323   // Put zero initialized globals with strong external linkage in the
1324   // DATA, __common section with the .zerofill directive.
1325   if (Kind.isBSSExtern())
1326     return DataCommonSection;
1327 
1328   // Put zero initialized globals with local linkage in __DATA,__bss directive
1329   // with the .zerofill directive (aka .lcomm).
1330   if (Kind.isBSSLocal())
1331     return DataBSSSection;
1332 
1333   // Otherwise, just drop the variable in the normal data section.
1334   return DataSection;
1335 }
1336 
1337 MCSection *TargetLoweringObjectFileMachO::getSectionForConstant(
1338     const DataLayout &DL, SectionKind Kind, const Constant *C,
1339     Align &Alignment) const {
1340   // If this constant requires a relocation, we have to put it in the data
1341   // segment, not in the text segment.
1342   if (Kind.isData() || Kind.isReadOnlyWithRel())
1343     return ConstDataSection;
1344 
1345   if (Kind.isMergeableConst4())
1346     return FourByteConstantSection;
1347   if (Kind.isMergeableConst8())
1348     return EightByteConstantSection;
1349   if (Kind.isMergeableConst16())
1350     return SixteenByteConstantSection;
1351   return ReadOnlySection;  // .const
1352 }
1353 
1354 const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference(
1355     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
1356     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1357   // The mach-o version of this method defaults to returning a stub reference.
1358 
1359   if (Encoding & DW_EH_PE_indirect) {
1360     MachineModuleInfoMachO &MachOMMI =
1361       MMI->getObjFileInfo<MachineModuleInfoMachO>();
1362 
1363     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1364 
1365     // Add information about the stub reference to MachOMMI so that the stub
1366     // gets emitted by the asmprinter.
1367     MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1368     if (!StubSym.getPointer()) {
1369       MCSymbol *Sym = TM.getSymbol(GV);
1370       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1371     }
1372 
1373     return TargetLoweringObjectFile::
1374       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
1375                         Encoding & ~DW_EH_PE_indirect, Streamer);
1376   }
1377 
1378   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
1379                                                            MMI, Streamer);
1380 }
1381 
1382 MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol(
1383     const GlobalValue *GV, const TargetMachine &TM,
1384     MachineModuleInfo *MMI) const {
1385   // The mach-o version of this method defaults to returning a stub reference.
1386   MachineModuleInfoMachO &MachOMMI =
1387     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1388 
1389   MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1390 
1391   // Add information about the stub reference to MachOMMI so that the stub
1392   // gets emitted by the asmprinter.
1393   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1394   if (!StubSym.getPointer()) {
1395     MCSymbol *Sym = TM.getSymbol(GV);
1396     StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1397   }
1398 
1399   return SSym;
1400 }
1401 
1402 const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel(
1403     const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV,
1404     int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1405   // Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation
1406   // as 64-bit do, we replace the GOT equivalent by accessing the final symbol
1407   // through a non_lazy_ptr stub instead. One advantage is that it allows the
1408   // computation of deltas to final external symbols. Example:
1409   //
1410   //    _extgotequiv:
1411   //       .long   _extfoo
1412   //
1413   //    _delta:
1414   //       .long   _extgotequiv-_delta
1415   //
1416   // is transformed to:
1417   //
1418   //    _delta:
1419   //       .long   L_extfoo$non_lazy_ptr-(_delta+0)
1420   //
1421   //       .section        __IMPORT,__pointers,non_lazy_symbol_pointers
1422   //    L_extfoo$non_lazy_ptr:
1423   //       .indirect_symbol        _extfoo
1424   //       .long   0
1425   //
1426   // The indirect symbol table (and sections of non_lazy_symbol_pointers type)
1427   // may point to both local (same translation unit) and global (other
1428   // translation units) symbols. Example:
1429   //
1430   // .section __DATA,__pointers,non_lazy_symbol_pointers
1431   // L1:
1432   //    .indirect_symbol _myGlobal
1433   //    .long 0
1434   // L2:
1435   //    .indirect_symbol _myLocal
1436   //    .long _myLocal
1437   //
1438   // If the symbol is local, instead of the symbol's index, the assembler
1439   // places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table.
1440   // Then the linker will notice the constant in the table and will look at the
1441   // content of the symbol.
1442   MachineModuleInfoMachO &MachOMMI =
1443     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1444   MCContext &Ctx = getContext();
1445 
1446   // The offset must consider the original displacement from the base symbol
1447   // since 32-bit targets don't have a GOTPCREL to fold the PC displacement.
1448   Offset = -MV.getConstant();
1449   const MCSymbol *BaseSym = &MV.getSymB()->getSymbol();
1450 
1451   // Access the final symbol via sym$non_lazy_ptr and generate the appropriated
1452   // non_lazy_ptr stubs.
1453   SmallString<128> Name;
1454   StringRef Suffix = "$non_lazy_ptr";
1455   Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix();
1456   Name += Sym->getName();
1457   Name += Suffix;
1458   MCSymbol *Stub = Ctx.getOrCreateSymbol(Name);
1459 
1460   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub);
1461 
1462   if (!StubSym.getPointer())
1463     StubSym = MachineModuleInfoImpl::StubValueTy(const_cast<MCSymbol *>(Sym),
1464                                                  !GV->hasLocalLinkage());
1465 
1466   const MCExpr *BSymExpr =
1467     MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx);
1468   const MCExpr *LHS =
1469     MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx);
1470 
1471   if (!Offset)
1472     return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx);
1473 
1474   const MCExpr *RHS =
1475     MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx);
1476   return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1477 }
1478 
1479 static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo,
1480                                const MCSection &Section) {
1481   if (!AsmInfo.isSectionAtomizableBySymbols(Section))
1482     return true;
1483 
1484   // FIXME: we should be able to use private labels for sections that can't be
1485   // dead-stripped (there's no issue with blocking atomization there), but `ld
1486   // -r` sometimes drops the no_dead_strip attribute from sections so for safety
1487   // we don't allow it.
