xref: /llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp (revision 7a718e16302314352227188fc82f757468a75e0b)
1 //===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements classes used to handle lowerings specific to common
10 // object file formats.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/COFF.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/BinaryFormat/ELF.h"
23 #include "llvm/BinaryFormat/MachO.h"
24 #include "llvm/CodeGen/BasicBlockSectionUtils.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Comdat.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/IR/DiagnosticPrinter.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Mangler.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/PseudoProbe.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/MC/MCAsmInfo.h"
46 #include "llvm/MC/MCContext.h"
47 #include "llvm/MC/MCExpr.h"
48 #include "llvm/MC/MCSectionCOFF.h"
49 #include "llvm/MC/MCSectionELF.h"
50 #include "llvm/MC/MCSectionMachO.h"
51 #include "llvm/MC/MCSectionWasm.h"
52 #include "llvm/MC/MCSectionXCOFF.h"
53 #include "llvm/MC/MCStreamer.h"
54 #include "llvm/MC/MCSymbol.h"
55 #include "llvm/MC/MCSymbolELF.h"
56 #include "llvm/MC/MCValue.h"
57 #include "llvm/MC/SectionKind.h"
58 #include "llvm/ProfileData/InstrProf.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/Format.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include <cassert>
66 #include <string>
67 
68 using namespace llvm;
69 using namespace dwarf;
70 
71 static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags,
72                              StringRef &Section) {
73   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
74   M.getModuleFlagsMetadata(ModuleFlags);
75 
76   for (const auto &MFE: ModuleFlags) {
77     // Ignore flags with 'Require' behaviour.
78     if (MFE.Behavior == Module::Require)
79       continue;
80 
81     StringRef Key = MFE.Key->getString();
82     if (Key == "Objective-C Image Info Version") {
83       Version = mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
84     } else if (Key == "Objective-C Garbage Collection" ||
85                Key == "Objective-C GC Only" ||
86                Key == "Objective-C Is Simulated" ||
87                Key == "Objective-C Class Properties" ||
88                Key == "Objective-C Image Swift Version") {
89       Flags |= mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
90     } else if (Key == "Objective-C Image Info Section") {
91       Section = cast<MDString>(MFE.Val)->getString();
92     }
93     // Backend generates L_OBJC_IMAGE_INFO from Swift ABI version + major + minor +
94     // "Objective-C Garbage Collection".
95     else if (Key == "Swift ABI Version") {
96       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 8;
97     } else if (Key == "Swift Major Version") {
98       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 24;
99     } else if (Key == "Swift Minor Version") {
100       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 16;
101     }
102   }
103 }
104 
105 //===----------------------------------------------------------------------===//
106 //                                  ELF
107 //===----------------------------------------------------------------------===//
108 
109 TargetLoweringObjectFileELF::TargetLoweringObjectFileELF()
110     : TargetLoweringObjectFile() {
111   SupportDSOLocalEquivalentLowering = true;
112 }
113 
114 void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx,
115                                              const TargetMachine &TgtM) {
116   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
117 
118   CodeModel::Model CM = TgtM.getCodeModel();
119   InitializeELF(TgtM.Options.UseInitArray);
120 
121   switch (TgtM.getTargetTriple().getArch()) {
122   case Triple::arm:
123   case Triple::armeb:
124   case Triple::thumb:
125   case Triple::thumbeb:
126     if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM)
127       break;
128     // Fallthrough if not using EHABI
129     LLVM_FALLTHROUGH;
130   case Triple::ppc:
131   case Triple::ppcle:
132   case Triple::x86:
133     PersonalityEncoding = isPositionIndependent()
134                               ? dwarf::DW_EH_PE_indirect |
135                                     dwarf::DW_EH_PE_pcrel |
136                                     dwarf::DW_EH_PE_sdata4
137                               : dwarf::DW_EH_PE_absptr;
138     LSDAEncoding = isPositionIndependent()
139                        ? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4
140                        : dwarf::DW_EH_PE_absptr;
141     TTypeEncoding = isPositionIndependent()
142                         ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
143                               dwarf::DW_EH_PE_sdata4
144                         : dwarf::DW_EH_PE_absptr;
145     break;
146   case Triple::x86_64:
147     if (isPositionIndependent()) {
148       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
149         ((CM == CodeModel::Small || CM == CodeModel::Medium)
150          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
151       LSDAEncoding = dwarf::DW_EH_PE_pcrel |
152         (CM == CodeModel::Small
153          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
154       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
155         ((CM == CodeModel::Small || CM == CodeModel::Medium)
156          ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4);
157     } else {
158       PersonalityEncoding =
159         (CM == CodeModel::Small || CM == CodeModel::Medium)
160         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
161       LSDAEncoding = (CM == CodeModel::Small)
162         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
163       TTypeEncoding = (CM == CodeModel::Small)
164         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
165     }
166     break;
167   case Triple::hexagon:
168     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
169     LSDAEncoding = dwarf::DW_EH_PE_absptr;
170     TTypeEncoding = dwarf::DW_EH_PE_absptr;
171     if (isPositionIndependent()) {
172       PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
173       LSDAEncoding |= dwarf::DW_EH_PE_pcrel;
174       TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
175     }
176     break;
177   case Triple::aarch64:
178   case Triple::aarch64_be:
179   case Triple::aarch64_32:
180     // The small model guarantees static code/data size < 4GB, but not where it
181     // will be in memory. Most of these could end up >2GB away so even a signed
182     // pc-relative 32-bit address is insufficient, theoretically.
183     if (isPositionIndependent()) {
184       // ILP32 uses sdata4 instead of sdata8
185       if (TgtM.getTargetTriple().getEnvironment() == Triple::GNUILP32) {
186         PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
187                               dwarf::DW_EH_PE_sdata4;
188         LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
189         TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
190                         dwarf::DW_EH_PE_sdata4;
191       } else {
192         PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
193                               dwarf::DW_EH_PE_sdata8;
194         LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8;
195         TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
196                         dwarf::DW_EH_PE_sdata8;
197       }
198     } else {
199       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
200       LSDAEncoding = dwarf::DW_EH_PE_absptr;
201       TTypeEncoding = dwarf::DW_EH_PE_absptr;
202     }
203     break;
204   case Triple::lanai:
205     LSDAEncoding = dwarf::DW_EH_PE_absptr;
206     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
207     TTypeEncoding = dwarf::DW_EH_PE_absptr;
208     break;
209   case Triple::mips:
210   case Triple::mipsel:
211   case Triple::mips64:
212   case Triple::mips64el:
213     // MIPS uses indirect pointer to refer personality functions and types, so
214     // that the eh_frame section can be read-only. DW.ref.personality will be
215     // generated for relocation.
216     PersonalityEncoding = dwarf::DW_EH_PE_indirect;
217     // FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't
218     //        identify N64 from just a triple.
219     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
220                     dwarf::DW_EH_PE_sdata4;
221     // We don't support PC-relative LSDA references in GAS so we use the default
222     // DW_EH_PE_absptr for those.
223 
224     // FreeBSD must be explicit about the data size and using pcrel since it's
225     // assembler/linker won't do the automatic conversion that the Linux tools
226     // do.
227     if (TgtM.getTargetTriple().isOSFreeBSD()) {
228       PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
229       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
230     }
231     break;
232   case Triple::ppc64:
233   case Triple::ppc64le:
234     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
235       dwarf::DW_EH_PE_udata8;
236     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8;
237     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
238       dwarf::DW_EH_PE_udata8;
239     break;
240   case Triple::sparcel:
241   case Triple::sparc:
242     if (isPositionIndependent()) {
243       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
244       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
245         dwarf::DW_EH_PE_sdata4;
246       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
247         dwarf::DW_EH_PE_sdata4;
248     } else {
249       LSDAEncoding = dwarf::DW_EH_PE_absptr;
250       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
251       TTypeEncoding = dwarf::DW_EH_PE_absptr;
252     }
253     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
254     break;
255   case Triple::riscv32:
256   case Triple::riscv64:
257     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
258     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
259                           dwarf::DW_EH_PE_sdata4;
260     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
261                     dwarf::DW_EH_PE_sdata4;
262     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
263     break;
264   case Triple::sparcv9:
265     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
266     if (isPositionIndependent()) {
267       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
268         dwarf::DW_EH_PE_sdata4;
269       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
270         dwarf::DW_EH_PE_sdata4;
271     } else {
272       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
273       TTypeEncoding = dwarf::DW_EH_PE_absptr;
274     }
275     break;
276   case Triple::systemz:
277     // All currently-defined code models guarantee that 4-byte PC-relative
278     // values will be in range.
279     if (isPositionIndependent()) {
280       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
281         dwarf::DW_EH_PE_sdata4;
282       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
283       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
284         dwarf::DW_EH_PE_sdata4;
285     } else {
286       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
287       LSDAEncoding = dwarf::DW_EH_PE_absptr;
288       TTypeEncoding = dwarf::DW_EH_PE_absptr;
289     }
290     break;
291   default:
292     break;
293   }
294 }
295 
296 void TargetLoweringObjectFileELF::getModuleMetadata(Module &M) {
297   SmallVector<GlobalValue *, 4> Vec;
298   collectUsedGlobalVariables(M, Vec, false);
299   for (GlobalValue *GV : Vec)
300     if (auto *GO = dyn_cast<GlobalObject>(GV))
301       Used.insert(GO);
302 }
303 
304 void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer,
305                                                      Module &M) const {
306   auto &C = getContext();
307 
308   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
309     auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS,
310                               ELF::SHF_EXCLUDE);
311 
312     Streamer.SwitchSection(S);
313 
314     for (const auto *Operand : LinkerOptions->operands()) {
315       if (cast<MDNode>(Operand)->getNumOperands() != 2)
316         report_fatal_error("invalid llvm.linker.options");
317       for (const auto &Option : cast<MDNode>(Operand)->operands()) {
318         Streamer.emitBytes(cast<MDString>(Option)->getString());
319         Streamer.emitInt8(0);
320       }
321     }
322   }
323 
324   if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) {
325     auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES,
326                               ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
327 
328     Streamer.SwitchSection(S);
329 
330     for (const auto *Operand : DependentLibraries->operands()) {
331       Streamer.emitBytes(
332           cast<MDString>(cast<MDNode>(Operand)->getOperand(0))->getString());
333       Streamer.emitInt8(0);
334     }
335   }
336 
337   if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) {
338     // Emit a descriptor for every function including functions that have an
339     // available external linkage. We may not want this for imported functions
340     // that has code in another thinLTO module but we don't have a good way to
341     // tell them apart from inline functions defined in header files. Therefore
342     // we put each descriptor in a separate comdat section and rely on the
343     // linker to deduplicate.