1488   return false;
1489 }
1490 
1491 void TargetLoweringObjectFileMachO::getNameWithPrefix(
1492     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1493     const TargetMachine &TM) const {
1494   bool CannotUsePrivateLabel = true;
1495   if (auto *GO = GV->getBaseObject()) {
1496     SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM);
1497     const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM);
1498     CannotUsePrivateLabel =
1499         !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection);
1500   }
1501   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1502 }
1503 
1504 //===----------------------------------------------------------------------===//
1505 //                                  COFF
1506 //===----------------------------------------------------------------------===//
1507 
1508 static unsigned
1509 getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) {
1510   unsigned Flags = 0;
1511   bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb;
1512 
1513   if (K.isMetadata())
1514     Flags |=
1515       COFF::IMAGE_SCN_MEM_DISCARDABLE;
1516   else if (K.isText())
1517     Flags |=
1518       COFF::IMAGE_SCN_MEM_EXECUTE |
1519       COFF::IMAGE_SCN_MEM_READ |
1520       COFF::IMAGE_SCN_CNT_CODE |
1521       (isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0);
1522   else if (K.isBSS())
1523     Flags |=
1524       COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
1525       COFF::IMAGE_SCN_MEM_READ |
1526       COFF::IMAGE_SCN_MEM_WRITE;
1527   else if (K.isThreadLocal())
1528     Flags |=
1529       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1530       COFF::IMAGE_SCN_MEM_READ |
1531       COFF::IMAGE_SCN_MEM_WRITE;
1532   else if (K.isReadOnly() || K.isReadOnlyWithRel())
1533     Flags |=
1534       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1535       COFF::IMAGE_SCN_MEM_READ;
1536   else if (K.isWriteable())
1537     Flags |=
1538       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1539       COFF::IMAGE_SCN_MEM_READ |
1540       COFF::IMAGE_SCN_MEM_WRITE;
1541 
1542   return Flags;
1543 }
1544 
1545 static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) {
1546   const Comdat *C = GV->getComdat();
1547   assert(C && "expected GV to have a Comdat!");
1548 
1549   StringRef ComdatGVName = C->getName();
1550   const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName);
1551   if (!ComdatGV)
1552     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1553                        "' does not exist.");
1554 
1555   if (ComdatGV->getComdat() != C)
1556     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1557                        "' is not a key for its COMDAT.");
1558 
1559   return ComdatGV;
1560 }
1561 
1562 static int getSelectionForCOFF(const GlobalValue *GV) {
1563   if (const Comdat *C = GV->getComdat()) {
1564     const GlobalValue *ComdatKey = getComdatGVForCOFF(GV);
1565     if (const auto *GA = dyn_cast<GlobalAlias>(ComdatKey))
1566       ComdatKey = GA->getBaseObject();
1567     if (ComdatKey == GV) {
1568       switch (C->getSelectionKind()) {
1569       case Comdat::Any:
1570         return COFF::IMAGE_COMDAT_SELECT_ANY;
1571       case Comdat::ExactMatch:
1572         return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH;
1573       case Comdat::Largest:
1574         return COFF::IMAGE_COMDAT_SELECT_LARGEST;
1575       case Comdat::NoDeduplicate:
1576         return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1577       case Comdat::SameSize:
1578         return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE;
1579       }
1580     } else {
1581       return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE;
1582     }
1583   }
1584   return 0;
1585 }
1586 
1587 MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal(
1588     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1589   int Selection = 0;
1590   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1591   StringRef Name = GO->getSection();
1592   StringRef COMDATSymName = "";
1593   if (GO->hasComdat()) {
1594     Selection = getSelectionForCOFF(GO);
1595     const GlobalValue *ComdatGV;
1596     if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
1597       ComdatGV = getComdatGVForCOFF(GO);
1598     else
1599       ComdatGV = GO;
1600 
1601     if (!ComdatGV->hasPrivateLinkage()) {
1602       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1603       COMDATSymName = Sym->getName();
1604       Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1605     } else {
1606       Selection = 0;
1607     }
1608   }
1609 
1610   return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName,
1611                                      Selection);
1612 }
1613 
1614 static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) {
1615   if (Kind.isText())
1616     return ".text";
1617   if (Kind.isBSS())
1618     return ".bss";
1619   if (Kind.isThreadLocal())
1620     return ".tls$";
1621   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1622     return ".rdata";
1623   return ".data";
1624 }
1625 
1626 MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
1627     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1628   // If we have -ffunction-sections then we should emit the global value to a
1629   // uniqued section specifically for it.
1630   bool EmitUniquedSection;
1631   if (Kind.isText())
1632     EmitUniquedSection = TM.getFunctionSections();
1633   else
1634     EmitUniquedSection = TM.getDataSections();
1635 
1636   if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) {
1637     SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind);
1638 
1639     unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1640 
1641     Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1642     int Selection = getSelectionForCOFF(GO);
1643     if (!Selection)
1644       Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1645     const GlobalValue *ComdatGV;
1646     if (GO->hasComdat())
1647       ComdatGV = getComdatGVForCOFF(GO);
1648     else
1649       ComdatGV = GO;
1650 
1651     unsigned UniqueID = MCContext::GenericSectionID;
1652     if (EmitUniquedSection)
1653       UniqueID = NextUniqueID++;
1654 
1655     if (!ComdatGV->hasPrivateLinkage()) {
1656       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1657       StringRef COMDATSymName = Sym->getName();
1658 
1659       if (const auto *F = dyn_cast<Function>(GO))
1660         if (Optional<StringRef> Prefix = F->getSectionPrefix())
1661           raw_svector_ostream(Name) << '$' << *Prefix;
1662 
1663       // Append "$symbol" to the section name *before* IR-level mangling is
1664       // applied when targetting mingw. This is what GCC does, and the ld.bfd
1665       // COFF linker will not properly handle comdats otherwise.