344     for (const auto *Operand : FuncInfo->operands()) {
345       const auto *MD = cast<MDNode>(Operand);
346       auto *GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
347       auto *Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
348       auto *Name = cast<MDString>(MD->getOperand(2));
349       auto *S = C.getObjectFileInfo()->getPseudoProbeDescSection(
350           TM->getFunctionSections() ? Name->getString() : StringRef());
351 
352       Streamer.SwitchSection(S);
353       Streamer.emitInt64(GUID->getZExtValue());
354       Streamer.emitInt64(Hash->getZExtValue());
355       Streamer.emitULEB128IntValue(Name->getString().size());
356       Streamer.emitBytes(Name->getString());
357     }
358   }
359 
360   unsigned Version = 0;
361   unsigned Flags = 0;
362   StringRef Section;
363 
364   GetObjCImageInfo(M, Version, Flags, Section);
365   if (!Section.empty()) {
366     auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
367     Streamer.SwitchSection(S);
368     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
369     Streamer.emitInt32(Version);
370     Streamer.emitInt32(Flags);
371     Streamer.AddBlankLine();
372   }
373 
374   emitCGProfileMetadata(Streamer, M);
375 }
376 
377 MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol(
378     const GlobalValue *GV, const TargetMachine &TM,
379     MachineModuleInfo *MMI) const {
380   unsigned Encoding = getPersonalityEncoding();
381   if ((Encoding & 0x80) == DW_EH_PE_indirect)
382     return getContext().getOrCreateSymbol(StringRef("DW.ref.") +
383                                           TM.getSymbol(GV)->getName());
384   if ((Encoding & 0x70) == DW_EH_PE_absptr)
385     return TM.getSymbol(GV);
386   report_fatal_error("We do not support this DWARF encoding yet!");
387 }
388 
389 void TargetLoweringObjectFileELF::emitPersonalityValue(
390     MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym) const {
391   SmallString<64> NameData("DW.ref.");
392   NameData += Sym->getName();
393   MCSymbolELF *Label =
394       cast<MCSymbolELF>(getContext().getOrCreateSymbol(NameData));
395   Streamer.emitSymbolAttribute(Label, MCSA_Hidden);
396   Streamer.emitSymbolAttribute(Label, MCSA_Weak);
397   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP;
398   MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(),
399                                                    ELF::SHT_PROGBITS, Flags, 0);
400   unsigned Size = DL.getPointerSize();
401   Streamer.SwitchSection(Sec);
402   Streamer.emitValueToAlignment(DL.getPointerABIAlignment(0).value());
403   Streamer.emitSymbolAttribute(Label, MCSA_ELF_TypeObject);
404   const MCExpr *E = MCConstantExpr::create(Size, getContext());
405   Streamer.emitELFSize(Label, E);
406   Streamer.emitLabel(Label);
407 
408   Streamer.emitSymbolValue(Sym, Size);
409 }
410 
411 const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference(
412     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
413     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
414   if (Encoding & DW_EH_PE_indirect) {
415     MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>();
416 
417     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM);
418 
419     // Add information about the stub reference to ELFMMI so that the stub
420     // gets emitted by the asmprinter.
421     MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
422     if (!StubSym.getPointer()) {
423       MCSymbol *Sym = TM.getSymbol(GV);
424       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
425     }
426 
427     return TargetLoweringObjectFile::
428       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
429                         Encoding & ~DW_EH_PE_indirect, Streamer);
430   }
431 
432   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
433                                                            MMI, Streamer);
434 }
435 
436 static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) {
437   // N.B.: The defaults used in here are not the same ones used in MC.
438   // We follow gcc, MC follows gas. For example, given ".section .eh_frame",
439   // both gas and MC will produce a section with no flags. Given
440   // section(".eh_frame") gcc will produce:
441   //
442   //   .section   .eh_frame,"a",@progbits
443 
444   if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF,
445                                       /*AddSegmentInfo=*/false) ||
446       Name == getInstrProfSectionName(IPSK_covfun, Triple::ELF,
447                                       /*AddSegmentInfo=*/false) ||
448       Name == ".llvmbc" || Name == ".llvmcmd")
449     return SectionKind::getMetadata();
450 
451   if (Name.empty() || Name[0] != '.') return K;
452 
453   // Default implementation based on some magic section names.
454   if (Name == ".bss" ||
455       Name.startswith(".bss.") ||
456       Name.startswith(".gnu.linkonce.b.") ||
457       Name.startswith(".llvm.linkonce.b.") ||
458       Name == ".sbss" ||
459       Name.startswith(".sbss.") ||
460       Name.startswith(".gnu.linkonce.sb.") ||
461       Name.startswith(".llvm.linkonce.sb."))
462     return SectionKind::getBSS();
463 
464   if (Name == ".tdata" ||
465       Name.startswith(".tdata.") ||
466       Name.startswith(".gnu.linkonce.td.") ||
467       Name.startswith(".llvm.linkonce.td."))
468     return SectionKind::getThreadData();
469 
470   if (Name == ".tbss" ||
471       Name.startswith(".tbss.") ||
472       Name.startswith(".gnu.linkonce.tb.") ||
473       Name.startswith(".llvm.linkonce.tb."))
474     return SectionKind::getThreadBSS();
475 
476   return K;
477 }
478 
479 static unsigned getELFSectionType(StringRef Name, SectionKind K) {
480   // Use SHT_NOTE for section whose name starts with ".note" to allow
481   // emitting ELF notes from C variable declaration.
482   // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609
483   if (Name.startswith(".note"))
484     return ELF::SHT_NOTE;
485 
486   if (Name == ".init_array")
487     return ELF::SHT_INIT_ARRAY;
488 
489   if (Name == ".fini_array")
490     return ELF::SHT_FINI_ARRAY;
491 
492   if (Name == ".preinit_array")
493     return ELF::SHT_PREINIT_ARRAY;
494 
495   if (K.isBSS() || K.isThreadBSS())
496     return ELF::SHT_NOBITS;
497 
498   return ELF::SHT_PROGBITS;
499 }
500 
501 static unsigned getELFSectionFlags(SectionKind K) {
502   unsigned Flags = 0;
503 
504   if (!K.isMetadata())
505     Flags |= ELF::SHF_ALLOC;
506 
507   if (K.isText())
508     Flags |= ELF::SHF_EXECINSTR;
509 
510   if (K.isExecuteOnly())
511     Flags |= ELF::SHF_ARM_PURECODE;
512 
513   if (K.isWriteable())
514     Flags |= ELF::SHF_WRITE;
515 
516   if (K.isThreadLocal())
517     Flags |= ELF::SHF_TLS;
518 
519   if (K.isMergeableCString() || K.isMergeableConst())
520     Flags |= ELF::SHF_MERGE;
521 
522   if (K.isMergeableCString())
523     Flags |= ELF::SHF_STRINGS;
524 
525   return Flags;
526 }
527 
528 static const Comdat *getELFComdat(const GlobalValue *GV) {
529   const Comdat *C = GV->getComdat();
530   if (!C)
531     return nullptr;
532 
533   if (C->getSelectionKind() != Comdat::Any &&
534       C->getSelectionKind() != Comdat::NoDuplicates)
535     report_fatal_error("ELF COMDATs only support SelectionKind::Any and "
536                        "SelectionKind::NoDuplicates, '" + C->getName() +
537                        "' cannot be lowered.");
538 
539   return C;
540 }
541 
542 static const MCSymbolELF *getLinkedToSymbol(const GlobalObject *GO,
543                                             const TargetMachine &TM) {
544   MDNode *MD = GO->getMetadata(LLVMContext::MD_associated);
545   if (!MD)
546     return nullptr;
547 
548   const MDOperand &Op = MD->getOperand(0);
549   if (!Op.get())
550     return nullptr;
551 
552   auto *VM = dyn_cast<ValueAsMetadata>(Op);
553   if (!VM)
554     report_fatal_error("MD_associated operand is not ValueAsMetadata");
555 
556   auto *OtherGV = dyn_cast<GlobalValue>(VM->getValue());
557   return OtherGV ? dyn_cast<MCSymbolELF>(TM.getSymbol(OtherGV)) : nullptr;
558 }
559 
560 static unsigned getEntrySizeForKind(SectionKind Kind) {
561   if (Kind.isMergeable1ByteCString())
562     return 1;
563   else if (Kind.isMergeable2ByteCString())
564     return 2;
565   else if (Kind.isMergeable4ByteCString())
566     return 4;
567   else if (Kind.isMergeableConst4())
568     return 4;
569   else if (Kind.isMergeableConst8())
570     return 8;
571   else if (Kind.isMergeableConst16())
572     return 16;
573   else if (Kind.isMergeableConst32())
574     return 32;
575   else {
576     // We shouldn't have mergeable C strings or mergeable constants that we
577     // didn't handle above.
578     assert(!Kind.isMergeableCString() && "unknown string width");
579     assert(!Kind.isMergeableConst() && "unknown data width");
580     return 0;
581   }
582 }
583 
584 /// Return the section prefix name used by options FunctionsSections and
585 /// DataSections.
586 static StringRef getSectionPrefixForGlobal(SectionKind Kind) {
587   if (Kind.isText())
588     return ".text";
589   if (Kind.isReadOnly())
590     return ".rodata";
591   if (Kind.isBSS())
592     return ".bss";
593   if (Kind.isThreadData())
594     return ".tdata";
595   if (Kind.isThreadBSS())
596     return ".tbss";
597   if (Kind.isData())
598     return ".data";
599   if (Kind.isReadOnlyWithRel())
600     return ".data.rel.ro";
601   llvm_unreachable("Unknown section kind");
602 }
603 
604 static SmallString<128>
605 getELFSectionNameForGlobal(const GlobalObject *GO, SectionKind Kind,
606                            Mangler &Mang, const TargetMachine &TM,
607                            unsigned EntrySize, bool UniqueSectionName) {
608   SmallString<128> Name;
609   if (Kind.isMergeableCString()) {
610     // We also need alignment here.
611     // FIXME: this is getting the alignment of the character, not the
612     // alignment of the global!
613     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
614         cast<GlobalVariable>(GO));
615 
616     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
617     Name = SizeSpec + utostr(Alignment.value());
618   } else if (Kind.isMergeableConst()) {
619     Name = ".rodata.cst";
620     Name += utostr(EntrySize);
621   } else {
622     Name = getSectionPrefixForGlobal(Kind);
623   }
624 
625   bool HasPrefix = false;
626   if (const auto *F = dyn_cast<Function>(GO)) {
627     if (Optional<StringRef> Prefix = F->getSectionPrefix()) {
628       raw_svector_ostream(Name) << '.' << *Prefix;
629       HasPrefix = true;
630     }
631   }
632 
633   if (UniqueSectionName) {
634     Name.push_back('.');
635     TM.getNameWithPrefix(Name, GO, Mang, /*MayAlwaysUsePrivate*/true);
636   } else if (HasPrefix)
637     // For distinguishing between .text.${text-section-prefix}. (with trailing
638     // dot) and .text.${function-name}
639     Name.push_back('.');
640   return Name;
641 }
642 
643 namespace {
644 class LoweringDiagnosticInfo : public DiagnosticInfo {
645   const Twine &Msg;
646 
647 public:
648   LoweringDiagnosticInfo(const Twine &DiagMsg,
649                          DiagnosticSeverity Severity = DS_Error)
650       : DiagnosticInfo(DK_Lowering, Severity), Msg(DiagMsg) {}
651   void print(DiagnosticPrinter &DP) const override { DP << Msg; }
652 };
653 }
654 
655 MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal(
656     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
657   StringRef SectionName = GO->getSection();
658 
659   // Check if '#pragma clang section' name is applicable.
660   // Note that pragma directive overrides -ffunction-section, -fdata-section
661   // and so section name is exactly as user specified and not uniqued.