1666       if (getContext().getTargetTriple().isWindowsGNUEnvironment())
1667         raw_svector_ostream(Name) << '$' << ComdatGV->getName();
1668 
1669       return getContext().getCOFFSection(Name, Characteristics, Kind,
1670                                          COMDATSymName, Selection, UniqueID);
1671     } else {
1672       SmallString<256> TmpData;
1673       getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true);
1674       return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData,
1675                                          Selection, UniqueID);
1676     }
1677   }
1678 
1679   if (Kind.isText())
1680     return TextSection;
1681 
1682   if (Kind.isThreadLocal())
1683     return TLSDataSection;
1684 
1685   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1686     return ReadOnlySection;
1687 
1688   // Note: we claim that common symbols are put in BSSSection, but they are
1689   // really emitted with the magic .comm directive, which creates a symbol table
1690   // entry but not a section.
1691   if (Kind.isBSS() || Kind.isCommon())
1692     return BSSSection;
1693 
1694   return DataSection;
1695 }
1696 
1697 void TargetLoweringObjectFileCOFF::getNameWithPrefix(
1698     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1699     const TargetMachine &TM) const {
1700   bool CannotUsePrivateLabel = false;
1701   if (GV->hasPrivateLinkage() &&
1702       ((isa<Function>(GV) && TM.getFunctionSections()) ||
1703        (isa<GlobalVariable>(GV) && TM.getDataSections())))
1704     CannotUsePrivateLabel = true;
1705 
1706   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1707 }
1708 
1709 MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
1710     const Function &F, const TargetMachine &TM) const {
1711   // If the function can be removed, produce a unique section so that
1712   // the table doesn't prevent the removal.
1713   const Comdat *C = F.getComdat();
1714   bool EmitUniqueSection = TM.getFunctionSections() || C;
1715   if (!EmitUniqueSection)
1716     return ReadOnlySection;
1717 
1718   // FIXME: we should produce a symbol for F instead.
1719   if (F.hasPrivateLinkage())
1720     return ReadOnlySection;
1721 
1722   MCSymbol *Sym = TM.getSymbol(&F);
1723   StringRef COMDATSymName = Sym->getName();
1724 
1725   SectionKind Kind = SectionKind::getReadOnly();
1726   StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind);
1727   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1728   Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1729   unsigned UniqueID = NextUniqueID++;
1730 
1731   return getContext().getCOFFSection(
1732       SecName, Characteristics, Kind, COMDATSymName,
1733       COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID);
1734 }
1735 
1736 void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer,
1737                                                       Module &M) const {
1738   emitLinkerDirectives(Streamer, M);
1739 
1740   unsigned Version = 0;
1741   unsigned Flags = 0;
1742   StringRef Section;
1743 
1744   GetObjCImageInfo(M, Version, Flags, Section);
1745   if (!Section.empty()) {
1746     auto &C = getContext();
1747     auto *S = C.getCOFFSection(Section,
1748                                COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1749                                    COFF::IMAGE_SCN_MEM_READ,
1750                                SectionKind::getReadOnly());
1751     Streamer.SwitchSection(S);
1752     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
1753     Streamer.emitInt32(Version);
1754     Streamer.emitInt32(Flags);
1755     Streamer.AddBlankLine();
1756   }
1757 
1758   emitCGProfileMetadata(Streamer, M);
1759 }
1760 
1761 void TargetLoweringObjectFileCOFF::emitLinkerDirectives(
1762     MCStreamer &Streamer, Module &M) const {
1763   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1764     // Emit the linker options to the linker .drectve section.  According to the
1765     // spec, this section is a space-separated string containing flags for
1766     // linker.
1767     MCSection *Sec = getDrectveSection();
1768     Streamer.SwitchSection(Sec);
1769     for (const auto *Option : LinkerOptions->operands()) {
1770       for (const auto &Piece : cast<MDNode>(Option)->operands()) {
1771         // Lead with a space for consistency with our dllexport implementation.
1772         std::string Directive(" ");
1773         Directive.append(std::string(cast<MDString>(Piece)->getString()));
1774         Streamer.emitBytes(Directive);
1775       }
1776     }
1777   }
1778 
1779   // Emit /EXPORT: flags for each exported global as necessary.
1780   std::string Flags;
1781   for (const GlobalValue &GV : M.global_values()) {
1782     raw_string_ostream OS(Flags);
1783     emitLinkerFlagsForGlobalCOFF(OS, &GV, getContext().getTargetTriple(),
1784                                  getMangler());
1785     OS.flush();
1786     if (!Flags.empty()) {
1787       Streamer.SwitchSection(getDrectveSection());
1788       Streamer.emitBytes(Flags);
1789     }
1790     Flags.clear();
1791   }
1792 
1793   // Emit /INCLUDE: flags for each used global as necessary.
1794   if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1795     assert(LU->hasInitializer() && "expected llvm.used to have an initializer");
1796     assert(isa<ArrayType>(LU->getValueType()) &&
1797            "expected llvm.used to be an array type");
1798     if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1799       for (const Value *Op : A->operands()) {
1800         const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1801         // Global symbols with internal or private linkage are not visible to
1802         // the linker, and thus would cause an error when the linker tried to
1803         // preserve the symbol due to the `/include:` directive.
1804         if (GV->hasLocalLinkage())
1805           continue;
1806 
1807         raw_string_ostream OS(Flags);
1808         emitLinkerFlagsForUsedCOFF(OS, GV, getContext().getTargetTriple(),
1809                                    getMangler());
1810         OS.flush();
1811 
1812         if (!Flags.empty()) {
1813           Streamer.SwitchSection(getDrectveSection());
1814           Streamer.emitBytes(Flags);
1815         }
1816         Flags.clear();
1817       }
1818     }
1819   }
1820 }
1821 
1822 void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx,
1823                                               const TargetMachine &TM) {
1824   TargetLoweringObjectFile::Initialize(Ctx, TM);
1825   this->TM = &TM;
1826   const Triple &T = TM.getTargetTriple();
1827   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1828     StaticCtorSection =
1829         Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1830                                            COFF::IMAGE_SCN_MEM_READ,
1831                            SectionKind::getReadOnly());
1832     StaticDtorSection =
1833         Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1834                                            COFF::IMAGE_SCN_MEM_READ,
1835                            SectionKind::getReadOnly());
1836   } else {
1837     StaticCtorSection = Ctx.getCOFFSection(
1838         ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1839                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1840         SectionKind::getData());
1841     StaticDtorSection = Ctx.getCOFFSection(
1842         ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1843                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1844         SectionKind::getData());
1845   }
1846 }
1847 
1848 static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx,
1849                                                    const Triple &T, bool IsCtor,
1850                                                    unsigned Priority,
1851                                                    const MCSymbol *KeySym,
1852                                                    MCSectionCOFF *Default) {
1853   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1854     // If the priority is the default, use .CRT$XCU, possibly associative.