662   const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO);
663   if (GV && GV->hasImplicitSection()) {
664     auto Attrs = GV->getAttributes();
665     if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) {
666       SectionName = Attrs.getAttribute("bss-section").getValueAsString();
667     } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) {
668       SectionName = Attrs.getAttribute("rodata-section").getValueAsString();
669     } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) {
670       SectionName = Attrs.getAttribute("relro-section").getValueAsString();
671     } else if (Attrs.hasAttribute("data-section") && Kind.isData()) {
672       SectionName = Attrs.getAttribute("data-section").getValueAsString();
673     }
674   }
675   const Function *F = dyn_cast<Function>(GO);
676   if (F && F->hasFnAttribute("implicit-section-name")) {
677     SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
678   }
679 
680   // Infer section flags from the section name if we can.
681   Kind = getELFKindForNamedSection(SectionName, Kind);
682 
683   StringRef Group = "";
684   bool IsComdat = false;
685   unsigned Flags = getELFSectionFlags(Kind);
686   if (const Comdat *C = getELFComdat(GO)) {
687     Group = C->getName();
688     IsComdat = C->getSelectionKind() == Comdat::Any;
689     Flags |= ELF::SHF_GROUP;
690   }
691 
692   unsigned EntrySize = getEntrySizeForKind(Kind);
693 
694   // A section can have at most one associated section. Put each global with
695   // MD_associated in a unique section.
696   unsigned UniqueID = MCContext::GenericSectionID;
697   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
698   const bool Associated = GO->getMetadata(LLVMContext::MD_associated);
699   const bool Retain = Used.count(GO);
700   if (Associated || Retain) {
701     UniqueID = NextUniqueID++;
702     if (Associated)
703       Flags |= ELF::SHF_LINK_ORDER;
704     if (Retain && (getContext().getAsmInfo()->useIntegratedAssembler() ||
705                    getContext().getAsmInfo()->binutilsIsAtLeast(2, 36)))
706       Flags |= ELF::SHF_GNU_RETAIN;
707   } else {
708     if (getContext().getAsmInfo()->useIntegratedAssembler() ||
709         getContext().getAsmInfo()->binutilsIsAtLeast(2, 35)) {
710       // Symbols must be placed into sections with compatible entry
711       // sizes. Generate unique sections for symbols that have not
712       // been assigned to compatible sections.
713       if (Flags & ELF::SHF_MERGE) {
714         auto maybeID = getContext().getELFUniqueIDForEntsize(SectionName, Flags,
715                                                              EntrySize);
716         if (maybeID)
717           UniqueID = *maybeID;
718         else {
719           // If the user has specified the same section name as would be created
720           // implicitly for this symbol e.g. .rodata.str1.1, then we don't need
721           // to unique the section as the entry size for this symbol will be
722           // compatible with implicitly created sections.
723           SmallString<128> ImplicitSectionNameStem = getELFSectionNameForGlobal(
724               GO, Kind, getMangler(), TM, EntrySize, false);
725           if (!(getContext().isELFImplicitMergeableSectionNamePrefix(
726                     SectionName) &&
727                 SectionName.startswith(ImplicitSectionNameStem)))
728             UniqueID = NextUniqueID++;
729         }
730       } else {
731         // We need to unique the section if the user has explicity
732         // assigned a non-mergeable symbol to a section name for
733         // a generic mergeable section.
734         if (getContext().isELFGenericMergeableSection(SectionName)) {
735           auto maybeID = getContext().getELFUniqueIDForEntsize(
736               SectionName, Flags, EntrySize);
737           UniqueID = maybeID ? *maybeID : NextUniqueID++;
738         }
739       }
740     } else {
741       // If two symbols with differing sizes end up in the same mergeable
742       // section that section can be assigned an incorrect entry size. To avoid
743       // this we usually put symbols of the same size into distinct mergeable
744       // sections with the same name. Doing so relies on the ",unique ,"
745       // assembly feature. This feature is not avalible until bintuils
746       // version 2.35 (https://sourceware.org/bugzilla/show_bug.cgi?id=25380).
747       Flags &= ~ELF::SHF_MERGE;
748       EntrySize = 0;
749     }
750   }
751 
752   MCSectionELF *Section = getContext().getELFSection(
753       SectionName, getELFSectionType(SectionName, Kind), Flags, EntrySize,
754       Group, IsComdat, UniqueID, LinkedToSym);
755   // Make sure that we did not get some other section with incompatible sh_link.
756   // This should not be possible due to UniqueID code above.
757   assert(Section->getLinkedToSymbol() == LinkedToSym &&
758          "Associated symbol mismatch between sections");
759 
760   if (!(getContext().getAsmInfo()->useIntegratedAssembler() ||
761         getContext().getAsmInfo()->binutilsIsAtLeast(2, 35))) {
762     // If we are using GNU as before 2.35, then this symbol might have
763     // been placed in an incompatible mergeable section. Emit an error if this
764     // is the case to avoid creating broken output.
765     if ((Section->getFlags() & ELF::SHF_MERGE) &&
766         (Section->getEntrySize() != getEntrySizeForKind(Kind)))
767       GO->getContext().diagnose(LoweringDiagnosticInfo(
768           "Symbol '" + GO->getName() + "' from module '" +
769           (GO->getParent() ? GO->getParent()->getSourceFileName() : "unknown") +
770           "' required a section with entry-size=" +
771           Twine(getEntrySizeForKind(Kind)) + " but was placed in section '" +
772           SectionName + "' with entry-size=" + Twine(Section->getEntrySize()) +
773           ": Explicit assignment by pragma or attribute of an incompatible "
774           "symbol to this section?"));
775   }
776 
777   return Section;
778 }
779 
780 static MCSectionELF *selectELFSectionForGlobal(
781     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
782     const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags,
783     unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) {
784 
785   StringRef Group = "";
786   bool IsComdat = false;
787   if (const Comdat *C = getELFComdat(GO)) {
788     Flags |= ELF::SHF_GROUP;
789     Group = C->getName();
790     IsComdat = C->getSelectionKind() == Comdat::Any;
791   }
792 
793   // Get the section entry size based on the kind.
794   unsigned EntrySize = getEntrySizeForKind(Kind);
795 
796   bool UniqueSectionName = false;
797   unsigned UniqueID = MCContext::GenericSectionID;
798   if (EmitUniqueSection) {
799     if (TM.getUniqueSectionNames()) {
800       UniqueSectionName = true;
801     } else {
802       UniqueID = *NextUniqueID;
803       (*NextUniqueID)++;
804     }
805   }
806   SmallString<128> Name = getELFSectionNameForGlobal(
807       GO, Kind, Mang, TM, EntrySize, UniqueSectionName);
808 
809   // Use 0 as the unique ID for execute-only text.
810   if (Kind.isExecuteOnly())
811     UniqueID = 0;
812   return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags,
813                            EntrySize, Group, IsComdat, UniqueID,
814                            AssociatedSymbol);
815 }
816 
817 static MCSection *selectELFSectionForGlobal(
818     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
819     const TargetMachine &TM, bool Retain, bool EmitUniqueSection,
820     unsigned Flags, unsigned *NextUniqueID) {
821   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
822   if (LinkedToSym) {
823     EmitUniqueSection = true;
824     Flags |= ELF::SHF_LINK_ORDER;
825   }
826   if (Retain && (Ctx.getAsmInfo()->useIntegratedAssembler() ||
827                  Ctx.getAsmInfo()->binutilsIsAtLeast(2, 36))) {
828     EmitUniqueSection = true;
829     Flags |= ELF::SHF_GNU_RETAIN;
830   }
831 
832   MCSectionELF *Section = selectELFSectionForGlobal(
833       Ctx, GO, Kind, Mang, TM, EmitUniqueSection, Flags,
834       NextUniqueID, LinkedToSym);
835   assert(Section->getLinkedToSymbol() == LinkedToSym);
836   return Section;
837 }
838 
839 MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal(
840     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
841   unsigned Flags = getELFSectionFlags(Kind);
842 
843   // If we have -ffunction-section or -fdata-section then we should emit the
844   // global value to a uniqued section specifically for it.
845   bool EmitUniqueSection = false;
846   if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) {
847     if (Kind.isText())
848       EmitUniqueSection = TM.getFunctionSections();
849     else
850       EmitUniqueSection = TM.getDataSections();
851   }
852   EmitUniqueSection |= GO->hasComdat();
853   return selectELFSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
854                                    Used.count(GO), EmitUniqueSection, Flags,
855                                    &NextUniqueID);
856 }
857 
858 MCSection *TargetLoweringObjectFileELF::getUniqueSectionForFunction(
859     const Function &F, const TargetMachine &TM) const {
860   SectionKind Kind = SectionKind::getText();
861   unsigned Flags = getELFSectionFlags(Kind);
862   return selectELFSectionForGlobal(
863       getContext(), &F, Kind, getMangler(), TM, Used.count(&F),
864       /*EmitUniqueSection=*/true, Flags, &NextUniqueID);
865 }
866 
867 MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable(
868     const Function &F, const TargetMachine &TM) const {
869   // If the function can be removed, produce a unique section so that
870   // the table doesn't prevent the removal.
871   const Comdat *C = F.getComdat();
872   bool EmitUniqueSection = TM.getFunctionSections() || C;
873   if (!EmitUniqueSection)
874     return ReadOnlySection;
875 
876   return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(),
877                                    getMangler(), TM, EmitUniqueSection,
878                                    ELF::SHF_ALLOC, &NextUniqueID,
879                                    /* AssociatedSymbol */ nullptr);
880 }
881 
882 MCSection *TargetLoweringObjectFileELF::getSectionForLSDA(
883     const Function &F, const MCSymbol &FnSym, const TargetMachine &TM) const {
884   // If neither COMDAT nor function sections, use the monolithic LSDA section.
885   // Re-use this path if LSDASection is null as in the Arm EHABI.
886   if (!LSDASection || (!F.hasComdat() && !TM.getFunctionSections()))
887     return LSDASection;
888 
889   const auto *LSDA = cast<MCSectionELF>(LSDASection);
890   unsigned Flags = LSDA->getFlags();
891   const MCSymbolELF *LinkedToSym = nullptr;
892   StringRef Group;
893   bool IsComdat = false;
894   if (const Comdat *C = getELFComdat(&F)) {
895     Flags |= ELF::SHF_GROUP;
896     Group = C->getName();
897     IsComdat = C->getSelectionKind() == Comdat::Any;
898   }
899   // Use SHF_LINK_ORDER to facilitate --gc-sections if we can use GNU ld>=2.36
900   // or LLD, which support mixed SHF_LINK_ORDER & non-SHF_LINK_ORDER.
901   if (TM.getFunctionSections() &&
902       (getContext().getAsmInfo()->useIntegratedAssembler() &&
903        getContext().getAsmInfo()->binutilsIsAtLeast(2, 36))) {
904     Flags |= ELF::SHF_LINK_ORDER;
905     LinkedToSym = cast<MCSymbolELF>(&FnSym);
906   }
907 
908   // Append the function name as the suffix like GCC, assuming
909   // -funique-section-names applies to .gcc_except_table sections.
910   return getContext().getELFSection(
911       (TM.getUniqueSectionNames() ? LSDA->getName() + "." + F.getName()
912                                   : LSDA->getName()),
913       LSDA->getType(), Flags, 0, Group, IsComdat, MCSection::NonUniqueID,
914       LinkedToSym);
915 }
916 
917 bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection(
918     bool UsesLabelDifference, const Function &F) const {
919   // We can always create relative relocations, so use another section
920   // that can be marked non-executable.
921   return false;
922 }
923 
924 /// Given a mergeable constant with the specified size and relocation
925 /// information, return a section that it should be placed in.
926 MCSection *TargetLoweringObjectFileELF::getSectionForConstant(
927     const DataLayout &DL, SectionKind Kind, const Constant *C,
928     Align &Alignment) const {
929   if (Kind.isMergeableConst4() && MergeableConst4Section)
930     return MergeableConst4Section;
931   if (Kind.isMergeableConst8() && MergeableConst8Section)
932     return MergeableConst8Section;
933   if (Kind.isMergeableConst16() && MergeableConst16Section)
934     return MergeableConst16Section;
935   if (Kind.isMergeableConst32() && MergeableConst32Section)
936     return MergeableConst32Section;
937   if (Kind.isReadOnly())
938     return ReadOnlySection;
939 
940   assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
941   return DataRelROSection;
942 }
943 
944 /// Returns a unique section for the given machine basic block.
945 MCSection *TargetLoweringObjectFileELF::getSectionForMachineBasicBlock(
946     const Function &F, const MachineBasicBlock &MBB,
947     const TargetMachine &TM) const {
948   assert(MBB.isBeginSection() && "Basic block does not start a section!");
949   unsigned UniqueID = MCContext::GenericSectionID;
950 
951   // For cold sections use the .text.split. prefix along with the parent
952   // function name. All cold blocks for the same function go to the same
953   // section. Similarly all exception blocks are grouped by symbol name
954   // under the .text.eh prefix. For regular sections, we either use a unique
955   // name, or a unique ID for the section.
956   SmallString<128> Name;
957   if (MBB.getSectionID() == MBBSectionID::ColdSectionID) {
958     Name += BBSectionsColdTextPrefix;
959     Name += MBB.getParent()->getName();
960   } else if (MBB.getSectionID() == MBBSectionID::ExceptionSectionID) {
961     Name += ".text.eh.";
962     Name += MBB.getParent()->getName();
963   } else {
964     Name += MBB.getParent()->getSection()->getName();
965     if (TM.getUniqueBasicBlockSectionNames()) {
966       if (!Name.endswith("."))
967         Name += ".";
968       Name += MBB.getSymbol()->getName();
969     } else {
970       UniqueID = NextUniqueID++;
971     }
972   }
973 
974   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR;
975   std::string GroupName;
976   if (F.hasComdat()) {
977     Flags |= ELF::SHF_GROUP;
978     GroupName = F.getComdat()->getName().str();
979   }
980   return getContext().getELFSection(Name, ELF::SHT_PROGBITS, Flags,
981                                     0 /* Entry Size */, GroupName,
982                                     F.hasComdat(), UniqueID, nullptr);
983 }
984 
985 static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray,
986                                               bool IsCtor, unsigned Priority,
987                                               const MCSymbol *KeySym) {
988   std::string Name;
989   unsigned Type;
990   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
991   StringRef Comdat = KeySym ? KeySym->getName() : "";
992 
993   if (KeySym)
994     Flags |= ELF::SHF_GROUP;
995 
996   if (UseInitArray) {
997     if (IsCtor) {
998       Type = ELF::SHT_INIT_ARRAY;
999       Name = ".init_array";
1000     } else {
1001       Type = ELF::SHT_FINI_ARRAY;
1002       Name = ".fini_array";
1003     }
1004     if (Priority != 65535) {
1005       Name += '.';
1006       Name += utostr(Priority);
1007     }
1008   } else {
1009     // The default scheme is .ctor / .dtor, so we have to invert the priority
1010     // numbering.
1011     if (IsCtor)
1012       Name = ".ctors";
1013     else
1014       Name = ".dtors";
1015     if (Priority != 65535)
1016       raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1017     Type = ELF::SHT_PROGBITS;
1018   }
1019 
1020   return Ctx.getELFSection(Name, Type, Flags, 0, Comdat, /*IsComdat=*/true);
1021 }
1022 
1023 MCSection *TargetLoweringObjectFileELF::getStaticCtorSection(
1024     unsigned Priority, const MCSymbol *KeySym) const {
1025   return getStaticStructorSection(getContext(), UseInitArray, true, Priority,
1026                                   KeySym);
1027 }
1028 
1029 MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
1030     unsigned Priority, const MCSymbol *KeySym) const {
1031   return getStaticStructorSection(getContext(), UseInitArray, false, Priority,
1032                                   KeySym);
1033 }
1034 
1035 const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference(
1036     const GlobalValue *LHS, const GlobalValue *RHS,
1037     const TargetMachine &TM) const {
1038   // We may only use a PLT-relative relocation to refer to unnamed_addr
1039   // functions.
1040   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
1041     return nullptr;
1042 
1043   // Basic sanity checks.
1044   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1045       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
1046       RHS->isThreadLocal())
1047     return nullptr;
1048 
1049   return MCBinaryExpr::createSub(
1050       MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind,
1051                               getContext()),
1052       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
1053 }
1054 
1055 const MCExpr *TargetLoweringObjectFileELF::lowerDSOLocalEquivalent(
1056     const DSOLocalEquivalent *Equiv, const TargetMachine &TM) const {
1057   assert(supportDSOLocalEquivalentLowering());
1058 
1059   const auto *GV = Equiv->getGlobalValue();
1060 
1061   // A PLT entry is not needed for dso_local globals.
1062   if (GV->isDSOLocal() || GV->isImplicitDSOLocal())
1063     return MCSymbolRefExpr::create(TM.getSymbol(GV), getContext());
1064 
1065   return MCSymbolRefExpr::create(TM.getSymbol(GV), PLTRelativeVariantKind,
1066                                  getContext());
1067 }
1068 
1069 MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const {
1070   // Use ".GCC.command.line" since this feature is to support clang's
1071   // -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the
1072   // same name.
1073   return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS,
1074                                     ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
1075 }
1076 
1077 void
1078 TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) {
1079   UseInitArray = UseInitArray_;
1080   MCContext &Ctx = getContext();
1081   if (!UseInitArray) {
1082     StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS,
1083                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1084 
1085     StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS,
1086                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1087     return;
1088   }
1089 
1090   StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY,
1091                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1092   StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY,
1093                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1094 }
1095 
1096 //===----------------------------------------------------------------------===//
1097 //                                 MachO
1098 //===----------------------------------------------------------------------===//
1099 
1100 TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO()
1101   : TargetLoweringObjectFile() {
1102   SupportIndirectSymViaGOTPCRel = true;
1103 }
1104 
1105 void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx,
1106                                                const TargetMachine &TM) {
1107   TargetLoweringObjectFile::Initialize(Ctx, TM);
1108   if (TM.getRelocationModel() == Reloc::Static) {
1109     StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0,
1110                                             SectionKind::getData());
1111     StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0,
1112                                             SectionKind::getData());
1113   } else {
1114     StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func",
1115                                             MachO::S_MOD_INIT_FUNC_POINTERS,
1116                                             SectionKind::getData());
1117     StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func",
1118                                             MachO::S_MOD_TERM_FUNC_POINTERS,
1119                                             SectionKind::getData());
1120   }
1121 
1122   PersonalityEncoding =
1123       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1124   LSDAEncoding = dwarf::DW_EH_PE_pcrel;
1125   TTypeEncoding =
1126       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1127 }
1128 
1129 void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer,
1130                                                        Module &M) const {
1131   // Emit the linker options if present.
1132   if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1133     for (const auto *Option : LinkerOptions->operands()) {
1134       SmallVector<std::string, 4> StrOptions;
1135       for (const auto &Piece : cast<MDNode>(Option)->operands())
1136         StrOptions.push_back(std::string(cast<MDString>(Piece)->getString()));
1137       Streamer.emitLinkerOptions(StrOptions);
1138     }
1139   }
1140 
1141   unsigned VersionVal = 0;
1142   unsigned ImageInfoFlags = 0;
1143   StringRef SectionVal;
1144 
1145   GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal);
1146 
1147   // The section is mandatory. If we don't have it, then we don't have GC info.
1148   if (SectionVal.empty())
1149     return;
1150 
1151   StringRef Segment, Section;
1152   unsigned TAA = 0, StubSize = 0;
1153   bool TAAParsed;
1154   if (Error E = MCSectionMachO::ParseSectionSpecifier(
1155           SectionVal, Segment, Section, TAA, TAAParsed, StubSize)) {
1156     // If invalid, report the error with report_fatal_error.
1157     report_fatal_error("Invalid section specifier '" + Section +
1158                        "': " + toString(std::move(E)) + ".");
1159   }
1160 
1161   // Get the section.
1162   MCSectionMachO *S = getContext().getMachOSection(
1163       Segment, Section, TAA, StubSize, SectionKind::getData());
1164   Streamer.SwitchSection(S);
1165   Streamer.emitLabel(getContext().
1166                      getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO")));
1167   Streamer.emitInt32(VersionVal);
1168   Streamer.emitInt32(ImageInfoFlags);
1169   Streamer.AddBlankLine();
1170 }
1171 
1172 static void checkMachOComdat(const GlobalValue *GV) {
1173   const Comdat *C = GV->getComdat();
1174   if (!C)
1175     return;
1176 
1177   report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() +
1178                      "' cannot be lowered.");
1179 }
1180 
1181 MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
1182     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1183 
1184   StringRef SectionName = GO->getSection();
1185 
1186   const Function *F = dyn_cast<Function>(GO);
1187   if (F && F->hasFnAttribute("implicit-section-name")) {
1188     SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
1189   }
1190 
1191   // Parse the section specifier and create it if valid.
1192   StringRef Segment, Section;
1193   unsigned TAA = 0, StubSize = 0;
1194   bool TAAParsed;
1195 
1196   checkMachOComdat(GO);
1197 
1198   if (Error E = MCSectionMachO::ParseSectionSpecifier(
1199           SectionName, Segment, Section, TAA, TAAParsed, StubSize)) {
1200     // If invalid, report the error with report_fatal_error.
1201     report_fatal_error("Global variable '" + GO->getName() +
1202                        "' has an invalid section specifier '" +
1203                        GO->getSection() + "': " + toString(std::move(E)) + ".");
1204   }
1205 
1206   // Get the section.
1207   MCSectionMachO *S =
1208       getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind);
1209 
1210   // If TAA wasn't set by ParseSectionSpecifier() above,
1211   // use the value returned by getMachOSection() as a default.
1212   if (!TAAParsed)
1213     TAA = S->getTypeAndAttributes();
1214 
1215   // Okay, now that we got the section, verify that the TAA & StubSize agree.
1216   // If the user declared multiple globals with different section flags, we need
1217   // to reject it here.
1218   if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) {
1219     // If invalid, report the error with report_fatal_error.
1220     report_fatal_error("Global variable '" + GO->getName() +
1221                        "' section type or attributes does not match previous"
1222                        " section specifier");
1223   }
1224 
1225   return S;
1226 }
1227 
1228 MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal(
1229     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1230   checkMachOComdat(GO);
1231 
1232   // Handle thread local data.
1233   if (Kind.isThreadBSS()) return TLSBSSSection;
1234   if (Kind.isThreadData()) return TLSDataSection;
1235 
1236   if (Kind.isText())
1237     return GO->isWeakForLinker() ? TextCoalSection : TextSection;
1238 
1239   // If this is weak/linkonce, put this in a coalescable section, either in text
1240   // or data depending on if it is writable.
1241   if (GO->isWeakForLinker()) {
1242     if (Kind.isReadOnly())
1243       return ConstTextCoalSection;
1244     if (Kind.isReadOnlyWithRel())
1245       return ConstDataCoalSection;
1246     return DataCoalSection;
1247   }
1248 
1249   // FIXME: Alignment check should be handled by section classifier.