1855     if (Priority == 65535)
1856       return Ctx.getAssociativeCOFFSection(Default, KeySym, 0);
1857 
1858     // Otherwise, we need to compute a new section name. Low priorities should
1859     // run earlier. The linker will sort sections ASCII-betically, and we need a
1860     // string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we
1861     // make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really
1862     // low priorities need to sort before 'L', since the CRT uses that
1863     // internally, so we use ".CRT$XCA00001" for them.
1864     SmallString<24> Name;
1865     raw_svector_ostream OS(Name);
1866     OS << ".CRT$X" << (IsCtor ? "C" : "T") <<
1867         (Priority < 200 ? 'A' : 'T') << format("%05u", Priority);
1868     MCSectionCOFF *Sec = Ctx.getCOFFSection(
1869         Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ,
1870         SectionKind::getReadOnly());
1871     return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0);
1872   }
1873 
1874   std::string Name = IsCtor ? ".ctors" : ".dtors";
1875   if (Priority != 65535)
1876     raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1877 
1878   return Ctx.getAssociativeCOFFSection(
1879       Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1880                                    COFF::IMAGE_SCN_MEM_READ |
1881                                    COFF::IMAGE_SCN_MEM_WRITE,
1882                          SectionKind::getData()),
1883       KeySym, 0);
1884 }
1885 
1886 MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection(
1887     unsigned Priority, const MCSymbol *KeySym) const {
1888   return getCOFFStaticStructorSection(
1889       getContext(), getContext().getTargetTriple(), true, Priority, KeySym,
1890       cast<MCSectionCOFF>(StaticCtorSection));
1891 }
1892 
1893 MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection(
1894     unsigned Priority, const MCSymbol *KeySym) const {
1895   return getCOFFStaticStructorSection(
1896       getContext(), getContext().getTargetTriple(), false, Priority, KeySym,
1897       cast<MCSectionCOFF>(StaticDtorSection));
1898 }
1899 
1900 const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference(
1901     const GlobalValue *LHS, const GlobalValue *RHS,
1902     const TargetMachine &TM) const {
1903   const Triple &T = TM.getTargetTriple();
1904   if (T.isOSCygMing())
1905     return nullptr;
1906 
1907   // Our symbols should exist in address space zero, cowardly no-op if
1908   // otherwise.
1909   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1910       RHS->getType()->getPointerAddressSpace() != 0)
1911     return nullptr;
1912 
1913   // Both ptrtoint instructions must wrap global objects:
1914   // - Only global variables are eligible for image relative relocations.
1915   // - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable.
1916   // We expect __ImageBase to be a global variable without a section, externally
1917   // defined.
1918   //
1919   // It should look something like this: @__ImageBase = external constant i8
1920   if (!isa<GlobalObject>(LHS) || !isa<GlobalVariable>(RHS) ||
1921       LHS->isThreadLocal() || RHS->isThreadLocal() ||
1922       RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() ||
1923       cast<GlobalVariable>(RHS)->hasInitializer() || RHS->hasSection())
1924     return nullptr;
1925 
1926   return MCSymbolRefExpr::create(TM.getSymbol(LHS),
1927                                  MCSymbolRefExpr::VK_COFF_IMGREL32,
1928                                  getContext());
1929 }
1930 
1931 static std::string APIntToHexString(const APInt &AI) {
1932   unsigned Width = (AI.getBitWidth() / 8) * 2;
1933   std::string HexString = toString(AI, 16, /*Signed=*/false);
1934   llvm::transform(HexString, HexString.begin(), tolower);
1935   unsigned Size = HexString.size();
1936   assert(Width >= Size && "hex string is too large!");
1937   HexString.insert(HexString.begin(), Width - Size, '0');
1938 
1939   return HexString;
1940 }
1941 
1942 static std::string scalarConstantToHexString(const Constant *C) {
1943   Type *Ty = C->getType();
1944   if (isa<UndefValue>(C)) {
1945     return APIntToHexString(APInt::getNullValue(Ty->getPrimitiveSizeInBits()));
1946   } else if (const auto *CFP = dyn_cast<ConstantFP>(C)) {
1947     return APIntToHexString(CFP->getValueAPF().bitcastToAPInt());
1948   } else if (const auto *CI = dyn_cast<ConstantInt>(C)) {
1949     return APIntToHexString(CI->getValue());
1950   } else {
1951     unsigned NumElements;
1952     if (auto *VTy = dyn_cast<VectorType>(Ty))
1953       NumElements = cast<FixedVectorType>(VTy)->getNumElements();
1954     else
1955       NumElements = Ty->getArrayNumElements();
1956     std::string HexString;
1957     for (int I = NumElements - 1, E = -1; I != E; --I)
1958       HexString += scalarConstantToHexString(C->getAggregateElement(I));
1959     return HexString;
1960   }
1961 }
1962 
1963 MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant(
1964     const DataLayout &DL, SectionKind Kind, const Constant *C,
1965     Align &Alignment) const {
1966   if (Kind.isMergeableConst() && C &&
1967       getContext().getAsmInfo()->hasCOFFComdatConstants()) {
1968     // This creates comdat sections with the given symbol name, but unless
1969     // AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol
1970     // will be created with a null storage class, which makes GNU binutils
1971     // error out.
1972     const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1973                                      COFF::IMAGE_SCN_MEM_READ |
1974                                      COFF::IMAGE_SCN_LNK_COMDAT;
1975     std::string COMDATSymName;
1976     if (Kind.isMergeableConst4()) {
1977       if (Alignment <= 4) {
1978         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1979         Alignment = Align(4);
1980       }
1981     } else if (Kind.isMergeableConst8()) {
1982       if (Alignment <= 8) {
1983         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1984         Alignment = Align(8);
1985       }
1986     } else if (Kind.isMergeableConst16()) {
1987       // FIXME: These may not be appropriate for non-x86 architectures.
1988       if (Alignment <= 16) {
1989         COMDATSymName = "__xmm@" + scalarConstantToHexString(C);
1990         Alignment = Align(16);
1991       }
1992     } else if (Kind.isMergeableConst32()) {
1993       if (Alignment <= 32) {
1994         COMDATSymName = "__ymm@" + scalarConstantToHexString(C);
1995         Alignment = Align(32);
1996       }
1997     }
1998 
1999     if (!COMDATSymName.empty())
2000       return getContext().getCOFFSection(".rdata", Characteristics, Kind,
2001                                          COMDATSymName,
2002                                          COFF::IMAGE_COMDAT_SELECT_ANY);
2003   }
2004 
2005   return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C,
2006                                                          Alignment);
2007 }
2008 
2009 //===----------------------------------------------------------------------===//
2010 //                                  Wasm
2011 //===----------------------------------------------------------------------===//
2012 
2013 static const Comdat *getWasmComdat(const GlobalValue *GV) {
2014   const Comdat *C = GV->getComdat();
2015   if (!C)
2016     return nullptr;
2017 
2018   if (C->getSelectionKind() != Comdat::Any)
2019     report_fatal_error("WebAssembly COMDATs only support "
2020                        "SelectionKind::Any, '" + C->getName() + "' cannot be "
2021                        "lowered.");
2022 
2023   return C;
2024 }
2025 
2026 static unsigned getWasmSectionFlags(SectionKind K) {
2027   unsigned Flags = 0;
2028 
2029   if (K.isThreadLocal())
2030     Flags |= wasm::WASM_SEG_FLAG_TLS;
2031 
2032   if (K.isMergeableCString())
2033     Flags |= wasm::WASM_SEG_FLAG_STRINGS;
2034 
2035   // TODO(sbc): Add suport for K.isMergeableConst()
2036 
2037   return Flags;
2038 }
2039 
2040 MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal(
2041     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2042   // We don't support explict section names for functions in the wasm object
2043   // format.  Each function has to be in its own unique section.
2044   if (isa<Function>(GO)) {
2045     return SelectSectionForGlobal(GO, Kind, TM);
2046   }
2047 
2048   StringRef Name = GO->getSection();
2049 
2050   // Certain data sections we treat as named custom sections rather than
2051   // segments within the data section.
2052   // This could be avoided if all data segements (the wasm sense) were
2053   // represented as their own sections (in the llvm sense).
2054   // TODO(sbc): https://github.com/WebAssembly/tool-conventions/issues/138
2055   if (Name == ".llvmcmd" || Name == ".llvmbc")
2056     Kind = SectionKind::getMetadata();
2057 
2058   StringRef Group = "";
2059   if (const Comdat *C = getWasmComdat(GO)) {
2060     Group = C->getName();
2061   }
2062 
2063   unsigned Flags = getWasmSectionFlags(Kind);
2064   MCSectionWasm *Section = getContext().getWasmSection(
2065       Name, Kind, Flags, Group, MCContext::GenericSectionID);
2066 
2067   return Section;
2068 }
2069 
2070 static MCSectionWasm *selectWasmSectionForGlobal(
2071     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
2072     const TargetMachine &TM, bool EmitUniqueSection, unsigned *NextUniqueID) {
2073   StringRef Group = "";
2074   if (const Comdat *C = getWasmComdat(GO)) {
2075     Group = C->getName();
2076   }
2077 
2078   bool UniqueSectionNames = TM.getUniqueSectionNames();
2079   SmallString<128> Name = getSectionPrefixForGlobal(Kind);
2080 
2081   if (const auto *F = dyn_cast<Function>(GO)) {
2082     const auto &OptionalPrefix = F->getSectionPrefix();
2083     if (OptionalPrefix)
2084       raw_svector_ostream(Name) << '.' << *OptionalPrefix;
2085   }
2086 
2087   if (EmitUniqueSection && UniqueSectionNames) {
2088     Name.push_back('.');
2089     TM.getNameWithPrefix(Name, GO, Mang, true);
2090   }
2091   unsigned UniqueID = MCContext::GenericSectionID;
2092   if (EmitUniqueSection && !UniqueSectionNames) {
2093     UniqueID = *NextUniqueID;
2094     (*NextUniqueID)++;
2095   }
2096 
2097   unsigned Flags = getWasmSectionFlags(Kind);
2098   return Ctx.getWasmSection(Name, Kind, Flags, Group, UniqueID);
2099 }
2100 
2101 MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal(
2102     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2103 
2104   if (Kind.isCommon())
2105     report_fatal_error("mergable sections not supported yet on wasm");
2106 
2107   // If we have -ffunction-section or -fdata-section then we should emit the
2108   // global value to a uniqued section specifically for it.
2109   bool EmitUniqueSection = false;
2110   if (Kind.isText())
2111     EmitUniqueSection = TM.getFunctionSections();
2112   else
2113     EmitUniqueSection = TM.getDataSections();
2114   EmitUniqueSection |= GO->hasComdat();
2115 
2116   return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
2117                                     EmitUniqueSection, &NextUniqueID);
2118 }
2119 
2120 bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection(
2121     bool UsesLabelDifference, const Function &F) const {
2122   // We can always create relative relocations, so use another section
2123   // that can be marked non-executable.