1250   if (Kind.isMergeable1ByteCString() &&
1251       GO->getParent()->getDataLayout().getPreferredAlign(
1252           cast<GlobalVariable>(GO)) < Align(32))
1253     return CStringSection;
1254 
1255   // Do not put 16-bit arrays in the UString section if they have an
1256   // externally visible label, this runs into issues with certain linker
1257   // versions.
1258   if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() &&
1259       GO->getParent()->getDataLayout().getPreferredAlign(
1260           cast<GlobalVariable>(GO)) < Align(32))
1261     return UStringSection;
1262 
1263   // With MachO only variables whose corresponding symbol starts with 'l' or
1264   // 'L' can be merged, so we only try merging GVs with private linkage.
1265   if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) {
1266     if (Kind.isMergeableConst4())
1267       return FourByteConstantSection;
1268     if (Kind.isMergeableConst8())
1269       return EightByteConstantSection;
1270     if (Kind.isMergeableConst16())
1271       return SixteenByteConstantSection;
1272   }
1273 
1274   // Otherwise, if it is readonly, but not something we can specially optimize,
1275   // just drop it in .const.
1276   if (Kind.isReadOnly())
1277     return ReadOnlySection;
1278 
1279   // If this is marked const, put it into a const section.  But if the dynamic
1280   // linker needs to write to it, put it in the data segment.
1281   if (Kind.isReadOnlyWithRel())
1282     return ConstDataSection;
1283 
1284   // Put zero initialized globals with strong external linkage in the
1285   // DATA, __common section with the .zerofill directive.
1286   if (Kind.isBSSExtern())
1287     return DataCommonSection;
1288 
1289   // Put zero initialized globals with local linkage in __DATA,__bss directive
1290   // with the .zerofill directive (aka .lcomm).
1291   if (Kind.isBSSLocal())
1292     return DataBSSSection;
1293 
1294   // Otherwise, just drop the variable in the normal data section.
1295   return DataSection;
1296 }
1297 
1298 MCSection *TargetLoweringObjectFileMachO::getSectionForConstant(
1299     const DataLayout &DL, SectionKind Kind, const Constant *C,
1300     Align &Alignment) const {
1301   // If this constant requires a relocation, we have to put it in the data
1302   // segment, not in the text segment.
1303   if (Kind.isData() || Kind.isReadOnlyWithRel())
1304     return ConstDataSection;
1305 
1306   if (Kind.isMergeableConst4())
1307     return FourByteConstantSection;
1308   if (Kind.isMergeableConst8())
1309     return EightByteConstantSection;
1310   if (Kind.isMergeableConst16())
1311     return SixteenByteConstantSection;
1312   return ReadOnlySection;  // .const
1313 }
1314 
1315 const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference(
1316     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
1317     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1318   // The mach-o version of this method defaults to returning a stub reference.
1319 
1320   if (Encoding & DW_EH_PE_indirect) {
1321     MachineModuleInfoMachO &MachOMMI =
1322       MMI->getObjFileInfo<MachineModuleInfoMachO>();
1323 
1324     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1325 
1326     // Add information about the stub reference to MachOMMI so that the stub
1327     // gets emitted by the asmprinter.
1328     MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1329     if (!StubSym.getPointer()) {
1330       MCSymbol *Sym = TM.getSymbol(GV);
1331       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1332     }
1333 
1334     return TargetLoweringObjectFile::
1335       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
1336                         Encoding & ~DW_EH_PE_indirect, Streamer);
1337   }
1338 
1339   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
1340                                                            MMI, Streamer);
1341 }
1342 
1343 MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol(
1344     const GlobalValue *GV, const TargetMachine &TM,
1345     MachineModuleInfo *MMI) const {
1346   // The mach-o version of this method defaults to returning a stub reference.
1347   MachineModuleInfoMachO &MachOMMI =
1348     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1349 
1350   MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1351 
1352   // Add information about the stub reference to MachOMMI so that the stub
1353   // gets emitted by the asmprinter.
1354   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1355   if (!StubSym.getPointer()) {
1356     MCSymbol *Sym = TM.getSymbol(GV);
1357     StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1358   }
1359 
1360   return SSym;
1361 }
1362 
1363 const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel(
1364     const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV,
1365     int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1366   // Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation
1367   // as 64-bit do, we replace the GOT equivalent by accessing the final symbol
1368   // through a non_lazy_ptr stub instead. One advantage is that it allows the
1369   // computation of deltas to final external symbols. Example:
1370   //
1371   //    _extgotequiv:
1372   //       .long   _extfoo
1373   //
1374   //    _delta:
1375   //       .long   _extgotequiv-_delta
1376   //
1377   // is transformed to:
1378   //
1379   //    _delta:
1380   //       .long   L_extfoo$non_lazy_ptr-(_delta+0)
1381   //
1382   //       .section        __IMPORT,__pointers,non_lazy_symbol_pointers
1383   //    L_extfoo$non_lazy_ptr:
1384   //       .indirect_symbol        _extfoo
1385   //       .long   0
1386   //
1387   // The indirect symbol table (and sections of non_lazy_symbol_pointers type)
1388   // may point to both local (same translation unit) and global (other
1389   // translation units) symbols. Example:
1390   //
1391   // .section __DATA,__pointers,non_lazy_symbol_pointers
1392   // L1:
1393   //    .indirect_symbol _myGlobal
1394   //    .long 0
1395   // L2:
1396   //    .indirect_symbol _myLocal
1397   //    .long _myLocal
1398   //
1399   // If the symbol is local, instead of the symbol's index, the assembler
1400   // places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table.
1401   // Then the linker will notice the constant in the table and will look at the
1402   // content of the symbol.
1403   MachineModuleInfoMachO &MachOMMI =
1404     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1405   MCContext &Ctx = getContext();
1406 
1407   // The offset must consider the original displacement from the base symbol
1408   // since 32-bit targets don't have a GOTPCREL to fold the PC displacement.
1409   Offset = -MV.getConstant();
1410   const MCSymbol *BaseSym = &MV.getSymB()->getSymbol();
1411 
1412   // Access the final symbol via sym$non_lazy_ptr and generate the appropriated
1413   // non_lazy_ptr stubs.
1414   SmallString<128> Name;
1415   StringRef Suffix = "$non_lazy_ptr";
1416   Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix();
1417   Name += Sym->getName();
1418   Name += Suffix;
1419   MCSymbol *Stub = Ctx.getOrCreateSymbol(Name);
1420 
1421   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub);
1422 
1423   if (!StubSym.getPointer())
1424     StubSym = MachineModuleInfoImpl::StubValueTy(const_cast<MCSymbol *>(Sym),
1425                                                  !GV->hasLocalLinkage());
1426 
1427   const MCExpr *BSymExpr =
1428     MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx);
1429   const MCExpr *LHS =
1430     MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx);
1431 
1432   if (!Offset)
1433     return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx);
1434 
1435   const MCExpr *RHS =
1436     MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx);
1437   return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1438 }
1439 
1440 static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo,
1441                                const MCSection &Section) {
1442   if (!AsmInfo.isSectionAtomizableBySymbols(Section))
1443     return true;
1444 
1445   // If it is not dead stripped, it is safe to use private labels.
1446   const MCSectionMachO &SMO = cast<MCSectionMachO>(Section);
1447   if (SMO.hasAttribute(MachO::S_ATTR_NO_DEAD_STRIP))
1448     return true;
1449 
1450   return false;
1451 }
1452 
1453 void TargetLoweringObjectFileMachO::getNameWithPrefix(
1454     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1455     const TargetMachine &TM) const {
1456   bool CannotUsePrivateLabel = true;
1457   if (auto *GO = GV->getBaseObject()) {
1458     SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM);
1459     const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM);
1460     CannotUsePrivateLabel =
1461         !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection);
1462   }
1463   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1464 }
1465 
1466 //===----------------------------------------------------------------------===//
1467 //                                  COFF
1468 //===----------------------------------------------------------------------===//
1469 
1470 static unsigned
1471 getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) {
1472   unsigned Flags = 0;
1473   bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb;
1474 
1475   if (K.isMetadata())
1476     Flags |=
1477       COFF::IMAGE_SCN_MEM_DISCARDABLE;
1478   else if (K.isText())
1479     Flags |=
1480       COFF::IMAGE_SCN_MEM_EXECUTE |
1481       COFF::IMAGE_SCN_MEM_READ |
1482       COFF::IMAGE_SCN_CNT_CODE |
1483       (isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0);
1484   else if (K.isBSS())
1485     Flags |=
1486       COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
1487       COFF::IMAGE_SCN_MEM_READ |
1488       COFF::IMAGE_SCN_MEM_WRITE;
1489   else if (K.isThreadLocal())
1490     Flags |=
1491       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1492       COFF::IMAGE_SCN_MEM_READ |
1493       COFF::IMAGE_SCN_MEM_WRITE;
1494   else if (K.isReadOnly() || K.isReadOnlyWithRel())
1495     Flags |=
1496       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1497       COFF::IMAGE_SCN_MEM_READ;
1498   else if (K.isWriteable())
1499     Flags |=
1500       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1501       COFF::IMAGE_SCN_MEM_READ |
1502       COFF::IMAGE_SCN_MEM_WRITE;
1503 
1504   return Flags;
1505 }
1506 
1507 static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) {
1508   const Comdat *C = GV->getComdat();
1509   assert(C && "expected GV to have a Comdat!");
1510 
1511   StringRef ComdatGVName = C->getName();
1512   const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName);
1513   if (!ComdatGV)
1514     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1515                        "' does not exist.");
1516 
1517   if (ComdatGV->getComdat() != C)
1518     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1519                        "' is not a key for its COMDAT.");
1520 
1521   return ComdatGV;
1522 }
1523 
1524 static int getSelectionForCOFF(const GlobalValue *GV) {
1525   if (const Comdat *C = GV->getComdat()) {
1526     const GlobalValue *ComdatKey = getComdatGVForCOFF(GV);
1527     if (const auto *GA = dyn_cast<GlobalAlias>(ComdatKey))
1528       ComdatKey = GA->getBaseObject();
1529     if (ComdatKey == GV) {
1530       switch (C->getSelectionKind()) {
1531       case Comdat::Any:
1532         return COFF::IMAGE_COMDAT_SELECT_ANY;
1533       case Comdat::ExactMatch:
1534         return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH;
1535       case Comdat::Largest:
1536         return COFF::IMAGE_COMDAT_SELECT_LARGEST;
1537       case Comdat::NoDuplicates:
1538         return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1539       case Comdat::SameSize:
1540         return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE;
1541       }
1542     } else {
1543       return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE;
1544     }
1545   }
1546   return 0;
1547 }
1548 
1549 MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal(
1550     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1551   int Selection = 0;
1552   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1553   StringRef Name = GO->getSection();
1554   StringRef COMDATSymName = "";
1555   if (GO->hasComdat()) {
1556     Selection = getSelectionForCOFF(GO);
1557     const GlobalValue *ComdatGV;
1558     if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
1559       ComdatGV = getComdatGVForCOFF(GO);
1560     else
1561       ComdatGV = GO;
1562 
1563     if (!ComdatGV->hasPrivateLinkage()) {
1564       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1565       COMDATSymName = Sym->getName();
1566       Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1567     } else {
1568       Selection = 0;
1569     }
1570   }
1571 
1572   return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName,
1573                                      Selection);
1574 }
1575 
1576 static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) {
1577   if (Kind.isText())
1578     return ".text";
1579   if (Kind.isBSS())
1580     return ".bss";
1581   if (Kind.isThreadLocal())
1582     return ".tls$";
1583   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1584     return ".rdata";
1585   return ".data";
1586 }
1587 
1588 MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
1589     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1590   // If we have -ffunction-sections then we should emit the global value to a
1591   // uniqued section specifically for it.