2124   return false;
2125 }
2126 
2127 const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference(
2128     const GlobalValue *LHS, const GlobalValue *RHS,
2129     const TargetMachine &TM) const {
2130   // We may only use a PLT-relative relocation to refer to unnamed_addr
2131   // functions.
2132   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
2133     return nullptr;
2134 
2135   // Basic sanity checks.
2136   if (LHS->getType()->getPointerAddressSpace() != 0 ||
2137       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
2138       RHS->isThreadLocal())
2139     return nullptr;
2140 
2141   return MCBinaryExpr::createSub(
2142       MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None,
2143                               getContext()),
2144       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
2145 }
2146 
2147 void TargetLoweringObjectFileWasm::InitializeWasm() {
2148   StaticCtorSection =
2149       getContext().getWasmSection(".init_array", SectionKind::getData());
2150 
2151   // We don't use PersonalityEncoding and LSDAEncoding because we don't emit
2152   // .cfi directives. We use TTypeEncoding to encode typeinfo global variables.
2153   TTypeEncoding = dwarf::DW_EH_PE_absptr;
2154 }
2155 
2156 MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection(
2157     unsigned Priority, const MCSymbol *KeySym) const {
2158   return Priority == UINT16_MAX ?
2159          StaticCtorSection :
2160          getContext().getWasmSection(".init_array." + utostr(Priority),
2161                                      SectionKind::getData());
2162 }
2163 
2164 MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection(
2165     unsigned Priority, const MCSymbol *KeySym) const {
2166   llvm_unreachable("@llvm.global_dtors should have been lowered already");
2167   return nullptr;
2168 }
2169 
2170 //===----------------------------------------------------------------------===//
2171 //                                  XCOFF
2172 //===----------------------------------------------------------------------===//
2173 bool TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(
2174     const MachineFunction *MF) {
2175   if (!MF->getLandingPads().empty())
2176     return true;
2177 
2178   const Function &F = MF->getFunction();
2179   if (!F.hasPersonalityFn() || !F.needsUnwindTableEntry())
2180     return false;
2181 
2182   const GlobalValue *Per =
2183       dyn_cast<GlobalValue>(F.getPersonalityFn()->stripPointerCasts());
2184   assert(Per && "Personality routine is not a GlobalValue type.");
2185   if (isNoOpWithoutInvoke(classifyEHPersonality(Per)))
2186     return false;
2187 
2188   return true;
2189 }
2190 
2191 bool TargetLoweringObjectFileXCOFF::ShouldSetSSPCanaryBitInTB(
2192     const MachineFunction *MF) {
2193   const Function &F = MF->getFunction();
2194   if (!F.hasStackProtectorFnAttr())
2195     return false;
2196   // FIXME: check presence of canary word
2197   // There are cases that the stack protectors are not really inserted even if
2198   // the attributes are on.
2199   return true;
2200 }
2201 
2202 MCSymbol *
2203 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(const MachineFunction *MF) {
2204   return MF->getMMI().getContext().getOrCreateSymbol(
2205       "__ehinfo." + Twine(MF->getFunctionNumber()));
2206 }
2207 
2208 MCSymbol *
2209 TargetLoweringObjectFileXCOFF::getTargetSymbol(const GlobalValue *GV,
2210                                                const TargetMachine &TM) const {
2211   // We always use a qualname symbol for a GV that represents
2212   // a declaration, a function descriptor, or a common symbol.
2213   // If a GV represents a GlobalVariable and -fdata-sections is enabled, we
2214   // also return a qualname so that a label symbol could be avoided.
2215   // It is inherently ambiguous when the GO represents the address of a
2216   // function, as the GO could either represent a function descriptor or a
2217   // function entry point. We choose to always return a function descriptor
2218   // here.
2219   if (const GlobalObject *GO = dyn_cast<GlobalObject>(GV)) {
2220     if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
2221       if (GVar->hasAttribute("toc-data"))
2222         return cast<MCSectionXCOFF>(
2223                    SectionForGlobal(GVar, SectionKind::getData(), TM))
2224             ->getQualNameSymbol();
2225 
2226     if (GO->isDeclarationForLinker())
2227       return cast<MCSectionXCOFF>(getSectionForExternalReference(GO, TM))
2228           ->getQualNameSymbol();
2229 
2230     SectionKind GOKind = getKindForGlobal(GO, TM);
2231     if (GOKind.isText())
2232       return cast<MCSectionXCOFF>(
2233                  getSectionForFunctionDescriptor(cast<Function>(GO), TM))
2234           ->getQualNameSymbol();
2235     if ((TM.getDataSections() && !GO->hasSection()) || GO->hasCommonLinkage() ||
2236         GOKind.isBSSLocal() || GOKind.isThreadBSSLocal())
2237       return cast<MCSectionXCOFF>(SectionForGlobal(GO, GOKind, TM))
2238           ->getQualNameSymbol();
2239   }
2240 
2241   // For all other cases, fall back to getSymbol to return the unqualified name.
2242   return nullptr;
2243 }
2244 
2245 MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal(
2246     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2247   if (!GO->hasSection())
2248     report_fatal_error("#pragma clang section is not yet supported");
2249 
2250   StringRef SectionName = GO->getSection();
2251 
2252   // Handle the XCOFF::TD case first, then deal with the rest.