1592   bool EmitUniquedSection;
1593   if (Kind.isText())
1594     EmitUniquedSection = TM.getFunctionSections();
1595   else
1596     EmitUniquedSection = TM.getDataSections();
1597 
1598   if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) {
1599     SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind);
1600 
1601     unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1602 
1603     Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1604     int Selection = getSelectionForCOFF(GO);
1605     if (!Selection)
1606       Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1607     const GlobalValue *ComdatGV;
1608     if (GO->hasComdat())
1609       ComdatGV = getComdatGVForCOFF(GO);
1610     else
1611       ComdatGV = GO;
1612 
1613     unsigned UniqueID = MCContext::GenericSectionID;
1614     if (EmitUniquedSection)
1615       UniqueID = NextUniqueID++;
1616 
1617     if (!ComdatGV->hasPrivateLinkage()) {
1618       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1619       StringRef COMDATSymName = Sym->getName();
1620 
1621       if (const auto *F = dyn_cast<Function>(GO))
1622         if (Optional<StringRef> Prefix = F->getSectionPrefix())
1623           raw_svector_ostream(Name) << '$' << *Prefix;
1624 
1625       // Append "$symbol" to the section name *before* IR-level mangling is
1626       // applied when targetting mingw. This is what GCC does, and the ld.bfd
1627       // COFF linker will not properly handle comdats otherwise.
1628       if (getTargetTriple().isWindowsGNUEnvironment())
1629         raw_svector_ostream(Name) << '$' << ComdatGV->getName();
1630 
1631       return getContext().getCOFFSection(Name, Characteristics, Kind,
1632                                          COMDATSymName, Selection, UniqueID);
1633     } else {
1634       SmallString<256> TmpData;
1635       getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true);
1636       return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData,
1637                                          Selection, UniqueID);
1638     }
1639   }
1640 
1641   if (Kind.isText())
1642     return TextSection;
1643 
1644   if (Kind.isThreadLocal())
1645     return TLSDataSection;
1646 
1647   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1648     return ReadOnlySection;
1649 
1650   // Note: we claim that common symbols are put in BSSSection, but they are
1651   // really emitted with the magic .comm directive, which creates a symbol table
1652   // entry but not a section.
1653   if (Kind.isBSS() || Kind.isCommon())
1654     return BSSSection;
1655 
1656   return DataSection;
1657 }
1658 
1659 void TargetLoweringObjectFileCOFF::getNameWithPrefix(
1660     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1661     const TargetMachine &TM) const {
1662   bool CannotUsePrivateLabel = false;
1663   if (GV->hasPrivateLinkage() &&
1664       ((isa<Function>(GV) && TM.getFunctionSections()) ||
1665        (isa<GlobalVariable>(GV) && TM.getDataSections())))
1666     CannotUsePrivateLabel = true;
1667 
1668   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1669 }
1670 
1671 MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
1672     const Function &F, const TargetMachine &TM) const {
1673   // If the function can be removed, produce a unique section so that
1674   // the table doesn't prevent the removal.
1675   const Comdat *C = F.getComdat();
1676   bool EmitUniqueSection = TM.getFunctionSections() || C;
1677   if (!EmitUniqueSection)
1678     return ReadOnlySection;
1679 
1680   // FIXME: we should produce a symbol for F instead.
1681   if (F.hasPrivateLinkage())
1682     return ReadOnlySection;
1683 
1684   MCSymbol *Sym = TM.getSymbol(&F);
1685   StringRef COMDATSymName = Sym->getName();
1686 
1687   SectionKind Kind = SectionKind::getReadOnly();
1688   StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind);
1689   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1690   Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1691   unsigned UniqueID = NextUniqueID++;
1692 
1693   return getContext().getCOFFSection(
1694       SecName, Characteristics, Kind, COMDATSymName,
1695       COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID);
1696 }
1697 
1698 void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer,
1699                                                       Module &M) const {
1700   emitLinkerDirectives(Streamer, M);
1701 
1702   unsigned Version = 0;
1703   unsigned Flags = 0;
1704   StringRef Section;
1705 
1706   GetObjCImageInfo(M, Version, Flags, Section);
1707   if (!Section.empty()) {
1708     auto &C = getContext();
1709     auto *S = C.getCOFFSection(Section,
1710                                COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1711                                    COFF::IMAGE_SCN_MEM_READ,
1712                                SectionKind::getReadOnly());
1713     Streamer.SwitchSection(S);
1714     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
1715     Streamer.emitInt32(Version);
1716     Streamer.emitInt32(Flags);
1717     Streamer.AddBlankLine();
1718   }
1719 
1720   emitCGProfileMetadata(Streamer, M);
1721 }
1722 
1723 void TargetLoweringObjectFileCOFF::emitLinkerDirectives(
1724     MCStreamer &Streamer, Module &M) const {
1725   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1726     // Emit the linker options to the linker .drectve section.  According to the
1727     // spec, this section is a space-separated string containing flags for
1728     // linker.
1729     MCSection *Sec = getDrectveSection();
1730     Streamer.SwitchSection(Sec);
1731     for (const auto *Option : LinkerOptions->operands()) {
1732       for (const auto &Piece : cast<MDNode>(Option)->operands()) {
1733         // Lead with a space for consistency with our dllexport implementation.
1734         std::string Directive(" ");
1735         Directive.append(std::string(cast<MDString>(Piece)->getString()));
1736         Streamer.emitBytes(Directive);
1737       }
1738     }
1739   }
1740 
1741   // Emit /EXPORT: flags for each exported global as necessary.
1742   std::string Flags;
1743   for (const GlobalValue &GV : M.global_values()) {
1744     raw_string_ostream OS(Flags);
1745     emitLinkerFlagsForGlobalCOFF(OS, &GV, getTargetTriple(), getMangler());
1746     OS.flush();
1747     if (!Flags.empty()) {
1748       Streamer.SwitchSection(getDrectveSection());
1749       Streamer.emitBytes(Flags);
1750     }
1751     Flags.clear();
1752   }
1753 
1754   // Emit /INCLUDE: flags for each used global as necessary.
1755   if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1756     assert(LU->hasInitializer() && "expected llvm.used to have an initializer");
1757     assert(isa<ArrayType>(LU->getValueType()) &&
1758            "expected llvm.used to be an array type");
1759     if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1760       for (const Value *Op : A->operands()) {
1761         const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1762         // Global symbols with internal or private linkage are not visible to
1763         // the linker, and thus would cause an error when the linker tried to
1764         // preserve the symbol due to the `/include:` directive.
1765         if (GV->hasLocalLinkage())
1766           continue;
1767 
1768         raw_string_ostream OS(Flags);
1769         emitLinkerFlagsForUsedCOFF(OS, GV, getTargetTriple(), getMangler());
1770         OS.flush();
1771 
1772         if (!Flags.empty()) {
1773           Streamer.SwitchSection(getDrectveSection());
1774           Streamer.emitBytes(Flags);
1775         }
1776         Flags.clear();
1777       }
1778     }
1779   }
1780 }
1781 
1782 void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx,
1783                                               const TargetMachine &TM) {
1784   TargetLoweringObjectFile::Initialize(Ctx, TM);
1785   this->TM = &TM;
1786   const Triple &T = TM.getTargetTriple();
1787   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1788     StaticCtorSection =
1789         Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1790                                            COFF::IMAGE_SCN_MEM_READ,
1791                            SectionKind::getReadOnly());
1792     StaticDtorSection =
1793         Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1794                                            COFF::IMAGE_SCN_MEM_READ,
1795                            SectionKind::getReadOnly());
1796   } else {
1797     StaticCtorSection = Ctx.getCOFFSection(
1798         ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1799                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1800         SectionKind::getData());
1801     StaticDtorSection = Ctx.getCOFFSection(
1802         ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1803                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1804         SectionKind::getData());
1805   }
1806 }
1807 
1808 static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx,
1809                                                    const Triple &T, bool IsCtor,
1810                                                    unsigned Priority,
1811                                                    const MCSymbol *KeySym,
1812                                                    MCSectionCOFF *Default) {
1813   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1814     // If the priority is the default, use .CRT$XCU, possibly associative.
1815     if (Priority == 65535)
1816       return Ctx.getAssociativeCOFFSection(Default, KeySym, 0);
1817 
1818     // Otherwise, we need to compute a new section name. Low priorities should
1819     // run earlier. The linker will sort sections ASCII-betically, and we need a
1820     // string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we
1821     // make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really
1822     // low priorities need to sort before 'L', since the CRT uses that
1823     // internally, so we use ".CRT$XCA00001" for them.
1824     SmallString<24> Name;
1825     raw_svector_ostream OS(Name);
1826     OS << ".CRT$X" << (IsCtor ? "C" : "T") <<
1827         (Priority < 200 ? 'A' : 'T') << format("%05u", Priority);
1828     MCSectionCOFF *Sec = Ctx.getCOFFSection(
1829         Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ,
1830         SectionKind::getReadOnly());
1831     return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0);
1832   }
1833 
1834   std::string Name = IsCtor ? ".ctors" : ".dtors";
1835   if (Priority != 65535)
1836     raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1837 
1838   return Ctx.getAssociativeCOFFSection(
1839       Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1840                                    COFF::IMAGE_SCN_MEM_READ |
1841                                    COFF::IMAGE_SCN_MEM_WRITE,
1842                          SectionKind::getData()),
1843       KeySym, 0);
1844 }
1845 
1846 MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection(
1847     unsigned Priority, const MCSymbol *KeySym) const {
1848   return getCOFFStaticStructorSection(getContext(), getTargetTriple(), true,
1849                                       Priority, KeySym,
1850                                       cast<MCSectionCOFF>(StaticCtorSection));
1851 }
1852 
1853 MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection(
1854     unsigned Priority, const MCSymbol *KeySym) const {
1855   return getCOFFStaticStructorSection(getContext(), getTargetTriple(), false,
1856                                       Priority, KeySym,
1857                                       cast<MCSectionCOFF>(StaticDtorSection));
1858 }
1859 
1860 const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference(
1861     const GlobalValue *LHS, const GlobalValue *RHS,
1862     const TargetMachine &TM) const {
1863   const Triple &T = TM.getTargetTriple();
1864   if (T.isOSCygMing())
1865     return nullptr;
1866 
1867   // Our symbols should exist in address space zero, cowardly no-op if
1868   // otherwise.
1869   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1870       RHS->getType()->getPointerAddressSpace() != 0)
1871     return nullptr;
1872 
1873   // Both ptrtoint instructions must wrap global objects:
1874   // - Only global variables are eligible for image relative relocations.
1875   // - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable.
1876   // We expect __ImageBase to be a global variable without a section, externally
1877   // defined.
1878   //
1879   // It should look something like this: @__ImageBase = external constant i8
1880   if (!isa<GlobalObject>(LHS) || !isa<GlobalVariable>(RHS) ||
1881       LHS->isThreadLocal() || RHS->isThreadLocal() ||
1882       RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() ||
1883       cast<GlobalVariable>(RHS)->hasInitializer() || RHS->hasSection())
1884     return nullptr;
1885 
1886   return MCSymbolRefExpr::create(TM.getSymbol(LHS),
1887                                  MCSymbolRefExpr::VK_COFF_IMGREL32,
1888                                  getContext());
1889 }
1890 
1891 static std::string APIntToHexString(const APInt &AI) {
1892   unsigned Width = (AI.getBitWidth() / 8) * 2;
1893   std::string HexString = AI.toString(16, /*Signed=*/false);
1894   llvm::transform(HexString, HexString.begin(), tolower);
1895   unsigned Size = HexString.size();
1896   assert(Width >= Size && "hex string is too large!");
1897   HexString.insert(HexString.begin(), Width - Size, '0');
1898 
1899   return HexString;
1900 }
1901 
1902 static std::string scalarConstantToHexString(const Constant *C) {
1903   Type *Ty = C->getType();
1904   if (isa<UndefValue>(C)) {
1905     return APIntToHexString(APInt::getNullValue(Ty->getPrimitiveSizeInBits()));
1906   } else if (const auto *CFP = dyn_cast<ConstantFP>(C)) {
1907     return APIntToHexString(CFP->getValueAPF().bitcastToAPInt());
1908   } else if (const auto *CI = dyn_cast<ConstantInt>(C)) {
1909     return APIntToHexString(CI->getValue());
1910   } else {
1911     unsigned NumElements;
1912     if (auto *VTy = dyn_cast<VectorType>(Ty))
1913       NumElements = cast<FixedVectorType>(VTy)->getNumElements();
1914     else
1915       NumElements = Ty->getArrayNumElements();
1916     std::string HexString;
1917     for (int I = NumElements - 1, E = -1; I != E; --I)
1918       HexString += scalarConstantToHexString(C->getAggregateElement(I));
1919     return HexString;
1920   }
1921 }
1922 
1923 MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant(
1924     const DataLayout &DL, SectionKind Kind, const Constant *C,
1925     Align &Alignment) const {
1926   if (Kind.isMergeableConst() && C &&
1927       getContext().getAsmInfo()->hasCOFFComdatConstants()) {
1928     // This creates comdat sections with the given symbol name, but unless
1929     // AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol
1930     // will be created with a null storage class, which makes GNU binutils
1931     // error out.
1932     const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1933                                      COFF::IMAGE_SCN_MEM_READ |
1934                                      COFF::IMAGE_SCN_LNK_COMDAT;
1935     std::string COMDATSymName;
1936     if (Kind.isMergeableConst4()) {
1937       if (Alignment <= 4) {
1938         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1939         Alignment = Align(4);
1940       }
1941     } else if (Kind.isMergeableConst8()) {
1942       if (Alignment <= 8) {
1943         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1944         Alignment = Align(8);
1945       }
1946     } else if (Kind.isMergeableConst16()) {
1947       // FIXME: These may not be appropriate for non-x86 architectures.
1948       if (Alignment <= 16) {
1949         COMDATSymName = "__xmm@" + scalarConstantToHexString(C);
1950         Alignment = Align(16);
1951       }
1952     } else if (Kind.isMergeableConst32()) {
1953       if (Alignment <= 32) {
1954         COMDATSymName = "__ymm@" + scalarConstantToHexString(C);
1955         Alignment = Align(32);
1956       }
1957     }
1958 
1959     if (!COMDATSymName.empty())
1960       return getContext().getCOFFSection(".rdata", Characteristics, Kind,
1961                                          COMDATSymName,
1962                                          COFF::IMAGE_COMDAT_SELECT_ANY);
1963   }
1964 
1965   return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C,
1966                                                          Alignment);
1967 }
1968 
1969 //===----------------------------------------------------------------------===//
1970 //                                  Wasm
1971 //===----------------------------------------------------------------------===//
1972 
1973 static const Comdat *getWasmComdat(const GlobalValue *GV) {
1974   const Comdat *C = GV->getComdat();
1975   if (!C)
1976     return nullptr;
1977 
1978   if (C->getSelectionKind() != Comdat::Any)
1979     report_fatal_error("WebAssembly COMDATs only support "
1980                        "SelectionKind::Any, '" + C->getName() + "' cannot be "
1981                        "lowered.");
1982 
1983   return C;
1984 }
1985 
1986 MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal(
1987     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1988   // We don't support explict section names for functions in the wasm object
1989   // format.  Each function has to be in its own unique section.
1990   if (isa<Function>(GO)) {
1991     return SelectSectionForGlobal(GO, Kind, TM);
1992   }
1993 
1994   StringRef Name = GO->getSection();
1995 
1996   // Certain data sections we treat as named custom sections rather than
1997   // segments within the data section.
1998   // This could be avoided if all data segements (the wasm sense) were
1999   // represented as their own sections (in the llvm sense).
2000   // TODO(sbc): https://github.com/WebAssembly/tool-conventions/issues/138
2001   if (Name == ".llvmcmd" || Name == ".llvmbc")
2002     Kind = SectionKind::getMetadata();
2003 
2004   StringRef Group = "";
2005   if (const Comdat *C = getWasmComdat(GO)) {
2006     Group = C->getName();
2007   }
2008 
2009   MCSectionWasm* Section =
2010       getContext().getWasmSection(Name, Kind, Group,
2011                                   MCContext::GenericSectionID);
2012 
2013   return Section;
2014 }
2015 
2016 static MCSectionWasm *selectWasmSectionForGlobal(
2017     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
2018     const TargetMachine &TM, bool EmitUniqueSection, unsigned *NextUniqueID) {
2019   StringRef Group = "";
2020   if (const Comdat *C = getWasmComdat(GO)) {
2021     Group = C->getName();
2022   }
2023 
2024   bool UniqueSectionNames = TM.getUniqueSectionNames();
2025   SmallString<128> Name = getSectionPrefixForGlobal(Kind);
2026 
2027   if (const auto *F = dyn_cast<Function>(GO)) {
2028     const auto &OptionalPrefix = F->getSectionPrefix();
2029     if (OptionalPrefix)
2030       raw_svector_ostream(Name) << '.' << *OptionalPrefix;
2031   }
2032 
2033   if (EmitUniqueSection && UniqueSectionNames) {
2034     Name.push_back('.');
2035     TM.getNameWithPrefix(Name, GO, Mang, true);
2036   }
2037   unsigned UniqueID = MCContext::GenericSectionID;
2038   if (EmitUniqueSection && !UniqueSectionNames) {
2039     UniqueID = *NextUniqueID;
2040     (*NextUniqueID)++;
2041   }
2042 
2043   return Ctx.getWasmSection(Name, Kind, Group, UniqueID);
2044 }
2045 
2046 MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal(
2047     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2048 
2049   if (Kind.isCommon())
2050     report_fatal_error("mergable sections not supported yet on wasm");
2051 
2052   // If we have -ffunction-section or -fdata-section then we should emit the
2053   // global value to a uniqued section specifically for it.
2054   bool EmitUniqueSection = false;
2055   if (Kind.isText())
2056     EmitUniqueSection = TM.getFunctionSections();
2057   else
2058     EmitUniqueSection = TM.getDataSections();
2059   EmitUniqueSection |= GO->hasComdat();
2060 
2061   return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
2062                                     EmitUniqueSection, &NextUniqueID);
2063 }
2064 
2065 bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection(
2066     bool UsesLabelDifference, const Function &F) const {
2067   // We can always create relative relocations, so use another section
2068   // that can be marked non-executable.
2069   return false;
2070 }
2071 
2072 const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference(
2073     const GlobalValue *LHS, const GlobalValue *RHS,
2074     const TargetMachine &TM) const {
2075   // We may only use a PLT-relative relocation to refer to unnamed_addr
2076   // functions.
2077   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
2078     return nullptr;
2079 
2080   // Basic sanity checks.
2081   if (LHS->getType()->getPointerAddressSpace() != 0 ||
2082       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
2083       RHS->isThreadLocal())
2084     return nullptr;
2085 
2086   return MCBinaryExpr::createSub(
2087       MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None,
2088                               getContext()),
2089       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
2090 }
2091 
2092 void TargetLoweringObjectFileWasm::InitializeWasm() {
2093   StaticCtorSection =
2094       getContext().getWasmSection(".init_array", SectionKind::getData());
2095 
2096   // We don't use PersonalityEncoding and LSDAEncoding because we don't emit
2097   // .cfi directives. We use TTypeEncoding to encode typeinfo global variables.
2098   TTypeEncoding = dwarf::DW_EH_PE_absptr;
2099 }
2100 
2101 MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection(
2102     unsigned Priority, const MCSymbol *KeySym) const {
2103   return Priority == UINT16_MAX ?
2104          StaticCtorSection :
2105          getContext().getWasmSection(".init_array." + utostr(Priority),
2106                                      SectionKind::getData());
2107 }
2108 
2109 MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection(
2110     unsigned Priority, const MCSymbol *KeySym) const {
2111   llvm_unreachable("@llvm.global_dtors should have been lowered already");
2112   return nullptr;
2113 }
2114 
2115 //===----------------------------------------------------------------------===//
2116 //                                  XCOFF
2117 //===----------------------------------------------------------------------===//
2118 bool TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(
2119     const MachineFunction *MF) {
2120   if (!MF->getLandingPads().empty())
2121     return true;
2122 
2123   const Function &F = MF->getFunction();
2124   if (!F.hasPersonalityFn() || !F.needsUnwindTableEntry())
2125     return false;
2126 
2127   const Function *Per =
2128       dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2129   if (isNoOpWithoutInvoke(classifyEHPersonality(Per)))
2130     return false;
2131 
2132   return true;
2133 }
2134 
2135 MCSymbol *
2136 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(const MachineFunction *MF) {
2137   return MF->getMMI().getContext().getOrCreateSymbol(
2138       "__ehinfo." + Twine(MF->getFunctionNumber()));
2139 }
2140 
2141 MCSymbol *
2142 TargetLoweringObjectFileXCOFF::getTargetSymbol(const GlobalValue *GV,
2143                                                const TargetMachine &TM) const {
2144   // We always use a qualname symbol for a GV that represents
2145   // a declaration, a function descriptor, or a common symbol.
2146   // If a GV represents a GlobalVariable and -fdata-sections is enabled, we
2147   // also return a qualname so that a label symbol could be avoided.
2148   // It is inherently ambiguous when the GO represents the address of a
2149   // function, as the GO could either represent a function descriptor or a
2150   // function entry point. We choose to always return a function descriptor
2151   // here.
2152   if (const GlobalObject *GO = dyn_cast<GlobalObject>(GV)) {
2153     if (GO->isDeclarationForLinker())
2154       return cast<MCSectionXCOFF>(getSectionForExternalReference(GO, TM))
2155           ->getQualNameSymbol();
2156 
2157     SectionKind GOKind = getKindForGlobal(GO, TM);
2158     if (GOKind.isText())
2159       return cast<MCSectionXCOFF>(
2160                  getSectionForFunctionDescriptor(cast<Function>(GO), TM))
2161           ->getQualNameSymbol();
2162     if ((TM.getDataSections() && !GO->hasSection()) || GO->hasCommonLinkage() ||
2163         GOKind.isBSSLocal() || GOKind.isThreadBSSLocal())
2164       return cast<MCSectionXCOFF>(SectionForGlobal(GO, GOKind, TM))
2165           ->getQualNameSymbol();
2166   }
2167 
2168   // For all other cases, fall back to getSymbol to return the unqualified name.