2253   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GO))
2254     if (GVar->hasAttribute("toc-data"))
2255       return getContext().getXCOFFSection(
2256           SectionName, Kind,
2257           XCOFF::CsectProperties(/*MappingClass*/ XCOFF::XMC_TD, XCOFF::XTY_SD),
2258           /* MultiSymbolsAllowed*/ true);
2259 
2260   XCOFF::StorageMappingClass MappingClass;
2261   if (Kind.isText())
2262     MappingClass = XCOFF::XMC_PR;
2263   else if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS())
2264     MappingClass = XCOFF::XMC_RW;
2265   else if (Kind.isReadOnly())
2266     MappingClass = XCOFF::XMC_RO;
2267   else
2268     report_fatal_error("XCOFF other section types not yet implemented.");
2269 
2270   return getContext().getXCOFFSection(
2271       SectionName, Kind, XCOFF::CsectProperties(MappingClass, XCOFF::XTY_SD),
2272       /* MultiSymbolsAllowed*/ true);
2273 }
2274 
2275 MCSection *TargetLoweringObjectFileXCOFF::getSectionForExternalReference(
2276     const GlobalObject *GO, const TargetMachine &TM) const {
2277   assert(GO->isDeclarationForLinker() &&
2278          "Tried to get ER section for a defined global.");
2279 
2280   SmallString<128> Name;
2281   getNameWithPrefix(Name, GO, TM);
2282 
2283   XCOFF::StorageMappingClass SMC =
2284       isa<Function>(GO) ? XCOFF::XMC_DS : XCOFF::XMC_UA;
2285   if (GO->isThreadLocal())
2286     SMC = XCOFF::XMC_UL;
2287 
2288   // Externals go into a csect of type ER.
2289   return getContext().getXCOFFSection(
2290       Name, SectionKind::getMetadata(),
2291       XCOFF::CsectProperties(SMC, XCOFF::XTY_ER));
2292 }
2293 
2294 MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal(
2295     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2296   // Handle the XCOFF::TD case first, then deal with the rest.
2297   if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GO))
2298     if (GVar->hasAttribute("toc-data")) {
2299       SmallString<128> Name;
2300       getNameWithPrefix(Name, GO, TM);
2301       return getContext().getXCOFFSection(
2302           Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_TD, XCOFF::XTY_SD),
2303           /* MultiSymbolsAllowed*/ true);
2304     }
2305 
2306   // Common symbols go into a csect with matching name which will get mapped
2307   // into the .bss section.
2308   // Zero-initialized local TLS symbols go into a csect with matching name which
2309   // will get mapped into the .tbss section.
2310   if (Kind.isBSSLocal() || GO->hasCommonLinkage() || Kind.isThreadBSSLocal()) {
2311     SmallString<128> Name;
2312     getNameWithPrefix(Name, GO, TM);
2313     XCOFF::StorageMappingClass SMC = Kind.isBSSLocal() ? XCOFF::XMC_BS
2314                                      : Kind.isCommon() ? XCOFF::XMC_RW
2315                                                        : XCOFF::XMC_UL;
2316     return getContext().getXCOFFSection(
2317         Name, Kind, XCOFF::CsectProperties(SMC, XCOFF::XTY_CM));
2318   }
2319 
2320   if (Kind.isMergeableCString()) {
2321     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
2322         cast<GlobalVariable>(GO));
2323 
2324     unsigned EntrySize = getEntrySizeForKind(Kind);
2325     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
2326     SmallString<128> Name;
2327     Name = SizeSpec + utostr(Alignment.value());
2328 
2329     if (TM.getDataSections())
2330       getNameWithPrefix(Name, GO, TM);
2331 
2332     return getContext().getXCOFFSection(
2333         Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD),
2334         /* MultiSymbolsAllowed*/ !TM.getDataSections());
2335   }
2336 
2337   if (Kind.isText()) {
2338     if (TM.getFunctionSections()) {
2339       return cast<MCSymbolXCOFF>(getFunctionEntryPointSymbol(GO, TM))
2340           ->getRepresentedCsect();
2341     }
2342     return TextSection;
2343   }
2344 
2345   // TODO: We may put Kind.isReadOnlyWithRel() under option control, because
2346   // user may want to have read-only data with relocations placed into a
2347   // read-only section by the compiler.
2348   // For BSS kind, zero initialized data must be emitted to the .data section
2349   // because external linkage control sections that get mapped to the .bss
2350   // section will be linked as tentative defintions, which is only appropriate
2351   // for SectionKind::Common.
2352   if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) {
2353     if (TM.getDataSections()) {
2354       SmallString<128> Name;
2355       getNameWithPrefix(Name, GO, TM);
2356       return getContext().getXCOFFSection(
2357           Name, SectionKind::getData(),
2358           XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD));
2359     }
2360     return DataSection;
2361   }
2362 
2363   if (Kind.isReadOnly()) {
2364     if (TM.getDataSections()) {
2365       SmallString<128> Name;
2366       getNameWithPrefix(Name, GO, TM);
2367       return getContext().getXCOFFSection(
2368           Name, SectionKind::getReadOnly(),
2369           XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD));
2370     }
2371     return ReadOnlySection;
2372   }
2373 
2374   // External/weak TLS data and initialized local TLS data are not eligible
2375   // to be put into common csect. If data sections are enabled, thread
2376   // data are emitted into separate sections. Otherwise, thread data
2377   // are emitted into the .tdata section.
2378   if (Kind.isThreadLocal()) {
2379     if (TM.getDataSections()) {
2380       SmallString<128> Name;
2381       getNameWithPrefix(Name, GO, TM);
2382       return getContext().getXCOFFSection(
2383           Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_TL, XCOFF::XTY_SD));
2384     }
2385     return TLSDataSection;
2386   }
2387 
2388   report_fatal_error("XCOFF other section types not yet implemented.");
2389 }
2390 
2391 MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable(
2392     const Function &F, const TargetMachine &TM) const {
2393   assert (!F.getComdat() && "Comdat not supported on XCOFF.");
2394 
2395   if (!TM.getFunctionSections())
2396     return ReadOnlySection;
2397 
2398   // If the function can be removed, produce a unique section so that
2399   // the table doesn't prevent the removal.
2400   SmallString<128> NameStr(".rodata.jmp..");
2401   getNameWithPrefix(NameStr, &F, TM);
2402   return getContext().getXCOFFSection(
2403       NameStr, SectionKind::getReadOnly(),
2404       XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD));
2405 }
2406 
2407 bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection(
2408     bool UsesLabelDifference, const Function &F) const {
2409   return false;
2410 }
2411 
2412 /// Given a mergeable constant with the specified size and relocation
2413 /// information, return a section that it should be placed in.
2414 MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant(
2415     const DataLayout &DL, SectionKind Kind, const Constant *C,
2416     Align &Alignment) const {
2417   //TODO: Enable emiting constant pool to unique sections when we support it.