2169   return nullptr;
2170 }
2171 
2172 MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal(
2173     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2174   if (!GO->hasSection())
2175     report_fatal_error("#pragma clang section is not yet supported");
2176 
2177   StringRef SectionName = GO->getSection();
2178   XCOFF::StorageMappingClass MappingClass;
2179   if (Kind.isText())
2180     MappingClass = XCOFF::XMC_PR;
2181   else if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS())
2182     MappingClass = XCOFF::XMC_RW;
2183   else if (Kind.isReadOnly())
2184     MappingClass = XCOFF::XMC_RO;
2185   else
2186     report_fatal_error("XCOFF other section types not yet implemented.");
2187 
2188   return getContext().getXCOFFSection(
2189       SectionName, Kind, XCOFF::CsectProperties(MappingClass, XCOFF::XTY_SD),
2190       /* MultiSymbolsAllowed*/ true);
2191 }
2192 
2193 MCSection *TargetLoweringObjectFileXCOFF::getSectionForExternalReference(
2194     const GlobalObject *GO, const TargetMachine &TM) const {
2195   assert(GO->isDeclarationForLinker() &&
2196          "Tried to get ER section for a defined global.");
2197 
2198   SmallString<128> Name;
2199   getNameWithPrefix(Name, GO, TM);
2200 
2201   XCOFF::StorageMappingClass SMC =
2202       isa<Function>(GO) ? XCOFF::XMC_DS : XCOFF::XMC_UA;
2203   if (GO->isThreadLocal())
2204     SMC = XCOFF::XMC_UL;
2205 
2206   // Externals go into a csect of type ER.
2207   return getContext().getXCOFFSection(
2208       Name, SectionKind::getMetadata(),
2209       XCOFF::CsectProperties(SMC, XCOFF::XTY_ER));
2210 }
2211 
2212 MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal(
2213     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2214   // Common symbols go into a csect with matching name which will get mapped
2215   // into the .bss section.
2216   // Zero-initialized local TLS symbols go into a csect with matching name which
2217   // will get mapped into the .tbss section.
2218   if (Kind.isBSSLocal() || GO->hasCommonLinkage() || Kind.isThreadBSSLocal()) {
2219     SmallString<128> Name;
2220     getNameWithPrefix(Name, GO, TM);
2221     XCOFF::StorageMappingClass SMC = Kind.isBSSLocal() ? XCOFF::XMC_BS
2222                                      : Kind.isCommon() ? XCOFF::XMC_RW
2223                                                        : XCOFF::XMC_UL;
2224     return getContext().getXCOFFSection(
2225         Name, Kind, XCOFF::CsectProperties(SMC, XCOFF::XTY_CM));
2226   }
2227 
2228   if (Kind.isMergeableCString()) {
2229     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
2230         cast<GlobalVariable>(GO));
2231 
2232     unsigned EntrySize = getEntrySizeForKind(Kind);
2233     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
2234     SmallString<128> Name;
2235     Name = SizeSpec + utostr(Alignment.value());
2236 
2237     if (TM.getDataSections())
2238       getNameWithPrefix(Name, GO, TM);
2239 
2240     return getContext().getXCOFFSection(
2241         Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD),
2242         /* MultiSymbolsAllowed*/ !TM.getDataSections());
2243   }
2244 
2245   if (Kind.isText()) {
2246     if (TM.getFunctionSections()) {
2247       return cast<MCSymbolXCOFF>(getFunctionEntryPointSymbol(GO, TM))
2248           ->getRepresentedCsect();
2249     }
2250     return TextSection;
2251   }
2252 
2253   // TODO: We may put Kind.isReadOnlyWithRel() under option control, because
2254   // user may want to have read-only data with relocations placed into a
2255   // read-only section by the compiler.
2256   // For BSS kind, zero initialized data must be emitted to the .data section
2257   // because external linkage control sections that get mapped to the .bss
2258   // section will be linked as tentative defintions, which is only appropriate
2259   // for SectionKind::Common.
2260   if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) {
2261     if (TM.getDataSections()) {
2262       SmallString<128> Name;
2263       getNameWithPrefix(Name, GO, TM);
2264       return getContext().getXCOFFSection(
2265           Name, SectionKind::getData(),
2266           XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD));
2267     }
2268     return DataSection;
2269   }
2270 
2271   if (Kind.isReadOnly()) {
2272     if (TM.getDataSections()) {
2273       SmallString<128> Name;
2274       getNameWithPrefix(Name, GO, TM);
2275       return getContext().getXCOFFSection(
2276           Name, SectionKind::getReadOnly(),
2277           XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD));
2278     }
2279     return ReadOnlySection;
2280   }
2281 
2282   // External/weak TLS data and initialized local TLS data are not eligible
2283   // to be put into common csect. If data sections are enabled, thread
2284   // data are emitted into separate sections. Otherwise, thread data
2285   // are emitted into the .tdata section.
2286   if (Kind.isThreadLocal()) {
2287     if (TM.getDataSections()) {
2288       SmallString<128> Name;
2289       getNameWithPrefix(Name, GO, TM);
2290       return getContext().getXCOFFSection(
2291           Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_TL, XCOFF::XTY_SD));
2292     }
2293     return TLSDataSection;
2294   }
2295 
2296   report_fatal_error("XCOFF other section types not yet implemented.");
2297 }
2298 
2299 MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable(
2300     const Function &F, const TargetMachine &TM) const {
2301   assert (!F.getComdat() && "Comdat not supported on XCOFF.");
2302 
2303   if (!TM.getFunctionSections())
2304     return ReadOnlySection;
2305 
2306   // If the function can be removed, produce a unique section so that
2307   // the table doesn't prevent the removal.
2308   SmallString<128> NameStr(".rodata.jmp..");
2309   getNameWithPrefix(NameStr, &F, TM);
2310   return getContext().getXCOFFSection(
2311       NameStr, SectionKind::getReadOnly(),
2312       XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD));
2313 }
2314 
2315 bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection(
2316     bool UsesLabelDifference, const Function &F) const {
2317   return false;
2318 }
2319 
2320 /// Given a mergeable constant with the specified size and relocation
2321 /// information, return a section that it should be placed in.
2322 MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant(
2323     const DataLayout &DL, SectionKind Kind, const Constant *C,
2324     Align &Alignment) const {
2325   //TODO: Enable emiting constant pool to unique sections when we support it.
2326   return ReadOnlySection;
2327 }
2328 
2329 void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx,
2330                                                const TargetMachine &TgtM) {
2331   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
2332   TTypeEncoding =
2333       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_datarel |
2334       (TgtM.getTargetTriple().isArch32Bit() ? dwarf::DW_EH_PE_sdata4
2335                                             : dwarf::DW_EH_PE_sdata8);
2336   PersonalityEncoding = 0;
2337   LSDAEncoding = 0;
2338   CallSiteEncoding = dwarf::DW_EH_PE_udata4;
2339 }
2340 
2341 MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection(
2342 	unsigned Priority, const MCSymbol *KeySym) const {
2343   report_fatal_error("no static constructor section on AIX");
2344 }
2345 
2346 MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection(
2347 	unsigned Priority, const MCSymbol *KeySym) const {
2348   report_fatal_error("no static destructor section on AIX");
2349 }
2350 
2351 const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference(
2352     const GlobalValue *LHS, const GlobalValue *RHS,
2353     const TargetMachine &TM) const {
2354   report_fatal_error("XCOFF not yet implemented.");
2355 }
2356 
2357 XCOFF::StorageClass
2358 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(const GlobalValue *GV) {
2359   assert(!isa<GlobalIFunc>(GV) && "GlobalIFunc is not supported on AIX.");
2360 
2361   switch (GV->getLinkage()) {
2362   case GlobalValue::InternalLinkage:
2363   case GlobalValue::PrivateLinkage:
2364     return XCOFF::C_HIDEXT;
2365   case GlobalValue::ExternalLinkage:
2366   case GlobalValue::CommonLinkage:
2367   case GlobalValue::AvailableExternallyLinkage:
2368     return XCOFF::C_EXT;
2369   case GlobalValue::ExternalWeakLinkage:
2370   case GlobalValue::LinkOnceAnyLinkage:
2371   case GlobalValue::LinkOnceODRLinkage:
2372   case GlobalValue::WeakAnyLinkage:
2373   case GlobalValue::WeakODRLinkage:
2374     return XCOFF::C_WEAKEXT;
2375   case GlobalValue::AppendingLinkage:
2376     report_fatal_error(
2377         "There is no mapping that implements AppendingLinkage for XCOFF.");
2378   }
2379   llvm_unreachable("Unknown linkage type!");
2380 }
2381 
2382 MCSymbol *TargetLoweringObjectFileXCOFF::getFunctionEntryPointSymbol(
2383     const GlobalValue *Func, const TargetMachine &TM) const {
2384   assert(
2385       (isa<Function>(Func) ||
2386        (isa<GlobalAlias>(Func) &&
2387         isa_and_nonnull<Function>(cast<GlobalAlias>(Func)->getBaseObject()))) &&
2388       "Func must be a function or an alias which has a function as base "
2389       "object.");
2390 
2391   SmallString<128> NameStr;
2392   NameStr.push_back('.');
2393   getNameWithPrefix(NameStr, Func, TM);
2394 
2395   // When -function-sections is enabled and explicit section is not specified,
2396   // it's not necessary to emit function entry point label any more. We will use
2397   // function entry point csect instead. And for function delcarations, the
2398   // undefined symbols gets treated as csect with XTY_ER property.
2399   if (((TM.getFunctionSections() && !Func->hasSection()) ||
2400        Func->isDeclaration()) &&
2401       isa<Function>(Func)) {
2402     return getContext()
2403         .getXCOFFSection(
2404             NameStr, SectionKind::getText(),
2405             XCOFF::CsectProperties(XCOFF::XMC_PR, Func->isDeclaration()
2406                                                       ? XCOFF::XTY_ER
2407                                                       : XCOFF::XTY_SD))
2408         ->getQualNameSymbol();
2409   }
2410 
2411   return getContext().getOrCreateSymbol(NameStr);
2412 }
2413 
2414 MCSection *TargetLoweringObjectFileXCOFF::getSectionForFunctionDescriptor(
2415     const Function *F, const TargetMachine &TM) const {
2416   SmallString<128> NameStr;
2417   getNameWithPrefix(NameStr, F, TM);
2418   return getContext().getXCOFFSection(
2419       NameStr, SectionKind::getData(),
2420       XCOFF::CsectProperties(XCOFF::XMC_DS, XCOFF::XTY_SD));
2421 }
2422 
2423 MCSection *TargetLoweringObjectFileXCOFF::getSectionForTOCEntry(
2424     const MCSymbol *Sym, const TargetMachine &TM) const {
2425   // Use TE storage-mapping class when large code model is enabled so that
2426   // the chance of needing -bbigtoc is decreased.
2427   return getContext().getXCOFFSection(
2428       cast<MCSymbolXCOFF>(Sym)->getSymbolTableName(), SectionKind::getData(),
2429       XCOFF::CsectProperties(
2430           TM.getCodeModel() == CodeModel::Large ? XCOFF::XMC_TE : XCOFF::XMC_TC,
2431           XCOFF::XTY_SD));
2432 }
2433