2418   return ReadOnlySection;
2419 }
2420 
2421 void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx,
2422                                                const TargetMachine &TgtM) {
2423   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
2424   TTypeEncoding =
2425       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_datarel |
2426       (TgtM.getTargetTriple().isArch32Bit() ? dwarf::DW_EH_PE_sdata4
2427                                             : dwarf::DW_EH_PE_sdata8);
2428   PersonalityEncoding = 0;
2429   LSDAEncoding = 0;
2430   CallSiteEncoding = dwarf::DW_EH_PE_udata4;
2431 }
2432 
2433 MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection(
2434 	unsigned Priority, const MCSymbol *KeySym) const {
2435   report_fatal_error("no static constructor section on AIX");
2436 }
2437 
2438 MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection(
2439 	unsigned Priority, const MCSymbol *KeySym) const {
2440   report_fatal_error("no static destructor section on AIX");
2441 }
2442 
2443 const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference(
2444     const GlobalValue *LHS, const GlobalValue *RHS,
2445     const TargetMachine &TM) const {
2446   report_fatal_error("XCOFF not yet implemented.");
2447 }
2448 
2449 XCOFF::StorageClass
2450 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(const GlobalValue *GV) {
2451   assert(!isa<GlobalIFunc>(GV) && "GlobalIFunc is not supported on AIX.");
2452 
2453   switch (GV->getLinkage()) {
2454   case GlobalValue::InternalLinkage:
2455   case GlobalValue::PrivateLinkage:
2456     return XCOFF::C_HIDEXT;
2457   case GlobalValue::ExternalLinkage:
2458   case GlobalValue::CommonLinkage:
2459   case GlobalValue::AvailableExternallyLinkage:
2460     return XCOFF::C_EXT;
2461   case GlobalValue::ExternalWeakLinkage:
2462   case GlobalValue::LinkOnceAnyLinkage:
2463   case GlobalValue::LinkOnceODRLinkage:
2464   case GlobalValue::WeakAnyLinkage:
2465   case GlobalValue::WeakODRLinkage:
2466     return XCOFF::C_WEAKEXT;
2467   case GlobalValue::AppendingLinkage:
2468     report_fatal_error(
2469         "There is no mapping that implements AppendingLinkage for XCOFF.");
2470   }
2471   llvm_unreachable("Unknown linkage type!");
2472 }
2473 
2474 MCSymbol *TargetLoweringObjectFileXCOFF::getFunctionEntryPointSymbol(
2475     const GlobalValue *Func, const TargetMachine &TM) const {
2476   assert(
2477       (isa<Function>(Func) ||
2478        (isa<GlobalAlias>(Func) &&
2479         isa_and_nonnull<Function>(cast<GlobalAlias>(Func)->getBaseObject()))) &&
2480       "Func must be a function or an alias which has a function as base "
2481       "object.");
2482 
2483   SmallString<128> NameStr;
2484   NameStr.push_back('.');
2485   getNameWithPrefix(NameStr, Func, TM);
2486 
2487   // When -function-sections is enabled and explicit section is not specified,
2488   // it's not necessary to emit function entry point label any more. We will use
2489   // function entry point csect instead. And for function delcarations, the
2490   // undefined symbols gets treated as csect with XTY_ER property.
2491   if (((TM.getFunctionSections() && !Func->hasSection()) ||
2492        Func->isDeclaration()) &&
2493       isa<Function>(Func)) {
2494     return getContext()
2495         .getXCOFFSection(
2496             NameStr, SectionKind::getText(),
2497             XCOFF::CsectProperties(XCOFF::XMC_PR, Func->isDeclaration()
2498                                                       ? XCOFF::XTY_ER
2499                                                       : XCOFF::XTY_SD))
2500         ->getQualNameSymbol();
2501   }
2502 
2503   return getContext().getOrCreateSymbol(NameStr);
2504 }
2505 
2506 MCSection *TargetLoweringObjectFileXCOFF::getSectionForFunctionDescriptor(
2507     const Function *F, const TargetMachine &TM) const {
2508   SmallString<128> NameStr;
2509   getNameWithPrefix(NameStr, F, TM);
2510   return getContext().getXCOFFSection(
2511       NameStr, SectionKind::getData(),
2512       XCOFF::CsectProperties(XCOFF::XMC_DS, XCOFF::XTY_SD));
2513 }
2514 
2515 MCSection *TargetLoweringObjectFileXCOFF::getSectionForTOCEntry(
2516     const MCSymbol *Sym, const TargetMachine &TM) const {
2517   // Use TE storage-mapping class when large code model is enabled so that
2518   // the chance of needing -bbigtoc is decreased.
2519   return getContext().getXCOFFSection(
2520       cast<MCSymbolXCOFF>(Sym)->getSymbolTableName(), SectionKind::getData(),
2521       XCOFF::CsectProperties(
2522           TM.getCodeModel() == CodeModel::Large ? XCOFF::XMC_TE : XCOFF::XMC_TC,
2523           XCOFF::XTY_SD));
2524 }
2525 
2526 //===----------------------------------------------------------------------===//
2527 //                                  GOFF
2528 //===----------------------------------------------------------------------===//
2529 TargetLoweringObjectFileGOFF::TargetLoweringObjectFileGOFF()
2530     : TargetLoweringObjectFile() {}
2531 
2532 MCSection *TargetLoweringObjectFileGOFF::getExplicitSectionGlobal(
2533     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2534   return SelectSectionForGlobal(GO, Kind, TM);
2535 }
2536 
2537 MCSection *TargetLoweringObjectFileGOFF::SelectSectionForGlobal(
2538     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2539   auto *Symbol = TM.getSymbol(GO);
2540   if (Kind.isBSS())
2541     return getContext().getGOFFSection(Symbol->getName(),
2542                                        SectionKind::getBSS());
2543 
2544   return getContext().getObjectFileInfo()->getTextSection();
2545 }
2546